
Local Algorithms:
Self-Stabilization on Speed

Christoph Lenzen1, Jukka Suomela2, and Roger Wattenhofer1

1 Computer Engineering and Networks Laboratory TIK
ETH Zurich, 8092 Zurich, Switzerland

lenzen@tik.ee.ethz.ch, wattenhofer@tik.ee.ethz.ch
http://www.dcg.ethz.ch

2 Helsinki Institute for Information Technology HIIT
P. O. Box 68, FI-00014 University of Helsinki, Finland

jukka.suomela@cs.helsinki.fi

http://www.hiit.fi

1 Introduction

Fault tolerance is one of the main concepts in distributed computing. It has
been tackled from different angles, e.g. by building replicated systems that can
survive crash failures of individual components, or even systems that can tolerate
a minority of arbitrarily malicious (“Byzantine”) participants.

Self-stabilization, a fault tolerance concept coined by the late Edsger W.
Dijkstra in 1973 [1, 2], is of a different stamp. A self-stabilizing system must
survive arbitrary failures, beyond Byzantine failures, including for instance a
total wipe out of volatile memory at all nodes. In other words, the system must
self-heal and converge to a correct state even if starting in an arbitrary state,
provided that no further faults happen.

Local algorithms, on the other hand, have no apparent relation to fault tol-
erance. Instead, the basic question studied is whether one can build efficient
network algorithms, where any node only knows about its immediate neighbor-
hood. What problems can be solved in such a framework, and how efficiently?
Local algorithms have first been studied about 10 years after Dijkstra proposed
the notion of self-stabilization [3–6]; recently they experience an Indian summer
because of new application domains, such as overlay or sensor networks [7].

It seems that the world of self-stabilization (which is asynchronous, long-
lived, and full of malicious failures) has nothing in common with the world of
local algorithms (which is synchronous, one-shot, and free of failures). However,
as shown in the late 1980s, this perception is incorrect [8, 9]; indeed one can
prove quite easily that the two areas are essentially equivalent. Intuitively, this
is because (i) asynchronous systems can be made synchronous by using synchro-
nizers [10], (ii) self-stabilization concentrates on the case after the last failure,
when the system tries to become correct again, and (iii) one-shot algorithms can
just be executed in an infinite loop.

One can show that upper and lower bounds in either area more or less transfer
directly to the other area.3 Unfortunately, it seems that this equivalence has been
somewhat forgotten in the last decades. For instance, hardly ever does a paper
from one area cite work from the other area. We take the opportunity of this
invited paper to summarize the basics, to discuss the latest developments, and
to point to possible open problems. We believe that the two areas can learn a
great deal from each other!

2 Deterministic Algorithms

The connection between local algorithms and self-stabilizing algorithms is partic-
ularly straightforward in the case of deterministic algorithms: any deterministic
local algorithm is also a deterministic self-stabilizing algorithm. Furthermore,
any deterministic, synchronous local algorithm whose running time is T syn-
chronous communication rounds provides a self-stabilizing algorithm that stabi-
lizes in time T . In this section, we review the conversion in detail, first through
an example and then in the general case.

2.1 An Example: Graph Coloring

Throughout this work we consider distributed systems that consist of computa-
tional devices and communication links between them. The distributed system
is represented as a graph G = (V,E) with n = |V | nodes: each node v ∈ V is a
device, and two nodes can communicate directly if they share an edge {u, v} ∈ E.

Although the connection between local algorithms and self-stabilizing algo-
rithms is more general, in this text we focus on distributed algorithms that solve
graph problems. We use the problem of finding a graph coloring as a running
example. In this case we want to assign a color c(v) to each node v ∈ V such that
no two adjacent nodes share the same color, i.e., the nodes of each color form an
independent set. In general it is NP-hard to determine the minimum number of
colors required to color a graph, so we settle for (∆ + 1)-colorings, where ∆ is
the maximum node degree. Each node v must produce a local output from the
set {0, 1, . . . ,∆} such that for any pair of adjacent nodes the local outputs are
different.

2.2 A Deterministic Local Algorithm for Graph Coloring

Perhaps the simplest model of distributed computing is a synchronous dis-
tributed algorithm. In a synchronous algorithm, all nodes in the network per-
form steps in parallel: during each synchronous communication round, all nodes

3 So was local algorithms just old wine in new skins? Not really, because the two areas
had quite a different focus. Whereas self-stabilization mostly dealt with correctness,
local algorithms were all about complexity and efficiency. Today, this difference is
disappearing, as also self-stabilization is more and more about efficiency.

in parallel (i) perform local computation, (ii) send out messages to their neigh-
bors, (iii) wait for the messages to propagate along the edges, and (iv) read the
incoming messages. Finally the nodes determine their output and terminate. A
synchronous local algorithm is simply a distributed algorithm that completes
in T synchronous communication rounds. Typically T is a constant [6, 11] or a
slowly-growing function of n [3–5].

In T communication rounds, information is propagated for only T hops in
the communication graph; hence the output of a node v can only depend on the
structure of the graph G in the radius-T neighborhood of v. This is the very idea
suggested by the term “local algorithm”: nodes make decisions based on local
information, yet the decisions must be globally consistent.

