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Abstract

We investigate the problem of maximizing the lifetime of
wireless ad hoc and sensor networks. Being battery pow-
ered, nodes in such networks have to perform their intended
task under rigid energy restrictions that forces the design-
ers to impose a judicious power management and schedul-
ing. For the purpose of saving energy, dominating set based
clustering has turned out to be a useful and generic con-
cept in such networks. In data gathering applications, for
example, only nodes in the dominating set must be active,
while all other nodes can remain in the energy-efficient
sleep mode. Prolonging the duration of such a dominat-
ing set based clustering is a key algorithmic challenge. In
this paper, we define themaximum cluster-lifetime problem
which asks for a schedule that maximizes the time the net-
work is clustered by a dominating set. We give approxima-
tion algorithms with an approximation ratio ofO(log n) for
several variants of the maximum cluster-lifetime problem.
Our approach is based on results given in a paper by Feige,
Halldórsson, Kortsarz, and Srinivasan on thedomatic par-
tition problem [5].

1. Introduction

One of the key characteristics of wireless ad hoc and par-
ticularly sensor networks is the scarcity of energy, the most
vital resource. In most cases, sensor nodes are battery pow-
ered, and they can stay active for only a limited time before
the battery resources are depleted. Not surprisingly, improv-
ing the network lifetime (i.e., the time interval in which the
network is capable of performing its intended task) is a sig-
nificant part of the system design in sensor networks, and
mechanisms that conserve energy resources are highly de-
sirable.

One of the most prominent such mechanisms is to sched-
ule the node activity such as to allow redundant nodes to en-
ter some kind ofsleepmode as often and for as long as pos-
sible. During this sleep mode, nodes can neither receive nor

send messages, but they hardly use any energy. The energy
consumed in theactivemode with the CPU operating at full
energy is typically orders of magnitudes higher than in the
sleep mode.

Consider a typical application such asdata gathering,
where the nodes have to produce relevant information by
sensing an extended geographical area that is eventually
sent to an information sink for processing. In data gather-
ing, partitioning the network into clusters plays a vital role.
Two nodes being within each others transmission range im-
plies a physical proximity of these nodes. This proximity
can be exploited for the sake of energy-conservation. In par-
ticular, neighboring nodes may be capable of taking over
each other’s sensing task. In this case, when one node is ac-
tively gathering data, all its neighbors may enter the sleep
mode and save energy for future use. Thus, at any time, only
a dominating set of nodes is required to be active, instead of
all network nodes.

Similar to the data gathering application, clustering the
network has proven to be one of the most successful strate-
gies when dealing with the complexity of wireless ad hoc
and sensor networks. Clustering improves the usage of
scarce resources such as bandwidth and energy, and it helps
realizing spatial multiplexing in non-overlapping clusters.
Depending on the specific network organization problem at
hand, different forms of clustering have been proposed. One
frequent approach is to choose clusterheads such that ev-
ery node is either a clusterhead or has a least one cluster-
head in its neighborhood. When modelling the network as
a graphG = (V, E), this form of clustering maps to the
well-known dominating setproblem. A dominating set of
G is a subsetS ⊆ V such that, each nodev ∈ V is ei-
ther inS or has a neighbor inS. Theminimum dominating
setproblem asks for a dominating set of minimal cardinal-
ity.

An important characteristic of wireless ad-hoc and
sensor networks is that node failure is an event of
non-negligible probability. For applications where fault-
tolerance is critical, a simple dominating set may not be a
desirable form of clustering. The notion of ak-dominating



set accounts for this additional fault-tolerance by de-
manding that every node has at leastk clusterheads in
its neighborhood. Formally, ak-dominating set is a sub-
set S ⊆ V such that, each nodev ∈ V has at leastk
dominators in its neighborhood (including itself) inS.

Finding a good, low-cardinality dominating set is an im-
portant algorithmic challenge. But in view of the scarcity
of energy in wireless sensor networks, maximizing thelife-
timeof dominating set based structures is at least as impor-
tant. What does the best dominating set help if the battery
of the dominators are irrevocably depleted after a short pe-
riod of time?

