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Abstract

Decentralized machine learning has become a key conundrum for multi-party
artificial intelligence. Existing algorithms usually rely on the release of model
parameters to spread the knowledge across users. This can raise several issues,
particularly in terms of communication if the models are large. Additionally,
participants in such frameworks cannot freely choose their model architecture as
they must coincide to collaborate. In this work, we present a novel approach for
decentralized machine learning, where the clients collaborate via online knowledge
distillation using a contrastive loss (contrastive w.r.t. the labels). The goal is to
ensure that the participants learn similar features on similar classes without sharing
their input data nor their model parameters. To do so, each client releases averaged
last hidden layer activations of similar labels to a central server that only acts as
a relay (i.e., is not involved in the training or aggregation of the models). Then,
the clients download these last layer activations (feature representations) of the
ensemble of users and distill their knowledge in their personal model using a
contrastive objective. For cross-device applications (i.e., small local datasets and
limited computational capacity), this approach increases the utility of the models
compared to independent learning, is communication efficient and is scalable with
the number of clients. We prove theoretically that our framework is well-posed, and
we benchmark its performance against standard collaborative learning algorithms
on various datasets using different model architectures.

1 Introduction

Motivated by concerns such as data privacy, large scale training and others, Machine Learning (ML)
research has seen a rise in different types of collaborative ML techniques. Collaborative ML is
typically characterized by an orchestrator algorithm that enables training ML model(s) over data from
multiple owners without requiring them to share their sensitive data with untrusted parties. Some
of the well known algorithms include Federated Learning (FL) [24], Split Learning (SL) [9] and
Swarm Learning [35]. While the majority of the works in collaborative ML rely upon a centralized
coordinator, in this work, we design a new decentralized learning framework where the server plays
a secondary role. In fact, its only purpose is to compute global averages for a secondary objective,
which could also be approximated with sufficient accuracy using a peer-to-peer network (under mild
connectivity constraints on the communication graph). Our main idea is to share learned feature
representations of each class among users and to use these representations cleverly during local
training (using a contrastive objective that is fully compatible with a peer-to-peer network). From a
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theoretical point of view, the objective of the scheme is to maximize the mutual information between
these representations. Since the clients can choose which features are aggregated and shared, our
framework enables the clients to assign different privacy levels to different samples. Our decentralized
approach also ensures that the overall system remains asynchronous and functions as expected even
if all but two clients are offline in the whole system. Finally, our framework makes it convenient to
account for model heterogeneity and model personalization, since every user can select a subset of
peers based on their goals of generalization and personalization. While some of these advantages
have been introduced in recent FL based schemes, our framework allows natural integration of such
several ideas.

2 Related Work

Federated Learning FL is considered to be the first formal framework for collaborative learning.
In their initial paper, McMahan et al. [24] introduce a new algorithm called FedAvg, in which each
client performs several optimization steps on their local private dataset before sending the updated
model back to the server for aggregation using weight averaging. While this approach alleviates the
communication cost of the baseline collaborative optimization algorithm FedSGD, it also decreases
the personalization capacity of the global model due to the naive model averaging, especially in
heterogeneous environments. Several algorithms have been proposed to address these limitations,
in particular FedProx [20], FedPer [1], FedMa [33], FedDist [27], FedNova [34], Scaffold [15]
and VRL-SGD [22]. Concerning the server update, Reddi et al. [26] introduce federated versions of
existing adaptive optimization algorithms like Adagrad, Adam and Yogi, and Michieli and Ozay
[25] present FedProto, where an attention mechanism is used for clever aggregations. The attention
coefficients are computed using prototypes (i.e., per class averages of last hidden layer activations,
a.k.a. feature representations). While our framework also uses such prototypes, it is conceptually
very different as we use them directly in the local objective function (and not in the aggregation).
Although all these algorithms usually improve the convergence rate, they suffer from the same
constraints as FedAvg, i.e., homogeneous model architecture for every client, high communication
overhead and non-tunable collaboration, all potential barriers for participation.