We start with a variant of a very fast and elegant algorithm, the well-known
Cole–Vishkin algorithm [4], which 3-colors an n-cycle in O(log∗ n) rounds. The
function log∗ n is defined as the number of times the logarithm has to be applied
to n until the result is a constant. This function grows exceptionally slowly and
is bounded by a small number for any reasonable size of n. In the Cole–Vishkin
algorithm, the local input of a node is a unique identifier with O(log n) bits, and
the local output of a node will be a color from the set {0, 1, 2}:

24

2 1 1

2 45 6 44 81 0

1 0 2 2 0

14

To keep things simple, we assume that the nodes know an upper bound on n,
and the cycle has a consistent orientation such that each node has one successor
and one predecessor:

The algorithm works as follows. Initially, the color of a node is equal to its unique
identifier; the idea is to repeatedly decrease the number of colors required. In
each round, each node v sends its current color to its successor w. The node
w compares bitwise its own color to the received one to determine the least
significant bit where they differ. It binary encodes the position and appends the
differing bit, resulting in its new color in the form of a bit string. The new color
of w cannot be identical to the new color of its predecessor v: either the indices
of the bits v and w determined are not the same, meaning that the colors have
a different prefix, or the computed indices referred to bits with different values,
i.e., the new colors differ in their terminal bits.

The following example shows two iterations of the algorithm on a part t →
u→ v → w of a cycle:

t: 1010110000→ . . . → . . .
u: 0010110000→ 10010→ . . .
v: 1010010000→ 01010→ 111
w: 0110010000→ 10001→ 001.

The initial colors, i.e., the nodes’ unique identifiers, have O(log n) bits. After one
step, the colors consist of O(log log n) bits, namely a binary encoded position
in a string of length O(log n) plus one bit. Applying this observation also to
subsequent rounds, we see that after O(log∗ n) rounds, the number of bits—
and thus colors—has become constant. At this point, a simple constant-time
algorithm can be used to reduce the number of colors to ∆ + 1 = 3: in each
round, we remove the largest color.

In summary, we have an algorithm for 3-coloring an n-cycle in O(log∗ n)
rounds; furthermore, this running time is asymptotically optimal [5]. The ap-
proach can be generalized to bounded-degree graphs and rooted trees [12, 13].
Recently, the technique was utilized to find colorings in bounded-independence
graphs in O(log∗ n) rounds [14]; we will discuss recent work in more detail in
Sect. 4.1.

2.3 A Self-Stabilizing Algorithm for Graph Coloring

The local algorithm presented in the previous section is not fault-tolerant in
any way. We assumed that all nodes are activated simultaneously in a specific
initial state, and the network does not change during the execution of the al-
gorithm. The algorithm eventually stops, after which it does not react in any
way to changes in the network. Furthermore, we assumed that all nodes perform
computations in a synchronous manner, as if a global clock pulse was available.

Nevertheless, it is possible to convert this local algorithm into an efficient
asynchronous self-stabilizing algorithm. A self-stabilizing algorithm, by defini-
tion, provides an extreme form of fault tolerance [2, 15, 16]: an adversary can
choose an arbitrary initial configuration, and a self-stabilizing algorithm is still
guaranteed to converge into a correct output.

For the sake of concreteness, we use the shared-memory model here: we as-
sume that each communication link {u, v} ∈ E consists of a pair of communi-
cation registers, one which is written by u and read by v, and one for passing
information in the opposite direction. Typically support of atomic reads and
writes is assumed.

In this model, a configuration of the system consists of the local outputs of
the nodes, the contents of the local variables of the nodes, and the contents of
the communication registers. In a legitimate configuration the system behaves
as intended—in our example, a legitimate configuration simply refers to any
configuration in which the local outputs of the nodes form a valid coloring. We
refer to Dolev’s book [16, §2] for more details on these definitions and on the
model of self-stabilizing algorithms in general.

We now convert the variant of the Cole–Vishkin algorithm presented in
Sect. 2.2 into an asynchronous self-stabilizing algorithm. Asynchronicity means
here that there are no guarantees on how fast computations are done and in-
formation is exchanged. Rather, the algorithm must be resilient to a worst-case
situation where a non-deterministic distributed daemon may schedule any com-
putational step at any node next. The algorithm must reach a legitimate state

regardless of the decisions of the daemon. The time complexity of an asyn-
chronous self-stabilizing algorithm is defined as the number of asynchronous cy-
cles required to converge from an arbitrary state to a legitimate configuration;
an asynchronous cycle is an execution during which each node at least once
reads its input and incoming messages, and infers and writes its new output and
outgoing messages.

The algorithm from Sect. 2.2 can be adapted to this model as follows. Let
T = O(log∗ n) be the running time of the Cole–Vishkin algorithm. For each edge
in the cycle, we divide the associated communication register (in the described
algorithm communication is unidirectional, hence a single register suffices) into
T parts, each of which represents one round of the local algorithm. Let v be a
node in the oriented cycle, with predecessor u and successor w. Now the state of
the communication register on the edge {u, v} corresponds to all messages that
u sends to v during the execution of the Cole–Vishkin algorithm; similarly, the
register on the edge {v, w} corresponds to the messages sent by v to w.

The node v continuously reads its input (its unique identifier) and the values
in the communication register on the edge {u, v}. The node v simulates its own
actions during a complete execution of the Cole–Vishkin algorithm, assuming
that these incoming messages are correct, and writes its own outgoing messages
to the communication register on the edge {v, w}. The node also continuously
re-writes its local output based on this simulation.

Naturally, in the beginning the output might be nonsense, as the initial mem-
ory state is arbitrary. After one asynchronous cycle, however, the nodes will
have (re)written their identifiers into the parts of the registers responsible for
the messages in round one of the Cole–Vishkin algorithm. In the next cycle,
their neighbors will read them, compute the new colors, and write them into
the parts for round two, and so on. After T + 1 asynchronous cycles, the initial
state of the system has been erased and replaced by the values the local algo-
rithm would compute in a single run, independently of the schedule the daemon
chooses. Hence the same arguments as in the previous section prove that the
output must be correct at all nodes. Moreover, no further state transitions oc-
cur, as the outcome of all steps of the computation depends only on the local
inputs (unique identifiers) of the nodes.

