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Introductory comments

• Way too many slides...
– But don’t worry, we won’t do all of them

• Heterogeneous audience
– Some students, some industry folks, some famous professors, …
– I assume everybody knows 101 of sensor networking
– Instead of a real introduction, I will show some “opinion” slides

• This tutorial has a quite narrow definition of the term “algorithm”

• An algorithm is an algorithm only if it features an analytical 
proof of efficiency. 

• If performance is proved by simulation only, we call it a heuristic.
• We look a distributed algorithms mostly.
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Algorithm Classes

Global Algorithm   

Distributed Algorithm

Local   Localized

• For some problems we don’t even
understand the non-distributed case 

• “Reiceive msg X Æ Transmit msg Y”
• Every algo can be made distributed 

+ Node can only 
communicate with 
neighbors k times.

+ Strict time bounds
– Often synchronous

Unstructured

+ Often simple
– Nodes can wait for 

neighbor actions
– Often linear chain 

of causality

+ Implement MAC 
layer yourself; you 
control everything

– Often complicated
– Argumentation 

overhead
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Some algorithmic communication models

• Some of them we will see in this lecture, most of them not…
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What has been studied?

Link Layer 

Network Layer

Services

Theory/Models

• MAC Layer and Coloring
• Topology and Power Control 
• Interference and Signal-to-Noise-Ratio 
• Clustering (Dominating Sets, etc.)
• Deployment (Unstructured Radio Networks) 
• New Routing Paradigms (e.g. Link Reversal)
• Geo-Routing 
• Broadcast and Multicast 
• Data Gathering 
• Location Services and Positioning 
• Time Synchronization
• Models and Mobility 
• Lower Bounds for Message Passing
• Selfish Agents, Economic Aspects, (Security)
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What has received most attention?

• MAC Layer and Coloring
• Topology and Power Control 
• Interference and Signal-to-Noise-Ratio 
• Clustering (Dominating Sets, etc.)
• Deployment (Unstructured Radio Networks) 
• New Routing Paradigms (e.g. Link Reversal)
• Geo-Routing 
• Broadcast and Multicast (“energy-efficient BC”)
• Data Gathering 
• Location Services and Positioning 
• Time Synchronization 
• Models and Mobility 
• Lower Bounds for Message Passing
• Selfish Agents, Economic Aspects, Security

What is really 
important?!? 

(Opinion…)
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Philosophy

• Understand algorithmic fundamentals of sensor networks.
– See some algorithms with implementation appeal

• Find models that capture reality
– No random distribution
– No random mobility

• Show a few examples
– Mix between well-studied and “important” topics

• More material
– Reading list on www.dcg.ethz.ch
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• Geometric routing
• Greedy geometric routing

• Euclidean and planar graphs
• Unit disk graph
• Gabriel graph and other planar graphs

• Face Routing
• Greedy and Face Routing

• Geometric Routing without Geometry

Overview – Geometric Routing
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Geometric (geographic, directional, position-based) routing 

• …even with all the tricks there will be flooding every now and then. 

• In this chapter we will assume that the nodes are location aware
(they have GPS, Galileo, or an ad-hoc way to figure out their 
coordinates), and that we know where the destination is.

• Then we
simply route
towards the
destination

s

t
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Geometric routing 

• Problem: What if there is no path in the right direction?

• We need a guaranteed way to reach a destination even in the case
when there is no directional path…

• Hack: as in flooding
nodes keep track
of the messages
they have already
seen, and then they
backtrack* from there

*backtracking? Does this 
mean that we need a stack?!?

s

t

?
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Alice

Bob

Geo-Routing: Strictly Local

???
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Greedy Geo-Routing?

Alice

Bob
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Greedy Geo-Routing?

Carol

Bob

?
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What is Geographic Routing?

• A.k.a. geometric, location-based, position-based, etc.

• Each node knows its own position and position of neighbors
• Source knows the position of the destination
• No routing tables stored in nodes!

• Geographic routing makes sense
– Own position: GPS/Galileo, local positioning algorithms
– Destination: Geocasting, location services, source routing++
– Learn about ad-hoc routing in general
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Greedy routing

• Greedy routing
looks promising.

