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Abstract. Android app repacking allows malicious actors to modify
apps, bundle them with malware or steal revenue. Current detection
mechanisms of app distribution services are questionable in their effec-
tiveness, and other proposed repackaging protection schemes do not have
the necessary protection against circumvention. We propose a repackag-
ing protection architecture that verifies the app’s integrity at runtime.
We make use of encrypted sections of bytecode that can be decrypted
with a key derived at runtime. The method partially relies on native code,
and as such is difficult to circumvent. We show that our implementation
provides a practical integration in the workflow of an app developer.
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1 Introduction

Android is the most common mobile operating system. Due to its popularity,
Android also attracts malware developers. Apps submitted to Google Play are
screened before they are published1 and Android’s Google Play Protect regularly
scans apps that are installed on devices, regardless from which source the apps
originate.2 Even though these security mechanisms are in place, their effective-
ness is debatable as they do not detect every malicious app submitted to the
service. Several malicious apps were published on Google Play in 2017 and 2018,
impacting millions of users.3,4 Additionally, many third party app stores have
weaker security checks. In China, the majority of Android users do not have
access to Google Play and have to use third-party app stores, many of which are
not trustworthy and distribute modified versions of popular apps [9].

Attackers can unpack apps contained in APK files, modify their content and
then repackage and distribute them. It is common that malware is hidden within

? The authors of this paper are alphabetically ordered.
1 https://source.android.com/security/reports/Android WhitePaper Final 02092016.

pdf
2 https://source.android.com/security/reports/Google Android Security 2017

Report Final.pdf
3 https://blog.checkpoint.com/2017/04/24/falaseguide-misleads-users-googleplay/
4 https://blog.cloudflare.com/the-wirex-botnet/
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copies of existing popular apps. Attackers may also repackage popular apps to
divert ad revenue. Therefore, making repackaging of Android apps harder or
even impossible is of interest to both users and developers of apps.

In this work we propose and implement5 a mechanism to protect apps from
being repackaged by transforming them after compilation, before they are dis-
tributed to the public. The app is transformed without any impact on the user
experience, except for a small slowdown. However, the transformation prevents
normal execution if the app has been tampered with. To make the protection
difficult to circumvent, it relies on encrypted integrity checks in native code.
This protection prevents an attacker from modifying the app, and potentially
bundling malware with it.

2 Related Work

Several solutions have been proposed to prevent the distribution of repackaged
Android applications. The methods can be divided into centralized and decen-
tralized approaches.

Centralized Approaches The centralized approaches typically analyze fea-
tures from the collection of apps hosted by a central distribution platform; they
identify similar features between apps, such as the instruction sequence pat-
terns [3,20], their call graphs [4], the trace of system calls [15], the layout of the
Android Activities [12, 13, 18], or the presence of software watermarks [19]. In
this scenario, the application distribution service monitors the apps submitted
by developers and removes suspected repackaged apps. This requires removing
the infringing apps in a timely manner, before the offending apps are distributed
to a significant amount of users.

Decentralized Approaches With a decentralized approach, the repackaged
app is detected at runtime on the user’s device. This way, the app verifies its
own integrity during runtime. This has the advantage that it distributes the
repackaging detection workload. As soon as tampering has been detected, an
appropriate response mechanism can be executed during which the app may
abruptly stop executing and inform the user about the tampering.

Several works about software protections that assert the software’s integrity
at runtime have been proposed by the research community. For instance, [2] pro-
poses a generic integrity checking and tamper prevention scheme which involves
inserting multiple pieces of code, called guards, that protect a specified region
of code. These pieces of code typically compute a checksum over the region of
machine code instructions. Droidmarking [10] proposes a non-stealthy repack-
aging detection approach which sends watermarking information to a separate
standalone app that is responsible for validating the integrity of protected apps.

5 The source code is provided at https://github.com/ilian/repackaging-protection

https://github.com/ilian/repackaging-protection
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However, Droidmarking also relies on the distribution platform to statically scan
the apps for tampering.

