
How Many Ants Does It Take To Find the Food?

Yuval Emek1, Tobias Langner2, David Stolz2, Jara Uitto2, and Roger
Wattenhofer2

1 Technion, Israel
2 ETH Zürich, Switzerland

Abstract. Consider the Ants Nearby Treasure Search (ANTS) problem,
where n mobile agents, initially placed at the origin of an infinite grid,
collaboratively search for an adversarially hidden treasure. The agents
are controlled by deterministic/randomized finite or pushdown automata
and are able to communicate with each other through constant-size mes-
sages. We show that the minimum number of agents required to solve
the ANTS problem crucially depends on the computational capabilities
of the agents as well as the timing parameters of the execution environ-
ment. We give lower and upper bounds for different scenarios.

1 Introduction

Recent research on understanding the behavior of insect colonies from a dis-
tributed computing perspective has mainly focused on questions like “How long
does it take a large collection of ants to locate a food source?” [1, 2] or “How
do the computational capabilities of a single ant within this collection affect the
time until the food source is found?” [3–5].

In this paper, we take a computability point of view and, instead of focusing
on large numbers of agents and on the time required to find a food source, analyze
the minimum number of agents that is required to locate a food source within
(expected) finite time. More precisely, we show that the minimally required
number of agents crucially depends on the model assumptions, i.e., whether each
agent is controlled by a finite automaton (FA) or a pushdown automaton (PDA),
whether it has access to random bits or not, and whether the environment is
synchronous or asynchronous.3 For most combinations of the aforementioned
characteristics, we establish lower and upper bounds on the number of agents
required to locate the food. Our bounds are tight in most cases. We essentially
present two different families of algorithms – rectangle/spiral and geometric
searches – which are inspired by results of Emek et al. [1]. The main contributions
of this paper, however, are the lower bounds for two deterministic FA- and one
deterministic PDA-agent presented in sections 4.1 and 5.1, respectively. Table 1
at the end of the paper gives a complete picture of our findings.
3 Notice the striking resemblance to the problem of finding the number of people

needed to change a light bulb: For people, the answer usually depends on nationality
and profession while for ants, it depends on timing and computational power.

As border cases of our findings, we point out that in an asynchronous setting
four agents are sufficient to solve the problem when their computational capabil-
ities are most restricted, i.e., they are controlled by deterministic FAs. If we allow
access to random bits and grant the agents slightly more computational power
– a PDA – already one single agent can solve the problem. Note that neither of
these results require the full computational power of a Turing machine.

We do not claim that our considerations are particularly relevant from a
biological perspective – an ant hive generally consists of significantly more than
four ants. However, our results show that powerful computational capabilities
can be traded for primitive means of communication while still being able to
solve complex problems – even for small number of agents.

Related Work. Our work is inspired by Feinerman et al. who proposed a
problem called ants nearby treasure search (ANTS), where n ants, or agents, are
searching the plane [2, 3]. The agents are controlled by Turing machines and are
not allowed to communicate with each other after leaving the origin. Assuming
a knowledge of a constant approximation of n, the agents are able to locate
the treasure in time O(D + D2/n) where D is the distance to the treasure.
Furthermore, Feinerman et al. observe a matching lower bound and prove that
this lower bound cannot be matched without some knowledge of n.

There are two fundamental differences between the model studied by Feiner-
man et al. and our models. First, our agents are operated by finite automata or
pushdown automata. The stronger computational model provided by Turing ma-
chines enables individual agents to accomplish tasks way beyond our capabilities,
such as performing spiral searches and remembering the execution history. In a
recent related work, Lenzen et al. study the effects that bounding the memory of
the agents and the range of available probabilities have on the runtime [5]. Sec-
ond, our agents are allowed to communicate outside the origin, yet only through
constant-size messages – a model which was also studied by Emek et al. [1].

The general concept of graph exploration is widely studied in computer sci-
ence. Typically, given a graph, the task is to visit all nodes by walking along the
edges [6–10]. It is well-known that random walks allow a single agent to visit all
nodes of a finite undirected graph in expected polynomial time [11]. Note that
there are infinite graphs, such as a grid, where the expected time for a random
walk to reach any designated node is infinite. Our problem can also be seen as a
variant of the game of cops and robbers, where the robber remains dormant [12].

The classic example of a treasure finding problem is the cow-path problem.
The task in the cow-path problem is to find a treasure on a line as quickly
as possible. This task can be solved with a constant competitive ratio with a
deterministic algorithm. The optimal algorithm for the 2-dimensional version is
a simple spiral search [13]. The problem has also been studied in a multi-agent
setting by López-Ortiz and Sweet [14].

Also finite automata searching a graph have been studied earlier [4]. Other
work considering distributed computing by finite automata includes for example
population protocols [15, 16]. Recently, a new general model of computation in
graphs was introduced, where the nodes are controlled by finite automata instead

of Turing machines [17]. The main connection to our work is that we use an
equivalent communication model.

Model. We consider a variant of [2]’s ANTS problem, where a set of mobile
agents search the infinite grid for an adversarially hidden treasure. Our model is
an adapted version of the model used in a paper by Emek et al. [1]. Each agent
is controlled either by a finite automaton or by a pushdown automaton, both
either deterministic or randomized, with a common sense of direction and can
communicate only with agents sharing the same grid cell.