In this paper, we tackle this problem by finding a large
number ofdisjoint dominating sets, as this has a direct im-
pact on conserving energy resources, hence prolonging the
network lifetime. The idea is that by using several disjoint
dominating sets, we can activate them successively – i.e.,
only nodes in the currently active set take over the data
gathering responsibilities; other nodes are in the low-energy
sleep mode. The problem of finding a maximum number of
disjoint dominating sets is called themaximum domatic par-
tition problem and it is a classic graph theory problem [7, 5].
The maximum number of disjoint dominating sets that can
be established in a graphG is called thedomatic number
D(G).

In large-scale distributed (and possibly even mobile) sys-
tems such as wireless ad hoc and sensor networks, the us-
age of centralized algorithms that are based on a global view
of the network graph are infeasible. Instead, nodes must
be able to come up with a solution based on locally and
quickly obtainable information. By turning a distributed do-
matic partition algorithm into approximation algorithms for
the maximum cluster-lifetime problem, we show that a good
solution to the domatic partition problem is the key to ob-
taining an energy-efficient clustering schedule.

Particularly, we propose distributed, randomized al-
gorithms which approximate the optimal solution within
a factor of O(log n) with high probability. As approx-
imating the domatic partition problem within a fac-
tor better thanln n was proven to be impossible unless
NP ⊆ DTIME(nO(log log n)) [5], these approxima-
tion algorithms are likely to be asymptotically tight. We
also give approximation algorithms for the non-uniform
case where each node’s initial battery supply may dif-
fer, as well as the fault-tolerant case. Note that all our al-
gorithms are completely distributed and require only a
constant number of communication rounds. More pre-
cisely, communication is only needed to let each node
know its2-hop neighborhood.

The remainder of this paper is structured as follows.
In Section 2, we describe our model of computation and
formally define theMaximum Cluster-Lifetimeproblem. In
Section 3, we give an overview over the relevant existing lit-

erature. The special case where all nodes have identical ini-
tial battery supply is discussed in Section 4. An algorithm
for the general case is subsequently given in Section 5. In
Section 6, we also consider the fault-tolerant uniform case.
Finally, Section 7 concludes the paper and indicates direc-
tions for future research.

2. Problem Statement and Model

In this section, we describe the model and introduce the
notation that is being used throughout the paper.

We model the network as a graphG = (V, E). Each net-
work node is represented by a vertexv ∈ V and there is
an edge{u, v} ∈ E between two nodes if and only ifu
and v are within each others communication range. Note
that we do not make the assumption that the underlying net-
work graph forms aUnit Disk Graphor any other specific
graph. Our algorithms work even in completely arbitrary
graphs. However, in order to prevent already basic com-
munication between neighboring nodes from becoming un-
acceptably cumbersome [19], we assume that a message
sent over a link can be acknowledged by sending a corre-
sponding message over the same link in the opposite direc-
tion. In other words, we consider only undirected edges. Let
n = |V | denote the number of nodes in the network. We as-
sume that this value (or an upper bound thereof) is known
to all nodes in the network. The set of neighbors of a node
v is written asNv, andN+

v := Nv ∪ {v}. Thedegreeδv of
a node is the number of its neighbors, i.e.,δv = |Nv|. By
∆ := maxv∈V δv andδ := minv∈V δv, we denote the max-
imum and minimum degree (number of neighbors) in the
network, respectively.

Further, letbv be the maximum time nodev can be in
a dominating set. Clearlybv depends on the initial battery
supply, as well as the energy consumption per time-unit.
Note that the valuebv does not necessarily have to be the
total available battery power at nodev. On the contrary, in
most applications,bv will be set to a value strictly smaller
than the total available energy. The idea is to keep some re-
maining energy at each node in order to guarantee that, for
instance, the gathered data can be sent to the sink (for ex-
ample by collectively constructing a data aggregation tree),
where the data can subsequently be processed.

