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Abstract— Hyperloop pods are expected to travel faster
than 1,000 km/h. Apart from high speed, high throughput
and low latency are crucial to hyperloop’s success. We show
that hyperloop networks could transport as many passengers
as train or plane networks. Our on-demand pod scheduling
method provides passenger waiting times of only a few minutes,
even at peak times. That minimizes the overall trip latencies.
Further, our scheduling results in low resource usage in terms
of consumed energy and required number of pods in the system.

With on-demand scheduling, passengers need not look up
schedules and cannot miss connections. Rather, the schedule fol-
lows passengers’ itineraries. In addition, the hyperloop concept
can enable many direct connections due to small pod capacities.

We conclude that hyperloop systems may become the pre-
ferred mode of transportation by being fast, reducing waiting
times and keeping up with high demand - all while offering
more convenience than current public transportation.

Index Terms—feasibility, modeling, on-demand, scheduling,
waiting time, transportation

I. INTRODUCTION

Commercial planes carry more than four billion passengers
each year and cruise at speeds of about 900 km/h [1].
While this is fast, planes do have several drawbacks. For
instance, (i) planes take about half an hour to climb to a
cruise height of 10 km and slow down when descending for
landing, resulting in a low average speed for short flights [2];
(i1) planes have fixed schedules, for example leaving 4-8
times per day, which may not fit some passengers’ itineraries
and may thus result in long waiting times; (iii) tickets are
normally booked in advance, making trips inflexible and
necessitating some buffer time on the way to and through
the airport in order to make sure not to miss the booked
connection; (iv) planes are large, requiring many passengers
to make the same trip to be economical, which limits the
number of direct connections; (v) boarding many passengers
through few doors is slow; and (vi) planes consume a lot of
energy, which negatively impacts the environment.

While trains solve the Problems (iii), (v) and (vi), they
share the Problems (i), (ii) and (iv).

One proposal to overcome all those drawbacks is to build
a hyperloop system [3]. Hyperloop is a high-speed rail
system using evacuated tubes to minimize air drag. The
hyperloop vehicles, so-called pods, are expected to carry a
few tens of passengers at speeds over 1,000 km/h [3]. That
speed beats any other low-cost transportation, including cars,
trains and planes: A 100 km long hyperloop trip will only
take a few minutes. Further hyperloop advantages are: With
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light pods and low air drag, the maximum speed is quickly
reached (i). Small pods enable on-demand scheduling and
many direct connections because pods can quickly be filled
with passengers for the same destination (ii)—(v). Direct
connections also eliminate transfer times between vehicles.
Small pods minimize boarding times (v). Due to traveling on
or near the surface, no time or energy is wasted ascending to
a cruise height (vi). Hyperloop systems also have drawbacks.
For instance, the operation principles and economics are
still unknown. Also, current technology does not reasonably
allow building tunnels for a hyperloop track crossing oceans.
However, some ideas exist for underwater tubes [4].

A. Hyperloop Viability

Due to the low pod capacity, a central question con-
cerning the usefulness and economic viability of hyperloop
systems is whether a hyperloop network can sustain high
passenger volumes. Even some train operators struggle to
fit more vehicles on their tracks while maintaining sufficient
safety distances between vehicles. Since pods have a lower
capacity than trains, the same number of vehicles carries
fewer passengers. Therefore, to reach or surpass the rail
passenger throughput, many pods need to be accommodated
in a hyperloop network. As building costs are a crucial factor
for hyperloop’s success, we consider using additional tracks
not a viable option.

In this paper, we present a pod scheduling method for
hyperloop networks which easily matches the passenger
throughput of air and even railroad transportation, but with
minimal departure delays. Even at peak times, queues do not
exceed a few minutes. To show that, we model the passenger
demand throughout a typical day, relying on data from rail
and air transportation. Our scheduling is on-demand, that
is, passengers do not need to book or look up schedules in
advance. For that, we solve the following challenges.

