
Push-to-Pull Peer-to-Peer Live Streaming

Thomas Locher, Remo Meier, Stefan Schmid, and Roger Wattenhofer

Computer Engineering and Networks Laboratory (TIK),
ETH Zurich, 8092 Zurich, Switzerland

{lochert,remmeier,schmiste,wattenhofer}@tik.ee.ethz.ch

Abstract. In contrast to peer-to-peer file sharing, live streaming based
on peer-to-peer technology is still awaiting its breakthrough. This may be
due to the additional challenges live streaming faces, e.g., the need to meet
real-time playback deadlines, or the increased demands on robustness un-
der churn. This paper presents and evaluates novel neighbor selection and
data distribution schemes for peer-to-peer live streaming. Concretely, in
order to distribute data efficiently and with minimal delay, our algorithms
combine low-latency push operations along a structured overlay with the
flexibility of pull operations. The protocols ensure that all peers are able
to obtain the required data blocks of a live stream in time, and that due to
the loop-free dissemination paths, the overhead is low.

1 Introduction

Currently, we are witnessing an explosion of online video content provided on
websites such as YouTube1. It is likely that in the near future, the Internet will
also revolutionize television. Due to its scalability, peer-to-peer (p2p) technology
is an appealing paradigm for providing live TV broadcasts over the Internet. Live
p2p streaming is not only an active field of research, but there are already com-
mercial products emerging, e.g., JumpTV 2, PPLive3, SopCast4, among others,
which provide television to thousands of viewers.

Live streaming faces several challenges that are not encountered in other p2p
applications such as file sharing. The streaming content is required to be re-
ceived with respect to hard real-time constraints, and data blocks that are not
obtained in time are dropped, resulting in a reduced playback quality. Addi-
tionally, a live broadcast ought to be received by all users simultaneously and
with minimal delay. Moreover, as video streams often already demand a high
transmission rate themselves, it is of paramount importance that the overhead
caused by redundant transmissions of the protocol itself be minimized. Yet an-
other crucial property of any successful live streaming system is its robustness
to peer dynamics: It is likely that peers join and leave the system continuously
and concurrently, called churn.
1 See http://www.youtube.com/
2 See http://www.jumptv.com/
3 See http://www.pplive.com/
4 See http://www.sopcast.com/
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While there already exist several solutions both in literature and in practice,
many of these systems fail to take all the aforementioned criteria into account.
This may partly be explained by the fact that some of the optimization goals
are inherently antagonistic. For example, a low delay can be achieved by having
each peer immediately forward all incoming data blocks to its neighboring peers
(pushing). Unfortunately, such a naive solution results in a significant overhead,
as a peer may receive the same block repeatedly from different neighbors. Al-
ternatively, peers could request missing blocks explicitly. This scheme is referred
to as pulling since all peers have to initiate the transmission of data blocks
towards themselves. While a pull-based approach circumvents the problem of
receiving duplicates, it comes at the cost of intolerable latencies, as notifications
and requests have to be sent back and forth. Hence, there is a trade-off between
overhead and efficiency.

This paper presents and evaluates novel data distribution mechanisms which
combine the benefits of pull-based approaches with the advantages of push-based
approaches. In our mechanism, a fresh data block is quickly pushed to a well-
defined set of peers. Due to the structured, prefix-based neighbor selection policy,
this can be achieved without any redundant transmissions. The remaining peers
which have not received the blocks in this initial phase use the pull mechanism
to distribute the new data block amongst themselves.

We have implemented the algorithms presented in this paper in our own peer-
to-peer live streaming system Pulsar.5 Apart from real-world tests such as the
broadcast of the IPTPS 2007 conference, we have performed extensive simu-
lations of our protocol. According to our emulations with up to 100,000 peers
(using the real code base), the system scales well as the network topology has
a low diameter and guarantees small round trip times due to the latency-aware
choice of neighbors. The proposed push-to-pull data dissemination policy is effi-
cient: The time required from the moment a fresh data block becomes available
at the source until it has reached virtually all peers is around 1,500 ms in a
overlay consisting of 10,000 peers, and having 100,000 peers instead of 10,000
incurs a moderate additional delay of less than 250 ms. Finally, the Pulsar sys-
tem tolerates a large fraction of peers crashing simultaneously without entailing
any underflows at the remaining peers, i.e., all packets arrive before their play-
back deadline. This indicates that our protocols also perform well in dynamic
environments.