We now formally define theMaximum Clustering-
Lifetime problem. A schedule S is a set of pairs
(D1, t1), . . . , (Dk, tk), where Di is a dominating set
andti is the time during whichDi is active. More precisely,
the setD1 is active in the interval[0, . . . , t1] and gener-
ally, Di is active in the interval[

∑i−1
j=0 tj , . . . ,

∑i
j=0 tj ].

The lifetime of a schedule is defined asL(S) :=
∑k

i=1 ti.
The Maximum Clustering-Lifetime Problemasks for
the scheduleS with maximum lengthL(S), such that∑

i:v∈Di
ti ≤ bv holds for all nodesv ∈ V . The last con-
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Figure 1. An optimal schedule S with length L(S) = 6. After the last step, node v cannot be covered
anymore.

dition states that the total time each nodev can take part in
a dominating set is bounded bybv. We assume thatbv ∈ N
and intuitively,bv = 1 means that nodev can stay in a dom-
inating set for exactly one time-slot.

Figure 1 shows an optimal scheduleS with length
L(S) = 6 for a sample graph with7 nodes. The num-
ber next to each node denotes its currently remaining
battery supply. During the first two time-slots, a dominat-
ing set consisting of two nodes is active. By time3, the
energy-level of these two nodes has decreased by two units
each. For the interval[2, . . . , 3], a dominating set consist-
ing of three nodes is selected. This set is replaced in the
interval [3, . . . , 6] by another two-node dominating set. Fi-
nally, at time6, all nodes in the neighborhood ofv have
used up their energy for joining dominating sets and hence,
v cannot be covered any longer. Note that the optimal so-
lution is not unique. There are other schedules having
lifetime 6.

As mentioned in the introduction, many applications re-
quire a certain degree of fault-tolerance. The failure of a
single node at the wrong time should not destabilize the en-
tire system. In theMaximumk-tolerant Clustering-Lifetime
Problemwe demand that at any timet, every nodev ∈ V
has at leastk dominators in its neighborhood. In contrast
to the regularMaximum Clustering-Lifetime Problem, we
want to find a schedule(D1, t1), . . . , (Dk, tk), such that
eachDi is a k-dominating set. In order for theMaximum

k-tolerant Clustering-Lifetime Problemto have a feasible
solution, we consider only graphs in whichδ + 1 ≥ k.

Throughout the paper, we writeSOPT to denote the op-
timal schedule. Further, we writeLOPT := L(SOPT ). Fi-
nally, the indicator variableSv(s1 : s2) denotes whether
nodev is active inS during the time interval[s1, . . . , s2].
That is,Sv(s1 : s2) = 1 if v ∈ Di andDi is active in the
interval [s1, . . . , s2]. If only a given time-slott is consid-
ered, we also writeSv(t).

We conclude the section with a well-known fact we will
use for the analysis. The proof can be found in standard
mathematical textbooks.

Fact 2.1. For all n, t, such thatn ≥ 1 and|t| ≤ n,

et

(
1− t2

n

)
≤

(
1 +

t

n

)n

≤ et.

3. Related Work

The importance of clustering in wireless ad hoc and sen-
sor networks has lead to a plethora of papers on dominat-
ing sets. From a theoretical point of view, the minimum
dominating set problem has been shown to beNP -hard in
[9, 12]. Moreover, unless the problems inNP can be solved
by deterministicnO(log log n) algorithms, no algorithm can
approximate the minimum dominating set problem better



than ln∆, where∆ is the highest degree in the network
[18, 4].

