YETI: A TinyOS Plug-in for Eclipse

Nicolas Burri
Computer Engineering and
Networks Laboratory
ETH Zurich, Switzerland

burri@tik.ee.ethz.ch

ABSTRACT

Wireless ad hoc and sensor networks are constantly gaining
importance due to their wide range of possible applications.
The employed sensor hardware and software is becoming
more complex and projects realized by means of sensor net-
works are increasingly ambitious. Despite these rapid ad-
vantages tools for sensor network development are still very
primitive: A generic text editor and a command line shell
are the common tools used by the majority of sensor network
developers.

In this paper we present YETI, a TinyOS plug-in for
Eclipse. Besides the basic functionality known from other
development environments YETI features a set of specially
optimized tools for TinyOS development.

Categories and Subject Descriptors
D.2.3 [Coding Tools and Techniques]: Program editors

Keywords

Sensor network development, TinyOS-1.x, Eclipse plug-in

1. INTRODUCTION

Since different fields of applications for sensor networks
oftentimes require specific hardware, a lot of work has been
spent on building highly efficient nodes. Various node fam-
ilies have been developed with different design goals and
target applications in mind. A perfect node, ideal for all
tasks cannot be designed. However, today’s platforms offer
sophisticated solutions for most requirements, be it a large
set of preinstalled sensors [11], simple extensibility [2, 13],
a long transmission range [13], multiple on-board radio de-
vices [1], or an integrated USB interface [8]. Also TinyOS [4],
the de facto standard operating system for sensor networks,
is under constant development. An active community of de-
velopers improves the system’s performance and extends its
functionality.

Despite the large user base and the advances in hardware

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyotherwise, to
republish, to post on servers or to redistribute to listgues prior specific
permission and/or a fee.

REALWSN’06June 19, 2006, Uppsala, Sweden.

Copyright 2006 ACM 1-59593-431-6/06/000655.00.

Roland Schuler
Computer Engineering and
Networks Laboratory
ETH Zurich, Switzerland

rschuler@student.ethz.ch wattenhofer@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and
Networks Laboratory
ETH Zurich, Switzerland

and software, development tools for TinyOS are still rare
and often severely limited in terms of functionality. Hence,
TinyOS developers are forced to use generic text editors for
writing their applications. A command line shell is required
to compile code and flash nodes with the resulting binaries.
The lack of convenience functions such as real time spell
checking, code completion, or even a correct syntax high-
lighting makes the development of TinyOS applications an
unnecessary cumbersome task.

In this paper we present YETI!, an Eclipse plug-in provid-
ing support for TinyOS development from within the Eclipse
framework [9]. YETI provides all important features known
from development environments for other programming lan-
guages and is designed to be of use for both, unexperienced
and professional sensor network developers.

The remainder of this paper is organized as follows: In
Section 2 requirements of TinyOS developers are discussed.
Section 3 introduces YETI and presents its most important
features. In Section 4 the underlying technical aspects of
the system are discussed. The subsequent Section compares
our tool to related work. Finally, Section 6 concludes the
paper and gives an outlook on future work.

2. DEVELOPMENT REQUIREMENTS

From our own experience and numerous discussions with
other TinyOS and sensor network developers we found that
the requirements of TinyOS newcomers and experienced de-
velopers vary. Newcomers who have little experience in writ-
ing sensor network applications need help on fundamental
aspects of TinyOS development. For one, getting used to the
design philosophy of the operating system is not easy. Es-
pecially its completely modular application design and the
unique way of combining modules by means of a so called
wiring require some time to get used to. The well written
tutorial on the TinyOS homepage helps to overcome this
steep learning curve since all important features of TinyOS
and its programming language nesC' [3] are discussed. Still,
it is not unusual for the first contact with TinyOS to be dis-
couraging. The installation of the system and the necessary
toolchains often leads to problems. If the provided installer
fails, repairing a new TinyOS installation requires a sound
knowledge of the system which unexperienced developers
have not yet achieved.