The remainder of this paper is organized as follows. After reviewing related
work in Section 2, the design of our protocol is presented in Section 3, followed
by its evaluation in Section 4. In Section 5, the paper concludes.

2 Related Work

Although it has been expected that one-to-many broadcast would be offered
through IP multicast since the early 1990s, it is not used in practice at all due
to its limited support by the Internet Service Providers (ISPs). An attractive
5 See http://www.getpulsar.com/
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alternative to native IP multicast is to use a peer-to-peer network overlay built
on the application layer to distribute the content.

Existing peer-to-peer approaches are mainly categorized according to the
topology maintained among the peers or, equivalently, the neighbor selection
algorithms the peers employ. Simple multicast systems are based on overlay
trees [2,4,13]. Trees have the advantage that the topology is simple, once it is
constructed the overhead is small in a static setting, and there are no duplicates
as every peer receives its data blocks from its sole parent. However, there are
rather serious drawbacks which render such systems inefficient. For example, re-
sources are wasted as all the leaves of such a tree do not contribute anything to
the system. Moreover, inner nodes having two or more children need to upload
at least at twice the bitrate of the stream. This means that high-quality video
streams cannot be transmitted unless one can guarantee that all inner nodes have
a lot of spare upload capacity. Finally, the fragile tree structure is not resilient to
any kind of node failures or churn. In order to overcome these problems, systems
have been proposed to split the content of the stream into several disjoint stripes
and disseminate this information along multiple disjoint trees. SplitStream [1] is
a prominent example which uses multiple description coding (MDC) [3] to split
the stream into different stripes in order to distribute them on several trees.
Multiple description coding allows for the reconstruction of the original stream
using any subset of the stripes. As each peer is also required to be an inner node
in one of the trees, this approach solves the single tree’s problem of having a
large fraction of free-riding leaf peers. The CoopNet [7] approach is similar in
that it also uses MDC and multiple trees; however, its goal is merely to com-
plement the traditional client-server model as opposed to completely replace it.
In this protocol, the server handles all the join requests and centrally manages
all trees which limits the system’s scalability. MDC is still an active research
effort and no implementations for practical use are available. In addition, the
overhead of multiple description coding harms the system’s efficiency which may
raise concerns whether multiple description coding is currently suitable for this
kind of application. While maintaining several trees improves the robustness of a
system, each tree can break individually, and the overhead potentially increases
as more trees have to be repaired continuously (and concurrently).

Various systems using other approaches to cope with the shortcomings of
tree-based topologies have also been presented. The Bullet [6] system uses a
mesh on top of an arbitrary tree overlay in order to increase robustness. The
additional links introduced by the mesh increase robustness by reducing the
dependency of peers on their parents. The stream is split into disjoint blocks
and distributed within the tree. Only as many blocks are sent to children as
bandwidth is available, and missing blocks are then localized and retrieved us-
ing the mesh. However, the encoding of blocks, the duplicates, the requests for
missing blocks, and the tree maintenance entail a substantial overhead in Bullet.
ChunkySpread [12] strives to redeem the shortcomings of tree-based topologies
by providing more efficient protocols to build and repair trees. By adding a
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“weak” tit-for-tat model and locality awareness, additional important aspects of
peer-to-peer live streaming are considered.

The overhead of any tree-based protocol is generally large as the trees have to
be repaired and the topology maintained. This is particularly true if there is a lot
of churn in the network. Another disadvantage of trees is its lack of control over
selfish peers: It is difficult to enforce that peers actually forward the data blocks
to their designated children. Due to these inherent problems, a lot of research
has also focused on tree-less protocols.

Since a rigidly structured overlay requires permanent maintenance, care has
to be taken not to burden the individual peers. Therefore, unstructured over-
lays have been favored over structured overlays, and various protocols based
on unstructured overlays have been proposed, e.g., CoolStreaming/DONet [15],
Chainsaw [8] and GridMedia [14], all published in 2005. CoolStreaming/DONet
makes a strong case for a data-centric design of the overlay, which means that
the availability of data at certain nodes must steer the content dissemination, in
contrast to having the predefined overlay dictate the data flow. Chainsaw and
Gridmedia also follow this paradigm and mainly differ in the number of stored
links to other peers, block sizes, buffer lengths, etc.—generally, parameters which
have an impact on the overlay’s robustness and overhead.