One of the first distributed approximation algorithms for
the minimum dominating set problem was given in [16].
This was subsequently improved in [11]. The work of [15]
explores the trade-off between approximation and commu-
nication. In particular, [15] gives an algorithm that achieves
an approximation ratio ofO(k∆2/k log n) in O(k2) com-
munication rounds only. Hence, it is shown that even with a
constant number of communication rounds, a non-trivial ap-
proximation ratio can be achieved. On the other hand, it was
shown in [14] that the above upper bound is not too far away
from being tight. In particular, it is proven in [14] that (even
in messages are unbounded), ink rounds of communication,
no algorithm can approximate the minimum dominating set
problem better thanΩ(nc/k2

/k) or Ω(∆1/k/k), for some
constantc. It follows that every, possibly even random-
ized algorithm requires more thanΩ(

√
log n/ log log n) or

Ω(log ∆/ log log ∆) communication rounds in order to ob-
tain a constant or polylogarithmic approximation ratio.

The communication in wireless ad-hoc and sensor net-
works is often modelled as a so-called unit disk graph UDG
[3]. In a UDGG, there is an edge between two nodes if their
Euclidean distance is at most1. The dominating set prob-
lem remainsNP -hard in this case, but constant approxi-
mations become possible. Particularly, every maximal inde-
pendent set is a4 · OPT + 1 approximation to an optimal
dominating set [21]. Hence, the elegant randomized algo-
rithm by Luby [17] allows to find a constant approximation
to the minimum dominating set problem in timeO(log n).
If nodes are capable of sensing the distance to its neigh-
bors, a constant approximation ratio can be achieved in time
O(log log n) [8].

Often, dominating set based clusterings are used for es-
tablishing an efficient MAC-layer. Clearly, obtaining a dom-
inating set for that particular purpose demands a protocol
that is not based on the assumption that an existing MAC-
layer is available. Moreover, such algorithms must be capa-
ble of working even if nodes can wake up asynchronously
without having access to a global clock or without knowing
their neighbors. For this scenario, an algorithm achieving
a constant approximation ratio in roughlyO(log2 n) was
given in [13].

All of the above algorithms focus on findingonegood
dominating set. None of them is concerned with thedura-
tion a dominating set based structure can be maintained in
the network.

The single most important related work is therefore
the seminal paper by Feige, Halldórsson, Kortsarz, and
Srinivasan on domatic partitions [5]. In this paper, the au-
thors prove that every graph with maximum degree∆
and minimum degreeδ contains a domatic partition of
size (1 − o(1))(δ + 1)/ ln∆. They turn this proof into a

polynomial time, centralized algorithm that produces a do-
matic partition ofΩ(δ/ ln∆) sets. Furthermore, they prove
that approximating the maximum domatic partition prob-
lem within a factor of(1 + o(1)) lnn is impossible, unless
NP ⊆ DTIME(nO(log log n)). Finally, they analyze the
performance of the natural greedy algorithm that repeatedly
picks good dominating sets, showing that the approximation
ratio of the greedy domatic partition algorithm is bounded
by O(

√
n log n). Fujita [6] gives examples where the per-

formance of this greedy algorithm is as bad asΩ(
√

n). The
authors of [5] investigate the domatic partition problem in
such a thoroughness that most related questions appear to be
satisfactorily solved. In this paper, we show that the meth-
ods introduced in [5] have an important application in wire-
less ad hoc and sensor networks, helping to increase net-
work lifetime.

Maximizing the number of disjoint dominating sets for
the purpose of increasing the lifetime of network organi-
zation was later considered in [20, 2]. The papers consider
the problem of covering a geometrical region by network
nodes for as long a period of time as possible. Both papers
propose heuristics for finding the maximum number of dis-
joint dominating sets. They donot provide any worst-case
analysis and stringent bounds. Moreover, the heuristics pro-
posed are centralized and hence inappropriate from a prac-
tical point of view.

4. The Uniform Case

In this section, we consider the special case where all
nodes have the same initial battery level, i.e.,bv = b for all
v ∈ V . We begin the analysis with a straightforward obser-
vation which lower bounds the optimal valueLOPT .

Lemma 4.1. The lifetime of the optimal scheduleSOPT is
at mostLOPT ≤ b · (δ + 1).

