
Exploring Music Collections on Mobile Devices.

Olga Goussevskaia
Computer Engineering and

Networks Laboratory
ETH Zurich, Switzerland
golga@tik.ee.ethz.ch

Michael Kuhn
Computer Engineering and

Networks Laboratory
ETH Zurich, Switzerland

kuhnmi@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and

Networks Laboratory
ETH Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

ABSTRACT
Ever larger collections of music are stored on mobile de-
vices. The process of managing these repositories therefore
becomes increasingly challenging. In this work we propose
to use a map of the “world of music” as a data structure
for music exploration and retrieval on mobile devices. We
present Mobile Music Explorer—a mobile application, which
allows users to create playlists by specifying trajectories on
the map and to use similarity based search methods to nav-
igate through their personal music collections. Our navi-
gation methods ensure that any part of the collection can
quickly be reached, even for a large set of items. Moreover,
we show that the map representation is a natural approach
to provide efficient and distributed operation.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: General

General Terms
Design, Performance.

1. INTRODUCTION
Mobile phones have been turning into multi-purpose en-

tertaining devices with increasing storage capacity and ever
better audio codecs for high-quality music reproduction.
Ever larger collections of music are stored on mobile de-
vices, making the process of managing these repositories
more challenging. The traditional browsing of folder hierar-
chies and search by song title or album tends to be insuf-
ficient to maintain an overview of a collection of orders of
thousands of tracks. Search methods based on song similar-
ity offer an alternative to keyword-based searches, allowing
users to abstract from manually assigned metadata, such
as album title or, frequently imprecise or incorrect, genre
information. Moreover similarity-based organization allows
personal collections to be seen not just as isolated lists, but
positioned in the global context of the “world of music”, i.e.,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobileHCI 2008, September 2-5, 2008, Amsterdam, the Netherlands
Copyright 2008 ACM 978-1-59593-952-4/08/09 ...$5.00.

it becomes possible to relate personal music collections to
larger collections, containing tracks listened to by other users
and newly-released music.

The demand for novel music management tools has been
captured by many commercial projects. Online music com-
munities, such as Last.fm, iLike, and Pandora have been
offering novel ways to discover and experience music. By
managing millions of user profiles, they apply collaborative
filtering techniques to search for music, generate playlists,
and recommend similar music. Most of these technologies
are based on large centralized databases and thus not suited
for mobile environments.

In [3] we propose to use a map of the “world of music” as
a data structure for music exploration and retrieval. Based
on collaborative filtering techniques, we constructed a map,
where tracks are assigned to points in a Euclidean space,
and distances between them represent music similarity. We
showed that similar music is grouped together and there
exists a correspondence between regions on the map and
specific genres, such as rock, jazz, or hip hop. In this work
we show that such a map representation is a perfect candi-
date for organization of large collections of items and effi-
cient distributed operation. On the one hand, it serves as
a basis for intuitive navigation, such that reachability and
searchability requirements are met. On the other hand, it
allows distributed computation of music similarity. In order
to compute the similarity between two songs it is enough
to calculate the distance between the coordinates assigned
to them. No memory-expensive data structures need to be
maintained on the mobile device and no access to a central-
ized server is required. Therefore, this approach also fits
naturally for distributed file sharing and mobile social inter-
action based on users’ music profiles.

We developed Mobile Music Explorer—a mobile applica-
tion that allows users to navigate through their music col-
lections and create playlists that span trajectories on the
map of music. The rest of this paper is organized as follows.
In Section 2 we discuss some related work, in Section 3 we
present a brief overview of the map data structure, in Sec-
tion 4 we describe the architecture and the main function-
alities of Mobile Music Explorer, and finally in Section 5 we
discuss the future directions for our work.