Fully Decentralized Learning The use of a central server in traditional FL constitutes a single
point of failure and can also become a bottleneck when the number of clients grows, as shown by
Lian et al. [21]. To alleviate these issues, Vanhaesebrouck et al. [31] formalize a new framework
where each client participates in the learning task via a peer-to-peer network using gossip algorithms
[28, 7]. In this configuration, there is no global solution and each client has its own personalized
model, which enables both personalization and generalization. On the other hand, it creates other
challenges about convergence, practical implementation and privacy [14]. Moreover, as in FL, the
entire model must be released at every communication round, which can constitute a barrier for
participation for the same reasons.

Collaborative Learning via Knowledge Distillation A growing body of literature has recently
investigated ways of using online knowledge distillation (KD) [3, 11] for collaborative learning in
order to alleviate the need of sharing model updates (FL) or individual smashed data (SL). Jeong
et al. [13] present Federated Knowledge Distillation (FD), where each client uploads its mean (per
class) logits to a central server, who aggregates and broadcasts them back. These soft labels are then
used as the teacher output for the KD loss during local training. A closely related idea is to compute
the mean logits on a common public dataset [19, 12, 4], but we argue that selecting this dataset can
induce bias and is not always feasible, since additional trust is needed for its selection, and sufficient
relevant data might be lacking. Besides FD, KD can enable collaborative learning in various ways: In
an attempt to decrease the communication cost, Wu et al. [36] introduce FedKD, in which each client
trains a (large) teacher network on their private data and transfer locally its knowledge to a smaller
student model, which is then used in a standard FL algorithm. On the other hand, Lin et al. [23] and
Chen and Chao [5] use KD on an unlabeled synthetic or public dataset to make the FL aggregation
algorithm more robust. Our approach differs significantly from these schemes, as it does not rely on
traditional FL algorithms.
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3 Methods

Figure 1: The proposed framework: clients exchange averaged (As) feature representations for each
class and use these representations in their own local training, but keep their raw data private (on
device). The ensemble of participants (network) constitutes the teacher, and each single participant is
a student. The server acts mainly as a relay as it does not take part in the training or aggregation of
the models. At each communication round, the student downloads a subset of representations and
uploads some of its own.

Preamble and Motivation Consider any classification task on d-dimensional raw inputs with C
distinct classes and a set of N participating users {u}Nu=1, each with a local private dataset Du and a
model fu:

Du := {(xi, yi)
iid∼ pu}ni

i=1, pu(x, y) := pX,Y |U=u(x, y), fu = τu ◦ ϕu,

where pX,Y,U represents the joint probability of choosing a user U and drawing a sample (X, Y ) from
its distribution, and τu, ϕu represent the linear classifier and neural network (up to last hidden layer)
of user u, respectively (with potentially different architectures across users). More precisely, let d′ be
the output dimension of ϕu and wu = {θu,Wu,bu} be model weights of user u. We have:

ϕu : Rd → Rd′
τu : Rd′

→ RC

x 7→ x′ := ϕu(x;θu) x′ 7→ z := τu(x′;Wu,bu) = Wux′ + bu

where x, x′ and z are the raw input, the feature representation and the logits, respectively. We motivate
our approach as follows. Assuming no sharing of raw data x (for privacy concerns), any collaborative
learning framework falls in one of two buckets: weight sharing or activation sharing. Sharing weights
(i.g., FL) comes with strong constraints (communication, model architecture, etc.) and might not
always be suitable. Concerning activation sharing (i.g., SL), it can be done at any layer (hidden or
output). However, since activations are usually strongly correlated to the raw input [32], sharing
single sample activations can raise privacy concerns. Instead, sharing averaged activations can easily
be met with differential privacy guarantees (see privacy in ??). Due to the high non-linearity of
neural networks, sharing averaged activations only makes sense at the output layer or last hidden
layer (since the classifier τu is linear). Sharing only averaged outputs (averaged over samples of the
same class) like in FD has been shown to have limited success as the quantity of shared information
is restricted to the dimension of the output C, and we argue in this paper that sharing the feature
representations (i.e., outputs of the last hidden layer, also averaged over samples of the same class) is
more flexible and leads to better results. In this light, our objective is to collaboratively learn the best
feature representation for each class, using contrastive (w.r.t. classes) representation learning [29]
and feature-based knowledge distillation [8]. In other words, we want to learn collaboratively (i.e.,
only once) the structure of the feature representation space so that each client does not need to find it
on its own with its limited amount of data and/or computational capacity.