Proof. Let v be a node with degreeδv = δ. SinceSOPT is
a correct schedule,v must be covered by either itself or by a
neighbor during the entirety of the schedule. Because each
node can be part of a dominating set at mostb time-units,v
can be covered at most forb · (δ + 1) time-units.

Using this lower bound, we can show that a prob-
abilistic argument given in [5] can be turned into an
efficient approximation algorithm with an approxima-
tion ratio of O(log n). The algorithm is randomized;
each nodev randomly chooses a color in the range from
[1, . . . , δ

(2)
v /(3 log n)], where δ

(2)
v denotes the mini-

mum degree of a node inN+
v . The idea is to interpret the

different color classes as adomatic partitionof the net-
work graph. The scheduleS then simply follows by acti-
vating each of the color classes one after another.

We begin the proof by showing that with high probabil-
ity, each individual color class forms a valid dominating set.



Algorithm 1 Uniform Algorithm
1: Sendδv to all neighbors;
2: Receiveδu from all u ∈ Nv;
3: δ

(2)
v := minu∈N+

v
δu

4: Choose randomly a colorcv from
the range[0, . . . , δ(2)

v /(3 ln n)]
5: Sv(bcv : b(cv + 1)− 1) := 1;

For that purpose, letCi be the set of nodes that have ran-
domly chosencv = i in line 3 of the algorithm. Notice that
in the following, we can assume thatδv + 1 ≥ 3 ln n for all
v ∈ V because otherwise, aO(log n) approximation fol-
lows directly from Lemma 4.1, even if all nodes choose the
same color.

Lemma 4.2. The setCi forms a dominating set inG for all
i ∈ [0, . . . , δ/(3 ln n)] with probability1− o(n−1).

Proof. Following the reasoning in [5], we begin by com-
puting the probability that an individual color classCi is a
dominating set. Subsequently, we show that with high prob-
ability, the claim holds forall color classes.

Let Av,c be the event that there is no node inN+
v which

has chosen colorc in line 4. If this event is true for some
colorc and an arbitrary nodev, it means that the color class
Cc does not form a dominating set.

For an arbitrary nodev and a colorc, it holds that

P [Av,c] =
∏

u∈N+
v

(
1− 3 ln n

δ
(2)
u

)

≤
(

1− 1
δv/(3 ln n)

)δv+1

≤
Fact 2.1

e−(δv+1)(3 ln n)/δv

< e−3 ln n = n−3,

where the first inequality follows fromδ(2)
u ≤ δv for all

u ∈ N+
v .

Let Bv be the event that nodev does not have all col-
ors c ∈ [0, . . . , δv/(3 ln n)] in its neighborhood. Formally,
Bv is true if there exists ani ∈ [0, . . . , δv/(3 ln n)], such
that,Ci∩N+

v = ∅. Using the fact that the probability of the
union of events is no more than the sum of their probabili-
ties, we can boundBv as

P [Bv] = P




δv/(3 ln n)⋃
c=0

Av,c


 ≤ δv

3 ln n
n−3.

AssumeBv is false for somev. Because ofδv ≥ δ, this im-
plies that for alli ∈ [0, . . . , δ/(3 ln n)], Ci ∩ N+

v 6= ∅.
Hence,P [Bv] is an upper bound on the probability thatv is
not properly covered byδ/(3 ln n) disjoint dominating sets.
We now bound the probabilityP1 that there is at least one

nodev which does not have all colors[0, . . . , δ/(3 ln n)] in
its neighborhood. Usingδv ≤ n for all v, we obtain

P1 ≤ P

[ ⋃

v∈V

Bv

]
≤

∑

v∈V

δv

3n3 ln n

≤ 1
3

∑

v∈V

1
n2 ln n

∈ O

(
1

n log n

)
.

Hence, with high probability, the color classesCi for
i ∈ [0, . . . , δ/(3 ln n)] as computed by Algorithm 1 form
δv/(3 ln n) + 1 many disjoint dominating sets.