2. RELATED WORK
The problem of defining music similarity has been ad-

dressed from three main perspectives: analysis of manually
added meta-data [1, 9, 11], analysis of acoustic properties
extracted from the audio signal [5, 7, 8, 10], and collab-
orative filtering [2, 12]. Methods that rely on meta-data

or audio signal of each track usually suffer from scalability
problems, given that the data is difficult and expensive to
obtain. Methods based on collaborative filtering are intrin-
sically more scalable, given that no analysis of individual
audio files is required. Despite being based on collaborative
filtering like our work, the work in [2] focused on similarity
of artists, which cannot be directly applied to managing mu-
sic collections. In [12] the similarity computation is based
on shortest path algorithms in large graphs, which is not
suitable for hardware-constrained devices.

Visualization of music collections using self-organizing
maps was addressed in [5, 8]. Both approaches differ in
two ways from our work. First, they rely on audio feature
extraction to define similarity. Second, they miss the advan-
tages of high-dimensional spaces in terms of accuracy.

Playlist generation has been addressed in a variety of
ways. In [10], playlists were generated using traveling sales-
man algorithms; in [12] playlists were generated by exploring
the graph neighborhood of a given seed-song; in [9] playlists
were constructed based on users skipping behavior. Audio-
scrobbler uses collaborative filtering to recommend playlists
according to users with similar listening behaviors. The idea
of using trajectories on a map was explored in [8] to con-
struct playlists with smooth transition in acoustic charac-
teristics. Our method differs from these approaches either
because it scales to a much larger universe of tracks, or be-
cause it allows distributed operation on mobile devices.

3. THE MAP OF MUSIC
In [3] we developed the Music Explorer web application1,

which uses an automatic method to derive music similarity
and scales to millions of titles, not requiring the analysis of
audio files or manually-generated metadata. The approach
is based on user listening patterns, extracted from a publicly
available source. Similarly to how Amazon uses the fact that
two items are related because they have been purchased by
the same person [6], we assume that two songs are related if
they are frequently listened to by the same user.

Pairwise co-occurrence values cannot be used directly,
since maintaining a data structure of size Θ(n2), especially
on a mobile device, is prohibitive. Similarly to other exis-
tent solutions, we created an intermediate sparse graph, in
which similarity between two songs is defined as the weight
of the shortest path between them. However, since in or-
der to efficiently calculate shortest-paths, the whole graph
has to be in main memory, operating directly on it remains
prohibitive for a mobile device.

We thus went one step further and embedded the graph
into a 10-dimensional (10D) Euclidean space. An embed-
ding is a mapping of vertices of the graph into points in
the Euclidean space, such that all pairwise graph distances
are approximately preserved. In the course of our work we
observed that less than 10 dimensions is insufficient for a
collection of this size, since it results in bad quality similar-
ity values. Having the coordinates of each node, the graph
structure is not needed anymore.

The map representation not only allows fast and memory-
efficient computation of music similarity (both time and
memory complexities to calculate the distance between two
items is O(1), as opposed to O(m) memory and O(n logn)
time to compute a shortest path in a graph), but also enables
new functionalities, which we discuss next.

1www.musicexplorer.org

4. MOBILE MUSIC EXPLORER
Mobile Music Explorer is comprised of three main com-

ponents: the global map of the “world of music”, the local
music collection of the user, and the application software
running on the mobile device. The coordinates correspon-
dent to the map of the “world of music” were made available
through a web service at www.musicexplorer.org. When-
ever the music collection on the mobile device changes, a
database update is performed. Thereafter all the operations
can be performed offline.

Mobile Music Explorer was implemented using Android,
a mobile phone platform developed by the Open Handset
Alliance, a business alliance comprising Google, Intel, Mo-
torola, and other companies in the mobile handset market,
whose goal is to develop open standards for mobile devices.

In the rest of this section we describe two main function-
alities already implemented on Android : playlist generation
and navigation. We conclude the section by sketching a third
functionality, which is still in the process of porting from a
desktop version: visualization in 2D.