Typically, in unstructured overlays, peers have to notify neighboring peers
about available blocks of data, and peers that are interested in obtaining these
blocks must explicitly request them before any data is exchanged, because there is
no structure in the network that could be used to disseminate data. Note that this
scheme has the disadvantage that notifying peers and subsequently requesting
data blocks potentially results in long delays before any data is exchanged.

Our approach differs from all these protocols in that it uses a structured over-
lay, based on a prefix-routing neighbor selection policy [9,10]. This policy guar-
antees a logarithmic diameter, robustness to massive crash failures and churn,
and it also ensures that the entire network remains connected. At the same time,
the protocol uses the flexibility of this neighbor selection scheme to take latency
and bandwidth considerations into account when building up and maintaining
the routing tables. Our mechanism further uses novel push algorithms tailored
specifically for prefix-routing-based topologies to quickly disseminate the content
to a fraction of all peers, thereby significantly reducing the delay experienced
in other pull-based protocols. The benefits of push-to-pull strategies are well-
known in theory, e.g., in the context of efficient rumor spreading [5]. Hence, this
push-to-pull-based technique possesses the advantages of the pull-based schemes
and in addition has the efficiency of push-based algorithms.

3 Push-to-Pull Protocol

This section presents the design of our protocol for peer-to-peer live streaming.
It is based on two concepts: First, the protocol defines the overlay structure,
i.e., it specifies how peers are to select their neighboring peers. The overlay is
inspired by the structured topologies of distributed hash tables (DHTs) which
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guarantee connectivity and a logarithmic diameter. The flexibility of the neigh-
bor selection strategy is used to account for additional factors which influence
performance, for instance, bandwidth requirements and latency constraints. The
topology aims at being resilient to churn and massive correlated failures. Second,
the protocol specifies how data is distributed in the overlay network. Concretely,
the protocol advocates the data-driven streaming paradigm, and introduces a
novel combination of fast pushing operations and robust pull operations.

3.1 Overlay and Neighbor Selection

The proposed overlay consists of an unstructured and a structured part. Initially,
a peer is assigned a random set of neighbors by a network entry point. Over time,
a refinement process takes place as peers learn about other peers from their neigh-
bors and add them to their routing table depending on the following criteria: Since
peers strive to maintain several connections to close-by peers, new neighbors are
continuously accepted based on the latency measured to these peers.

While truly random networks are known to have desirable properties, con-
straining the choice of neighbors to peers that are close-by may lead to clusters
and consequently threaten the efficiency or even the connectivity of the overlay.
Therefore, our protocol uses d-bit peer identifiers in order to build a DHT-like
topology (of course, without the data storage semantics). These identifiers can
be used for prefix-routing, as links to neighbors are stored for different shared
prefix lengths. Let β denote the number of bits that can be fixed at a peer to
route any message to an arbitrary destination. For i = {0, β, 2β, 3β, . . .}, a peer
chooses, if possible, 2β − 1 neighbors whose identifiers are equal in the i most
significant bits and differ in the subsequent β bits by one of 2β − 1 possibilities.
For random bit strings, this ensures an expected logarithmic network diameter
and peer degree. Similarly to DHTs based on prefix-routing, our solution has
the advantage over more rigid DHT structures such as Chord [11] that there is
a large choice of neighbors for short prefixes, which means that an optimizing
secondary criterion can be used to pick neighbors. For example, as the identifiers
of roughly half of all peers start with 0, any of those peers can be used as the
routing table entry for this prefix, while about one fourth of all peers are suit-
able for the prefix 00 etc. This freedom is used in our protocol to choose peers
according to their latency (locality awareness), but also in order to construct
different push mechanisms as described in the following section.

3.2 Pushing and Pulling Data

The prime objective of the pushing component is to quickly distribute a data
block to a certain number of peers, in order to fuel the subsequent pull-based
exchanges. As we have argued before, such a mechanism is needed due to the
long delays of purely pull-based approaches; the pushing phase brings the data
block into the vicinity of virtually all peers.