The Stochastic Stealthy Network (SSN) [6] is another dynamic repackaging
protection method. It validates the public key of the developer by comparing
substrings of the public key obtained at runtime with obfuscated hard-coded
substrings. The public key of the developer is obtained at runtime using Java
reflection. The different function names that are called using reflection are obfus-
cated to make static analysis more difficult for an attacker trying to circumvent
the applied protections. Zeng et al. [17] propose BombDroid, a repackaging pro-
tection scheme based on logic bombs and encrypted code blocks. A logic bomb
is a piece of code that executes when specified conditions are met. The code
responsible for detecting tampering is stored within an encrypted code block.
The proposed approach is designed in such a way that the decryption key is
unknown to the attacker without running the application.

Issues with SSN and BombDroid While the authors of SSN consider differ-
ent dynamic attacks, a much simpler and more practical attack can be performed
instead: as reflection is used to invoke a method to obtain the developer’s public
key, an attacker can rewrite the method invocations to invocations of a method
that is injected by the attacker. The attacker can pass the instance and argu-
ments of the original reflective method invocation to the newly injected method.
This injected method can then return the original public key. This attack scenario
can be performed without any dynamic analysis and can disable the repackag-
ing detection for all apps protected with SSN. As most method calls in typical
Java applications are not invoked using reflection, there is not a lot of runtime
overhead when performing such an attack.

There are also some potential issues with BombDroid. We consider an at-
tacker who can inject code that allows the modified app to perform code analysis
and modification at runtime. Such a dynamic attacker can modify the decrypted
instructions before they are executed. Similar to the previously discussed prob-
lem, the attacker can modify the instructions that obtain information from the
environment, which is being relied on for the repackaging detection such as the
public key of the developer and file descriptors to the original APK. An at-
tacker can divert invocations of methods that provide environment information
to injected methods that return simulated information to spoof the environ-
ment. When such an attack is performed, the repackaging detection mechanism
is circumvented. Such attacks can be performed in practice by modifying and
generating Dalvik bytecode at runtime.

3 Design Overview

We propose a resilient repackaging protection scheme that is based on encrypting
code blocks. It partially relies on native code to address the attacks possible on
previous work as discussed in Section 2. The system modifies the application
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provided by the app developer and adds integrity checking in a robust manner.
If repackaging is detected, an appropriate response mechanism is invoked.

The app to protect can be provided as an APK containing compiled bytecode
and native code. After compiling the Android app to Dalvik bytecode and native
code, the binary files are bundled together with resources and assets (images,
audio, video, raw files, etc.) into an APK file. Our proposed repackaging protec-
tion scheme can be applied to this APK file to generate the protected app. The
repackaging protection can thus be easily integrated into the workflow of app
developers as an additional step in the compilation pipeline. As the protection is
embedded within the application itself, we can distribute the protected APK to
many users and distribution platforms regardless of their enforcement of repack-
aging protection. The transformation could also be performed by an app store
to protect all apps it serves.

We aim to insert integrity checks that take action whenever repackaging has
been detected. These code snippets are inserted in many locations in the app,
such that the integrity is asserted at different locations throughout the execu-
tion. The challenge is to make the applied protection tamper-resistant such that
it is difficult for an attacker to bypass or remove the added protection measures.
Once the repackaging has been detected, response code can be executed. Many
different responses are possible such as informing the user, informing the devel-
oper or crashing the app. Our repackaging protection scheme is not only robust
against static analysis, but also against attackers that perform dynamic analysis.

Static Analysis The proposed system adds code to the apps to perform the
repackaging detection and countermeasures. This added code has to be protected
from static analysis to make removal by the attacker difficult. We make use of
a technique called conditional code obfuscation [11] to prevent static analysis of
code blocks. The condition v == C for a variable v and constant C is transformed
to the semantically equivalent (assuming no hash collisions) H(v) == H c where
H is a one-way hash function and H c is a constant equivalent to H(C). We can
exploit the fact that the value of the variable v is not known to an attacker,
unless a brute force attack is performed. A key k is derived from the constant
value C to encrypt all the bytecode within the true branch of such if-bodies
during the transformation phase. The protection scheme is depicted in Fig. 1 in
which these encrypted blocks in the bytecode are represented by the instructions
surrounded by a red border.