More formally, consider n mobile agents that explore Z2. In the beginning
of the execution, all agents are positioned in the same grid cell referred to
as the origin (say, the cell with coordinates (0, 0) ∈ Z2). In contrast to prior
work, we do not assume that the agents can distinguish between the origin and
the other cells.4 We denote the cells with either x or y-coordinate being 0 as
north/east/south/west-axis, depending on their location.

The distance dist(c, c′) between two grid cells c = (x, y) and c′ = (x′, y′) in
Z2 is defined with respect to the `1 norm (a.k.a. Manhattan distance), that is,
|x− x′|+ |y− y′|. Two cells are called neighbors if the distance between them is
1. In each step of the execution, agent a positioned in cell (x, y) ∈ Z2 can either
move to one of the four neighboring cells (x, y+1), (x, y−1), (x+1, y), (x−1, y),
or stay put in cell (x, y). The former four position transitions are denoted by
the corresponding cardinal directions N,E, S,W , whereas the latter (stationary)
position transition is denoted by P (standing for “stay put”). We point out that
the agents have a common sense of orientation, i.e., the cardinal directions are
aligned with the corresponding grid axes for every agent in every cell.

In an asynchronous environment, each agent’s execution progresses in discrete
(asynchronous) steps indexed by the non-negative integers and we denote the
time at which agent a completes step i > 0 by ta(i) > 0. Following common
practice, we assume that the time stamps ta(i) are determined by the policy
ψ of an adversary that knows the protocol but is oblivious to its random bits,
whereas the agents do not have any sense of time. A synchronous environment
corresponds to the special case where ta(i) = i for all agents a and all i > 0.

The communication and computational capabilities of the agents are limited.
Specifically, in our model, an agent a positioned in cell c ∈ Z2 can communicate
with all other agents positioned in cell c at the same time. This communication is
limited though: agent a merely senses for each state q of its (finite or pushdown)
automaton, whether there exists at least one agent a′ 6= a in cell c whose current
state is q. Notice that this communication scheme is a special case of the one-
two-many communication scheme introduced in [17] with bounding parameter
b = 1.

Since we only consider instances with a constant number of agents, we allow
each agent to run a different individual protocol. This is modeled by assigning
4 The motivation behind this is that, in contrast to previous work, we consider constant

numbers of agents. While models with large numbers can spare one agent to mark
the origin without affecting their upper bounds, our upper bounds actually increase
(by one) if such behavior is required. Consequently, we consider the weaker variant.

to each agent an individual initial state in the respective automaton (note that
this is only relevant in the deterministic case as otherwise coin flips can be used
to separate agents). The protocol is controlled by either a finite automaton or
a pushdown automaton. We shall first explain the semantics of the former and
then explain the additional capabilities of the latter.
FA-protocol. When an agent employs an FA-protocol, it has a constant mem-
ory and thus, in general, cannot store coordinates in Z2. Formally, the agent’s
protocol is captured by the 3-tuple Π = 〈Q, sa0 , δ〉, where Q is the finite set of
states, sa0 ∈ Q is the initial state of agent a, and δ : Q × 2Q → 2Q×{N,S,E,W,P}
is the transition function. To allow the agents to perform different tasks also in
the absence of randomization, each agent a has a unique start state sa0 in which
it resides at time 0. Suppose that at time ta(i), agent a is in state q ∈ Q and
positioned in cell c ∈ Z2. Then, the state q′ ∈ Q of agent a at time ta(i+ 1) and
its corresponding movement τ ∈ {N,S,E,W,P} are dictated based on the tran-
sition function δ by picking the tuple (q′, τ) uniformly at random from δ(q,Qa),
where Qa ⊆ Q contains state p ∈ Q if and only if there exists some (at least
one) agent a′ 6= a such that a′ is in state p and positioned in cell c at time ta(i).
A FA-protocol is deterministic if each step is deterministic, i.e., |δ(q,Qa)| ≤ 1
for all q ∈ Q and Qa ⊆ Q. For simplicity, we assume that while Qa (input to δ)
is determined based on the status of cell c at time ta(i), the actual application
of the transition function δ occurs instantaneously at the end of the step, i.e.,
agent a is considered to be in state q and positioned in cell c throughout the
time interval [ta(i), ta(i+ 1)).
PDA-protocol. When an agent employs a PDA-protocol, it is controlled by a
pushdown automaton with an infinite stack. The communication and movement
model remains the same. The only addition is that in each step, an agent reads
and removes the top-most symbol from the stack (“pop”) – if the stack is empty,
the agent reads the special symbol ε and the stack remains unchanged – and then
adds a finite amount of symbols to the top of the stack (“push”). The symbol
read from the stack serves as additional input to the agent. Formally, the agents’
protocol is captured by the 4-tuple Π = 〈Q, sa0 , Γ, δ〉, where Q is the finite set of
states, sa0 ∈ Q is the initial state of agent a, Γ is the finite stack alphabet, and
δ : Q × 2Q × Γ ∪ {ε} → 2Q×Γ∗×{N,E,S,W,P} is the transition function. Suppose
that at time ta(i), agent a is in state q ∈ Q, positioned in cell c ∈ Z2, and the
top-most symbol on the stack is γ ∈ Γ ∪{ε}. Then, the state q′ ∈ Q of agent a at
time ta(i+1), the word α ∈ Γ ∗ to be written to the stack, and the corresponding
movement τ ∈ {N,E, S,W,P} are dictated based on the transition function δ by
picking the tuple (q′, α, τ) uniformly at random from δ(q, γ,Qa), where Qa ⊆ Q
is defined as in an FA-protocol.
Problem setting. We consider two different variants of the problem, where the
goal in both is to locate an adversarially hidden treasure, i.e., to bring at least
one agent to the cell in which the treasure is positioned while the distance of the
treasure from the origin is denoted by D. In async-ANTS, the problem is to find
the treasure in an arbitrary asynchronous environment while in the sync-ANTS
problem the agents operate in a synchronous environment. A FA/PDA-protocol

P is effective if it allows the agents to locate the treasure in finite time if P is
deterministic, or if the agents locate the treasure in expected finite time if P is
randomized.