Contrastive Objective We now introduce a contrastive objective function for private online knowl-
edge distillation (i.e., when users synchronously learn personalized models without sharing their raw
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input data and by collaborating via online distillation). This new objective function and its derivation
are partly inspired by the offline contrastive loss presented in Tian et al. [29] and van den Oord et al.
[30], with a few important differences. In the offline non-private setting, both the teacher and student
models ϕt and ϕs have access to the same dataset {xi}ni=1. In that scenario, the representations
ϕs(xi) and ϕt(xj) are pulled apart if i ̸= j and are pulled together if i = j. However, in the private
setting, ϕs does not have access to the raw input data that was used to train the teacher model, but
has its own private dataset. At a given communication round and from the perspective of user u, we
define ϕu as the student model and ϕU as the teacher model, where U ∼ pU is a user selected at
random. Consider the following procedure: u samples Y ∼ pY |U=u from its own data distribution
and then samples either jointly (i.e., from the same observation of Y ) or independently (from two
independent observations of Y ) the two random vectors Φs and Φt defined as follows:

X ∼ pX|Y,U=u Φs := ϕu(X), (1)

U ∼ pU , (X1, ...,Xnavg
)
iid∼ pX|Y,U , Φt :=

1

navg

navg∑
i=1

ϕU (Xi). (2)

The parameter navg defines over how many samples we take the average, which in turn defines
the concentration of the distribution of Φt. From the (student) perspective of client u and in the
spirit of collaboration, the goal is to maximize the mutual information I(Φs,Φt). Still from the
perspective of u, let ps,t, ps and pt be the joint and marginal distributions of Φs and Φt, respectively,
and let I be a Bernoulli random variable indicating if a tuple (Φs,Φt) has been drawn from the joint
distribution ps,t or from the product of marginals pspt. Finally, let q(s, t, i) be the joint distribution
of (Φs,Φt, I) such that q(s, t|i = 1) = ps,t(s, t) and q(s, t|i = 0) = ps(s)pt(t) and suppose that the
prior q(i) satisfy q(i = 1) = 1

K+1 and q(i = 0) = K
K+1 , i.e., for each sample from the distribution

ps,t, we draw K samples from the distribution pspt. We can show the following bound.

Theorem 1. Using the above notation, let h(i, s, t) be any estimate of q(i|s, t) with Bernoulli
parameter ĥ(s, t), and let Ldisc(h, ϕu) be defined as follows:

Ldisc(h, ϕu) := −E(Φs,Φt)∼ps,t

[
log ĥ(Φs,Φt)

]
−KE(Φs,Φt)∼pspt

[
log(1− ĥ(Φs,Φt))

]
. (3)

The mutual information I(Φs,Φt) can be bounded as

I(Φs,Φt) ≥ log(K)− Ldisc(h, ϕu), (4)

with equality iff h = q (better estimates lead to tighter bounds). The proof is joined in the supplemen-
tary material.

Hence, by minimizing Ldisc in Eq. (4), we optimize a lower bound on the mutual information
I(Φs,Φt). Taking advantage of the classifier τu, a natural choice for h is the discriminator hu with
Bernoulli parameter

ĥu(s, t;Wu,bu) = ⟨softmax(τu(s)), softmax(τu(t))⟩. (5)

With this choice, ĥu(s, t) can be interpreted as the estimated probability that the features s and t come
from the same class. Note that in their work, Tian et al. [29] train an external discriminator (i.e., that
is not defined using the model classifier τu).

Final Objective Intuitively, from the perspective of u, minimizingLdisc ensures that its classifier τu
can distinguish if two feature representations, one local and one from another user, come from the
same class. To improve the algorithm convergence and to ensure that τu can classify the feature
representation Φt of another client (similar as in Invariant Risk Minimization [2]), we also introduce
a classical feature-based KD term LKD. This term minimizes the L2 distance between the local
and global feature representations of a same class (we define the global representation of class c
as the expected value E(X,U)∼pX,U|Y =c

[ϕU (X)]). An important distinction between LKD and Ldisc

is that the first one uses an inter-client averaged representation, whereas the second one uses an
intra-client averaged representation. Combining LKD and Ldisc with the standard cross-entropy
loss LCE(τu, ϕu) using the meta parameters λKD and λdisc, the final optimization problem of u
becomes:

Find θ⋆
u,W⋆

u,b⋆
u = argmin

θu,Wu,bu

LCE(τu, ϕu) + λKDLKD(ϕu) + λdiscLdisc(ĥu, ϕu). (6)
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Communication In terms of communication, the uplink and downlink volumes are of order
O((M↑ + 1)Cd′) and O(N(M↓ + 1)Cd′) per round, where M↑ and M↓ represent the number of
Φt realizations (per class) that are uploaded and downloaded by the clients, respectively (these
parameters can be tuned to match the communication capacity of the network). For comparison, these
volumes are of order O(D) and O(ND) for FL (with D the model size) and O(nd′) and O(Nnd′)
for SL. Because in most scenarios D ≫ n≫ d′ ≫ C and since M↑ and M↓ are tunable, we observe
that our framework is communication efficient compared to FL and SL.

Relaxation to peer-to-peer We emphasize here that our contrastive objective Ldisc is fully com-
patible with a peer-to-peer configuration, since the server only acts as a relay for the observations of
Φt. For the traditional feature-based KD objective LKD, we use one global representation per class
(i.e., one for the whole network), which in theory can only be computed by a central entity. One way
to alleviate this could be to use the average of all the observations of Φt that were downloaded by
user u as a proxy for the global feature representations. However, to focus solely on the effectiveness
of the proposed objectives rather than the topology of the network, we only present experiments in
which a central entity computes the global representations.

4 Experiments

Figure 2: Ablation study for λKD and
λdisc. Average test accuracy improve-
ment [%] w.r.t. IL (upper left corner)
when different combinations of λKD

and λdisc are used (MNIST/LeNet5 ex-
periment with 5 users and 100 communi-
cation rounds). The red square indicates
the value of λKD and λdisc used in all
our experiments.

Datasets, models and training We run several exper-
iments with the MNIST [6], Fashion-MNIST [37] and
CIFAR10 [17] datasets. For MNIST, we use a simple
convolutional neural network (CNN) similar to LeNet5
(≈ 30K parameters) [18] and for Fashion-MNIST and
CIFAR10, we use ResNet9 (≈ 2, 4M parameters) and
ResNet18 (≈ 11.3M parameters) architectures [10], re-
spectively. For the dimension of feature representation
space, we set d′ = 84 for LeNet5, d′ = 128 for ResNet9
and d′ = 256 for ResNet18. In order to simulate a scenario
where the data is sparse, we only select a fraction of the
train dataset (1200 samples for MNIST, 6000 for Fashion-
MNIST and 10000 for CIFAR10) that we split uniformly
at random across N ∈ {2, 5, 10} users. For the validation,
we use the entire test dataset for each task (10000 sam-
ples). In order to have fair comparisons, we train all the
models for the same number of communication rounds,
and we stop the training as soon as framework has reason-
ably converged (r = 100 for MNIST/LeNet5, r = 20 for
Fashion-MNIST/ResNet9 and CIFAR10/ResNet18). We
compare our framework with centralized learning (or CL,
i.e., with N = 1 and λKD = λdisc = 0), independent
learning (or IL, i.e., with λKD = λdisc = 0), federated
learning using FedAvg (FL) and federated knowledge dis-
tillation (FD). We use the default learning rate η = 10−3 for all experiments and we perform 1 local
epoch of training per communication round. For CL, IL, FD and our framework, we use the Adam
stochastic optimization algorithm [16]. Finally, supported by Fig. 2, we set λKD = 10 and λdisc = 1
in our final objective (Eq. (6)).
Network emulation For our contrastive objective Ldisc, we use navg = 10 (i.e., for every class,
each user selects navg samples of that class, computes and averages their feature representations,
uploads them to the server and downloads the representations of another user chosen at random). For
the feature-based KD objective LKD, each client average the feature representation of all the samples
of a same class and uploads these averaged representations to the server, which in turn averages them
to obtain one global representation per class. For simplicity, we use M↑ = M↓ = 1 (clients upload
and download one observation of Φt for each class).