4.1 Playlist Generation
The local map of music (in 10D) allows the user to gen-

erate playlists by exploring the neighboring area of a track
or by following a trajectory between two (or more) tracks
on the map. In fact track titles do not need to be used as
anchor points. If a graphical visualization is available, areas
of interest can be selected graphically, as points or regions
on the map. The idea is that by spanning the space between
different regions on the map, the playlists will reflect gradual
transitions between genres associated to these regions.

The user interface was implemented as follows: first, the
user enters the titles of the start and the end tracks of the
playlist, then the user can specify the duration (in minutes)
or the number of tracks, and allow or disallow duplicate
artists. Playlists are generated by a simple greedy algo-
rithm. For each segment, the trajectory is divided uniformly
according to the requested number of songs. Then to each
of the resulting points the closest song not contradicting any
constraints is selected. If the length of a playlist is defined
by duration rather than the number of songs, the requested
number of songs is derived from the average song length in
the subset. An example playlist is shown in Figure 1(a).
It can be seen that the playlist presents a genre transition
between the start point (The Beatles’ “Drive my car”) and
the end point (Sonic Youth’s “Screaming Skull”).

4.2 Navigation through Music Collections
The Euclidean representation offers the advantages of

similarity-based search. As opposed to keyword-based
search, it allows to retrieve new items, whose titles the user
might not know, based on their similarity to known items,
from which the user starts to navigate. Such “proximity-
based” search is particularly important in a context, where
music collections become larger and more dynamic.

The problem of list-based navigation can be described as
follows. Given a collection of n items (with their coordi-
nates), a device screen on which a list of k (k � n) items
can be displayed, as in e.g. Figure 1(a) (we refer to this list
as displayed-list). How can we efficiently navigate through
all n items? Two basic requirements have to be met:

• Reachability : The entire collection should be reachable
from any given starting point.

(a) A playlist. (b) Clicking on a group.

Figure 1: Screenshots of Mobile Music Explorer

d > r

r

(a) Getting stuck in a cluster.

r

αr u

v

(b) Song grouping.

Figure 2: List-based navigation.

• Searchability : Users should be able to quickly find
what they are looking for. In particular, short paths
should exist between any two songs. Moreover, the
users should be able to detect these short paths, i.e.
at any stage they should be able to select an item that
brings them considerably closer to the goal.

An intuitive approach to explore a collection would be to
select a starting point (or root) and to present the proximity
of this point in the displayed-list. Clicking on an item in the
displayed-list allows to change the root and display this new
root’s proximity.

A naive solution might always put the k closest neigh-
bors of the root song in the displayed-list. Unfortunately,
this approach has several drawbacks. First, it might take a
considerable number of clicks to move from one end of the
map to the other. Second, if the tracks are not uniformly
distributed in space, but form clusters, there is a risk of get-
ting stuck in a cluster. This problem arises, if the diameter
of a cluster consisting of more that k tracks is smaller than
the distance to the closest track outside, as illustrated in
Figure 2(a).

We will next discuss two solutions to the problem of list-
based navigation: neighborhood clustering and small-world
navigation.

4.2.1 Neighborhood Clustering
Neighborhood clustering addresses the issues of reachabil-

ity and searchability in three stages:
1. Forming local groups: In order to allow large distances
to be bridged with each click, each item in the displayed-list
is associated with a group of tracks, instead of only one

1

2

3

45 6

7

7

8

9

10

root

(a) Neighborhood cluster-
ing: 3 stages (1:circles,
2:boxes, 3:crosses). Each
number denotes one item
in the displayed-list.

(b) Small-world links:
Nodes close to the root are
more probable to be in-
cluded in the displayed-list
than nodes far away.