Dynamic Analysis Repackaging detection and response code is not inserted
in Dalvik bytecode because it is not difficult for an attacker to replay any
environment information as if the original application is running instead of a
repackaged one, as discussed in Section 2. Instead, we perform the checks in na-
tive code, which is also encrypted to prevent static analysis. Using native code
makes dynamic analysis more difficult since it has to be performed on a machine-
instruction level instead of the much simpler bytecode-instruction level. A native
method is called from within an encrypted bytecode block using the Java Native
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Fig. 1. Transformation of candidate code blocks

Interface (JNI). A key is passed to it to decrypt a native code block. At runtime,
the native code is decrypted and the integrity of the application is verified. The
use of both bytecode and native code encryption thus increases the difficulty of
inspecting the behavior that is performed at runtime.

Code Removal An attacker could still remove or bypass the native code and
the integrity checks contained in the native code would not get executed. To
prevent this, we enforce that the native code has to be executed to preserve the
functionality of the app. We therefore move a sequence of bytecode instructions,
I1 ⊆ I, to the native code as can be seen in Fig. 1. These instructions are rewrit-
ten to equivalent JNI function calls, which have the same effect as executing the
bytecode instructions directly. The attacker cannot remove the native method
invocation because the normal application behavior depends on it.

Detection of Repackaging To detect repackaging, we compare parts of files
within the APK using a one-way hash function. These are typically the Dalvik
Executable files, but our protection mechanism can also be configured to pro-
tect assets such as images and audio files. Integrity validation is performed in
the native code when an encrypted block is encountered. Each encrypted block
computes the hash of a different part of the files to reduce the impact on the
performance when reading the files from storage. Alternatively, a digest of the
developer’s public key (located under the META-INF directory) can be validated
to further increase performance. These computed hash values are compared to
known hash values of the original app. Once the application has verified that it
has not been repackaged, the instructions that have been moved to the native
code (I1) are executed. Otherwise, the response behavior is executed (I ′1).

4 Implementation

The protection system transforms the bytecode of the app to an intermediate
representation, without having access to the source code, and then performs the
analysis to find suitable locations for bytecode encryption. The native method
invocations are added such that the integrity checks are called at runtime. These
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checks must depend on a reference state of all files. Therefore, the native code
is generated after the Dalvik bytecode has been transformed.

Performing static analysis and modifications directly on Dalvik bytecode can
be error-prone and cumbersome. In our implementation, we use the Jimple [14]
intermediate representation for analysis and modifications. We use the Java API
of the Soot framework6 to perform modifications on the Jimple intermediate
representation. After performing the necessary modifications for the repackag-
ing protection in the Jimple code of the app, the Soot framework allows us to
transform the Jimple code back to Dalvik bytecode and a new APK file can be
generated.

Finding Candidate Blocks Our goal is to find a list of statements I, also
referred to as a block, that is executed after a condition of the form

if (v == C) {

I

}

has been evaluated to be true, where v is a variable and C is a constant. We
iterate through all if-statements within each method body. A key to encrypt the
code block can then be derived from C. In our implementation SHA-1 is used to
transform the if condition. We must ensure that all statements within the if-body
are only executed after the condition has been evaluated to true. Unconditional
jump statements could jump to any statement in I without having satisfied the
condition of the if-statement. In this case we could not compute the encryption
key that is derived from the constant C. Therefore, if such a jump statement is
encountered the code block does not get transformed and encrypted.