In this section, various aspects of pushing data blocks to neighbors are dis-
cussed. In particular, we present two concrete algorithms where each of these
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algorithms has its own merits. The first algorithm, denoted by ALG1, is simple,
robust, and has a low overhead; it needs fewer neighbors per peer and deals bet-
ter with heterogenous bandwidths. However, it cannot guarantee that the push
mechanism reaches a considerable share of all peers and specific care has to be
taken to make sure that no duplicates can occur. The second algorithm, ALG2, is
more sophisticated: All the peers can be reached without the use of the pulling
mechanism, and there are provably no retransmissions. Note that a loop-free
transmission implies that data is distributed on induced spanning trees, which
are generally not comparable to structures where the overlay graph consists of
one or more trees which must be used to disseminate data. Our graph is still
hypercubic, and, in accordance with the data-driven streaming paradigm, each
packet can theoretically induce a different tree on which it is broadcast.

Due to the simplicity and robustness of ALG1, it is better suited for dynamic
environments and also in settings where peers may act selfishly. As we will show
in Section 4, in order to boost the dissemination process it suffices to push fresh
data blocks to a subset of all peers. This implies that the lack of guarantee that
many peers can be reached using this push mechanism is not a severe limitation.
Nevertheless, the ability of ALG2 to efficiently push new blocks to practically
all peers may be preferable in various scenarios. For example, there may be
situations where one wants to precisely control the fraction of peers reached
by the pushing operation only. In a more stable network or a network where
incentives are of no concern, more peers should be reached by pushing blocks for
efficiency reasons, so that only a small number of pulls are necessary to distribute
the new block among the remainder of the peers.

In the following, let, for two peers u and v with identifiers bu
0 . . . bu

d−1 and
bv
0 . . . bv

d−1, where bu
i and bv

i , denote the ith bit of their respective identifiers,
�(u, v) = k if bu

j = bv
j for all j ∈ {0, . . . , k − 1} and bu

k �= bv
k. Furthermore,

let Nv be the set of all neighboring peers of v. We first present ALG1 and
discuss its properties. Let β again denote the number of bits that the prefix
routing algorithm fixes at each hop. The source selects 2β peers from its routing
table, if possible, such that the identifiers of any two peers differ in at least
one bit of the first β bits. A new block is pushed to these peers along with the
information that they must only forward the block to peers with which they
share the first β bits of their identifiers. Recursively, upon receiving such a push
message with the specified prefix length π that they must not modify, a recipient
selects 2β peers that share the prefix of length π with itself and that differ in
at least one bit between the (π + 1)st and the (π + β)th bit and so on. This
straightforward approach to pushing on prefix-based overlays has an obvious
shortcoming: Assume that β = 2 and that the source peer has the identifier
consisting of only zeros. It will push the block, among others, to a peer whose
identifier starts with 00 which will in turn forward the block to a peer whose
identifier starts with 0000. This peer might then forward the block back to the
source again, as the identifier of the source also starts with 000000. Such loops
can occur on all paths. If a peer v pushes the block solely to all the 2β − 1
peers that differ in at least one bit from the identifier of v itself, there are no
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duplicates; however, this reduction would cut off entire branches of peers which
could never benefit from the push mechanism.

A viable solution to the duplicates problem is to include a list L of critical
predecessors of the induced spanning tree. Only the peer identifiers having a
prefix of length π + β in common are sent along. The push message any peer v
receives contains the parent p in the induced spanning tree, the fixed prefix length
π, and the list of critical predecessors L.6 The parent is potentially a critical peer
for one of the children, and therefore it is added to the list L. Afterwards, using
the local subroutine getChildren, the l ≤ 2β children are selected from the routing
table for which it holds that they all share a prefix of length at least π with peer
v itself, the identifiers of any two of those children differ in at least one of the
following β bits, and they do not occur in the list L. In the next step, the lists
Lj of critical predecessors are created for all children. Note that any critical
predecessor pi is added to at most one list Lj , and only if it is still critical for
this child vj , i.e., �(vj , pi) ≥ π + β. The source v0 pushes data blocks containing
the parameters p := v0, π := β, and L := ∅ to its children. This push strategy
ALG1 is summarized in Algorithm 1.