B. Challenges

Online Scheduling: Passenger arrival times and destina-
tions are unknown before passengers start waiting to board a
pod. That random nature of the trip requests makes it hard to
find a good trade-off between passenger waiting times and
resource consumption: In order to limit the waiting time,
some pods need to leave partially filled, which increases the
required energy and number of pods. Also, due to the high
pod speed compared to existing transportation such as cars
or trains, a fixed waiting time constitutes a larger fraction of
the total trip time in hyperloop travel.



Pod Balancing: Scheduling should ensure continuous pod
availability at all stations. Without a pod balancing mech-
anism, an unbalanced trip demand, for instance caused by
commuters travelling from suburbs to the city in the morning
and returning in the evening, causes problems. First, stations
need numerous spare pods in case many passengers suddenly
arrive. Second, popular destinations need a huge space to
store incoming pods until they might eventually return.

C. Contributions

We introduce a pod scheduling mechanism ensuring both
low waiting times and perpetual pod availability at all
stations while requiring few pods. Our Balanced Departure
Bin (BDB) scheduling limits the accumulated waiting time
of all passengers waiting for a specific trip. To ensure pod
availability, we argue that sending pods symmetrically is
efficient and allows for on-demand scheduling.

We compare the BDB mechanism to two baselines con-
cerning the waiting times and the consumed energy for mov-
ing the pods (Sec. [IV). Our evaluation considers hyperloop
networks at different scales, one with sections of a few
hundred kilometers each and one with sections of several
thousand kilometers. We model passenger demands based
on real-world rail and air travel statistics. Our results show
that BDB scheduling achieves high throughput, serving the
same demand as train and plane networks combined, while
passengers can simply walk into a station and expect waiting
times of a few minutes at most. BDB scheduling uses just
slightly more energy and pods compared to a scheduling
mechanism that optimizes for one of those resources only.

II. RELATED WORK
A. Vacuum Trains

The fundamental problem addressed by hyperloop is that
the main speed limitation for vehicles close to the ground
is air drag. Already in 1904, Robert Goddard proposed the
vactrain, consisting of cars in a steel vacuum tube, floating
through electromagnetic levitation and being accelerated as
much as bearable for passengers [5]. So, why do hyperloop
systems not yet exist? Reasons may be their high initial costs
and uncertainties regarding their passenger capacities [6], [7],
[8]. For instance, in 2013, Elon Musk, who coined the term
hyperloop, proposed a system with a throughput of only
840 passengers per hour [3]. In this paper, we show that
high throughput and low waiting times can be achieved while
filling up most pods, thus keeping running costs low.

B. Scheduling

To the best of our knowledge, the achievable throughput
and latency (i.e. factors impacting waiting times) of hy-
perloop networks have not been studied specifically. While
several works estimate passenger capacities ranging from 840
to 3, 360 passengers per hour, it is commonly argued that the
throughput could be increased by enlarging the pod size [3],
[9], [10]. Also, the need to keep a safety distance between
consecutive pods that allows to come to a full stop without
crashing has been considered [6]. Apart from that, scheduling

is generally overshadowed by the technical challenges that
need to be resolved in order to build an actual hyperloop
system. However, both throughput and latency impact the
viability of a hyperloop system. In this paper, we show that
a hyperloop system can cope with high passenger demands
without needing large pod sizes. This allows preserving
flexibility in the system.

In contrast, there is an extensive body of work on the
general topic of scheduling. For instance, airlines schedule
their aircraft, crews, take-off and landing slots at airports
and consider popular flight connections (i.e. the customer
demand); each imposing various constraints on the resulting
flight plan [11], [12], [13]. However, since the hyperloop
system, which we study, is autonomous and on-demand, it
has different constraints than airline scheduling.