Transformation of a Block We derive the decryption key for a block from
v when the true branch has been taken, and want to decrypt the bytecode cor-
responding to the statements within the if-body. Thus, we need a facility to
decrypt and execute bytecode at runtime. Unfortunately, redefining classes con-
taining the encrypted bytecode with ones that contain the decrypted bytecode
is not possible with the Android Runtime (ART), as the instrumentation pack-
age java.lang.instrument that provides the redefineClasses method is not
available on Android. We instead load a new class for each encountered en-
crypted block by making use of the dalvik.system.InMemoryDexClassLoader

class (present since the release of Android 8.0) which can load classes in the
form of Dalvik bytecode from memory. This new class has a method contain-
ing the extracted code block. The bytecode of this class gets encrypted in the
transformation phase. This method is then invoked at runtime after loading
the class containing the decrypted bytecode. We invoke this method containing
the original statements to preserve the semantics of the app. Because we have
extracted statements from within the if-body to a separate class, we hereafter

6 https://github.com/Sable/soot

https://github.com/Sable/soot
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Fig. 2. Comparison of an example of a control flow graph before and after transfor-
mation. Basic blocks (BB) with a red background represent the basic blocks whose
instructions can be extracted to a separate class and encrypted.

call the newly generated class, the extracted class. Since the statements are exe-
cuted in the context of a different class and method than in the original if-body,
workarounds need to be put in place in order to preserve semantic equivalence
between the original and transformed app.

A method z is added to the new class with the sequence of statements I,
local variables, and trap handlers of the original block. For every local variable
used in a statement in I, a parameter is added to the method signature of z.
We refer to the method that originally contains I as m. The original method
m is transformed to remove the sequence of instructions I and add a call to z
passing the corresponding local variables. The condition before executing I is
replaced in m by the hashed comparison. The original constant C is therefore
not present anymore. When the local variables get modified in method z, these
changes are not visible outside of z. To preserve semantic equivalence between
the original and transformed method m, z returns a list of the modified primitives
and references to m, allowing these changes to be reflected in the context of m.

Jump targets in Dalvik bytecode, for both conditional and unconditional
goto statements, must be contained within the same method as the jump state-
ment. As we have copied the jump statements from the original method to the
extracted class, the jump target is potentially not contained within the same
method anymore. To resolve this, an identifier for the jump target is returned
to the caller of z whenever a jump to a statement outside of z needs to be
performed. The jump is subsequently performed in the transformed method m,
after z has returned.

To pass all the discussed information from z back to m, a helper class
ResultWrapper is used.

Fig. 2 shows an example of the transformation of the control flow graph.
The nodes BB2 and BB3 in the figure are the basic blocks corresponding to the
instructions I. In the transformed method, BBNEW1 is responsible for decryp-
tion and calling method z. The inserted instructions responsible for restoring the
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modified primitives and handling return values are omitted in this illustration.
We can see that jumps from BB3 to BB2 persist after transformation, whereas
jumps from BB3 to BB4 and BB5 are removed from BB3 after transformation,
and instead return the corresponding jump identifier to BBNEW2 using the re-
turned ResultWrapper instance.

Some class members that were accessible in the original method are not
accessible anymore when called from the method z outside of the original class.
Java access modifiers are not only enforced during compile time, but also during
runtime. In the Dalvik Executable format, access modifier bit fields are stored
for classes, inner-classes, fields and methods in the access flags bit field.7 As
we are potentially accessing or modifying a field, or calling a method that the
newly generated class does not have access to, we need to statically set the access
modifier of the relevant classes and class members to public.

Adding Native Integrity Checks Integrity checking is performed in native
code which is called via the Java Native Interface (JNI). More precisely, the
extracted method z will call a native method to perform integrity checking.
Our implementation generates C++ code to be compiled to a shared object file.
For every native method added to the Jimple intermediate representation, we
write its corresponding method signature to the generated C++ source file. To
prevent an attacker from ignoring method calls to the shared library, we move
a statement from the extracted block I to the native code by emulating the
execution of the statement using the C++ JNI. The native program code is
then encrypted with a randomly chosen symmetric key stored in the encrypted
bytecode of z.