Another problem for new TinyOS developers is the vast
amount of files included in the sources of the system. TinyOS
features numerous modules solving many common tasks.
Alas, it is often difficult to find the correct files providing the

"YETI is an Eclipse based TinyOS IDE

required functionality and thus newcomers show a tendency
to ignore them. Experienced developers are more aware of
these sources. Yet, in spite of their in depth knowledge of
the system they spend a significant amount of their devel-
opment time browsing through various TinyOS directories
looking for adequate implementations of the functions they
need.

For more ambitious projects also aspects such as rapid
prototyping, cross platform development, and support for
backup and version control systems are of greater impor-
tance. Furthermore, the possibility of having several par-
allel installations of the TinyOS source tree is critical for
many developers. On the one hand a snapshot installa-
tion provides a stable development environment while on the
other hand a Concurrent Version System (CVS) checkout of
the operating system allows using bleeding edge technology
which has not yet made it into the stable release.

3. FEATURES

The goal of YETI is to provide an efficient development
tool for experienced users and a convenient, easy to use en-
vironment for newcomers. Consequently, all requirements
mentioned in Section 2 have to be considered. Also aspects
such as Look-and-Feel are of importance if a large num-
ber of users is to work with the tool. We therefore decided
to build YETI on top of the widely used Eclipse frame-
work [9]. Eclipse provides a powerful plug-in mechanism al-
lowing nearly unlimited extensions and enhancements of its
inbuilt functionality. Due to this ease of extensibility Eclipse
has become first choice for many developers and plug-ins
supporting various programming languages such as C(++),
Fortran, or Cobol have been written. Furthermore, Eclipse
is designed to allow easy incorporation of existing features
in a new plug-in. Consequently, YETT benefits from various
existing Eclipse components such as the basic editor, the
persistency system, or the CVS client. Also updating the
plug-in is possible using Eclipse’s update mechanism.

YETI consists of two Eclipse plug-ins: The System plug-in
containing the functionality of the development environment
and the the TinyOS Environment Wrapper plug-in provid-
ing access to a TinyOS installation. In the subsequent sec-
tions we will discuss these two plug-ins in more detail.

3.1 System Plug-in

The System plug-in provides the actual programming en-
vironment and tools for TinyOS development in Eclipse. As
can be seen in Figure 1, once YETI is installed a new custom
TinyOS perspective becomes available. This perspective is
optimized for the task of writing sensor network programs
and hosts helpful features for all stages of development.

Project Creation

New projects are created using the TinyOS project wiz-
ard. In a short dialog the user can name the new project,
choose one of the available TinyOS installations (also see
Section 3.2), and define a default make target. This target
specifies which sensor node platform to use as a default if no
other arguments are specified. YETI does not offer a hard
coded list of targets but queries the TinyOS make system
for supported devices. This guarantees that for each instal-
lation of the TinyOS system all supported node platforms
are available to the user.

& Tiny0s - Blink.nc - Eclipse SDK e —|o x|
Fie Edi Mavigate Search Project TinyOS Run Window Help
[Q T eoTnyos &'3ava
= 0| B outline £3 &E=0

Al = Ok
Spedification
Implementation

 Novigetor 58 = O | EETTTED

* Blink is a bpsff htion that toggle
=l Blink App * on every clopk iggfrruge.
0 Bink.nc i+ ooour every pecfid initialization 5. & Blrponis
‘Makﬁf‘!h“"ﬂ * in the Blink| initTalizgeion function, St b Main
projec o i
kargetsCptions fhen
o Binkne
o Birki.ne
Makefile
README
o SingleTimer e
v.output

The clock int

gauthor tinyos-helpimillennium berkeley. P SnglaTiner

i] ¥ LedsC
configuration Blink { = Connections

3 Main SedControl -3 Sin
implementation (Main StdControl - Bir

components Main, Blinkl, SingleTimer, Led Blrkd. Tiper -> Single
‘3";4.L5—>Ledst

Main.StdControl -> SingleTimer,StdControl
——— Make Options £
|2 Problems &2 Tasks | Consols | Error Log =
0 errors, 0 warrings, 0 infos