Figure 3: List-based navigation.

track. Assume that a displayed-list, starting at a root track
u, contains a neighbor v, s.t. d(u, v) = r. Then all the
tracks inside the ball with radius αr (0 < α < 1) around v
are grouped together in a local group gi, and displayed as one
single item. A group gi is therefore comprised of a represen-
tative song, v in this case, and its neighbors w, d(v, w) < αr.
Each group gi is formed by successively selecting the repre-
sentative song vi as the closest node around the root u that
has not yet been assigned to any group gj , j < i. The basic
idea is illustrated in Figure 2(b) (u is the root, and the three
light gray nodes belong to the group of v).
2. Building a Minimum Spanning Tree (MST): In
order to guarantee local connectivity, an MST is constructed
over the n points in 10D representing the user’s collection.
This is done only once, right after acquiring the coordinates.
Let g(u) be the set of all songs assigned to a group item gi

of a displayed-list with root u. Moreover, let R denote the
maximum distance d(u,w), w ∈ g(u). Then, any nodes
adjacent to an edge (in the MST) crossing the ball with
radius βR (0 < β < 1) around u are added to the displayed-
list as new group centers. These new local groups are formed
the same way as in (1). Observe that all nodes adjacent to
u in the MST, even those located outside the ball of radius
R, are included in the displayed-list of u. Since the MST
connects the entire point set, any track becomes reachable.
3. Clustering distant nodes: In order to guarantee long
distance searchability, a few additional long-distance groups,
that cover all songs not yet assigned to a local group gi, are
inserted in the displayed-list. For each local group gi, formed
in steps (1) and (2), a centroid ci is placed at the position
of the representative song vi. Then the k-means algorithm
is applied to assign all remaining long-distance songs to one
of the centroids. The representative song of such a newly
created group becomes the song closest to the group’s cen-
ter of mass. Observe that after this step, all n songs are
assigned to one of the k group-items in the displayed-list.
To make the long distance groups manageable, they are la-
beled by a list of most representative artists. Moreover, to
visually distinguish long-distance groups from local groups,
they are displayed in smaller font and in the bottom of the
displayed-list. Long-distance groups are used for large dis-
tance jumps (i.e. to leave the current area on the map and
explore another one). The effect of the entire 3-stage process
is illustrated in Figure 3(a). Moreover, Figure 1(b) shows a
screenshot of a sample displayed-list on the mobile device.

4.2.2 Small-World Navigation
Stanley Milgram’s “Six-Degree-of-Separation” experiment

did not only reveal that people are interlinked by astonish-
ingly short acquaintance chains, but also that these short
paths can efficiently be discovered by humans disposing of
local knowledge only. Jon Kleinberg has later recognized
that a specific edge length distribution (1/rd, where d is
the dimensionality of the underlying space) is required to
achieve this navigability properties [4]. He has shown that
augmenting a grid (or the higher dimensional equivalent) by
a single random outgoing link per node is enough to ensure
poly-logarithmic path lengths between any pair of nodes.
Moreover, he has shown that these short paths can be de-
tected using local knowledge only.

We take advantage of these insights by artificially overlay-
ing our data with such an edge length distribution. When-
ever a user selects a track, k random tracks are selected
according to Kleinberg’s distance distribution. These tracks
are then sorted according to their distance from the root
song, and the resulting list is presented to the user. Due to
the specific distance distribution, the first items in the list
are close to the root track, whereas the last items build the
entry points to discover new areas farther away. Figure 3(b)
illustrates the distribution of the listed tracks in a 2D sam-
ple space. The displayed-list is newly calculated every time
the user selects a root song. As a consequence, every track
has a certain probability to appear, which ensures that any
song can eventually be reached. Moreover, if a user is not
happy with the “neighbors” offered in the displayed-list, he
can simply re-select the same root and hope for a better list.

While this method might fail to quickly discover a par-
ticular song (as it might get missed by the random process
several times), it provides an elegant light-weight solution
to quickly get an overview of a music collection.