A statement w from the extracted block is chosen to be woven into the
native code. A static native method signature is added to a new Java class that
contains all the added native methods. Note that this Java class only contains a
list of method names, return type and parameters it accepts without providing
any direct implementation. This injected class is responsible for loading the
compiled shared object file that contains the native code for all blocks in its
class initialization method. The parameters of the native methods are set such
that all local variables needed to execute statement w in the native code and
a decryption key to decrypt the native code can be passed down from z to the
native method. The statement w is then removed from the extracted block, and
is instead substituted by a static invocation of the native method, passing the
local variables referenced by w and a randomly chosen decryption key k used
to decrypt the native code. This key gets decrypted at runtime together with
the bytecode of the extracted class. The generated native code consists of code
that asserts the integrity of the running app and the JNI method calls needed
to emulate the effect of the woven code w.

The execution of the generated native methods consist of three parts:

1. Decryption of the native code using the supplied key, passed as an argument
to the native method.

7 https://source.android.com/devices/tech/dalvik/dex-format

https://source.android.com/devices/tech/dalvik/dex-format
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2. Validating the integrity of the installed Android application.
3. Executing statement w using JNI to preserve semantic equivalence between

the transformed and original application.

We write the code to be encrypted (all but the decryption procedure) to
a dedicated function that will be decrypted at runtime. We can use a function
pointer to obtain the memory location of the function that needs to be decrypted
in the context of the decryption routine with the supplied key that is passed as
an argument. Before decrypting the instructions that are located within the text
segment, we must ensure that the memory pages where the decrypted instruc-
tions will be written to are marked as writable. Note that as the decryption of
the instructions are performed in-place, the memory locations of the encrypted
and decrypted instructions are the same. As specified by the p flags field in the
ELF header of the compiled shared object file, the text segment is by default
marked as readable and executable. Thus, the memory pages that contain the
encrypted instructions are first marked as writable using the mprotect system
call. We mark the relevant memory pages as writable in preparation for de-
crypting the instructions in-place. Encryption and decryption is performed with
a stream cipher, as we want to preserve the length of instructions in the ELF
binary so we can statically encrypt during the transformation phase in-place,
and decrypt during runtime in-place. We decided to use AES-128 in CTR mode,
which turns the block cipher into a usable stream cipher for our purpose. Each
byte to be decrypted is XORed with the byte generated by the stream cipher
based on the chosen key.

After decrypting the instructions, the permissions of the memory pages can
be restored to readable and executable for security reasons. A static boolean
within each generated method is set to indicate that the code has already been
decrypted such that the instructions are only decrypted once.

After the native code has been decrypted, the instruction pointer enters the
instructions that were previously encrypted. We validate the integrity of the
running application by obtaining the path to the APK file that contains the
code of the currently running app. We can obtain this path by invoking the
Android PackageManager binary, located at /system/bin/pm when supplying it
with the package name of the currently running application. We compute hashes
of parts of the files within the APK archive to verify its integrity.

Each generated native method computes and compares the hash of a section
of a file with the precomputed hash that was determined statically during the
transformation procedure. At this point in the transformation process, we are
generating C/C++ code for the native library. This implies that we can stati-
cally compute the hash of every file that will be bundled with the APK, except
for the shared library file itself and files added after compilation such as the
developer’s code signature. Note that we can also assert integrity of the devel-
oper’s certificate file, which might be a good choice when all applications signed
by this certificate are trusted by the developer. If the hashes match, the woven
statement w is executed to ensure correctness of the transformed application. If
the hashes do not match, we execute our response mechanism. In the current
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implementation a null-pointer is dereferenced, such that a segmentation fault is
raised. An alternative to this would be to also execute a JNI call, but instead
of emulating the same effect as w, we could randomly invoke a Java method
with random parameters or launch a new activity that is not supposed to be
launched under normal circumstances in order to interrupt the normal behavior
of the application.