• Maybe there is a
way to choose the
next neighbor
and a particular
graph where we 
always reach the
destination?
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Examples why greedy algorithms fail

• We greedily route to the neighbor
which is closest to the destination:
But both neighbors of x are
not closer to destination D

• Also the best angle approach
might fail, even in a triangulation:
if, in the example on the right,
you always follow the edge with
the narrowest angle to destination
t, you will forward on a loop
v0, w0, v1, w1, …, v3, w3, v0, …

Roger Wattenhofer, EWSN 2006 Tutorial 0/20

Euclidean and Planar Graphs 

• Euclidean: Points in the plane, with coordinates
• Planar: can be drawn without “edge crossings” in a plane

• Euclidean planar graphs (planar embeddings) simplify geometric 
routing.
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Unit disk graph

• We are given a set V of nodes in the plane (points with coordinates).
• The unit disk graph UDG(V) is defined as an undirected graph (with 

E being a set of undirected edges). There is an edge between two 
nodes u,v iff the Euclidean distance between u and v is at most 1.

• Think of the unit distance as the maximum transmission range.

• We assume that the unit disk graph 
UDG is connected (that is, there is a 
path between each pair of nodes)

• The unit disk graph has many edges.
• Can we drop some edges in the UDG

to reduced complexity and interference?

Roger Wattenhofer, EWSN 2006 Tutorial 0/22

Planar graphs

• Definition: A planar graph is a graph 
that can be drawn in the plane such 
that its edges only intersect at their 
common end-vertices.

• Kuratowski’s Theorem: A graph is planar iff it contains no subgraph
that is edge contractible to K5 or K3,3.

• Euler’s Polyhedron Formula: A connected 
planar graph with n nodes, m edges, and f
faces has n – m + f = 2.

• Right: Example with 9 vertices,14 edges, 
and 7 faces (the yellow “outside” face is
called the infinite face)

• Theorem: A simple planar graph with
n nodes has at most 3n–6 edges, for n≥3.
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Gabriel Graph

• Let disk(u,v) be a disk with diameter (u,v)
that is determined by the two points u,v. 

• The Gabriel Graph GG(V) is defined 
as an undirected graph (with E being 
a set of undirected edges). There is an 
edge between two nodes u,v iff the 
disk(u,v) including boundary contains no 
other points.

• As we will see the Gabriel Graph 
has interesting properties.

disk(u,v)

v

u
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Delaunay Triangulation

• Let disk(u,v,w) be a disk defined by
the three points u,v,w. 

• The Delaunay Triangulation (Graph) 
DT(V) is defined as an undirected 
graph (with E being a set of undirected 
edges). There is a triangle of edges 
between three nodes u,v,w iff the 
disk(u,v,w) contains no other points.

• The Delaunay Triangulation is the
dual of the Voronoi diagram, and
widely used in various CS areas;
the DT is planar; the distance of a
path (s,…,t) on the DT is within a 
constant factor of the s-t distance.

disk(u,v,w)

v

u
w
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Other planar graphs

• Relative Neighborhood Graph RNG(V)

• An edge e = (u,v) is in the RNG(V) iff
there is no node w with (u,w) < (u,v) 
and (v,w) < (u,v).

• Minimum Spanning Tree MST(V)

• A subset of E of G of minimum weight
which forms a tree on V.

vu
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Properties of planar graphs

• Theorem 1:

• Corollary:
Since the MST(V) is connected and the DT(V) is planar, all the 
planar graphs in Theorem 1 are connected and planar.

• Theorem 2:
The Gabriel Graph contains the Minimum Energy Path
(for any path loss exponent α ≥ 2)

• Corollary:
GG(V) ∩ UDG(V) contains the Minimum Energy Path in UDG(V)

⊆ ⊆ ⊆MST( ) RNG( ) GG( ) DT( )V V V V
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Routing on Delaunay Triangulation?

• Let d be the Euclidean 
distance of source s and
destination t

• Let c be the sum of the
distances of the links of
the shortest path in the
Delaunay Triangulation

• It was shown that c = Θ(d)

• Three problems:
1) How do we find this best route in the DT? With flooding?!?
2) How do we find the DT at all in a distributed fashion?
3) Worse: The DT contains edges that are not in the UDG, that is, 

nodes that cannot receive each other are “neighbors” in the DT

s t
d
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Breakthrough idea: route on faces

• Remember the
faces…

• Idea: 
Route along the 
boundaries of 
the faces that 
lie on the 
source–destination 
line
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Face Routing