We find closer relations to the problem of train scheduling;
both train and hyperloop systems operate on an inflexi-
ble network structure and will experience similar demand
distributions throughout the day, including commuters and
leisure travelers. While trains commonly operate on fixed
schedules, we suggest that a hyperloop system should be
offered as an on-demand service that allows customers to
walk into a hyperloop station and wait for a few minutes in
the worst case. What seems like a bold promise at first sight
actually bears the opportunity to make the scheduling simpler
and more efficient. Train schedules aim to be periodic to
make them easier to remember for the customers and often
include time buffers to increase the stability of the sched-
ule [14], [15]. Both measures complicate the computation of
an optimized schedule. Furthermore, the problem of train
re-scheduling in response to local disturbances has been
investigated largely [16], [17], [18], [19], but this is not an
immanent problem to an on-demand hyperloop system which
needs not converge back to a fixed schedule.

Other on-demand transportation has also been studied, for
instance bus scheduling [20], [21] and autonomous vehicle
services [22], [23]. But due to more rerouting options in (usu-
ally dense) road networks, the relation to hyperloop schedul-
ing is only distant. Since such systems exist already, they
can be analyzed both empirically and by simulation [24],
[25], while hyperloop systems have yet to be built. We thus
evaluate our hyperloop scheduling through simulations.

As a theoretic foundation of our work, we study algorith-
mic models for on-demand services, namely online schedul-
ing algorithms. We draw inspiration from the preemptive
service algorithm (PSA) presented in the context of the
(generalized) online service with delay (OSD) problem [26].
In the OSD problem, requests are received in an online
manner, that is, without prior knowledge about when and
where they will appear. Special about the OSD problem is
the option to postpone serving a request, which causes a
delay penalty. Nonetheless, the PSA schedules a set of k
servers such that all requests are served quickly. The idea
of the PSA is to accumulate the delay penalty cost until a
threshold is reached and an action is triggered. We employ
this technique in our hyperloop scheduling strategy. Finally,
the scheduling of pods is similar to the k-taxi problem [27]
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Fig. 1: Air lock for a platoon of up to four pods. Doors
minimize the amount of pumped air, allowing for fast cycles.
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Fig. 2: Pods can switch tubes at stations without passing
through an air lock.

with more than one passenger per vehicle and the option to
delay pod departures.

III. SCHEDULING
A. System Model

Pod Separation: The minimum distance between pods
is determined by (1) a potential safety distance to limit
the impact of emergencies such as pods getting stuck, and
by (2) the air lock capacities to insert and remove pods
into and from tubes. Whether safety distances are required
is debatable: From an engineering perspective, sensor data
monitoring the tube and the pods can travel at the speed of
light, so pods can react quickly. The only limiting factor is
the maximum deceleration bearable for passengers. Previous
work assumes a 30s distance between pods at a maximum
deceleration of 1 g [6]. However, it is possible to form
platoons consisting of multiple pods attached to each other,
like trains. Platoons allow overcoming the throughput limit
imposed by safety distances.

Air Locks: To form platoons, multiple pods may go
through air locks simultaneously. One option is to use
parallel air locks and connect pods in the evacuated space.
Another possibility is to use long air locks, which can fit a
platoon. Since platoon lengths will vary depending on the
passenger demand, the length of such an air lock should
be adaptive, for example, by means of automatic doors as
depicted in Figure [T}

Connections: Having direct tubes between any pair of
stations in the hyperloop network is unreasonable due to high
construction and evacuation costs. But since hyperloop travel
will be fast, changing pods at stations would substantially
prolong trips, mostly due to time required for passing through
air locks and for changing platforms. Instead, since pods
are small, pods can be filled with passengers for the same
destination and travel multiple hops without passing through
an air lock. To this, pods are routed through an evacuated
section around a station, as sketched in Figure |2} A platoon
is then formed with other pods going in the same tube.

Pod Capacity: In this paper, we assume that each pod has
a capacity of 28 passengers. While our scheduling method is
independent of the pods’ capacity, it is designed for a small
pod size compared to the passenger demand.

Pod Speed: For good passenger comfort, we assume that
pods accelerate and decelerate at a maximum rate of 0.5 g.
This is in line with previous work which allows up to 1 g [6],
[3]. We assume a pod top speed of 1,220 km/h.