It only remains to be shown that the scheduleS com-
puted by the algorithm does indeed give the claimed ap-
proximation ratio.

Theorem 4.3. The scheduleS computed by Algorithm 1 is
aO(log n) approximation to the Maximum Cluster-Lifetime
problem with probability at least1− o(n−1).

Proof. Let SALG be the schedule computed by Algorithm
1.SALG assigns the time interval[ib, . . . , (i+1)b] to nodes
v ∈ Ci. By Lemma 4.2, we know that with probability
1 − o(n), the color classes from0 to δ/(3 ln n) form cor-
rect dominating sets. It follows that

L(SALG) ≥ (δ/(3 ln n) + 1)b

holds with high probability, too. The approximation ratio of
O(log n) now follows directly from the bound onLOPT in
Lemma 4.1.

5. The General Case

We now move on to the problem in its full generality
by allowing each nodev to have a different initial battery
supplybv. In analogy to the uniform case, we start with a
lemma bounding the optimal valueLOPT from above.

Lemma 5.1. The lifetime of the optimal scheduleSOPT is
at most

LOPT ≤ min
u∈V

∑

v∈N+
u

bv.

Proof. Let u be a node that minimizes
∑

v∈N+
u

bv. u must
be covered by a dominator inN+

u for the entire duration of
LOPT . Let Eu(t) be the total remaining energy inN+

u at
time t. Clearly,Eu(0) =

∑
v∈N+

u
bv. In each subsequent

time-slot, at least one neighbor must be in the dominating
set, and thereforeEu(t + 1) ≤ Eu(t)− 1. It follows thatu
can be covered only forEu(0) time-slots.

Our algorithm for the general case is also randomized.
Instead of choosing only one colorcv, each nodev ran-
domly and independently choosesbv many colors in a cer-
tain range (recall thatbv ∈ N). Again, the idea is that by



restricting the color range appropriately, we can guarantee
that each node has many different color classes in its neigh-
borhood. As in the uniform case, the schedule is then pro-
duced by invoking the different color classes consecutively.

Algorithm 2 General Algorithm
1: Sendbv to all neighbors;
2: b̂v := maxu∈N+

v
bu

3: τv :=
∑

u∈N+
v

bu;

4: Send(b̂v, τv) to all neighbors;
5: b̂

(2)
v := maxu∈N+

v
b̂u

6: τ
(2)
v := minu∈N+

v
τu;

7: C := ∅;
8: for j := 0 to bv by 1 do
9: Choose randomly a colorc(j)

v from
the range[0, . . . , τ (2)

v /(3 ln (b̂(2)
v n))];

10: C := C ∪ {c(j)
v };

11: end for

12: Sv(t) :=
{

1 , t ∈ C
0 , t /∈ C

The proof is similar to the uniform one, the difference be-
ing that instead of the minimum degreeδ, we consider the
minimum energy coverageminu∈V

∑
v∈N+

u
bv of any node

in the network.

Lemma 5.2. Let τ := minu∈V

∑
v∈N+

u
bv be the mini-

mum energy coverage of the networkG, and letbmax :=
maxv∈V bv. The setCi forms a dominating set inG for all
i ∈ [0, . . . , τ/(3 ln (bmaxn))] with probability1− o(n−1).

Proof. Again, we first show that the probability ofCi not
being a dominating set is small. Let the eventAv,c be de-
fined as in Section 4.

After line 6 of Algorithm 2, it holds thatτ (2)
u ≤ τv for

all v ∈ V andu ∈ N+
v . Consequently, for an arbitrary node

v and a colorc, we have

P [Av,c] =
∏

u∈N+
v

bu∏

i=1

(
1− 3 ln (b̂(2)

u n)

τ
(2)
u

)

≤
(τ

(2)
u ≤τv)

∏

u∈N+
v

(
1− 3 ln (b̂(2)

u n)
τv

)bu

≤
(b̂

(2)
u ≥b̂v)

∏

u∈N+
v

(
1− 3 ln (b̂vn)

τv

)bu

=

(
1− 3 ln (b̂vn)∑

u∈N+
v

bu

)∑
u∈N

+
v

bu

≤
Fact 2.1

e−3 ln (b̂vn) =
1

(b̂vn)3
.