As the symmetric key used to encrypt and decrypt the native code is known
during the transformation phase, we statically encrypt the relevant code sections
after compilation using the offsets of the functions to be encrypted. Non-static
functions have external linkage, and are contained in the symbol table. The
symbol table contains a mapping between the symbolic names and their offsets
within the compiled binary. We encode and store the symmetric key in the name
of the function before compilation (with C linkage to prevent function name
mangling) such that both the offset to start encrypting at and key to encrypt are
known when reading the symbol table of the compiled binary. After compilation,
we can thus easily encrypt the relevant sections by reading the keys and offsets
in the ELF header with the nm utility. After encrypting the instructions, we strip
the keys from the symbol table with the strip utility so we do not leak the key
used to encrypt the native code to the attacker.

5 Security Analysis

The goal of the system is to make it as difficult as possible for the attacker to
circumvent the added repackaging protection. In general, removing all encrypted
blocks and restoring the woven code or bypassing the detection code is sufficient
to thwart the protection scheme. We aim to make it harder for an attacker to
circumvent this scheme than to reimplement the app from scratch.

Static Attacks An attacker may try to remove the protection by statically
examining and modifying the code of the protected Android app. The encrypted
blocks in the bytecode and native code can easily be detected. However, re-
moval of these sections would lead to an inconsistent state at runtime, and most
likely crash the app. The attacker is forced to decrypt the encrypted code. For
each block, the decryption key can be derived from the replaced if-condition
if(H(v) == H c) {...} by inverting the one-way hash function.

When a brute force approach is used, the attacker has to try each value from
the domain of the variable v. For primitives in Dalvik bytecode, the domain
can be as large as 264 in the case for long or double variables. Therefore, 263

hash operations and comparisons have to be computed on average to obtain the
correct key. Note that in practice, the distribution of such constant values are
not uniformly random (see Fig. 3), which can be advantageous for the attacker.

Dynamic Attacks The attacker can not only analyze the protected application
statically, but can also transform the protected application. This enables the



Protecting Android Apps from Repackaging Using Native Code 11

attacker to perform more complex attacks. Code can be injected that can perform
code analysis or change the behavior of the application at runtime.

The challenge of finding the correct encryption key can be solved without
a lot of effort when considering a dynamic attack in which the virtual method
invocation that passes the decrypted contents to the class loader is hooked: the
method invocation can be modified by an attacker such that its arguments are
passed to an arbitrary method. In this newly injected method, the attacker can
tamper with the decrypted Dalvik bytecode at runtime. Additionally, the at-
tacker can determine the decryption key for the current encrypted block. Since
these encrypted blocks are present in different locations in the bytecode, the
attacker has to find enough execution traces to decrypt all code blocks to com-
pletely remove the applied protections.

As discussed in Section 3, the repackaging protection code is inserted into
the native shared libraries, woven together with parts of the original code of the
application. The proposed protection is specifically designed in such a way that
bytecode analysis is not sufficient to bypass the protections. Combining appli-
cation code and integrity checks in the native code requires the attacker to also
analyze native code at runtime. Dalvik bytecode allows the attacker to deduce
a lot of semantic information due to the verbosity of the Dalvik instructions.
Useful information such as variable types or which type of method invocation
is performed (private method invocation, interface invocation, class initializer
invocation, ...) can be extracted. Machine code, on the other hand, is more diffi-
cult to analyze. The usage of pointer arithmetic, self-modifying machine code [7],
complex machine instructions or even undocumented instructions8 can signifi-
cantly increase the complexity of the analysis. With our approach of forcing
attackers to analyze native code dynamically, code obfuscation frameworks op-
erating on native code [5] can be used instead of being limited to bytecode-level
transformations.

The integrity of the running application is verified by making use of the C
standard library to obtain a file handle of the APK file that corresponds to
the running application. The methods that provide the file handle and read
its content are provided by Bionic, Android’s C library. An attacker might try
to hook these library functions by statically overwriting pointers in the Global
Offset Table (GOT) or Procedure Linkage Table (PLT) of the ELF binary, which
are tables filled by the dynamic linker that contains offsets to procedures of
shared libraries. Modifying the relocation information for dynamically linked
Bionic functions gives the attacker control over the libraries that are loaded by
the dynamic linker. In this way, fopen() and read() calls can be hooked. This
attack could easily be mitigated by not relying on any shared library, but instead
only on system calls by passing interrupt vectors to the kernel using an interrupt
signal.