We conclude that the algorithm stabilizes within T + 1 asynchronous cycles,
where T is the running time of the local algorithm. Hence in the conversion
from local to self-stabilizing algorithms, we can guarantee much more than mere
eventual convergence into a legitimate configuration: we can show that the con-
vergence is fast.

Note that the algorithm is also efficient in terms of the number of bits sent
and the required memory. In total

T∑
i=1

O(log(i) n) = O(log n)

bits need to be exchanged along each edge, where log(i) n denotes the i times
iterated logarithm. Apart from the presented special case where edges are ori-

ented, this bit complexity is asymptotically optimal [17], a result also holding
for randomized algorithms which are presented in Sect. 3. No additional memory
beyond the communication registers is needed.

2.4 General Case

The example of Sect. 2.3 was fairly simple: in the original local algorithm, each
node sends messages to only one neighbor. However, the general case is not much
more complicated: there are two communication registers on each edge, and all
registers are divided in T parts, one part for each communication round.

Figure 1 shows the basic idea behind the conversion: given any deterministic
distributed algorithm A with running time T , we can construct an equivalent
circuit that produces the same output as A. The figure shows the conversion in
the case where the communication graph G is a cycle, but the same idea can be
applied to arbitrary graphs.

(b)

· · ·

t = 0

t = 1

t = 2

t = T − 1

t = T

outputs

(a)

v

outputs

inputs

inputs

Fig. 1. (a) A distributed system that executes a local deterministic algorithm A with
running time T . (b) A circuit that computes the same output.

Each node v in Fig. 1a is replaced by T + 1 virtual nodes v0, v1, . . . , vT in
Fig. 1b. The node v0 represents the initial state of the node v in the algorithm
A, and the node vi for i = 1, 2, . . . , T represents the state of the node v in

the algorithm A after the synchronous communication round i. A directed edge
from vi−1 to ui represents the message sent by v to u during the synchronous
communication round i. Clearly the output of the circuit is equal to the output
of the original algorithm A.

So far we seem to have gained little: we have just an alternative representation
of the original local algorithmA. However, the key observation is that it is easy to
simulate the computations of the circuit of Fig. 1b by a self-stabilizing algorithm.
Furthermore, the simulation can be realized in virtually any model of distributed
computing (assuming, of course, that the model allows us to implement any kind
of reliable computation at all).

In essence, we simply replace each diagonal edge from vi−1 to ui by a point-
to-point communication channel from the node v to u. The node v continuously

1. re-reads its local input and all incoming messages,
2. simulates the behavior of A for each time step, assuming that the incoming

messages are correct, and
3. re-writes its local output and all outgoing messages.

After i+ 1 asynchronous cycles, the outgoing signals of the virtual nodes vi are
correct, and after T + 1 asynchronous cycles, the output of each node is correct,
regardless of the initial configuration.

In the example of Sect. 2.3 we implemented point-to-point communication
from u to v by using a communication register that was written by u and read
by v. Equally well we could use the message-passing model and a self-stabilizing
implementation of unit capacity data links; see, e.g., Awerbuch et al. [18].

Naturally, if T is large, say, T = Θ(n), then the conversion of Fig. 1 is of little
use. However, in the case of local algorithms, typically T � n and in some cases
even T = O(1). Hence this simple and easy-to-implement conversion yields an
efficient self-stabilizing algorithm for most deterministic local algorithms. In par-
ticular, constant-time distributed algorithms are also self-stabilizing algorithms
that stabilize in constant time. Furthermore, the memory requirement and mes-
sage size is increased only by a factor of T : for example, if the original local
algorithm transmits m-bit messages on each edge, the self-stabilizing algorithm
sends (Tm)-bit messages.

2.5 The Simple Conversion in Literature

The observation that deterministic distributed algorithms can be easily con-
verted into self-stabilizing algorithms is by no means new. The conversion of
Fig. 1 is, in essence, equal to the “simulator” introduced by Awerbuch and
Sipser [8] more than 20 years ago. Awerbuch and Sipser explicitly referred to
the problem of simulating local algorithms, even though the field of local al-
gorithms barely existed back then. While Awerbuch and Sipser did not focus
on self-stabilizing algorithms, all key ingredients were already present. Their
algorithm was triggered by a topology change in the network; equally well we
can trigger the algorithm by periodically re-reading the inputs, and we obtain a
self-stabilizing algorithm.

Awerbuch and Varghese [9] make the connection between synchronous dis-
tributed algorithms and self-stabilizing algorithms explicit. They use the term
“rollback compiler” to refer to a simple conversion similar to that of Fig. 1. In
their terminology, the states of the virtual nodes v0, v1, . . . , vT together with
the incoming messages constitute a log that contains the full execution history
of the node v; hence the node can verify that the execution of the algorithm
A is correct from its own perspective. If the execution is correct from the per-
spective of all nodes, then also the outputs are correct and the algorithm has
stabilized. By keeping track of the execution history, we have made the output
of the distributed algorithm locally checkable.

The simple conversion can also be interpreted as an application of local check-
ing and correction that is introduced in Awerbuch et al. [18]. We can locally check
the state of each directed edge in Fig. 1b. If a link (ui−1, vi) is in an inconsistent
state, we can locally correct the state of vi. By construction, each dependency
chain in this system has length at most T , and hence the system will stabilize
in time T + 1.