Preliminaries. For our deliberations we require a sequence of definitions. Let
A be the set of agents. We denote by EPa (t) the cells that an agent a employing
protocol P has visited until time t and furthermore EP(t) =

⋃
a∈AE

P
a (t). In the

context of the sync-ANTS problem, we take the liberty to write EPa (i) for a (then
global) step i as shorthand for EPa (ta(i)) and analogous for EP(i). We omit P in
the previous expressions if the considered protocol is clear from the context.

2 Four Agents

The goal of this section is to solve the async-ANTS problem without using ran-
domization. We provide a simple protocol for four FA-agents that uses three of
the four agents as landmarks for the fourth agent. The fourth agent discovers
the whole grid in a spiraling fashion with increasing distance to the origin.

We begin by giving an informal description of the protocol. The landmark
agents, referred to as Guides, position themselves in a triangle around the origin
and after getting a signal from the searching agent, called the Explorer, move
step by step further away from the origin. The Explorer moves to the Guides one
by one signaling them to expand the triangle. This way the Explorer is able to
guarantee that it can always reach one Guide after meeting another by simply
walking a (possibly diagonal) straight line, even after the Guides are within a
super-constant distance from each other and the origin.

All three Guides have specific roles and therefore we give them task-specific
names: NorthGuide, WestGuide and EastGuide. The agents execute the follow-
ing protocol, which is illustrated in Figure 1. The protocol is initialized by the
NorthGuide moving once north, the WestGuide moving once west and the East-
Guide moving once east. After the Explorer notices that the origin is empty, it
moves once north.

NorthGuide. When the NorthGuide meets a WaitingExplorer it moves once north.

WestGuide. When the WestGuide meets a WaitingExplorer it moves once west
and becomes a MovingWestGuide. The MovingWestGuide first moves once west
and then once south and becomes a WestGuide again.

EastGuide. When the EastGuide meets a WaitingExplorer it moves once south
and becomes a MovingEastGuide. The MovingEastGuide moves twice east and
becomes again an EastGuide.

Explorer. The Explorer continuously performs triangle searches in increasing
distances. It continuously moves into a given direction, starting with south-west
(by alternatingly moving south and west). When the Explorer meets a WestGuide,

N

O

E

1

22

3

4

3

W

X

Fig. 1: Four agents are discovering the grid and currently are performing a triangle
search in distance 3. The origin is denoted by a gray square, the Explorer (X) by a red
circle and the NorthGuide (N), WestGuide (W) and EastGuide (E) by black circles labeled
with the corresponding initial letters. The numbers indicate the order of movements,
i.e., moves along the arrow labeled with i are performed only after the moves along
the arrow labeled with i− 1 are finished. The dashed red line indicates the path of the
Explorer in distance 2.

it changes its moving direction to east and becomes a WaitingExplorer. When
it meets an EastGuide, it changes the direction to north-west and becomes a
WaitingExplorer. Finally, when the Explorer meets a NorthGuide, it changes its
moving direction to south-west (alternates between west and south) and becomes
a WaitingExplorer. Notice that the Explorer meets the NorthGuide in the starting
position of the triangle search in the next distance. Whenever the Explorer meets
a MovingWestGuide or a MovingEastGuide in cell c, it waits until c is empty before
continuing to move.

WaitingExplorer. When the WaitingExplorer resides in a cell that does not con-
tain an EastGuide, a NorthGuide, or a WestGuide, it becomes an Explorer and
continues moving.
We index the triangle searches by their distances, i.e., if the Explorer meets the
NorthGuide in cell (0, i) and starts moving south-west, we index the correspond-
ing triangle search by index i and denote it by TSi. A triangle search in distance
i starts when the Explorer leaves cell (0, i) by moving west and ends when the
Explorer meets a NorthGuide. Furthermore, we say that TSi works correctly, if
the Explorer meets the WestGuide only in cell (−2i + 1,−i + 1), the EastGuide
only in cell (2i− 1,−i+ 1) and the NorthGuide only in cell (0, i+ 1) during TSi.

Lemma 1. Every triangle search works correctly.

Proof. Consider TS1. Initially, all the Guides are located in cells adjacent to
the origin. By the design of our protocol, the Explorer first makes sure that the

NorthGuide goes into cell (0, 2). After this, it moves south-west and reaches the
WestGuide in cell (−1, 0). Then it travels east and reaches the EastGuide in cell
(1, 0). From there, it travels north-west and meets the NorthGuide in cell (0, 2).
Thus, the claim holds for TS1.