Another possible attack scenario involves sandboxing of the protected app
in a host app, where the attacker can potentially modify the behavior of the

8 https://github.com/xoreaxeaxeax/sandsifter/blob/master/references/domas
breaking the x86 isa wp.pdf

https://github.com/xoreaxeaxeax/sandsifter/blob/master/references/domas_breaking_the_x86_isa_wp.pdf
https://github.com/xoreaxeaxeax/sandsifter/blob/master/references/domas_breaking_the_x86_isa_wp.pdf
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Fig. 3. Distribution of 32-bit constant values encountered during transformation. Apps
are taken from the list of most popular applications on Google Play. Constants within
the interval [−9, 9] are ignored.

sandboxed application by modifying its memory at runtime, or by running ma-
licious code in a separate thread unbeknownst to the sandboxed app. To be
resilient against such attacks, the repackaging protection scheme should detect
whether the application is being executed with sandboxing or debugging. This
can often be achieved by comparing the result of system calls at runtime with
expected values. Another work [1] achieves sandboxing by making use of the
ptrace system call, often used by debugging tools. The application that is being
sandboxed can detect that it is being traced using several techniques such as
spawning a subprocess that traces itself, preventing itself from being traced by
other processes because a process may only be traced by a single process.

These countermeasures raise the difficulty of the attack, but are no permanent
solution. This problem can be reduced to solving the anti-debugging or anti-
sandboxing problem. Solving this problem lies outside of the scope of this work,
but is actively being researched [8].

6 Evaluation

We evaluate the proposed repackaging protection system using a collection of
free apps downloaded from Google Play and F-Droid.9

As mentioned in Section 5, the distribution of the constant values in the trans-
formed conditions is important for the resilience of the system against brute-force
attacks. Fig. 3 shows the observed distribution of the constants. This serves as
an indication of how much effort an attacker needs to invest to statically attack
the protection scheme. We can observe that some apps have the same constant
values as others, which might help an attacker guess the encryption keys. Note
that if a library is being utilized by an app, the constants appearing in the
bytecode of that library will be shared amongst all apps which include it.

9 https://f-droid.org/en/

https://f-droid.org/en/
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Fig. 4. Number of unique constant values encountered during transformation. Apps
are taken from the same sample of apps as Fig. 3.

The unique number of constants within an app is shown in Fig. 4. This fig-
ure shows how many blocks can be utilized for transformation. We also observe
that for a few apps, no constants have been found. This might be due to An-
droid packers interfering with the static analysis process of finding candidate
blocks because the original bytecode has been compressed or encrypted [16].
Additionally, some code obfuscators might artificially increase the number of
constants in if-statements which we suspect to be the case for Facebook Mes-
senger (com.facebook.orca, app number 23 in Fig. 3 and Fig. 4).

We have measured the runtime overhead when executing a transformed block
as opposed to executing the original code block. This overhead was measured on
an LG Nexus 5X running the factory image of Android 8.1.0. For each encrypted
block, we observed an overhead of approximately 27 ms upon first execution and
approximately 3 ms for subsequent executions as shown in Fig. 5. Most of the
overhead occurs when an encrypted code block is executed for the first time
which involves decrypting the Dalvik bytecode, invoking the class loader to load
the decrypted class and decrypting the native code.

The overhead of a sample of apps is shown in Table 1. Each of the apps
were given random input for 2 minutes using Monkey.10 The number of blocks
encountered and executed at runtime for the first time are referred to as block
misses. Blocks that are executed subsequently, are called block hits. The total
overhead per app is computed by multiplying block misses and block hits by
the average measured overhead of that type in Fig. 5. The overhead noticed by
the user in practice may be lower since multiple threads may execute different
blocks at the same time.