Like in the uniform case, we now compute the proba-
bility of the eventBv that nodev doesnot have all col-
orsc ∈ [0, . . . , τ

(2)
v /(3 ln (b̂(2)

v n))] in its neighborhood. For
that purpose, recall the following relationship betweenτ

(2)
v

andb̂v,

τ (2)
v ≤ τv =

∑

u∈N+
v

bu ≤ (δv + 1) · b̂v. (1)

With the above inequality,P [Bv] can be upper bounded by

P [Bv] ≤ τ
(2)
v

3 ln (b̂(2)
v n)

· 1

(b̂vn)3

≤
Eq. (1)

δv + 1

3 ln (b̂(2)
v n)

· 1

b̂2
vn3

.

Since there aren nodes in the network, the probability that
there exists a nodev ∈ V for which the eventBv is true is
at most

P [
⋃

v∈V

Bv] ≤ δv + 1

2 ln (b̂(2)
v n)

· 1

(b̂vn)2

∈ O

(
1

n log n

)

due to(δv + 1) ≤ n for all v ∈ V .
With high probability, each nodev has all color classes

Ci for i ∈ [0, . . . , τ
(2)
v /(3 ln (b̂(2)

v n))] in its neighborhood.
The lemma now follows from the fact thatτ (2)

v ≥ τ and
b̂
(2)
v ≤ bmax holds for all nodesv ∈ V . In other words, at

least the color classes in the range[0, . . . , τ/(3 ln (bmaxn))]
form correct dominating sets with high probability.

Combining Lemmas 5.1 and 5.2 yields the following the-
orem.

Theorem 5.3. The scheduleS computed by Algorithm 2
is a O(log (bmaxn)) approximation to the general Max-
imum Cluster-Lifetime problem with probability at least
1− o(n−1).

Proof. Let SALG be the schedule computed by Algorithm
2. By Lemma 5.2, we know that with probability1− o(n),
the color classes from0 to τ/(3 log (bmaxn)) form correct
dominating sets and thus,

L(SALG) ≥ minu∈V

∑
v∈N+

u
bv

3 log (bmaxn)
+ 1

≥ LOPT

3 log (bmaxn)
+ 1.

Therefore, the approximation ratioα is in O(log (bmaxn)).
For bmax polynomial inn, this reduces toO(log n).



6. Fault-Tolerance

In this section, we adjust our algorithms to provide the
desired degree of fault-tolerance. We begin by giving an al-
gorithm for the uniformk-tolerant version of the problem,
i.e., every node must constantly be covered by at leastk
nodes in its neighborhood.

Algorithm 3 for the fault-tolerant uniform case is an ex-
tension of the uniform case as discussed in Section 4. The
main idea is that we can mergek consecutive color classes
to one color class. Since each individual color class forms
a dominating set with high probability and because every
node is in exactly one such color class, the merged color
class forms a validk-dominating set. In order to guarantee
the O(log n) approximation ratio, we need to distinguish
the two casesδ/3 ln n < k andδ/3 ln n ≥ k. In the second
case, mergingk consecutive color classes to a single one
will be sufficient. In the first case, however, there are fewer
thank color classes. Without adjusting the algorithm, this
would lead to a schedule of lengthL(S) = 0. Clearly, in or-
der to come up with an approximation algorithm, we have
to take take care of this special case. We do so by letting ev-
ery node be active for a constant fraction of timeb, sayb/2.
Then, the algorithm continues as in Algorithm 1.