Assume then that the claim holds for TSi−1 and consider TSi. The Explorer
starts moving south-west from cell (0, i). According to the induction assump-
tion, the WestGuide is located in either (−2i + 2,−i + 2), (−2i + 1,−i + 2) or
(−2i+ 1,−i+ 1). Since the Explorer moves diagonally, it has to pass all of these
cells. According to the design of our algorithm, it does not overtake the Moving-
WestGuide, i.e., the MovingWestGuide reaches its destination before the Explorer,
and therefore the Explorer meets the WestGuide in cell (−2i+ 1,−i+ 1).

Similarly, when the Explorer starts moving towards east, the correctness of the
previous triangle ensures that the MovingEastGuide reaches the cell (2i−1,−i+1)
before the Explorer. After meeting the EastGuide, the Explorer starts moving
diagonally towards the starting point and reaches it after 2i movements. Since
the Explorer moves north in the next step, it meets the NorthGuide in cell (0, i+1).

ut

To show that the treasure eventually gets discovered, we need two more auxiliary
observations. First, we show that every cell in distance d is discovered latest
during TSd+1. Second, we show that each triangle search finishes within finite
time. We call the set of cells along which the Explorer moves during TSi the path
of rectangle search i.

Observation 2. Every cell c within distance d to the origin is discovered latest
during TSd+1.

Proof. We prove the claim by induction on the distances of the cells, i.e., we show
that all cells within distance d are contained in a triangle search with index at
most d + 1. The base case is clear since the origin is contained within the path
that the Explorer moves during TS1.

Assume then that the claim holds for all cells in distance d. By the design
of the triangle search protocol, the path of TSi+1 contains all the cells adjacent
to the cells in the path of TSi that are not discovered during TSi. See Figure 1
for illustration. Therefore, all cells in distance d+ 1 are discovered latest during
TSd+2. ut

Observation 3. Every triangle search ends within finite time.

Proof. Let t be the time when TSi starts for some i > 0. By Lemma 1, we know
that TSi−1 worked correctly and therefore we know that the WestGuide reaches
cell (−2i+1,−i+1) and the EastGuide reaches cell (2i−1,−i+1) latest by time
t + 3. Therefore, latest by time t + 3 + 4i, the Explorer meets the WestGuide in
cell (−2i+ 1,−i+ 1). By time t+ 3 + 4i+ 2, the WestGuide has left the cell and
the Explorer can continue moving east. By time t+ 5 + 4i+ 4i+ 2, the Explorer
turns towards the NorthGuide and finally reaches its cell by time t+ 7 + 8i+ 4i
ending the triangle search. ut

We can now combine the results from this section. Let D be the distance to the
treasure. By Observation 2, the treasure is found latest during TSD+1. As the
duration of each search is finite by Observation 3 and by Lemma 1 each triangle
is eventually searched, we get the following theorem.

Theorem 1. There exists an effective deterministic FA-protocol for async-ANTS
for n = 4.

3 Three Agents

3.1 Deterministic Protocol for sync-ANTS

In this section, we first show that we can get rid of one of the FA-agents by
giving the agents a common notion of time. In other words, if we assume that
the execution of the algorithm is synchronous, three agents suffice to discover
the treasure. Our goal is to prove the following theorem.

Theorem 2. There exists an effective deterministic FA-protocol for sync-ANTS
for n = 3.

The idea of the three-agent protocol is similar to the protocol from Section 2.
Again, one of the agents, the Explorer, performs the actual searching and the two
other agents work as Guides. The task of one of the Guides, called OriginGuide,
is simply to stand still and mark the origin throughout the execution. The task
of the other Guide is to tell the Explorer when it hits an axis. On the first round
of the execution, the Explorer and the other Guide move one step north to cell
(0, 1) and then start the execution of the following protocol.

Explorer. The Explorer repeatedly performs rectangle searches in increasing dis-
tances. It starts the first rectangle search in distance 1 by diagonally moving
south-west, i.e., alternating between moving west and south. When it meets a
Guide, it alters its movement direction by 90◦ counter-clockwise. At the end of
a complete rectangle (i.e., when meeting a Guide again at the starting point), it
moves one step outwards starting a new rectangle search with a larger distance.
During a rectangle search in distance d, the Explorer discovers all cells that have
distance d to the origin.

Guide. The Guide starts by moving towards the OriginGuide that marks the
origin. When it meets the OriginGuide, it alters its direction by 90◦ clockwise
and moves outwards. When it meets the Explorer, it turns around and moves
inwards towards the OriginGuide. The Guide also moves one step north with the
Explorer when they meet in the end of searching a rectangle and starts walking
towards the OriginGuide afterwards.
The execution of our protocol is illustrated in Figure 2. To prove Theorem 2, we
only need to show that every time the Explorer enters a cell on an axis, it meets a
Guide. To see why this is sufficient, consider any cell c on the plane with distance
d to the origin. Then c is searched (latest) during rectangle search in distance d.

G

G

G

G

G

O

X

Fig. 2: Three agents can discover the entire
grid under a synchronous environment. The
dashed circles indicate the locations where
the Explorer (X) meets the Guide (G). The
OriginGuide (O) marks the origin.

X

G

2

1

4

3

O

Fig. 3: Three agents are performing
a geometric search on the north-west
quarter plane. Moves along the black
arrows are executed by both the Ex-
plorer (X) and the Guide (G) while
the OriginGuide (O) states at the ori-
gin. Moves along the red arrows are
executed only by the Explorer.