Main.StdControl -» BlinkM.StdControl;
Blinklf.Timer -> SingleTimer.Timer;
Blinki.Leds -> LedsC;
3
| Description | 4 | Resowrce ||| = Biink App

Editor | Component Graph

“ »
@ Target mica2 §

Figure 1: Screenshot of YETI. 1: Navigator list-
ing all files of the project. 2: Main window show-
ing the editor with the current file or the applica-
tion graph. 3: Outline of the open file showing its
structure. 4: Make option window containing prede-
fined make targets. 5: Multi purpose panel hosting
various features such as problem view, console and
TinyOS search.

File Editing

For the development of applications YETI provides a cus-
tomized editor supporting the nesC programming language.
It features a correct syntax highlighting and incorporates
various commodity functions known from other development
environments. Its most important feature is definitively the
real time spell checker. Syntactic and semantic errors are
detected within a fraction of a second and are marked with
a red X at the beginning of the line. Furthermore, an error
message is generated in Eclipse’s Problems log containing
clickable links pointing to the corresponding location in the
source code. For the most common problems such as miss-
ing semicolons the error messages also offer a suggestion on
how to fix them (also see Section 4.2). Moreover, the editor
contains a code completion function which can be used to
create stubs for methods which have to be implemented in
a file providing or using a specific interface.

Outline

For a better overview of the application YETI provides an
Outline of the open file. This outline lists all components, in-
terfaces, modules and configurations which are the building
blocks of every TinyOS applications. With a simple click
it is possible to open the declaration of an interface or to
jump to a specific function within the open source file. Due
to the lack of an explicit package structure within TinyOS
multiple implementations of the same interface may be avail-
able. This is mostly the case if hardware specific features
are used. For example, accessing hardware timers works dif-
ferently on different processors and thus the Timer interface
used in nearly all TinyOS applications has many custom im-
plementations for the various sensor node platforms. YETI
uses the currently chosen target platform to decide which
of the various files to open. Consequently, the user always

sees the implementation which will be used to compile the
application.

TinyOS Specific Search

A TinyOS specific search function allows browsing through
all available interfaces and to scan for modules implement-
ing them. For this purpose the structure of the appropriate
source files is parsed and evaluated. Several special search
modes are available. Interfaces, modules, and configura-
tions? can be listed, filtered and accessed from the search
frame.

This feature is especially helpful since TinyOS uses a com-
plex set of rules to decide which modules to include when
compiling an application. YETT’s search function follows all
valid paths, including custom imports made by the user, to
find files matching the entered search queries. This ensures
that all valid files are found but no sources incompatible to
the current make target are shown.

Compiling and Flashing

For compiling applications and flashing sensor nodes with
the resulting binaries YETI relies on the TinyOS make sys-
tem. However, users are no longer required to type in cryp-
tic command line calls but a simple wizard helps setting
up make options and stores them for later reuse. YETI
automatically identifies all available target platforms for a
given TinyOS installation and also examines further valid
parameters such as possible extension boards. The identi-
fied options are displayed in a dialog and the user can create
even complex make calls by means of simple point and click
operations.

Feedback on the results of a call to the make system are
printed to Eclipse’s built in console. This user interface is
not only easier to utilize but it also prevents the generation
of invalid make calls. Furthermore, YETI allows batch ex-
ecution of the make system simplifying the tedious process
of reprogramming large numbers of nodes.

Application Graph

Another feature of the System plug-in is the Application
Graph. This tool produces a graphical representation of the
currently developed application and can be used to plot the
relation between its modules. Exploiting the hierarchical
structure of TinyOS modules the user can decide on the
graph’s level of abstraction by expanding or collapsing some
of the elements . If required it is possible to expand the
graph to show all modules forming the current application
including the ones of the operating system. However, as can
be seen in Figure 2 even simple programs such as the Blink
demo application lead to complex graphs if fully expanded.
Therefore, in most cases it is advisable to keep a certain
level of abstraction to view the structure of a program.