0. Let f be the face 
incident to the source 
s, intersected by (s,t)

1. Explore the boundary 
of f; remember the 
point p where the 
boundary 
intersects with (s,t) 
which is nearest to t; 
after traversing 
the whole 
boundary, go back 
to p, switch the face, 
and repeat 1 until 
you hit destination t.
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Face Routing Works on Any Graph

s

t
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• All necessary information is stored in the message
– Source and destination positions
– Point of transition to next face

• Completely local:
– Knowledge about direct neighbors‘ positions sufficient
– Faces are implicit

• Planarity of graph is computed locally (not an assumption)
– Computation for instance with Gabriel Graph

Face Routing Properties

“Right Hand Rule”
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Face routing is correct

• Theorem: Face routing terminates on any simple planar graph in 
O(n) steps, where n is the number of nodes in the network

• Proof: A simple planar graph has at most 3n–6  edges. You leave 
each face at the point that is closest to the destination, that is, you 
never visit a face twice, because you can order the faces that 
intersect the source—destination line on the exit point. Each edge is 
in at most 2 faces. Therefore each edge is visited at most 4 times. 
The algorithm terminates in O(n) steps.
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Is there something better than Face Routing?

• How to improve face routing? A proposal called “Face Routing 2”

• Idea: Don’t search a whole face for the best exit point, but take the 
first (better) exit point you find. Then you don’t have to traverse huge 
faces that point away from the destination.

• Efficiency: Seems to be practically more efficient than face routing. 
But the theoretical worst case is worse – O(n2).

• Problem: if source and destination are very close, we don’t want to 
route through all nodes of the network. Instead we want a routing 
algorithm where the cost is a function of the cost of the best route in 
the unit disk graph (and independent of the number of nodes).
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Face Routing

• Theorem: Face Routing reaches destination in O(n) steps
• But: Can be very bad compared to the optimal route
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Bounding Searchable Area

ts
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Adaptive Face Routing (AFR)

• Idea: Use
face routing
together with
ad hoc routing
trick 1!!

• That is, don’t
route beyond
some radius
r by branching
the planar graph
within an ellipse
of exponentially
growing size.
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AFR Example Continued

• We grow the
ellipse and
find a path
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AFR Pseudo-Code

0. Calculate G = GG(V) ∩ UDG(V)
Set c to be twice the Euclidean source—destination distance.

1. Nodes w ∈ W are nodes where the path s-w-t is larger than c. Do 
face routing on the graph G, but without visiting nodes in W. (This is 
like pruning the graph G with an ellipse.) You either reach the 
destination, or you are stuck at a face (that is, you do not find a 
better exit point.)

2. If step 1 did not succeed, double c and go back to step 1.

• Note: All the steps can be done completely locally,
and the nodes need no local storage.
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The Ω(1) Model

• We simplify the model by assuming that nodes are sufficiently far 
apart; that is, there is a constant d0 such that all pairs of nodes have 
at least distance d0. We call this the Ω(1) model.

• This simplification is natural because nodes with transmission range 
1 (the unit disk graph) will usually not “sit right on top of each other”.

• Lemma: In the Ω(1) model, all natural cost models (such as the 
Euclidean distance, the energy metric, the link distance, or hybrids 
of these) are equal up to a constant factor.

• Remark: The properties we use from the Ω(1) model can also be 
established with a backbone graph construction.
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Analysis of AFR in the Ω(1) model

• Lemma 1: In an ellipse of size c there are at most O(c2) nodes. 

• Lemma 2: In an ellipse of size c, face routing terminates in O(c2) 
steps, either by finding the destination, or by not finding a new face.

• Lemma 3: Let the optimal source—destination route in the UDG 
have cost c*. Then this route c* must be in any ellipse of size c* or 
larger.

• Theorem: AFR terminates with cost O(c*2).
• Proof: Summing up all the costs until we have the right ellipse size 

is bounded by the size of the cost of the right ellipse size.
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Lower Bound

• The network on the right
constructs a lower bound.

• The destination is the
center of the circle, 
the source any node
on the ring.

• Finding the right chain
costs Ω(c*2), 
even for randomized
algorithms

• Theorem: 
AFR is asymptotically optimal.
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Non-geometric routing algorithms

• In the Ω(1) model, a standard flooding algorithm enhanced with trick 
1 will (for the same reasons) also cost O(c*2). 