Therefore, assuming that each rectangle search is performed correctly, the whole
plane is eventually discovered.
It is fairly easy to see that the Explorer and the Guide never fail to meet. Consider
round r when the Explorer and a Guide meet on an axis during rectangle search
in distance d. Then the distance that both of them have to move until the next
meeting point is 2d. Since both agents move exactly once per round, the claim
follows. Note that the assumption of a synchronous environment is crucial here.

3.2 Randomized Protocol for async-ANTS

We now show that if we are not restricted to deterministic state machines but al-
low randomization, we can find the treasure under an asynchronous environment
with only 3 FA-agents. The fundamental idea behind our randomized protocol
is that the agents use a fair coin to determine which cells to discover.

Again, we have two Guides and one Explorer and the task of one of the agents,
the OriginGuide, is to simply stay in the origin. The Explorer performs the actual
searching and starts by uniformly at random choosing either (north, east), (east,
south), (south, west) or (west, north), i.e., it randomly chooses a quarter plane.
Then, the Explorer performs a geometric search on that quarter plane.

Consider the case of choosing (east, south) as the quarter-plane (the search in
the other quarter-planes works analogously). The Guide and the Explorer execute
the following protocols.

Explorer. The Explorer starts by moving once east. Then on every step the
Explorer tosses a fair coin and if it shows heads, it moves east. When the coin
shows tail, the Explorer stops and becomes a WaitingExplorer until its cell is

occupied by a WaitingGuide. When the WaitingGuide appears, the WaitingExplorer
moves one cell south, becomes an Explorer, and continues tossing coins but now
moves one cell south every time the coin shows head instead of east. When the
coin shows tails, the Explorer turns back, i.e., starts moving north. After the
Explorer reaches a cell with a WaitingGuide, it stops and moves west (until it
reaches an OriginGuide) whenever its cell contains no WaitingGuide.

Guide. The Guide moves east on every step if its cell is not occupied by an
Explorer. When it meets a WaitingExplorer, it turns into a WaitingGuide. When
the WaitingGuide meets an Explorer, it becomes a Guide again and moves west
whenever its cell is not occupied by an Explorer until it meets an OriginGuide.

After all the agents reach the origin, they restart the process. The protocol is
illustrated in Figure 3. It is easy to see that each geometric search has a finite
duration with probability 1 since the Explorer throws a finite number of heads in
every search with probability 1. Assume that the number of heads is finite. Then
the Explorer becomes a WaitingExplorer in finite time. After the Explorer becomes
a WaitingExplorer, the Guide moves towards the cell of the WaitingExplorer in
every step and therefore reaches it in finite time. Similarly, the Explorer returns
to the WaitingGuide in finite time and they both reach the OriginGuide in finite
time.

Theorem 3. There exists an effective randomized FA-protocol for async-ANTS
for n = 3.

Proof. Assume that the treasure is located in cell c = (x, y) in the north-east
quarter plane with D = x + y. Let us index the geometric searches, i.e., the
iterations of the algorithm, by the positive integers. Clearly, the protocol is
defined so that if the treasure is found in search i, then search j > i is not
needed, however, for the sake of the analysis, we assume that the agents keep
performing the searches indefinitely and bound the time until the treasure is
found – let T be the random variable that captures this time. Given this view,
we know that search i is independent of all searches other than i.

Let Ai be the event that the Explorer finds the treasure in search i. This
happens if it chooses the right quarter plane, throws heads exactly x − 1 times
before throwing tails once and then throws heads y − 1 times. Hence, Pr(Ai) =
1
4 · 2

−(x−1) · 1
2 · 2

−(y−1) = 2−(D+1). Let Bi = ¬A1 ∧ · · · ¬Ai−1 ∧ Ai be the event
that the treasure is found in search i and not in any search j < i. We rely on
the following equations that hold for every i ≥ 1 and 1 ≤ j < i:

(1) Pr(Ai) = 2−(D+1)

(2) Pr(Bi) = (1− 2−(D+1))i−12−(D+1)

(3) E[Li | Bi] = E[Li | Ai] = O(D)
(4) E[Lj | Bi] = E[Lj | ¬Aj] = O(1)

Therefore,

E[T] =
∞∑
i=1

E[T | Bi] · Pr(Bi)

=
∞∑
i=1

(i−1∑
j=1

E[Lj | Bi] + E[Li | Bi]
)
· (1− 2−(D+1))i−12−(D+1)

=
∞∑
i=1

(O(i) +O(D)) · (1− 2−(D+1))i−12−(D+1)

= 2−(D+1) ·
∞∑
i=1
O(i) · (1− 2−(D+1))i−1

+O(D) · 2−(D+1) ·
∞∑
i=1

(1− 2−(D+1))i−1

= 2−(D+1) · O(22D) +O(D) · 2−(D+1) · 2D+1 = O(2D) . ut

4 Two Agents

Our goals in this section are to show, on the negative side, that two deterministic
FA-agents cannot solve sync-ANTS, and, on the positive side, that one determin-
istic FA-agent together with one deterministic PDA-agent can solve sync-ANTS.

4.1 No Deterministic FA-Protocol

We start off with proving the first result. Before doing so, we define the notion
of a band in Z2. A band is the discrete version of a fat line in Euclidean space,
i.e., the set of cells that have at most a certain distance from a line.