Fig. 6 shows how over time, different code paths for an app are taken when
providing random input, and thus encountering new transformed blocks which
need to be decrypted at runtime. We observe that initially the rate of unique
blocks encountered is high, but declines over time as more blocks are already
decrypted and loaded into memory.

10 https://developer.android.com/studio/test/monkey

https://developer.android.com/studio/test/monkey
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Table 1. Performance overhead after transformation

# misses # hits total (s) total (%)

com.aappstech.flpmaps 17 415 1.704 1.42
com.takeaway.android 34 1232 3.939 3.28
org.mozilla.firefox 33 3874 12.513 10.42
com.whatsapp 12 698 2.418 2.01
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Fig. 5. Boxplot of runtime overhead per encountered encrypted block. The first two
boxes illustrate the overhead when a block is first encountered. When a code block is
reached that already has been decrypted (referred to as a hit), the overhead is much
smaller, as shown in the last two boxes.

We have encountered some issues with the transformation of a portion of
apps. An Android APK can contain native libraries for a set of ABIs. Some of
the APKs are only provided with native libraries of an ABI that is deprecated in
the current NDK toolchain. Some of those are not available in the current NDK
version. These apps can therefore not be transformed with our implementation.
The developer has to provide a set of shared object files whose ABIs are not
deprecated.

We are using the third-party library Soot to perform our transformation on
the Jimple intermediate representation, which has some issues11 when trans-
forming some of the applications from the collection.

We have built a testing workflow which compares the execution of a Java
source file before and after transformation. This helped us to discover issues
with the implementation and resolve them fairly quickly. Many apps on Google
Play are obfuscated with ProGuard, which makes debugging issues with our
implementation and Soot’s time consuming.

We have evaluated how many apps from our collection are successfully trans-
formed and do not experience unwanted side-effects such as app crashes or
thrown exceptions: We have randomly selected 200 apps as a sample from the
F-Droid marketplace. 2% of the sample could not be transformed (e.g. when
the original APK only contains native code with deprecated ABIs). 7.5% of the

11 https://github.com/Sable/soot/issues/969

https://github.com/Sable/soot/issues/969


Protecting Android Apps from Repackaging Using Native Code 15

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  20  40  60  80  100  120

U
ni

qu
e 

bl
oc

ks
 e

nc
ou

nt
er

ed

Time (s)

com.aappstech.flpmaps
com.takeaway.android

org.mozilla.firefox
com.whatsapp

Fig. 6. Unique blocks encountered while running a few apps from Google Play while
providing a random input every 100 ms for 2 minutes using Monkey.

sample introduced new exceptions at runtime after transformation. We also eval-
uated the 100 most popular apps from Google Play. 12% of the sample could not
be transformed, and 41% of the sample introduced new exceptions at runtime
after transformation. We compared the exceptions thrown by the original app to
those thrown by the app after transformation. We made use of Monkey to send
a pseudo-random stream of input events to each original and transformed app.

7 Conclusion

In this work, we discussed the limitations of recent work on repackaging pro-
tection embedded in apps. We proposed a complete architecture to protect an
app from being repackaged by unauthorized actors based on native code. The
evaluation shows that the proposed approach only has a limited impact on the
performance of the protected apps.

The strength of the system against brute-force attacks depends on the dis-
tribution of constants in the candidate blocks. Approaches to insert artificial
constants which are compared at runtime to a variable could be inserted to
increase the number of encrypted blocks.

This work has focused on a repackaging detection architecture, and shifted
the integrity problem from the bytecode level down to the machine-code level.
Integrity of the compiled native code in our implementation is important because
it is responsible for triggering the response behavior upon detecting an integrity
mismatch. As discussed in Section 2, integrity protection of native code has
been discussed by the research community in depth. Because of the complexity
and difficulty to analyze machine code, circumventing the proposed protection is
more difficult than protection based on bytecode. The attacker can either brute-
force all the encryption keys and then analyze the machine code or the analysis
has to be performed at runtime.
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