Algorithm 3 Fault-Tolerant Uniform Algorithm
1: Sendδv to all neighbors;
2: Receiveδu from all u ∈ Nv;
3: δ

(2)
v := minu∈N+

v
δu

4: Choose randomly a colorcv from
the range[0, . . . , δ(2)

v /(3 ln n)]
5: Sv(1 : b

2 ) := 1;
6: Sv( b

2 + b
2 · b cv

k c : b
2 + b

2 · (b cv

k c+ 1)) := 1;

In analogy to Sections 4 and 5, we first give a simple
lemma bounding the optimal valueLOPT from below.

Lemma 6.1. The lifetime of the optimal scheduleSOPT is
at mostLOPT ≤ b · (δ + 1)/k.

Proof. The proof follows along the lines of the correspond-
ing proofs in Sections 4 and 5. Letv be a node with mini-
mum degree, i.e.,δv = δ. SinceSOPT is a correct sched-
ule, v must have at leastk dominators inN+

v at all times.
The lemma follows because each node can be part of a dom-
inating set at mostb time-units,v can be covered at most for
b · (δ + 1)/k time-units.

For the upper bound of the algorithm, we distinguish the
two cases in line 4 of the algorithm. We obtain the follow-
ing result.

Theorem 6.2. The scheduleS computed by Algorithm 3
is a O(log n) approximation to the uniform Maximumk-

tolerant Cluster-Lifetime problem with probability at least
1− o(n−1).

Proof. From the construction of the algorithm, the length
of the scheduleS is at leastb/2. Afterwards, all nodes ex-
ecute lines 5 and 6 of the algorithm. By Lemma 4.2, we
know that the color classesCi form correct dominating sets
for i ∈ [0, . . . , δv/(3 ln n)]. Together with the above obser-
vation, it follows that the scheduleS has length at least

L(S) ≥ b

2
+

⌊
δ

(3k ln n)

⌋
· b

2
.

We now distinguish two cases. Ifδ/3 ln n ≥ k, then the
approximation ratioα is

α ≤ b · (δ + 1)/k

bδ/(3k ln n)c · b/2 + b/2

≤ 2(δ + 1)/k

δ/(3k ln n)− 1
∈ O(log n).

In the second caseδ/3 ln n < k, α is bounded as

α ≤ b · (δ + 1)/k

bδ/(3k ln n)c · b/2 + b/2

≤ 2(δ + 1)
k

∈ O(log n).

This concludes the proof of Theorem 6.2.

7. Conclusions and Open Problems

In this paper, we have given approximation algorithms
for the problem of maximizing the lifetime of dominat-
ing set based clusterings. One technical open question is
to come up with an approximation algorithm for the gen-
eralk-tolerant case. Furthermore, there appear to be numer-
ous unanswered questions going beyond this specific open
problem.

There are applications in wireless ad hoc or sensor net-
works for which mere dominating sets are not the desired
structure. In particular, it is often required that the domi-
nating set fulfil the additional requirement that it is con-
nected. The first and foremost such application is routing.
It has been shown that the efficiency of routing can be en-
hanced by using methods that are based on building acon-
nected dominating setin the network graph, e.g. [10, 1, 22].
As with regular dominating sets, maximizing the lifetime of
connected dominating sets is important in practice. It is an
intriguing open problem to come up with an approximation
algorithm for theMaximum Lifetime Connected Dominat-
ing Set(or maximum connected domatic partition) problem.
The difficulty of finding an approximation algorithm for the
maximum connected domatic partition problem highlights
a fundamental difference between the two problems, dom-
inating set and domatic partition. Constructing a connected



dominating set from a dominating set is straightforward and
easy. However, extending a given domatic partition to a con-
nected domatic partition appears to be highly non-trivial.

In practice, it may not always be possible to assume that
the number of nodesn in the network (or an upper bound
thereof) is known to all nodes. Therefore, getting rid of the
assumption thatn is known is another open and challenging
problem.

Considering the practical potential of wireless ad hoc
and sensor networks and in light of the need to deal with
scarce energy-resources, the search for energy-efficient al-
gorithms (and particularly approximation algorithms with
concise worst-case guarantees) appears to be an interesting
area for future research.
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