Algorithm 1. ALG1: push(p, π,L) at peer v.
1: L := L ∪ {p}
2: {v1, . . . , vl} := getChildren(v, π,L)
3: for all pi ∈ L do
4: j := arg maxj∈{1,...,l} �(vj , pi)
5: if �(vj , pi) ≥ π + β then Lj := Lj ∪ {pi} fi
6: od
7: for j = 1, . . . l do send push(v, π + β,Lj) to vj od

It is easy to see that ALG1 is indeed loop-free, and that the expected length
of the list L is bounded by

∑∞
j=2

1
(2β)j = 1

2β(2β−1) which is less than one entry.
However, the worst-case length of the list is log(n)/β. Another shortcoming of
this algorithm is that it is likely that not all peers can be reached, because once
a peer is reached that only has connections to peers that are in the list L for a
certain prefix, this branch of the tree is cut off.

ALG2 avoids these problems by modifying the topology and using a different
routing scheme. For simplicity, we present the neighbor selection strategy and
the push algorithm for the case β = 1. In order to use ALG2, the peers must
store links to a totally different set of neighbors: A peer v with the identifier
bv
0 . . . bv

d−1 stores links to peers whose identifiers start with bv
0b

v
1 . . . bv

i−1b
v
i b

v
i+1

and bv
0b

v
1 . . . bv

i−1b
v
i b

v
i+1 for all i ∈ {0, . . . , d − 2}. For example, the peer with the

identifier 0000 has to maintain connections to peers whose identifiers start with
the prefixes 10, 11, 010, 011, 0010, and 0011. Pseudo-code for the algorithm is
given in Algorithm 2.

6 For simplicity, as the data contained in the push messages does not have any influence
on the push procedures, it is omitted in our notation.
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Algorithm 2. ALG2: push(π, vc) at peer v.
1: S := {v′ ∈ Nv | �(v′, v) ≥ π + 1}
2: choose v1 ∈ S : �(v1, v) ≤ �(ṽ, v) ∀ṽ ∈ S
3: if v1 �= ∅ then send push(�(v1, v), v) to v1 fi
4: if vc �= ∅ then
5: choose v2 ∈ Nv: �(v2, vc) = π + 1
6: if v2 = ∅ then v2 := getNext(v) from vc fi
7: if v2 �= ∅ then send push(�(v2, vc), vc) to v2 fi
8: else
9: choose v2 ∈ Nv: �(v2, v) = π

10: if v2 �= ∅ then send push(π + 1, vc) to v2 fi
11: fi

The parameters are again the length π of the prefix that is not to be modified,
and at most one critical predecessor vc. If β = 1, any node v tries to forward
the push message to two peers v1 and v2. The procedure is called at the source
v0 with arguments π := 0 and vc := ∅, resulting in the two push messages
push(1, v0) to v1 and push(1, ∅) to v2. The peer v1 is chosen locally such that the
prefix its identifier shares with the identifier of v is the shortest among all those
whose shared prefix length is at least π + 1. This value �(v1, v) and v itself are
the parameters included in the push message to peer v1, if such a peer exists.
The second peer is chosen similarly, but with respect to vc and not v itself. If no
suitable peer is found in the routing table, the peer vc is inquired for a candidate
using the subroutine getNext which is described in Algorithm 3.

Algorithm 3. getNext(vs) at peer v

1: S := {v′ ∈ Nv | �(v′, v) > �(vs, v)}
2: choose vr ∈ S : �(vr, v) ≤ �(ṽ, v) ∀ṽ ∈ S
3: send vr to vs

This step is required because node v cannot deduce from its routing table
whether a peer v2 with the property �(v2, vc) ≥ π + 1 exists. In the special case
when vc = ∅, v2 is chosen locally, if possible, such that �(v2, v) = π. In Figure 1,
an example spanning tree resulting from the execution of ALG2 is depicted.

As mentioned earlier, ALG2 has the property that, at least in a static setting
where peers neither join nor leave the network, all peers can be reached. Due
to churn, any real overlay can never be considered static. However, this static
property implies that this pushing procedure is expected to reach a large number
of peers even if some peers appear and disappear during the push phase.