B. Scheduling Mechanism

Pod scheduling is the task of picking pod departure times.
Scheduling should provide low waiting times, especially for
short distance trips, while using little energy and few pods.
Energy can be minimized by filling up pods with passengers,
while the number of required pods can be reduced through
redistribution of the available pods in the system. However,
redistribution requires that non-full pods must be sent at
times. Further, to deal with unknown passenger arrival times,
pods always need to be available at each station.

We present the balanced departure bin (BDB) scheduling
mechanism, limiting the waiting time per customer, and
keeping the pod distribution balanced. We optimize along
two dimensions. First, we select a mechanism triggering the
next pod departure depending on the passengers’ number and
waiting time. Second, we may employ pod redistribution.

Departure Trigger: Our departure bin (DB) trigger crite-
rion is adaptive, considering the accumulated waiting time of
the passengers assigned to a pod. Naturally, a pod departs at
the latest when it is full. Given the online setup in which
we do not know when further passengers for the same
destination will arrive, we set a waiting time threshold for
the departure to avoid passengers getting stuck and maintain
customer satisfaction.

Inspired by the preemptive service algorithm [26], we
assign a virtual departure bin to each pod. Furthermore,
let 0(t) be a non-negative, non-decreasing delay penalty
function. At every time step (e.g. every 20s), we evaluate
d(t —t;) for each passenger i € p(t), where t; is the arrival
time of passenger i at the pod and p(t) is the set of waiting
customers in the pod at time ¢, and accumulate the values
0(t — t;) in the bin:

bin(t) =Y > d(r—t).

=0 iep(r)
delay penalty incurred at time step 7

Departure is triggered as soon as the departure bin is full, that
is, when it exceeds some threshold. Hence, the combination
of bin size and delay penalty function ¢ allow setting the
maximum waiting time. For instance, with 6(t) = 1 and
a bin size of 30, the passengers in a pod wait at most an
accumulated total of 10min until departure (see Fig. [3). The
delay penalty function also allows different weighting of
longer versus shorter waiting times (e.g. waiting 5min can
have 0 penalty, as it might not bother customers at all).
Rearranging the formula and making it continuous yields

Bin(t) = )

i€p(t) r=0

accumulated delay penalty for passenger ¢
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Fig. 3: DB trigger criterion example with §(¢) = ¢ and bin
size set to 60 for 2 passengers, arriving at t; = 0 and t5 = 4.

So, the waiting time tp,, for atsingle passenger may be
limited by setting d(t) so that [™™; §(7)dr equals the bin
size.

Pod Redistribution: We present a simple, yet powerful
pod redistribution mechanism, which we call symmetric
redistribution: Between two stations A and B, whenever
a pod departs from A — B, we send another pod from
B — A. While this mechanism may seem trivial and
wasteful (w.r.t. consumed energy), it is well-suited for a
hyperloop system: Energy costs to move the pods are low and
symmetric redistribution fits the online scenario as it makes
no assumptions on future passenger demands, but maintains
a perfectly balanced pod distribution.

While an online algorithm is usually analyzed with respect
to a worst-case scenario, that could mean that all passengers
wanted to depart from a single station with a small pod
stock. Symmetric rebalancing qualifies as a 2-competitive
algorithm regarding the energy cost, i.e. uses at most twice
as much energy as needed by an optimal scheduling. But
the waiting times could inflate due to an exhaustion of the
available transport capacity. In practice, the overall demand
for a hyperloop system can be estimated from train and
air travel statistics. Furthermore, demand depends on the
population density of a connection’s endpoints. Finally, for
any track segment, we do not need more pods in stock than
the air locks can introduce into the system before the first
return pod arrives from the destination. In sum, it should be
possible to assign pods to stations based on historical data,
possibly adapting it regularly as the demand is observed. In
this paper, we assume a fixed demand model (see Sec.
and evaluate the scheduling methods with regard to how
many pods are required to serve this demand efficiently.