3.2 TinyOS Environment Wrapper

The only task of the TinyOS Environment Wrapper is to
provide the System plug-in with a well-defined access to a
TinyOS installation. This separation of development envi-
ronment and TinyOS system has several advantages. First,
it allows having several independent installations of TinyOS
for different target platforms. This is desirable since in many
cases the tool chain necessary to compile applications for one

2In TinyOS configurations are used to combine several mod-
ules to an application or a subprogram.

sensor node platform interferes with the tools for another
one. This problem is one of the main reason why it is so
tedious to test newly written applications on various nodes.
With YETI it is a matter of one click to change between
the different available TinyOS environments and to test the
application on all available node types.

Another advantage of this separation is that hardware
producers may provide their own TinyOS Environment wrap-
pers. With such individually optimized TinyOS installations
it can be ensured that the application developers work on a
correctly configured environment. For the software develop-
ers this approach has the advantage that a newly installed
environment will not interfere with or even destroy exist-
ing TinyOS installations as it is sometimes the case without
YETI.

The only drawback of this approach is the increased hard
disk space necessary to install several independent TinyOS
environments. However, with the ever-growing hard disk
sizes it should not be a problem to have several installations
with a total size of one to two gigabytes.

Currently, YETI provides three different TinyOS Environ-
ment Wrappers®. The first one contains a full installation
of the current TinyOS 1.1.15 release. It is the best choice
for most developers as it provides a stable environment with
support for various sensor node platforms. The second wrap-
per provides an installation optimized for the TinyNode 584
platform by Shockfish SA. Finally, an “empty” skeleton wrap-
per is available which allows to connect YETI to existing
TinyOS installations. This is the only wrapper requiring
manual configuration since the user needs to enter the path
to some few important TinyOS directories.

4. CODE ANALYSIS

Most features such as the “Code Outline” or the spell
checker require a syntactic and semantic understanding of
the application which can only be achieved by scanning and
parsing the source code. These operations need to be exe-
cuted nearly in real time since users are unwilling to wait
for several seconds before a new input is validated. At the
same time the results have to be correct or the development
environment produces false alerts, making it mostly useless
to the developer.

4.1 Scanner and Parser

The analysis of source code is traditionally split in three
phases: lexical, syntactic, and semantic analysis. In the
phase of the lexical analysis the nesC source files are to-
kenized. A token is defined as a sequence of logically con-
nected items building atomic structures of the programming
language. This includes keywords such as “module” or “im-
plementation” and also strings, numbers, and type names.
Tokens are created by comparing the source code to prede-
fined patterns. The tool executing this lexical analysis is
called Scanner or Lexer.

The goal of the syntactic analysis is to group the indi-
vidual tokens and to validate their correctness according to
a given grammar of a programming language. As a result
of this analysis a syntax tree is built on which the seman-
tic analysis is executed. In this last step unreasonable code

3Environment wrappers are platform dependent since the
compilers and tools used to build TinyOS applications are
also platform dependent. All currently available wrappers
require to be installed on a Microsoft Windows system.

@ Blink

Btacontra__ Stacortrol

© Bink

© Timer
fred)
(char,uint32_1)
0

@ singleTimer =

o Lods groonOn
o Lods greenToggle)

° Lad yellowTaggle()

e\ Powersinsenert:

Noleds.
© Leds gei)
nOf(

Leds yellowToggle)

HPLPowerManagementht =

Figure 2: Graph of the Blink application at two different levels of abstraction

which is syntactically correct is identified.

YETT contains a custom scanner and parser which were
realized using JFlez [6] and jay [12], Java implementations
of the well known tools Lex and YACC. Figure 3 shows
a schematic representation of the internal interconnections
between the parser and the visual tools of the development
environment.