However, even though the simple conversion itself is well-known [16, §5.1], it
seems that fairly little attention has been paid to it in the literature. The main
focus has been on non-local problems such as spanning trees and leader election.
Even in Awerbuch and Varghese’s [9] work the main contribution is related to
the conversion of non-local distributed algorithms whose running time T is larger
than the diameter of the network.

A notable exception is Mayer et al. [19]. In this work—which is a follow-up
of the seminal paper by Naor and Stockmeyer [6] that initiated the study of
strictly local (constant-time) distributed algorithms—Mayer et al. specifically
draw attention to the connection between local algorithms and fault-tolerance
in dynamic systems. However, the field of local algorithms was still in its infancy
in 1995, and positive examples of local algorithms were scarce.

We believe it is time to revisit the issue now, as we have numerous recent
examples of local algorithms. In Sect. 4, we survey highlights from the field of
local algorithms—both positive and negative results—and explain what impli-
cations they have from the perspective of self-stabilizing algorithms. However,
we will first have a look at the much more complicated issue of randomized local
algorithms.

3 Randomized Algorithms

So far we have restricted our attention to deterministic local algorithms. There
is a considerable number of local algorithms that are randomized, i.e., each node
has access to (uniformly) random bits. These can be useful to break symmetry
or locally take decisions that probably perform well on a global scale, creating
algorithms which are likely to be faster than their deterministic counterparts,
to achieve better approximation guarantees, or to yield correct solutions despite
short running times.

3.1 Basic Symmetry Breaking

Sometimes deterministic algorithms are even incapable of solving a particular
task. Coloring an anonymous cycle, i.e., a cycle without a means to distinguish
between nodes, is impossible without randomization. Due to total symmetry,
when executing a deterministic algorithm, all nodes must take the same actions
and eventually attain the same color.4 On the other hand, running the Cole–
Vishkin algorithm from Sect. 2 with O(log n) random bits as “identifier” at
each node will result in a correct output with high probability (w.h.p.), i.e.,
for any choice of a constant c > 0 we can bound the probability of failure
by 1/nc. Using random bit strings of length (c + 2) log n, any pair of nodes
will have distinct bit strings with probability 1/nc+2. Summing over all pairs
of nodes, the probability of two nodes having the same string can be bounded
by n(n − 1)/(2nc+2) < 1/nc. Thus, with probability at least 1 − 1/nc, we can
interpret the random bits as correct input of the deterministic Cole–Vishkin
algorithm relying on unique identifiers.

When this technique is to be employed in the self-stabilizing world, we cannot
guarantee globally unique identifiers any more unless accepting a stabilization
time of Ω(D), since there is no way to distinguish a corrupted memory state
from a correct one if not comparing the identifiers. However, for many algo-
rithms, in particular routines such as Cole–Vishkin dealing with breaking of
local symmetry, a locally unique labeling, i.e., any coloring, will do. Assuming
(an approximation of) n is known, we merely need to continuously compare the
“random identifiers” of neighbors, and generate a new random bit string if a
conflict is observed. This very simple algorithm self-stabilizes w.h.p. within one
or two cycles, depending on the precise model, and can be a building block for
more sophisticated algorithms.

3.2 Pseudo-Randomization

The general transformation from Sect. 2.4 fails for randomized algorithms. On
the one hand, if nodes make their random choices in advance and proceed de-
terministically, an adversary may tamper with the state of the memory holding
the random bits, and the algorithm will be slow, yield bad approximations, or
even completely fail. On the other hand, if nodes take random choices in each
step of the algorithm “on the fly”, the execution of the algorithm itself is not
deterministic. In this case, we cannot represent the state of a node in a given
(synchronous) round as function of the states of the nodes in the previous round,
and thus also not represent the respective computations by a Boolean circuit.
Rather, to guarantee uncorrupted random choices, nodes would have to contin-
uously renew their random bits, preventing convergence to a fixed output.

From a practical point of view, this problem can be tackled easily: Instead
of generating actual random numbers, we use fixed unique random seeds, i.e.,

4 Asynchrony might break symmetry, but in the worst case it will certainly not. Here
the worst case ironically is the system being perceived as synchronous.

node identifiers, as part of the input. These bits are read-only and can be seen
as part of the protocol itself, i.e., they are not subject to the arbitrariness of
initial states. Using a pseudo-random function with the node identifier in con-
junction with the round number as input, nodes can generate pseudo-random
bits for use by a randomized algorithm. Since these bits are computed determin-
istically at running time, the conversion from Sect. 2.4 can be applied again to
infer asynchronous and self-stabilizing algorithms from synchronous randomized
counterparts.

Assuming that no correlation between the random seeds and the problem-
specific input exists, and provided that a well-behaving pseudo-random func-
tion is used, the performance of the algorithm will be indistinguishable from a
“true” randomized algorithm’s: We simply ensured a supply of random bits in
advance by storing a previous random choice in non-volatile memory to avoid
corruption. Hence, in practice also randomized local algorithms lead to efficient
self-stabilizing solutions in a straightforward manner.

3.3 Theoretical Questions

From a theoretical point of view, the use of pseudo-randomization is noneffective.
Regardless of the computations made, previously stored values do not replace
randomly generated numbers. At best, if the stored bits have been generated
uniformly at random and the other input is independent of these choices, each
stored bit can be used once as a random bit. At worst, a sufficiently powerful
adversary might learn about nodes’ pseudo-random choices by experimentation
or having access to the complete state of nodes, and afterwards modify the input
in a way such that the pseudo-random choices are badly suited to the created
problem instance. After all, pseudo-randomness does not change the determin-
istic behavior of the algorithm, and therefore any lower bound applicable to
deterministic algorithms must hold.