Balanced Departure Bin Scheduling: BDB scheduling
combines the DB trigger with symmetric redistribution. We
set a joint departure trigger Bingp(t) for two pods departing
at stations A and B for the respective other station as

Bil’lAB(t) = maX{BinA(t),BinB (t)} (1)

with the same bin size and delay penalty §(t) as before. So,
as soon as one of the bins (or pods) is full, both pods depart.

Eq.[T]is not the only choice for combining the two separate
departure mechanisms. For instance, the triggers could be
added, i.e. Bingp(t) = Bina(f) + Bing(?). In that way,
the mechanism would directly relate waiting time to energy
costs: For each empty seat in the two pods, whose departure

is triggered together, a passenger actually has to wait longer.
However, we choose to maximize customer satisfaction by
setting the waiting time limit for a single pod, so passengers
do not have to wait because of empty seats in the pod coming
from their destination.

IV. EVALUATION

To evaluate our scheduling algorithm, we simulate traffic
in two hyperloop networks, shown in Figure 4| The larger
one connects all European cities with more than one millions
inhabitants and the smaller one connects all Swiss cities with
more than 50, 000 inhabitants. The thresholds are set on the
city agglomeration population.

A. Simulation Parameters

The maximum number of pods per platoon is 2 and the
departure rate is limited by the throughput of the vacuum
chambers, which we set to one platoon per minute. That
is, a platoon can depart every minute in each direction from
every station. The simulation is discretized in 20 second time
steps.

Energy: We only discuss the energy used to move pods
between stations. Scheduling cannot optimize the energy
costs to keep the tubes evacuated, which is fixed for a given
target pressure. In line with previous work, we assume a
tube air pressure of 100 Pa (= 1 mbar) [3]. When computing
the energy to move pods, we account for the remaining
air drag, assume an energy recuperation fraction of one
third when pods decelerate and employ a motor efficiency
of 0.8. Those numbers assume that the hyperloop system
will be implemented with Maglev technology using linear
synchronous motors [28], [6].

B. Demand Model

The passenger demand is defined by the requested trips,
consisting of an origin, a destination and a departure time.
Our simulation spans a day during which the trips are
distributed over different routes and over time as follows.

Routes: The demand for a route is a function depending
on the travel time for that route and the populations of the
origin and destination. First, we set the number of potential
travelers in each city as the sum of 8.1 % short range
travelers according to some Swiss rail statistics and 7,233
long range travelers according to some average statistics of
daily plane passengers per airport in Europe [31], [30]. Those
potential travelers of each city are then distributed to the
demand to each destination from that city. The distribution
is weighted based on the travel time to the destinations, as
shown in Figure [5] The travel time calculation for a route
considers acceleration and deceleration phases and includes
one minute for each station at which the pods have to
change the tube. Last, to incorporate that more people travel
from smaller to larger cities, e.g. for work, those demands
are adjusted as follows. First, for each city pair, the larger
demand of the two directions is reduced to the smaller
one. Then, the demand from the larger city to the smaller
one is multiplied by \f(populationlarge /populationg..,). As
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Fig. 4: We use a small and a large hyperloop network for our evaluation.

TABLE I: Scheduling evaluation configurations.
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Fig. 5: Passenger demand distribution according to city dis-
tance (time). The demands are modeled as negative binomial
distributions approximating German commuter and European
air passenger travel data and their sum [29], [30].