For the syntactical analysis a jay specification file was
written, based on the nesC language definition found in [3].
With this specification as an input jay was used to create
a finite state machine implementing a nesC parser. As can
be expected this process was not straight forward. Starting
with a YACC specification file for ANSI C the production
rules were adapted to model the nesC programming lan-
guage. Unfortunately, the resulting grammar was highly
ambiguous leading to various shift/reduce and reduce/re-
duce conflicts. These problems had to be solved by major
reordering of parser rules.

Another problem arose from jay’s limitation to create only
standard a LR(1)* parser: Due to a conflict between iden-
tifiers and typedef-names, C and thus also its derivate nesC
are not LR(n) compliant [7]. To avoid this problem exten-
sions to the grammar were necessary. Scoping and obscuring
is taken into account in order to produce the correct type of
token and to prevent the parser from failing.

Finally, nesC also supports individual name spaces for
configurations and interfaces. Since these constructs are not
known in pure ANSI C, the grammar had to be extended to
consider these additional name spaces.

4.2 Extending the Parser

Human readable error reports are crucial for any develop-
ment environment. A simple output saying “Syntax Error”
is not really helpful to any developer. What we want is
an expressive report about the location and the nature of
the problem. Jay already produces quite precise error state-
ments but it is possible to further improve them. YETI
provides a powerful mechanism to extend the parser’s error
messages by feeding it with specially prepared files.

To illustrate the process of adding a new error message

4LR indicates that rules are executed from left to right. The
number in brackets specifies the number of tokens the parser
can look ahead to optimize its decisions;

TinyOS Plugin
Makefile .h
Parser Parser
Outline
1 t View
Project
N nesC
;nhc Parser
Makefile Make Options
View

TinyOS Wrapper Plugin

Figure 3: Internal configuration of YETI’s compo-
nents

to the parser Listing 1 shows an adapted configuration file
of the Blink demo application. This version of the file dif-
fers from the original in that on line 1 an error message
was added. Furthermore, on line 5 the character ‘>’ was
removed.

::: Wiring symbol ’—’unknown, use ’'<—’ or ’'—>’

configuration Blink{}

implementation {

components Main, BlinkM, SingleTimer, LedsC;
Main. StdControl — SingleTimer.StdControl;
Main.StdControl —> BlinkM . StdControl;
BlinkM . Timer —> SingleTimer . Timer;

BlinkM . Leds —> LedsC. Leds;

T B N

Listing 1: Sample file teaching the parser a new er-
ror message if a ‘>’ is missing in the wiring.

This file is now processed by a special tool included in
YETTI and the parser will analyze its content. The first line
is stored as an error report but otherwise the parser ignores
it completely. After parsing the rest of the file the error on
line 5 is detected. The parser now stores the new custom
error message in a consistent hashtable using a combination

of its current internal state and the next expected toksen as
a key. Next time the parser encounters the same problem
it will check the hashtable for a custom error message. If
the table contains an entry for the current parser state the
stored message is displayed. If there is no custom message
known, the default output of jay is shown. The correctness
of this procedure was proven in [5].

5. RELATED WORK

To the best of our knowledge there are only two other
projects aiming at providing a development environment for
TinyOS. Like YETI both of them are realized as Eclipse
plug-ins but they differ in various respects.

The first tool is TinyOS IDE [14] by Richard Tynan which
was the first publicly available TinyOS development envi-
ronment. TinyOS IDE provides little advantages over us-
ing an advanced text editor and a shell. It provides syntax
highlighting for nesC files and the option to compile appli-
cations from within Eclipse. However, to enable the com-
pile function, it is necessary to have a preinstalled working
TinyOS installation. Also the TinyOS specific environment
variables need to be defined system wide or the tool cannot
find the compiler. Similarly to YETI, TinyOS IDE allows
to compose make calls by selecting the various options from
a dialog. TinyOS IDE does not generate this dialog auto-
matically but simply loads the information from a handwrit-
ten configuration file. The displayed make options are not
guaranteed to be reasonable and if a parameter is required
which is not available in the default menu the configuration
file must be adapted. TinyOS IDE does not provide a spell
checker but after building an application compiler errors are
made available in Eclipse’s error log.