In fact, to the best of our knowledge, little is known about which random-
ized local algorithms can be made self-stabilizing efficiently. We presented a
trivial, yet important example at the beginning of the section which tolerates
asynchronicity. Synchronous randomized algorithms may require synchronous
systems to self-stabilize quickly, as the random choices of a given round need to
be correlated. This however might limit their usability in an asynchronous en-
vironment, since a self-stabilizing synchronizer requires time in the order of the
diameter of the network to stabilize [20], a bound that—at least when ignoring
other complexity measures—is trivial to local algorithms, since nodes may learn
about the whole topology and all local inputs in that time.

4 Results on Local Algorithms

In this section, we present selected results from the field of local algorithms, with
the main focus on recent discoveries. Most of the results are deterministic algo-
rithms or lower-bound results, each of which has a direct self-stabilizing coun-
terpart. We have also included examples of randomized local algorithms—some

of these can be made self-stabilizing by using the symmetry breaking technique
discussed in Sect. 3, while developing self-stabilizing versions of others provides
challenges for future research. We begin with the theme that we have used as a
running example in Sections 2 and 3, graph coloring.

4.1 Colorings, Independent Sets, and Matchings

In the study of traditional centralized algorithms, graph coloring is often seen
from the perspective of optimization: the goal is to minimize the number of
colors. This perspective leads to many famous results in graph theory and com-
puter science; finding an optimal coloring is a classical NP-hard problem, and
numerous (in)approximability results, practical heuristics, and exponential-time
exact algorithms are known.

However, in distributed computing, graph coloring is usually regarded as a
fundamental symmetry-breaking primitive. From this point of view, minimizing
the number of colors is not necessary—a coloring with ∆+ 1 colors is sufficient
for symmetry-breaking purposes. While such a coloring is trivial to find in a
centralized setting by using a greedy algorithm, the problem of finding such
colorings efficiently in a distributed setting has been a central question from the
very first days of the field to the present day. These efforts have resulted in fast
algorithms and tight impossibility results, both of which transfer directly to a
self-stabilizing setting.

Before reviewing the key results, it is worth mentioning that there is another
symmetry-breaking problem that is essentially equal to graph coloring: the prob-
lem of finding a maximal independent set. Given a k-coloring, it is easy to find
a maximal independent set in time k. Conversely, if we have an algorithm for
finding a maximal independent set, we can use it to find a (∆+ 1)-coloring [5].
Another related symmetry-breaking problem is finding a maximal matching. In
particular, in the case of directed cycles a maximal matching is equivalent to
a maximal independent set: the outgoing edges of independent nodes form a
matching and vice versa.

From this background it comes as no surprise that all these problems have
essentially the same time complexity in bounded-degree graphs, already familiar
from Sect. 2: if ∆ = O(1), then it is possible to find a (∆+1)-coloring, a maximal
independent set, and a maximal matching in O(log∗ n) rounds, and not faster.

Deterministic Algorithms. Naturally, all deterministic algorithms that break the
symmetry require some kind of initial symmetry-breaking information [21]. The
algorithms that we discuss here assume that each node has a unique identifier.
The unique identifiers do not make the problems trivial, though. Linial’s re-
sults [5] show that even in the case of directed cycles with unique identifiers,
there is no constant-time algorithm for finding a graph coloring, maximal in-
dependent set, or maximal matching. Any such algorithm requires Ω(log∗ n)
communication rounds.

We already presented the Cole–Vishkin algorithm [4] for coloring a cycle
in Sect. 2; the running time of this algorithm matches Linial’s lower bound.
Since the publication of Cole and Vishkin’s seminal work in 1986, numerous
algorithms have been presented for the problem of coloring an arbitrary graph
with ∆ + 1 colors; typically, such algorithms have time complexity of the form
O(f(∆)+log∗ n). Examples of these include an algorithm by Goldberg et al. [22]
with a running time of O(∆2 + log∗ n) rounds, and by Kuhn et al. [23] with
running time O(∆ log∆+log∗ n). The recent algorithms by Barenboim and Elkin
[24] and Kuhn [25] finally push the running time down to O(∆+ log∗ n). These
results also provide a deterministic algorithm for finding a maximal independent
set in O(∆ + log∗ n) rounds. Schneider et al. [14] study bounded-independence
graphs, i.e., graphs in which any constant-radius subgraph contains at most
O(1) independent nodes. In this family, a maximal independent set, a maximal
matching, or a (∆+ 1)-coloring can be found in O(log∗ n) rounds.

There are also efficient distributed algorithms that directly solve the problem
of finding a maximal matching. Some of the algorithms have running times of the
familiar form O(f(∆)+log∗ n): Panconesi and Rizzi [26] find a maximal matching
in O(∆ + log∗ n) rounds. However, there are also algorithms that perform well
even if ∆ = Θ(n). For example, Hańćkowiak et al. [27] find a maximal matching
in O(log4 n) rounds.

In summary, at least for bounded-degree graphs (or more general bounded-
independence graphs), these three symmetry-breaking problems admit very ef-
ficient and asymptotically optimal deterministic solutions.

Randomized Algorithms. In the case of deterministic algorithms, we assumed
that we have unique identifiers in the network. However, a much weaker as-
sumption is usually sufficient: it is enough to have a graph coloring (possibly
with an unnecessarily large number of colors). Many deterministic graph color-
ing algorithms, including the original Cole–Vishkin algorithm, simply perform
color reductions steps: in each iteration, a k-coloring is replaced with an O(log k)-
coloring.

Therefore we can apply a randomized graph coloring algorithm, such as the
one mentioned in Sect. 3.1, to obtain an initial k-coloring, and then use determin-
istic local algorithms to find a (∆+ 1)-coloring, a maximal independent set, or a
maximal matching. Such a composition results in a randomized self-stabilizing
algorithm that can be used in anonymous networks without unique identifiers.