4.3 Visualization in 2D
Although the embedding of the music graph was done in

10D, our experiments showed that a reasonable visualization
in 2D can be achieved by working with the first two dimen-
sions. Of course the quality of the embedding deteriorates,
and some points that were originally far away in 10D become
closer or even overlap when projected into a 2D plane.

Besides the dimensionality reduction, another issue that
has to be addressed when visualizing a large collection of
songs is the limitation of the device’s screen. We imple-
mented a hierarchical visualization of the 2D map, by fixing
the number of songs displayed in each square unit and giv-
ing the user the ability to zoom in and out of the map. In a
certain area, from top to bottom level of zooming, tracks are
displayed in order of decreasing popularity (or playcount).
As a result, the entire music collection can be visualized as
points in space on a relatively small display.

We implemented this functionality as a desktop version,
but we are in the process of porting it to the mobile platform.
Additional issues, such as even smaller screen size, different
input devices (e.g., no mouse for zooming), and performance,
have to be considered.

5. FUTURE DIRECTIONS
We believe that the map of music has the potential to

trigger a number of novel applications, improving the way
music is currently treated. In this section we outline some
of such application scenarios.

The region on the map occupied by a personal collection
can be compactly encoded as a volume (or a union of several
volumes). This could facilitate an autonomous file sharing
application: Whenever two mobile devices come into connec-
tion range (by means of e.g. Bluetooth), they exchange the
volumes representing their local collections and share what-
ever songs are in the volume intersection but not available
on both devices. The only information the devices require
for such applications are the coordinates of each song.

Coordinates might also give way for innovations in the en-
tertainment and event industry. Imagine more comprehen-
sive systems that directly and autonomously interact with
the audience. During a party, for example, the system could
collect the volumes of people’s favorite music. Sophisticated
devices could provide even more feedback. Recent mobile
phones, for example, are equipped with motion sensors, that
could measure the fraction of dancers in a given moment.
Such information could then be used to find the optimal
mixture of music for a given audience.

6. ACKNOWLEDGMENTS
We would like to thank Anitha Gonukula, Philipp Kued-

erli and Samuel Pasquier for their contributions in the de-
velopment of 2D visualization module.

7. REFERENCES
[1] J. Aucouturier and F. Pachet. Scaling up Music

Playlist Generation. In ICME, 2002.

[2] M. R. David Gleich, Leonid Zhukov and K. Lang. The
World of Music: SDP layout of high dimensional data.
In InfoVis, 2005.

[3] O. Goussevskaia, M. Kuhn, R. Wattenhofer, and
M. Lorenzi. From Web to Map: Exploring the World
of Music (Under submission).

[4] J. Kleinberg. The small-world phenomenon: an
algorithm perspective. In STOC, pages 163–170, New
York, NY, USA, 2000. ACM Press.

[5] P. Knees, M. Schedl, T. Pohle, and G. Widmer. An
Innovative Three-Dimensional User Interface for
Exploring Music Collections Enriched with
Meta-Information from the Web. In ACM Multimedia,
pages 17–24, 2006.

[6] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, 2003.

[7] B. Logan. Content-based playlist generation:
Exploratory experiments. In ISMIR, 2002.

[8] R. Neumayer, M. Dittenbach, and A. Rauber.
PlaySOM and PocketSOMPlayer, Alternative
Interfaces to Large Music Collections. In ISMIR,
pages 618–623, 2005.

[9] E. Pampalk, T. Pohle, and G. Widmer. Dynamic
playlist generation based on skipping behavior. In
ISMIR, pages 634–637, 2005.

[10] E. Pampalk, T. Pohle, and G. Widmer. Generating
similarity-based playlists using traveling salesman
algorithms. In DAFx, 2005.

[11] J. Platt. Fast embedding of sparse music similarity
graphs. In NIPS, volume 16, 2004.

[12] R. Ragno, C. J. C. Burges, and C. Herley. Inferring
similarity between music objects with application to
playlist generation. In MIR, pages 73–80, 2005.