Theorem 3.1 In a static overlay, the push algorithm ALG2 has the following
properties:

(a) It does not induce any duplicate messages (loop-free), and
(b) all peers are reached (complete).
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v0

v1 v2

v3 v4 v6 v7

(1,v  )0 (1,0 )

(2,v  )0 (2,v  )2(2,v  )1 (2,0 )

0000

0101 1010

100 110110010 0 1 01

Fig. 1. The spanning tree induced by a push message initiated at peer v0 is shown.
The fixed prefix is underlined at each peer, whereas prefixes in bold print indicate that
the parent peer has been constrained to push the packet to peers with these prefixes.

Proof. Throughout the proof, we will use the fact that ∀u, v, w : �(u, v) = σ and
�(v, w) = τ implies that �(u, w) = min(σ, τ) which we will refer to as Fact (1).

(a) Loop-free: If a peer v receives a push message μ and forwards it to other
peers which in turn forward the message and so on, let Cv(μ) denote the set of
peers that are reached recursively. We first show that if any peer v forwarding
push messages μ′ and μ′′ to two peers v′ and v′′, these peers will subsequently
forward the message to disjoint sets of peers, i.e., Cv′(μ′) ∩ Cv′′(μ′′) = ∅. Then,
we will show that peers never send messages back to predecessors.

Let v be the peer receiving the push message and let πv denote the prefix
length that peer v can no longer modify. As in the description of the algorithm,
the two peers the message is forwarded to are v1 and v2. Let further vp denote
the peer that sent the message to v. In order to prove that disjoint sets are
constructed, it suffices to show that �(v, v1) ≥ πv + 1 and �(v, v2) = πv at any
peer v.

The first inequality follows immediately from the algorithm. If vc = ∅ then
�(v, v2) = πv also follows by definition. Therefore we can assume in the following
that vc �= ∅. If vp = vc we have that �(vp, v2) ≥ πv + 1, as v was chosen from
S according to this criterion. It further holds that �(v, vp) = πv because the
parameter πv that p sends to v in the message is precisely �(v, vp). According to
Fact (1), we get that �(v2, v) = πv. Similarly, if vp �= vc, it holds that �(vc, v2) ≥
πv + 1, due to the fact that either vp found peer v in its routing table, implying
that �(vc, v2) = πv + 1, or the procedure getNext has been invoked which by
definition means that �(vc, v2) > πv + 1. As p sends the value �(v, vc) to v,
it holds at peer v that πv = �(v, vc), again leading us to the conclusion that
�(v, v2) = πv.

This concludes the proof that the resulting peer sets are always disjoint. Since
peers might forward push messages back to a predecessor, we cannot yet conclude
that no duplicates are produced. Let v(0) � v(1) � . . . � v(k), where k ≤ πv,
denote the path from peer v(0) := v back to the source v(k). Note that the
value π steadily increases downwards, implying that πv(0) > πv(1) > . . . > πv(k) .
Let us first assume that vc �= ∅ on the entire path. If vc = v(1) then it holds
that �(v, v(1)) = πv according to the algorithm. In the case vc �= v(1), then by
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definition �(v, vc) = πv and as �(v(1), vc) = πv(1) < πv, we get that in all cases
�(v, v(1)) ≤ πv. Inductively, the same argument can be applied to the maximal
prefix length between v(1) and v(2) which is bounded by πv(1) etc. Using Fact (1),
we have that �(v, v(i)) ≤ πv for all 1 ≤ i ≤ k. If for some i∗ ∈ {0, . . . , k−1} a peer
is reached that received vc = ∅ from v(i∗+1), it holds according to the definition of
ALG2 that all other peers closer to the source on this path also received vc = ∅.
This entails that �(v(k), v(k−1)) = 0, �(v(k−1), v(k−2)) = 1 and so on, down to
�(v(i∗), v(i∗+1)) = k − i∗ ≤ πv. Applying the same inductive argument as before,
we can conclude that �(v, v(j)) ≤ πv also for all j > i∗ if such an i∗ exists. Since
the first πv bits are not changed at peer v when forwarding the message to other
peers, it is impossible for v to send the push message to a predecessor as all
predecessors’ identifiers differ in at least one bit among the first πv bits, which
concludes the proof that no duplicates can occur and the resulting structure is
a spanning tree.