Morning demand
e naanl /7 N ____ .
S & 0.10 Evening demand
o0
b 5 S
= : // \\
=
S s / \
82005 Y \
S g / \
£t / \
S N
,// \\\

0 500 900 13:00 13:00 18:00 21:00 Daytime

Fig. 6: Demand distributions over a day. Morning (evening)
demand is the probability for one passenger to arrive in the
morning (evening) in the corresponding 30min interval.

explained next, those trips are performed during the morning
and each such “passenger” travels back in the evening.
Departure Time: In our simulation spanning a day, each
passenger commutes. That is, the number of trips in each
direction of a city pair equals out over the whole day, leaving
the city populations unmodified. We arrange the demand in
two “rush hours”, modeled as normal distributions with peaks
at 8:30 and 17:30. The evening (return) demand is more
widely spread than the morning demand, with 0 = 1.35 h
and ¢ = 2.5 h, respectively. The two curves, multiplied with
the number of travelers in a city, model the distribution of
the total demand, shown in Figure [6| The passenger arrival
times are sampled from the resulting combined distribution.

C. Baselines

To compare scheduling methods, we evaluate three met-
rics: kinetic energy for moving pods, passenger waiting time
and the required number of pods. First, we give some simple
baselines, whose results are given in Table

1) Kinetic Energy: Neglecting the passengers’ weight,
the system’s required kinetic energy is proportional to the
number of pod trips. We can give a lower bound regarding
the required kinetic energy to transport all passengers, by
sending only full pods (except for the last one per route).
For this baseline, we assume unlimited pod availability and
unrestricted waiting times. Further, platoon departure rates
are not limited and air drag is omitted. The latter models the
ideal case that all pods travel in a single long platoon, thus
saving the air drag of all but one pod. Table [[I] shows that
only minimizing energy results in a huge maximum waiting
time of 65 minutes.

2) Waiting Time: For a waiting time baseline, we simulate
a “best case” scenario for passengers by limiting the waiting
time to one minute. Since our air locks are restricted to one
departure every minute, this means that every minute, all
waiting passengers depart immediately. This means that one
pod per destination can be partially filled. Also this baseline
assumes unlimited pod availability.

D. Dynamic Scheduling

The baselines above illustrate the trade-offs involved in the
pod scheduling. Ideally, our proposed balanced departure bin
(BDB) scheduling method should get close to the baselines
for both energy and waiting time, while using few pods.

The priority of our scheduling are low waiting times. Our
parameters for the DB trigger are 6(¢) = 0.005/s -t [t in s],
and the bin sizes are 700 and 7,500 for the Swiss and
European networks, respectively. Note that the bin is only
filled every 20s, as that is our simulation discretization. The
maximum waiting time for a passenger is 15min. The second
priority is a low number of required pods, which we reduce
at some additional energy usage for moving non-full pods.

As Table [l shows, the BDB scheduling requires only
about twice the energy as the theoretical energy baseline;



TABLE II: Simulation statistics for a day (6:00-24:00) with the different scheduling configurations.

Swiss Network European Network
Waitin Waitin
Energy Time ¢ BDB Energy Time y BDB
Baseline . Baseline .
Baseline Baseline
Passengers 360, 428 5,160,996
Dynamic Energy [kWh] 1.42-10% | 1.11-107 | 3.30-10% | 2.60-107 | 1.00-10% | 4.16-107
Avg Waiting Time [min] 4.81 0.50 2.10 2.22 0.50 3.37
Max Waiting Time [min] 64.67 1.00 13.67 75.33 1.00 15.00
Pods (2,700) 806 311 (150, 000) 44,528 31,503

while reducing the maximum waiting time from 65 to 15
minutes. The average waiting time is a few minutes. This
is similar to the most frequented transports like subways
or urban trains, while easily beating long-range trains that
seldom depart more often than every 30min.

Symmetric redistribution prevents any pod imbalance,
limiting the number of required pods at stations with high
pod outflow and low pod inflow during some time, e.g. the
morning rush hour. Table confirms that the number of
pods is indeed lower than for the baselines.

V. CONCLUSION

Hyperloop systems with small pods can achieve a high
throughput and low waiting times. Our scheduling scales to
any passenger throughput, up to the tube capacities, with a
proportionally higher number of pods and air lock chambers.

Small pod capacities allow for on-demand operation and
enable many direct connections, saving some of the time
overhead of other public transportation such as trains or
planes.
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