Performance As seen in Table 1, our framework outperforms every other framework for when
a small model is used (MNIST/LeNet5), especially when the number of clients grows, which is
typically the kind of configuration that would be relevant for a cross-device application). In that

5



(a) IL (b) FL (c) FD (d) Ours

Figure 3: Comparison of the train and test accuracy during 100 communication rounds of IL, FL, FD
and our framework on the MNIST dataset with LeNet5 architectures and N = 5 users. The shaded
areas represent ± the standard deviation of the metric across clients. For the validation, each model
is tested using the entire test dataset.

Table 1: Average test accuracy over clients [%] of the different frameworks after r communication
rounds when the same amount of data is divided uniformly at random between N users. We use 1200
training samples for MNIST, 6000 for Fashion-MNIST and 10000 for CIFAR10. The validation is
done using the full test dataset (10000 samples for each task).

MNIST (r = 100) Fashion-MNIST (r = 20) CIFAR10 (r = 20)

CL 94.00 87.77 66.15

N = 2 N = 5 N = 10 N = 2 N = 5 N = 10 N = 2 N = 5 N = 10

FL 92.64 86.79 70.06 89.79 89.28 88.21 67.99 59.18 51.05

IL 91.46 85.26 72.86 86.04 83.61 80.52 59.85 46.46 38.51
FD 94.45 90.55 77.90 87.17 83.32 79.44 56.75 44.91 31.43
Ours 94.19 90.63 82.07 87.91 84.44 80.77 63.49 47.28 37.78

setup, FL performs particularly poorly as it struggles to find a low-capacity model that matches the
data distribution of each client. This is particularly visible on Fig. 3b. Although in that configuration,
FD shows similar performance for small number of clients (N = 2, 5), it still exhibits a lower
rate of convergence (compare Fig. 3c and Fig. 3d). Our framework even outperforms centralized
learning (CL) when N = 2, suggesting that the added objectives can also be seen as regularizers.
For the Fashion-MNIST dataset, our framework shows significant improvement over IL and FD (i.e.,
frameworks where there are no global model), but is not able to compete with FL anymore, which in
that case even outperforms CL. However, the comparison between FL and our framework is unfair
for large models due to the amounts of shared information. Similar conclusions can be drawn for
the CIFAR10 experiments. However, in that case, even IL outperforms our framework for N = 10
after r = 20 rounds. Indeed, since our objective function is highly complex (the global minimum
depends on the data of other peers), the algorithm struggles to converge to the optimal model when
the number of parameters is very large, which is a clear limitation that needs to be addressed.

5 Conclusion

We introduce a new collaborative learning algorithm that enables tunable collaboration in cross-device
applications and whose uplink and downlink communication does not scale with the model size
(as in FL) or the dataset size (as in SL). We prove that our objective is well posed from the point
of view of collaboration, as it maximizes a lower bound on the mutual information between the
feature representations of different users across the network. Then, we show empirically that it is
particularly relevant in setups where the number of clients is large and when each of them have
limited computational resources.
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A Appendix

A.1 Notation

• N : Number of participating users/clients/peers/data owners.
• d: Raw input data dimension (e.g., d = 3072 for 32× 32 RBG images).
• d′: Latent feature (or feature representation) space dimensionality (i.e., width of last hidden

layer).
• C: Number of class.
• (x, y) ∈ Rd × {0, ..., C − 1}: Labeled data sample.

• pX,Y,U : Rd × {1, ..., C} × {1, ..., U} → R+: Joint probability density function across
users.

• pu(x, y) := pX,Y |U=u(x, y): Data distribution of user u.

• Du := {(xi, yi)
iid∼ pu}ni

i=1: Dataset of user u.

• wu := {θu,Wu,bu} with θu ∈ Θu,Wu ∈ RC×d′
,bu ∈ RC : Parameters of the neural

network of u, with Θu the achievable model parameters for user u.

• ϕu : Rd → Rd′
, x 7→ x′ = ϕ(x;θu): Neural network of u (or similar parameterized

function) that maps a raw input into a latent feature space.