(b) Complete: It remains to be shown that all peers are reached using this pro-
cedure. Using �(v, v1) ≥ πv + 1 and �(v, v2) = πv at any peer v, it follows that,
when forwarding push messages, the current prefix is extended with a 0 and a
1, and the value π is increased. Note that care has to be taken only if identifiers
with certain prefixes do not exist. If no peer v1 such that �(v1, v) = π + 1 exists,
the next bit can be tried by choosing v1 such that �(v1, v) = π + 2 and so on.
Given that v1 is chosen among all peers in S such that the �(v1, v) is minimal, it
is guaranteed that no peer is left out. Similarly, if there is no peer v2 such that
�(v2, vc) = πv, the next bit is tried by calling the function getNext at peer vc

which chooses v2 the same way as peer v chooses v1. This means that prefixes
are only left out if no peer’s identifier has this particular prefix and thus every
peer can be reached. 	

Observe that at any time, at most one predecessor is critical and has to be
included in a push packet. A disadvantage of ALG2, compared to ALG1, is that
peers have to maintain twice as many connections to other peers. Since all peers
ideally communicate regularly with all their neighbors, it is best to keep the set
of neighboring peers small.

However, both algorithms are not sufficient to quickly disseminate data to
all peers in dynamic environments such as the Internet. Due to the perpetual
arrival and departure of peers, which results in inaccurate routing tables, only
a certain fraction of all peers are effectively reached through pushing. Thus, a
second mechanism has to be used where peers having received new data blocks
notify their neighbors about the corresponding sequence numbers. A peer can
then obtain data blocks it is interested in by explicitly requesting them from a
neighbor (pull operation). Hence, a data block is never forwarded twice to the
same peer, and there are no redundant transmissions. The initial distribution
of new data blocks through pushing ensures that almost every peer has at least
one other peer in its vicinity that offers the missing data block.
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4 Evaluation

Our protocol has been evaluated in several respects. We have performed exten-
sive emulations (simulations using the real code base of the Pulsar system in a
simulated network) with up to 100,000 peers on a single Core2 Quad personal
computer with 4GB of RAM. Our emulation results have also been confirmed in
tests on PlanetLab. Finally, a real-world beta test has shown that the protocol
manages to cope well with the peculiarities of the Internet and to distribute the
content reliably. Due to space constraints, we only present results concerning
the key concepts introduced in this paper, namely the neighbor selection and
the push- and pull-based data dissemination policy.

4.1 Topology and Neighbor Selection

First, we have evaluated the properties of the streaming topology itself. We have
streamed data over a network of 100 to 100,000 peers and counted the total
number of hops taken by each data packet. Figure 2 shows that, as expected, the
hypercubic structure induced by the neighbor selection results in a logarithmic
network diameter.

As described in Section 3, the flexibility of our topology allows for locality
awareness, i.e., for the choice of close peers as neighbors. This indeed helps to
reduce the round trip times significantly compared to a random neighbor se-
lection strategy, as Figure 3 clearly suggests. Figure 3 depicts the number of
neighbors that the average peer maintains for any given round trip time. In
this emulation, peers are distributed uniformly on a square with a minimum
delay of 10 ms and maximum delay of 200 ms which corresponds to the square’s
diagonal.

Fig. 2. Number of hops taken by each
data packet to reach the destination peer.
The network diameter scales logarithmi-
cally with the total number of peers.

Fig. 3. Effect of locality awareness with
10,000 peers: The average round trip
times to all neighboring peers are signifi-
cantly smaller in the network constructed
using our protocol than in a network
where neighbors are chosen at random
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4.2 Push-to-Pull Data Distribution

Figure 4 compares the two push strategies ALG1 and ALG2 introduced in
Section 3 with a pull-only strategy like the one adopted by Chainsaw.