There are also randomized local algorithms that find a maximal independent
set directly, without resorting to a randomized graph coloring algorithm. The
most famous example is Luby’s [3] randomized algorithm from 1986 that finds
a maximal independent set in O(log n) rounds w.h.p.; similar results were also
presented by Alon et al. [28] and Israeli et al. [29] around the same time. Recently,
Métivier et al. [30] presented a new variant featuring a simpler analysis. While
we are not aware of a self-stabilizing version of Luby’s algorithm, there has been
progress in this direction. Already in 1988, Awerbuch and Sipser [8] studied
Luby’s algorithm in dynamic, asynchronous networks, and more recently the
algorithm has been studied in a fault-tolerant setting by Kutten and Peleg [31].

4.2 Linear Programs

Now we change the perspective from symmetry-breaking problems to optimiza-
tion problems. Many resource-allocation questions in computer networking can
be naturally formulated as distributed linear programs (LPs): each (physical or
virtual) node in the network represents a variable or a constraint, with an edge
between a variable and each constraint that depends on it. Papadimitriou and
Yannakakis [32] raised the question of solving such linear programs in a local
manner so that the value of each variable is chosen using only information that
is available in its local neighborhood in the network.

Clearly such algorithms cannot produce an optimal solution—in some cases
even finding a feasible solution requires essentially global information on the
problem instance. However, there are important families of linear programs that
admit local approximation algorithms, i.e., algorithms that find a solution that
is guaranteed to be feasible and near-optimal.

The most widely-studied families are packing and covering LPs. In a packing
LP, the objective is to maximize c>x subject to Ax ≤ 1 and x ≥ 0 for a
non-negative matrix A; a covering LP is the dual of a packing LP. Distributed
approximation algorithms for packing and covering LPs have been presented by
Bartal et al. [33] and by Kuhn et al. [34, 35].

For example, in the case of {0, 1} coefficients, Kuhn et al. [35] find a (1 + ε)-
approximation in O(ε−4 log2∆) rounds; here the degree bound ∆ is the maxi-
mum number of non-zero elements in any row or column of the matrix A. If ∆
is a constant, the algorithm is strictly local in the sense that the approximation
ratio and the running time are independent of the number of nodes. Moreover, it
is a local approximation scheme: an arbitrarily good approximation ratio can be
achieved. The algorithm is deterministic, an therefore it can be easily converted
into a self-stabilizing algorithm.

It is also known that the dependency on ∆ in the running time is unavoid-
able. Kuhn et al. [35, 36] present lower bound constructions that, in essence,
show that finding a constant-factor approximation of a packing or covering LP
requires Ω(log∆/ log log∆) rounds, even in various special cases such as the LP
relaxations of minimum vertex cover and maximum matching. The same con-
struction also gives a lower bound of Ω(

√
log n/ log log n) rounds as a function

of n. Such lower bounds have applications far beyond linear programming, as
they also give lower bounds for the original combinatorial problems. Incidentally,
the lower bounds by Kuhn et al. hold even in the case of randomized algorithms
with probabilistic approximation guarantees.

The family of max-min LPs combines packing and covering constraints. In a
max-min LP, the objective is to maximize ω subject to Ax ≤ 1, Cx ≥ ω1, and
x ≥ 0 for non-negative matrices A and C. While arbitrarily good approximation
factors can be achieved for packing and covering LPs in bounded-degree graphs
with a strictly local algorithm, this is no longer the case for max-min LPs—
indeed, a tight pair of positive [37] and negative [38] results is known for the
approximation factor achievable with a strictly local algorithm. Nevertheless,
for certain families of graphs better approximation algorithms are known [39].

4.3 Randomized LP Rounding

In addition to being the workhorse of operations research, linear programming
has found numerous applications in the field of combinatorial optimization [40].
Many of the best polynomial-time approximation algorithms build on the theory
of linear programming [41]. The case is the same in the field of local algorithms.

Putting together the LP approximation schemes discussed in Sect. 4.2 and
the technique of randomized rounding [34, 35, 42], it is possible to find good ap-
proximations for many classical combinatorial problems. For example, in the case
of the minimum dominating set problem, we can study the LP relaxation of the
problem. This is a covering LP, and using the LP approximation schemes, we can
find a near-optimal solution, i.e., a near-optimal fractional dominating set.5 Now
the challenge is to construct an integral dominating set whose size is not much
worse than the size of the fractional dominating set; this can be solved by using
a two-step randomized algorithm which provides an O(log∆)-approximation in
expectation. In addition to covering problems such as dominating set, this ap-
proach can be applied to solve packing problems: the expected approximation
factor is O(∆) for maximum independent sets and O(1) for maximum matchings.
The running time is essentially equal to the running time of the LP approxima-
tion scheme.

One of the main drawbacks of this approach is that the use of randomness
seems to be unavoidable, and it is not obvious how to design a self-stabilizing
algorithm with the same performance guarantees. However, there are various
other techniques that can be used to design local approximation algorithms; we
review these in the following section.

4.4 Other Combinatorial Approximation Algorithms

The classical problem of finding a minimum-size vertex cover serves as a good
example of alternatives to randomized LP rounding. There are at least three
other approaches. First, it turns out that vertex cover can be approximated well
by using a deterministic LP-based algorithm. The LP approximation schemes
by Kuhn et al. [35] together with a simple deterministic rounding technique [43]
yield a (2 + ε)-approximation in O(ε−4 log∆) rounds. This algorithm as a whole
can be made self-stabilizing directly by using the approach from Sect. 2.