Definition. A band B = (s,m, e), s = (xs, ys) ∈ Z2 with slope m = (mx,my) ∈
Z2 of extent e ∈ N>0 consists of all cells c for which there exists a point p =
(sx +λmx, sy +λmy) for some λ ∈ R such that ‖c− p‖1 ≤ e where ‖x‖1 denotes
the `1-norm of x.

Observation 4. Let B be a finite set of bands with finite extent. Then Z2 \⋃
B∈B B 6= ∅.

Proof. Assume for the sake of a contradiction that the bands in B cover Z2

completely. Let e∗ be the maximum extent of the bands in B. Consider a square
region S of Z2 with `2 cells for ` > 2|B|e∗ and a fixed band B = (s,m, e) ∈ B.
Assume wlog. that |mx| ≤ |my|. Observe that |B ∩S| ≤ ` · 2e∗ since S vertically
extends over ` cells and the horizontal width of B ∩ S is at most 2e∗. Let A =⋃
B∈B B and we get |A∩ S| ≤ 2|B|e∗ · ` < `2 = |S|. Thus, the bands in B do not

even cover the cells in S, a contradiction. ut

We denote by M(P) = (ti)i>0 the strictly increasing sequence of all points in
time when two agents meet during the execution of protocol P. An important
ingredient for the proof is the following lemma, which holds for an arbitrary
amount of agents.

Lemma 5. If P is an effective deterministic FA-protocol for sync-ANTS, then
|M(P)| =∞.

Proof. Assume for the sake of contradiction that P is an effective deterministic
protocol with finite |M(P)|. Thus, there exists a largest point in time t∗ =
max(M(P)) when two agents meet and after which no two agents meet anymore
and the number of cells explored until t∗ is finite. Consider now agent a and let q
be the state that has been entered by agent a twice after t∗ at the earliest time.
Let (ti)i>0 be the strictly increasing sequence of points in time after t∗ when
a enters state q and denote Ii = [ti, ti+1]. Observe that the behavior of a in
each interval Ii is identical, hence a will keep on repeating the same transitions
and movements as in I1 forever. Observe further that a can only move a finite
distance in each Ii as it has a finite length.

Consider the vector vi(a) = Ca(ti+1)− Ca(ti) describing the net-translation
of a during Ii and observe that by the above argument vi(a) = v1(a) for all
i > 0. There are two cases: If v1(a) = 0, then agent a explores only a constant
amount of cells for t → ∞. If v1(a) 6= 0, then a exhibits a net-movement into
the direction of v1(a) in each Ii and since it only explores a constant amount
of cells in each Ii, agent a explores only cells in a band with finite width after
t∗. By Observation 4, the agents cannot explore all cells in Z2 and the claim
follows. ut

Theorem 4. There exists no effective deterministic FA-protocol for sync-ANTS
for n = 2.

Proof. Assume for the sake of contradiction that P is an effective deterministic
protocol for two agents a1 and a2. By Lemma 5 we know that |M(P)| = ∞.
Let Q1 and Q2 be the set of states of the two FAs controlling a1 and a2. We
denote by Q1(t) ∈ Q1 and Q2(t) ∈ Q2 the state of agent a1 and a2 at time t
and further Q(t) = (Q1(t), Q2(t)). Observe that since |M(P)| = ∞, there must
be a pair of states (q1, q2) ∈ Q1 × Q2 such that the sub-sequence T = (τi)i>0
of M(P) that consists of all τ ∈ M(P) such that Q(τ) = (q1, q2), is infinite.
We denote the intervals Ii = [τi, τi+1] and observe that a1 and a2 (individually)
perform exactly the same state transitions and movements in each interval Ii
(agent a1 and a2 might meet between τi and τi+1 in different states, but their
behavior is fully determined by their states at time τi). Thus, there is a fixed
vector v = Ca1(τi+1) − Ca1(τi) representing the translation of the meeting cell
of a1 and a2 during some Ii and furthermore a fixed constant ϑ > 0 such that
τi+1−τi = ϑ. Consequently, a1 and a2 can only explore cells in a band with finite
width after τ1. Since E(τ1) is finite, Observation 4 yields a contradiction. ut

4.2 Deterministic FA/PDA-Protocol for sync-ANTS

The second result of this section establishes that while two agents controlled
by a FA do not allow for an effective deterministic protocol for sync-ANTS, one
FA-agent and one PDA-agent do so.

The protocol is essentially an adapted version of the protocol from Sec-
tion 3.1. The Explorer behaves identically to Section 3.1 and performs rectangle
searches with increasing distances to the origin. The second PDA-agent replaces
the two Guides by walking along the axis in order to signal to the Explorer when
the search in a quarter-plane is complete and it should therefore alter its move-
ment direction. The trick here is that the Guide tracks its distance from the
origin using the stack. More precisely, the Guide pushes a symbol onto the stack
whenever it performs a movement outwards on one of the axes and pops one
symbol from the stack whenever it moves towards the origin. Using this trick,
the Guide can detect when it has arrived at the origin by verifying whether the
stack is empty, i.e., the read symbol is ε. Then the algorithm works as follows:

At time t = 0, the Guide and the Explorer both move one cell north (and
the Guide records this move on the stack). Whenever the two agents are located
together on the north-axis in cell (0, d), the Explorer starts a diagonal walk
towards south-west while the Guide moves south towards the origin until it arrives
there, which it can track using the stack. Upon arriving there, it moves west until
it meets the Explorer. As the length of the two (different) paths from cell (0, d)
to cell (−d, 0) is equal, both the Guide and the Explorer arrive in cell (0,−d) at
the same time. Now the Explorer changes its movement direction and the Guide
moves back to the origin after which it moves south to meet the Explorer on the
south axis in cell (0,−d). They repeat this process to meet on the west axis in
cell (d, 0) and on the north axis in cell (0, d). When the Explorer has completed
the rectangle search of level d by arriving at cell (0, d) again, it moves together
with the Guide to cell (0, d+ 1) and the search of level d+ 1 begins.