The figure shows that, compared to pull-only protocols, pushing considerably
speeds up the distribution of new data blocks and thereby reduces the playback
delay. Once a sufficient number of peers have received a block, the remainder
of the peers can retrieve the fresh data block using the pull mechanism with a
moderate additional overhead. It is evident from Figure 4 that ALG1 is almost
as fast as ALG2, although only about one third of all peers obtain the new data
block through pushing, while almost all peers are reached using ALG2 in this
test.

Fig. 4. Time required until the push strategies ALG1, ALG2, and a pull-only strategy
reach a given fraction of all peers in a network of 10,000 peers

Figure 5 depicts the percentage of all data packets received through pushing
for both algorithms ALG1 and ALG2 for increasing network sizes. Independent
of the chosen algorithm, less packets are received through pushing as the network
grows. This decline is due to the increased chance of branches of the distribution
trees being cut off, because of inaccurate routing tables, before a substantial
number of peers is reached. As expected, the fraction of pushed packets decreases
much more rapidly when ALG1 is used. However, it is sufficient to reach only
a fraction of all peers in the pushing phase, as the subsequent pull operations
can be performed efficiently and with a small additional delay. Note that both
pushing strategies greatly benefit from the locality awareness which not only
decreases the chances of packet loss but also allows the use of short timeouts for
acknowledgments.

A second test studies the scalability of the ALG1 pushing algorithm. Figure 6
indicates that the network scales well with the number peers, as exponentially
more peers merely results in a linear increase of the delays. Moreover, all peers
experience a delay of not more than 1.5 seconds.
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Fig. 5. As the network grows, less data is
received in the pushing phase. The frac-
tion of data obtained through pushing
decreases considerably faster when algo-
rithm ALG1 is used.

Fig. 6. Given an exponential increase of
the number of peers, the delays increase
only linearly

Fig. 7. Effect of 50% simultaneous random crashes in a network of 5,000 peers. “One
alive” shows the percentage of prefixes for which at least one connection is present,
while “All alive” depicts the percentage of prefixes for which all connections are still
alive. In both cases, already after 3 seconds, the peers are again fully connected.

4.3 Robustness to Churn

The high connectivity of our hypercubic network topology and the flexible choice
of neighbors allows to build up and fix routing tables quickly. Several scenarios
have been considered in which a large fraction of peers leaves simultaneously. It
turns out that it is easy to maintain the topology and to recover even from such
massive concurrent network changes.

Figure 7 shows a network where a random set of 50% of the 5,000 peers leave
simultaneously. A severe network failure is assumed where all the peers crash
without notice (no “leave message”). For each prefix stored in the routing ta-
ble, a peer maintains roughly 2 to 3 connections to other peers whose identifiers
match the specific prefix. Immediately after the network failure, for approxi-
mately 80% of the stored prefixes, at least one connection to a peer that is still
alive is retained. After roughly 3 seconds, the routing table is again almost com-
pletely repaired. The figure also depicts the percentage of prefixes for which all
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connections are still alive. This short loss of connectivity is only due to the lack
of a proper leave message. In case disconnecting peers are able to send a leave
message, which is certainly the normal case, the network is hardly affected if
as many as 50% of the peers leave, and the prefix connectivity does not drop
noticeably, as peers immediately search for suitable replacements.

Due to the fast repairing process, our system also copes well with membership
changes occurring continuously over time.

5 Conclusions

Given the growing number of radio stations and TV channels available online,
peer-to-peer live streaming is able to overcome the limitations of traditional,
centralized approaches, and it enables content providers to both increase play-
back quality and to reduce costs. Thus, the p2p paradigm has the potential to
democratize the streaming world in that it enables everyone to broadcast her
own media content—similarly to how the world wide web revolutionized the
distribution of information more than a decade ago: Nowadays, everyone can
publish her thoughts on her own blog or website at virtually no cost.

By combining pull-based and push-based techniques, our push-to-pull protocol
for live streaming achieves high efficiency and robustness, both essential features
of a reliable p2p streaming service. As a second central ingredient, our protocol
makes use of the lessons learnt from distributed hash tables by structuring the
overlay topology while still maintaining a large degree of flexibility. The resulting
system is locality-aware and has a guaranteed logarithmic diameter. Moreover,
it enables the source to push new data blocks to speed up data dissemination.
Having a push mechanism allows to reduce the notification frequency, which
leads to a substantially smaller overhead.
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