Second, we can use maximal matchings. The endpoints of a maximal match-
ing form a 2-approximation of vertex cover. Hence from the results mentioned
in Sect. 4.1, we immediately have deterministic 2-approximation algorithms for
vertex cover with running times O(log4 n) [27] and O(∆+ log∗ n) [26].

Third, there is a recent deterministic algorithm that finds a 2-approximation
of a minimum vertex cover in O(∆2) rounds [44] without resorting to maxi-
mal matchings. The algorithm does not require unique identifiers, making it
particularly easy to convert into a self-stabilizing algorithm even in anonymous
networks.
5 A fractional dominating set assigns to each node a weight from [0, 1] such that the

sum of a node’s own and neighbors’ weights is at least 1.

Finally, there are also strong lower-bound results. For example, in the case of
a constant ∆, the above-mentioned algorithm finds a 2-approximation of a min-
imum vertex cover in constant time. This approximation factor is tight: lower
bound results [45, 46] show that a (2− ε)-approximation is not possible in con-
stant time for any constant ∆ ≥ 2. Furthermore, the lower bound result by Kuhn
et al. [36] proves that a constant ∆ is necessary if we want constant running time
and constant approximation factor.

In summary, the problem of approximating vertex covers by distributed al-
gorithms is nowadays well understood: there is a whole range of deterministic
algorithms from which to choose, and there are also strong lower-bound results.
All these results have straightforward corollaries in a self-stabilization setting.

Also the minimum dominating set problem that we used as an example in
Sect. 4.3 admits deterministic approximation algorithms—at least for special
cases and variants of the problem. Recent results include two constant-time
distributed algorithms that find a constant-factor approximation of a minimum
dominating set in a planar graph [45, 47]. There is also a deterministic O(log∗ n)-
time algorithm that finds a constant-factor approximation of a minimum con-
nected dominating set in bounded-independence graphs [14].

The classical optimization problem of finding a maximum-size independent
set can be used to illustrate the trade-off between randomization and running
time. As the maximum independent set problem is hard to approximate even in
a centralized setting, we focus on the special case of planar graphs. Czygrinow et
al. [45] present both deterministic and randomized local approximation schemes:
the deterministic algorithm finds a good approximation in O(log∗ n) rounds,
while the randomized algorithm finds a good approximation in O(1) rounds
w.h.p. Together with the recent lower bound results [45, 46], this work shows
that randomized local algorithms are asymptotically faster than deterministic
local algorithms in some optimization problems, giving additional motivation
for studying the conversion of local randomized algorithms into self-stabilizing
randomized algorithms.

We refer to Elkin’s [48] survey for more information on distributed approxi-
mation algorithms. There is also a recent survey [11] that focuses specifically on
constant-time distributed algorithms.

5 Conclusion

We misused this invited paper to remind the local algorithms and self-stabiliza-
tion communities that they share a long history. After recapitulating the ele-
mentary observation that any deterministic local algorithm has a self-stabilizing
analogon, we highlighted recent results on efficient local algorithms. We are con-
vinced the relation goes in both directions—we believe that a similar article
could be written from a vantage point of self-stabilization.

Several issues are still open. In our view randomization is not fully understood
in this context. We thus encourage experts from both fields to explore to what
extent randomization techniques can be transferred between the two areas. Also,

we merely touched the surface of bit complexity, the quality of an algorithm in
terms of the number of exchanged bits. In the last decades considerable progress
has been made both in minimizing the bit complexity of local algorithms as
well as in establishing lower bounds. We conjecture that both communities can
profit from ascertaining each others’ results. And finally, there are several areas
related to both local algorithms and self-stabilization, e.g. dynamic networks or
self-assembly [49].

Acknowledgements. This work was supported in part by the Academy of
Finland, Grant 116547, by Helsinki Graduate School in Computer Science and
Engineering (Hecse), and by the Foundation of Nokia Corporation.

References

1. Dijkstra, E.W.: Self-stabilization in spite of distributed control. Manuscript
EWD391 (October 1973)

2. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11) (1974) 643–644

3. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing 15(4) (1986) 1036–1053

4. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal
parallel list ranking. Information and Control 70(1) (1986) 32–53

5. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing
21(1) (1992) 193–201

6. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on
Computing 24(6) (1995) 1259–1277

7. Suomela, J.: Optimisation Problems in Wireless Sensor Networks: Local Algo-
rithms and Local Graphs. PhD thesis, University of Helsinki, Department of Com-
puter Science, Helsinki, Finland (May 2009)

8. Awerbuch, B., Sipser, M.: Dynamic networks are as fast as static networks. In:
Proc. 29th Symposium on Foundations of Computer Science (FOCS), IEEE (1988)
206–219

9. Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for building
self-stabilizing distributed protocols. In: Proc. 32nd Symposium on Foundations
of Computer Science (FOCS), IEEE (1991) 258–267

10. Awerbuch, B.: Complexity of network synchronization. Journal of the ACM 32(4)
(1985) 804–823

11. Suomela, J.: Survey of local algorithms. Manuscript (2009)
12. Goldberg, A.V., Plotkin, S.A.: Parallel (∆+1)-coloring of constant-degree graphs.