It is easy to see that the above algorithm guarantees that the Explorer meets
the Guide every time it crosses an axis and that therefore any level d is explored
in finite time.

Theorem 5. There exists an effective deterministic protocol for sync-ANTS for
n = 2 that uses one FA-protocol and one PDA-protocol.

4.3 Deterministic PDA-Protocol for async-ANTS

Since two PDAs can simulate a Turing machine [18] by using both their stacks
to represent the infinite band of the Turing machine, it is not too surprising that
two PDAs allow for an effective deterministic protocol for async-ANTS. The two
agents a and b employ the following protocol: Both agents walk “hand-in-hand”,
i.e., have a distance of at most 1 at all times, and perform a spiral search with
increasing distances from the origin (cf. Section 3.1). At any time during the
execution, they maintain the invariant that the sum of the number of symbols
on both stacks equals their distance from the origin. They start from the cell

(0, 1) with the stack of agent a containing one symbol. When the two agents
start a spiral search from cell (0, i), agent a has i symbols on is stack. When
a and b walk south-west, agent a removes a symbol from its stack every other
step while agent b pushes one symbol to its stack every other step. When the
stack of agent a is empty, agent b’s stack contains i symbols and the agents
have arrived at the cell (−i, 0) on the west axis. Then they reverse their roles
and move together to the south, east, and again north axis in the same fashion
to finish the search in distance i. Thereafter, they move one cell north, push
one additional symbol to the stack to account for the increased distance and
start a new search in distance i + 1. It is easy to see that this protocol can be
implemented to work in an asynchronous environment and guarantees that the
two agents locate the treasure.

Theorem 6. There exists an effective deterministic PDA-protocol for async-
ANTS for n = 2.

5 One Agent

In this section we show that neither a single randomized FA-agent nor a single
deterministic PDA-agent can find the treasure in finite time while a randomized
PDA-agent is able to do so.

Theorem 7. There exists no effective randomized FA-protocol for sync-ANTS
for n = 1.

Proof. We show that a single agent controlled by a randomized FA-protocol
cannot even discover the cells in Z.

Let Q be set of states of the FA. Notice that each configuration of the agent is
fully determined by the state q ∈ Q in which the FA resides and an integer z ∈ Z
of the cell in which the agent is positioned. Now consider the infinite Markov
chain captured by these configurations. The proof is established by standard
Markov chain arguments noticing that the Markov chain can move from config-
uration c = (q, z) to configuration c′ = (q′, z′) only if |z − z′| ≤ 1. ut

5.1 No Deterministic PDA-Protocol

Consider a single agent controlled by a deterministic PDA-protocol. We denote
by S(i) the size of the stack, i.e., the number of symbols on the stack (directly)
after step i and by C(i) = (q, γ) the tuple of the state q ∈ Q and the top-
most stack symbol γ ∈ Γ (directly) after step i. Let C = Q × Γ be the set of
all configurations and observe that |C| is constant. As the behavior of a PDA
is fully determined by its state and the top-most stack symbol, the following
observation is immediate.

Observation 6. Let 0 < i1 < i2 be two different steps with C(i1) = C(i2)
and let i2 be the smallest such index. If S(i) ≥ S(i1) for all i1 ≤ i ≤ i2, then
C(j) = C(j + k · (i2 − i1)) for all i1 ≤ j ≤ i2 and k ∈ N0.

step ii∞ imin i′ i′ + ∆

S(i)

∆ ∆

Fig. 4: The size S(i) of the stack varies for the different steps. All configurations entered
after step i∞ are entered infinitely often. The stack exhibits its minimal size after i∞
at step imin while C(imin) is entered again for the first time at time i′. Then the PDA
will keep repeating its behavior after imin with period ∆ = i′ − imin.

Note that the observation also implies that the agent executes the identical
sequence of actions between step i1 and i2.

Observe that, since any protocol must be able to run for an arbitrary time, we
can partition the set C into the configurations Cf containing all configurations
that are entered finitely often and the configurations C∞ that are entered in-
finitely often during the execution of a given protocol. Observe that there exists
step i∞ such that C(i) ∈ C∞ for any step i > i∞. The following lemma essen-
tially states that after a certain step ir > i∞, the PDA will keep on repeating
its behavior with a finite period ∆ (see Figure 4 for an illustration).

Lemma 7. There exists an index ir > i∞ and a period ∆ ∈ N0 such that for
all steps i with ir ≤ i < ir +∆ we have C(i+ k ·∆) = C(i) for all k ∈ N0.