The second tool is called TinyDT [10] and is developed
at Vanderbilt University. TinyDT also provides a custom
perspective within Eclipse and has an inbuilt TinyOS parser.
Thus, TinyDT also provides a spell checker, an outline of the
open file, and code completion for interface members. The
parsers of TinyDT and YETT differ in one important aspect:
While our parser is optimized for fast execution at the cost
of some imprecision when handling preprocessor statements,
the parser of TinyDT is designed to be completely accurate.
The drawback of this solution is a slow response time of
the system. Even a change of one character in the source
code takes several seconds before the file is revalidated and
potential errors are detected.

Like TinyOS IDE also TinyDT requires a preinstalled
TinyOS environment. The user needs to specify where to
find the compilers for the different target platforms and the
bash executable. TinyDT does not detect available node
platforms but only supports nodes of the mica family, telos,
telosb, and the tmote.

6. CONCLUSION AND FUTURE WORK

YETTI is currently in a stage of open beta test and we
are collecting feedback from more than 1000 developers who
have downloaded the tool within the first month after its
public announcement. Besides the invaluable bug reports,
incoming feature requests help us to decide which additional
features are most wanted by the community. We are cur-
rently working on an adaptation of the system making it
Unix/Linux compatible. Another important open question
is how to integrate existing TinyOS simulators and which of
them to support. We are also looking into TinyOS 2.x and

will try to adapt YETI to support this new operating sys-
tem. Finally, additional tools for deployment, management,
and debugging of sensor networks are under development.

7. DOWNLOAD

YETI is available for download as a full archive or directly
from within Eclipse. For more information about YETT and
a small video presenting its main features please visit the
project homepage at http://www.dcg.ethz.ch.

8. REFERENCES

[1] J. Beutel, O. Kasten, F. Mattern, K. Romer,

F. Siegemund, and L. Thiele. Prototyping wireless
sensor network applications with BTnodes. In Proc.
1st European Workshop on Sensor Networks (EWSN
2004), volume 2920 of Lecture Notes in Computer
Science, pages 323-338. Springer, Berlin, Jan. 2004.

[2] Crossbow Technology. MICA2 Wireless Measurement
System.
http://www.xbow.com/Products/Product_pdf files/
Wireless_pdf/MICA2 Datasheet.pdf.

[3] D. Gay, P. Levis, R. von Behren, M. Welsh,

E. Brewer, and D. Culler. The nesc language: A
holistic approach to networked embedded systems. In
Proc. of ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2003.

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler,
and K. S. J. Pister. System architecture directions for
networked sensors. In Architectural Support for
Programming Languages and Operating Systems,
pages 93-104, 2000.

[5] C. L. Jeffery. Generating LR syntax error messages
from examples. ACM Trans. Program. Lang. Syst.,
25(5):631-640, 2003.

[6] G. Klein. JFlex. http://jflex.de.

[7] W. M. McKeeman. Resolving Typedefs in a Multipass
C Compiler, March 1991.

[8] moteiv. Tmote Sky.
http://www.moteiv.com/products-tmotesky.php.

[9] Object Rechnology International, Inc. Eclipse
Platform Technical Overview. Tech report, IBM, 2001.

[10] J. Sallai, G. Balogh, and S. Dora. TinyDT.
http://www.tinydt.net.

[11] Scatterweb. ESB Embedded Sensor Board.
http://www.scatterweb.net/research products/
esb.en.html.

[12] A.-T. Schreiber and B. Kuehl. jay. http://www.
informatik.uni-osnabrueck.de/alumni/bernd/jay.

[13] Shockfish SA. Tinynode 584.
http://wuw.tinynode.com.

[14] R. Tynan. TinyOS IDE. http://tinyoside.ucd.ie.