Information Processing Letters 25(4) (1987) 241–245
13. Peleg, D.: Distributed Computing – A Locality-Sensitive Approach. SIAM (2000)
14. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set

algorithm for growth-bounded graphs. In: Proc. 27th Symposium on Principles of
Distributed Computing (PODC), ACM Press (2008) 35–44

15. Schneider, M.: Self-stabilization. ACM Computing Surveys 25(1) (1993) 45–67
16. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge, MA (2000)
17. Kothapalli, K., Scheideler, C., Onus, M., Schindelhauer, C.: Distributed coloring

in Õ(
√

logn) bit rounds. In: Proc. 20th International Parallel and Distributed
Processing Symposium (IPDPS), IEEE (2006)

18. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction. In: Proc. 32nd Symposium on Foundations of Computer Science
(FOCS), IEEE (1991) 268–277

19. Mayer, A., Naor, M., Stockmeryer, L.: Local computations on static and dynamic
graphs. In: Proc. 3rd Israel Symposium on the Theory of Computing and Systems
(ISTCS), IEEE (1995) 268–278

20. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time
optimal self-stabilizing synchronization. In: Proc. 25th Symposium on Theory of
Computing (STOC), ACM Press (1993) 652–661

21. Angluin, D.: Local and global properties in networks of processors. In: Proc. 12th
Symposium on Theory of Computing (STOC), ACM Press (1980) 82–93

22. Goldberg, A.V., Plotkin, S.A., Shannon, G.E.: Parallel symmetry-breaking in
sparse graphs. SIAM Journal on Discrete Mathematics 1(4) (1988) 434–446

23. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In:
Proc. 25th Symposium on Principles of Distributed Computing (PODC), ACM
Press (2006) 7–15

24. Barenboim, L., Elkin, M.: Distributed (∆ + 1)-coloring in linear (in ∆) time.
In: Proc. 41st Symposium on Theory of Computing (STOC), ACM Press (2009)
111–120

25. Kuhn, F.: Weak graph colorings: Distributed algorithms and applications. In:
Proc. 21st Symposium on Parallelism in Algorithms and Architectures (SPAA),
ACM Press (2009) To appear.

26. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks.
Distributed Computing 14(2) (2001) 97–100

27. Hańćkowiak, M., Karoński, M., Panconesi, A.: On the distributed complexity of
computing maximal matchings. SIAM Journal on Discrete Mathematics 15(1)
(2001) 41–57

28. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms 7(4) (1986) 567–583

29. Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal
matching. Information Processing Letters 22(2) (1986) 77–80

30. Métivier, Y., Robson, J.M., Nasser, S.D., Zemmari, A.: An optimal bit complexity
randomised distributed MIS algorithm. In: Proc. 16th International Colloquium
on Structural Information and Communication Complexity (SIROCCO), Springer
(2009) To appear

31. Kutten, S., Peleg, D.: Tight fault locality. SIAM Journal on Computing 30(1)
(2000) 247–268

32. Papadimitriou, C.H., Yannakakis, M.: Linear programming without the matrix.
In: Proc. 25th Symposium on Theory of Computing (STOC), ACM Press (1993)
121–129

33. Bartal, Y., Byers, J.W., Raz, D.: Global optimization using local information
with applications to flow control. In: Proc. 38th Symposium on Foundations of
Computer Science (FOCS), IEEE Computer Society Press (1997) 303–312

34. Kuhn, F., Wattenhofer, R.: Constant-time distributed dominating set approxima-
tion. Distributed Computing 17(4) (2005) 303–310

35. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In:
Proc. 17th Symposium on Discrete Algorithms (SODA), ACM Press (2006) 980–
989

36. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally!
In: Proc. 23rd Symposium on Principles of Distributed Computing (PODC), ACM
Press (2004) 300–309

37. Floréen, P., Kaasinen, J., Kaski, P., Suomela, J.: An optimal local approximation
algorithm for max-min linear programs. In: Proc. 21st Symposium on Parallelism
in Algorithms and Architectures (SPAA), ACM Press (2009) To appear.

38. Floréen, P., Hassinen, M., Kaski, P., Suomela, J.: Tight local approximation results
for max-min linear programs. In: Proc. 4th Workshop on Algorithmic Aspects of
Wireless Sensor Networks (Algosensors). Volume 5389 of LNCS, Springer (2008)
2–17

39. Floréen, P., Kaski, P., Musto, T., Suomela, J.: Approximating max-min linear pro-
grams with local algorithms. In: Proc. 22nd International Parallel and Distributed
Processing Symposium (IPDPS), IEEE (2008)

40. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Dover Publications, Inc., Mineola, NY, USA (1998)

41. Vazirani, V.V.: Approximation Algorithms. Springer (2001)
42. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Fault-tolerant clustering in ad hoc

and sensor networks. In: Proc. 26th International Conference on Distributed Com-
puting Systems (ICDCS), IEEE Computer Society Press (2006)

43. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover
problems. SIAM Journal on Computing 11(3) (1982) 555–556

44. Åstrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.: A local
2-approximation algorithm for the vertex cover problem. In: Proc. 23rd Symposium
on Distributed Computing (DISC), Springer (2009) To appear.

45. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations
in planar graphs. In: Proc. 22nd Symposium on Distributed Computing (DISC).
Volume 5218 of LNCS, Springer (2008) 78–92

46. Lenzen, C., Wattenhofer, R.: Leveraging Linial’s locality limit. In: Proc. 22nd
Symposium on Distributed Computing (DISC). Volume 5218 of LNCS, Springer
(2008) 394–407

47. Lenzen, C., Oswald, Y.A., Wattenhofer, R.: What can be approximated locally?
In: Proc. 20th Symposium on Parallelism in Algorithms and Architectures (SPAA),
ACM Press (2008) 46–54

48. Elkin, M.: Distributed approximation: a survey. ACM SIGACT News 35(4) (2004)
40–57

49. Sterling, A.: Self-assembling systems are distributed systems. Manuscript,
arXiv:0907.1072 [cs.DC] (July 2009)