Proof. Let smin ∈ N0 be the minimum stack size after i∞ and let imin be the
smallest index i > i∞ for which S(i) = smin. Let i′ > imin be the smallest step
such that C(i′) = C(imin). By definition of imin there exists no index i > imin
with S(i) < S(imin). Thus, imin and i′ satisfy the preconditions of Observation 6
and the claim follows for ir = imin and ∆ = i′ − imin. ut

As the PDA keeps on repeating its behavior after step ir with constant period
∆, the agent can only explore cells in a band of finite width after ir. As ir is
finite and thus E(ir) is also finite, Observation 4 implies the following theorem.

Theorem 8. There exists no effective deterministic PDA-protocol that for sync-
ANTS for n = 1.

5.2 Randomized PDA-Protocol for async-ANTS

The randomized protocol is an adapted version of the randomized FA-protocol
for three agents from Section 3.2. There, one agent repeatedly performs geometric
searches to a random cell in a geometrically distributed distance. It uses the two
other agents to find its way back to the origin in order to start the next iteration

of the search. A single agent employing a randomized PDA-protocol can do the
same by using the stack to record its distance to the origin and thereby, it can
perform a geometric search and then return to the origin for the next iteration.
More precisely, the agent performs a geometric search as in Section 3.2 but
whenever moving north/east/south/west, it pushes N/E/S/W, respectively, to
the stack. When one geometric search ends, the agent can re-track its steps by
walking north/east/south/west when reading S/W/N/E, respectively, and ends
up at the origin when the stack is empty. Then, it can start the next iteration.
It is easy to see that the analysis from Section 3.2 applies identically.
Theorem 9. There exists an effective randomized PDA-protocol for async-ANTS
for n = 1.

Conclusion

The variety of results of this paper are summarized in Table 1. While our find-
ings almost completely cover the landscape of problem configurations, Table 1
essentially shows two gaps, which, in our opinion, represent interesting open
problems: Can two agents controlled by a randomized FA solve the synchronous
or asynchronous version of the ANTS problem? Is there an effective FA-protocol
for async-ANTS for three agents when no random bits are available?

As a last remark, we point out that all our algorithms can be easily adapted
to guarantee that upon finding the treasure, the agents can locate the initial
starting cell and bring the treasure back to it with a constant multiplicative
overhead in terms of the runtime.

Problem
FA PDA

sync async sync async
det rand det rand det rand det rand

One agent ×7 ×7 ×8 X9 ×8 X9

Two agents ×4 ? ×4 ? X5,6 X6

Three agents X2 X3 ? X3

Four agents X1

Table 1: The symbol × indicates that the given combination does not allow for an
effective protocol while X states that there does exist an effective protocol. Empty cells
follow immediately from other entries while cells marked with ? represent open prob-
lems. The numbers in the superscript refer to the theorem establishing the respective
result.

References
1. Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the ANTS Problem

with Asynchronous Finite State Machines. In: Proceedings of the 41st Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP). (2014)
To appear.

2. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative Search on the
Plane Without Communication. In: Proceedings of the 31st ACM Symposium on
Principles of Distributed Computing (PODC). (2012) 77–86

3. Feinerman, O., Korman, A.: Memory Lower Bounds for Randomized Collaborative
Search and Implications for Biology. In: Proceedings of the 26th International
Conference on Distributed Computing (DISC), Berlin, Heidelberg, Springer-Verlag
(2012) 61–75

4. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph Exploration by a
Finite Automaton. Theoretical Computer Science 345(2-3) (2005) 331–344

5. Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between Selection
Complexity and Performance when Searching the Plane without Communication.
In: Proceedings of the 33rd Symposium on Principles of Distributed Computing
(PODC). (2014) To appear.

6. Albers, S., Henzinger, M.: Exploring Unknown Environments. SIAM Journal on
Computing 29 (2000) 1164–1188

7. Deng, X., Papadimitriou, C.: Exploring an Unknown Graph. Journal of Graph
Theory 32 (1999) 265–297

8. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree Exploration with Little
Memory. Journal of Algorithms 51 (2004) 38–63

9. Panaite, P., Pelc, A.: Exploring Unknown Undirected Graphs. In: Proceedings of
the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). (1998)
316–322

10. Reingold, O.: Undirected Connectivity in Log-Space. Journal of the ACM (JACM)
55 (2008) 17:1–17:24

11. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random Walks,
Universal Traversal Sequences, and the Complexity of Maze Problems. In: Proceed-
ings of the 20th Annual Symposium on Foundations of Computer Science (SFCS).
(1979) 218–223

12. Aigner, M., Fromme, M.: A Game of Cops and Robbers. Discrete Applied Math-
ematics 8 (1984) 1 – 12

13. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the Plane. In-
formation and Computation 106 (1993) 234–252

14. López-Ortiz, A., Sweet, G.: Parallel Searching on a Lattice. In: Proceedings of the
13th Canadian Conference on Computational Geometry (CCCG). (2001) 125–128

15. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
Networks of Passively Mobile Finite-State Sensors. Distributed Computing (2006)
235–253

16. Aspnes, J., Ruppert, E.: An Introduction to Population Protocols. In Garbinato,
B., Miranda, H., Rodrigues, L., eds.: Middleware for Network Eccentric and Mobile
Applications. Springer-Verlag (2009) 97–120

17. Emek, Y., Wattenhofer, R.: Stone Age Distributed Computing. In: Proceedings
of the 32nd ACM Symposium on Principles of Distributed Computing (PODC).
(2013)

18. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