• τu : Rd′ → RC , x′ 7→ z = τ(x′;Wu,bu) := Wux′ + bu: Linear classifier of u.
• λKD, λdisc, navg,M↑,M↓: Hyperparameters.
• η: Learning rate.
• ℓCE , ℓKD, ℓdisc: Cross-entropy, feature-based KD and discriminator loss functions, respec-

tively.
• LCE ,LKD,Ldisc: Expected value (over the data) of ℓCE , ℓKD and ℓdisc, respectively.
• LCE , LKD, Ldisc: Mini-batch estimates of LCE ,LKD and Ldisc, respectively.
• Φs,Φt: Random vectors (feature representations) of the student (user u) and the teacher

(random user U ).
• ps,t, ps, pt: Joint and marginal distributions of Φs and Φt, respectively.
• q: Joint distribution of Φs,Φt and I , where I is a binary random variable indicating if
Φs,Φt has been drawn from ps,t (I = 1) or pspt (I = 0).

• h: Binary discriminator with Bernoulli parameter ĥ (i.e., learnable estimate of qI|Φs,Φt
).

• s, t: Observation/realization of Φs and Φt, respectively.
• t̄c, tc: Global (i.e., using all the samples across users) and local (i.e., using navg samples)

average feature representations of class c, respectively.
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A.2 Proof of Theorem 1

Recall that q(s, t, i) is the joint distribution of (Φs,Φt, I) such that q(s, t|i = 1) = ps,t(s, t)
and q(s, t|i = 0) = ps(s)pt(t) and suppose that the prior q(i) satisfy q(i = 1) = 1

K+1 and
q(i = 0) = K

K+1 , i.e., for each sample from the distribution ps,t, we draw K samples from the
distribution pspt. We have:

I(Φs,Φt) = E(Φs,Φt)∼ps,t

[
− log

ps(Φs)pt(Φt)

ps,t(Φs,Φt)

]
(7)

= E(Φs,Φt)∼ps,t

[
− log

(
K

ps(Φs)pt(Φt)

ps,t(Φs,Φt)

)]
+ log(K) (8)

≥ E(Φs,Φt)∼ps,t

[
− log

(
1 +K

ps(Φs)pt(Φt)

ps,t(Φs,Φt)

)]
+ log(K) (9)

= E(Φs,Φt)∼ps,t
[log q(i = 1|Φs,Φt)] + log(K) (10)

where the last equality is obtained using the Bayes’ rule on the posterior q(i = 1|Φs,Φt):

q(i = 1|Φs,Φt) =
q(Φs,Φt|i = 1)q(i = 1)

q(Φs,Φt|i = 0)q(i = 0) + q(Φs,Φt|i = 1)q(i = 1)
(11)

=
ps,t(Φs,Φt)

Kps(Φs)pt(Φt) + ps,t(Φs,Φt)
(12)

=

(
1 +K

ps(Φs)pt(Φt)

ps,t(Φs,Φt)

)−1

. (13)

Hence, by optimizing E(Φs,Φt)∼ps,t
[log q(i = 1|Φs,Φt)] with respect to the model parameters θu

of the student, we optimize a lower bound on the mutual information between Φs,Φt. By noting that
log q(i = 0|Φs,Φs) ≤ 0, we can further bound the expectation term in (10) as follows:

E(Φs,Φt)∼ps,t
[log q(i = 1|Φs,Φt)] ≥ E(Φs,Φt)∼q|I=1 [log q(i = 1|Φs,Φt)]

+KE(Φs,Φt)∼q|I=0 [log q(i = 0|Φs,Φt)] (14)

= (K + 1)
∑
i

q(i)E(Φs,Φt)∼q|I=i [log q(i|Φs,Φt)] (15)

= (K + 1)E(Φs,Φt,I)∼q [log q(I|Φs,Φt)] (16)

= (K + 1)E(Φs,Φt)∼q

[
EI∼q|Φs,Φt

[log q(I|Φs,Φt)]
]

(17)

However, similar to Tian et al. [29], the Bernoulli distribution q(i|Φs,Φt) is unknown and must
therefore be approximated by training a discriminator h : {0, 1} × Rd′ × Rd′ → [0, 1]. Using Gibbs’
inequality, we obtain

−EI∼q|Φs,Φt
[log q(I|Φs,Φt)] ≤ −EI∼q|Φs,Φt

[log h(I,Φs,Φt)] , (18)

where the right-hand term is the expected negative log-likelihood loss of the discriminator for a
particular set (Φs,Φt). Hence, Eq. (17) is proportional to minus the expected loss of the dis-
criminator. Let ĥ(s, t) ∈ [0, 1] denote the Bernoulli parameter of h given the data (s, t) (i.e.,
h(i, s, t) = ĥ(s, t)i(1− ĥ(s, t))1−i), we define our learning objective for the discriminator as fol-
lows:

−Ldisc(h, ϕu) := (K + 1)E(Φs,Φt)∼q

[
EI∼q|Φs,Φt

[log h(I,Φs,Φt)]
]

(19)

= (K + 1)E(Φs,Φt,I)∼q [log h(I|Φs,Φt)] (20)

= (K + 1)E(Φs,Φt,I)∼q

[
log

(
ĥ(Φs,Φt)

I(1− ĥ(Φs,Φt))
(1−I)

)]
(21)

= +(K + 1)E(Φs,Φt)∼q|I=1

[
log ĥ(Φs,Φt)

]
q(i = 1)

(K + 1)E(Φs,Φt)∼q|I=0

[
log

(
1− ĥ(Φs,Φt)

)]
q(i = 0) (22)

= E(Φs,Φt)∼ps,t

[
log ĥ(Φs,Φt)

]
+KE(Φs,Φt)∼pspt

[
log(1− ĥ(Φs,Φt))

]
, (23)

which concludes the derivation.
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A.3 Algorithms

With the standard assumption that the datasets are composed of IID samples drawn from their
corresponding distributions, the expected losses LCE ,LKD and Ldisc can be approximated by their
unbiased mini-batch estimators LCE , LKD and Ldisc, respectively. For one given sample, the loss
functions are given by ℓCE(z, c) := − log (softmax(z))c, ℓKD(x′, x′′) := ∥x′ − x′′∥2 and finally

ℓdisc : {0, 1} × Rd′
× Rd′

→ R+

(i, s, t) 7→ −i log
(
ĥ(s, t)

)
− (1− i) log

(
1− ĥ(s, t)

)
. (24)

Finally, for the sampling procedure of the contrastive objective, we use the most intuitive scheme: for
every training sample (xi, yi) with feature representation si = ϕu(xi), we use one observation of Φt

sampled using yi (i.e., I = 1), and one observation of Φt sampled using each c ̸= yi (i.e., I = 0).
Thus, we have K = C − 1. With these considerations, a detailed description of our collaborative
learning framework can be found in the supplementary material.

Algorithm 1: GLOBALUPDATE

Input: Server S, N users with local datasets {Du}Nu=1.

S initializes randomly {̄tc}Cc=1 and random observations {{tcm}Cc=1}
N ·M↑
m=1

Each client u initializes w0
u := {θ0

u,W0
u,b0

u}
r ← 0
while training:

r ← r + 1
for each client u:

u downloads {̄tc}Cc=1 and M↓ random observations {{tcm}Cc=1}
M↓
m=1

wr
u ← LOCALUPDATE(Du,wr−1

u , {̄tc}Cc=1, {{tcm}Cc=1}
M↓
m=1)

u computes and uploads its local averaged representations {̄tcu}Cc=1

u computes (using navg) and uploads M↑ observations {{tcu,m}Cc=1}
M↓
m=1

S aggregates {{̄tcu}Cc=1}Nu=1 to obtain {̄tc}Cc=1

S stores (and shuffles) {{tcu,m}Cc=1}
M↓
m=1 in their corresponding class buffers

return {wr
u}Nu=1

Algorithm 2: LOCALUPDATE

Input: Local dataset Du, model parameters wu = {θu,Wu,bu}, global features {̄tc}Cc=1

and observations {{tcm}Cc=1}
M↓
m=1, number of local training rounds E, averaging

parameter navg.

Buffer initialization (per class): {Φ̂c
u ← 0}Cc=1

for e ∈ [1, ..., E]:
for mini-batch B ∈ Du:

LKD, LCE , Ldisc ← 0
for (xi, yi) ∈ B:

si ← ϕu(xi)
LCE ← LCE + 1

|B|ℓCE(τu(si), yi)
LKD ← LKD + 1

|B|ℓKD(si, t̄yi)

Sample m ∼ UNIFORM(1, ...,M↓)

Ldisc ← Ldisc +
1
|B|

(
ℓdisc(1, si, tyi

m) +
∑

c̸=yi
ℓdisc(0, si, tcm)

)
L← LCE + λKDLKD + λdiscLdisc

wu ← wu − η∇wu
L

return wu
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