• However, such a flooding algorithm needs O(1) extra storage at 
each node (a node needs to know whether it has already forwarded
a message).

• Therefore, there is a trade-off between O(1) storage at each node or 
that nodes are location aware, and also location aware about the
destination. This is intriguing.
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closest to destination

GOAFR – Greedy Other Adaptive Face Routing
• Back to geometric routing…
• AFR Algorithm is not very efficient (especially in dense graphs)
• Combine Greedy and (Other Adaptive) Face Routing

– Route greedily as long as possible
– Circumvent “dead ends” by use of face routing
– Then route greedily again
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GOAFR+

• GOAFR+ improvements:
– Early fallback to greedy routing
– (Circle centered at destination instead of ellipse)
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Early Fallback to Greedy Routing?

• We could fall back to greedy routing as soon as we are closer to t 
than the local minimum

• But:

• “Maze” with Ω(c*2) edges is traversed Ω(c*) times → Ω(c*3) steps
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GOAFR – Greedy Other Adaptive Face Routing

• Early fallback to greedy routing:
– Use counters p and q. Let u be the node where the exploration of the 

current face F started
• p counts the nodes closer to t than u
• q counts the nodes not closer to t than u

– Fall back to greedy routing as soon as p > σ · q (constant σ > 0)

Theorem: GOAFR is still asymptotically worst-case optimal…
…and it is efficient in practice, in the average-case. 

• What does “practice” mean?
– Usually nodes placed uniformly at random
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Average Case

• Not interesting when graph not dense enough
• Not interesting when graph is too dense
• Critical density range (“percolation”)

– Shortest path is significantly longer than Euclidean distance

too sparse too densecritical density
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• Shortest path is significantly longer than Euclidean distance

• Critical density range mandatory for the simulation of any routing 
algorithm (not only geographic)

Critical Density: Shortest Path vs. Euclidean Distance
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Randomly Generated Graphs: Critical Density Range
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Simulation on Randomly Generated Graphs

AFR

GOAFR+
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A Word on Performance

• What does a performance of 3.3 in the critical density range mean?

• If an optimal path (found by Dijkstra) has cost c, 
then GOAFR+ finds the destination in 3.3·c steps.

• It does not mean that the path found is 3.3 times as long as the 
optimal path! The path found can be much smaller…

• Remarks about cost metrics 
– In this lecture “cost” c = c hops
– There are other results, for instance on distance/energy/hybrid metrics
– In particular: With energy metric there is no competitive geometric 

routing algorithm
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Energy Metric Lower Bound

Example graph: k “stalks”, of which only one leads to t
– any deterministic (randomized)

geometric routing algorithm A has
to visit all k (at least k/2) “stalks”

– optimal path has constant cost c*

(covering a constant distance at
almost no cost)

w’
t

d

d
u1 w s

1

v1
1<D<2<

→ With energy metric there is no competitive geometric routing algorithm
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GOAFR: Summary

ts

��
��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��
������

����
����
����

����
����
����
����

s u

C

v

w t

F

Greedy 
Routing

Face 
Routing

Adaptive 
Face Routing

GOAFR+

Average-case efficiency Worst-case optimality

“Practice” “Theory”

Roger Wattenhofer, EWSN 2006 Tutorial 0/54

Routing with and without position information

• Without position information:
– Flooding
Æ does not scale

– Distance Vector Routing
Æ does not scale

– Source Routing 
• increased per-packet overhead 
• no theoretical results, only simulation

• With position information:
– Greedy Routing 

Æmay fail: message may get stuck in a “dead end”
– Geometric Routing
Æ It is assumed that each node knows its position
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Obtaining Position Information

• Attach GPS to each sensor node
– Often undesirable or impossible
– GPS receivers clumsy, expensive, and energy-inefficient

• Equip only a few designated nodes with a GPS
– Anchor (landmark) nodes have GPS
– Non-anchors derive their position through communication

(e.g., count number of hops to different anchors)

A

Ame

Anchor density determines

quality of solution
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What about no GPS at all?

• In absence of GPS-equipped anchors...
Æ ...nodes are clueless about real coordinates.

• For many applications, real coordinates are not necessary
Æ Virtual coordinates are sufficient

90 44' 55" East
470 30' 19" North 

90 44' 56" East
470 30' 19" North

90 44' 57" East
470 30' 19" North 

90 44' 58" East
470 30' 19" North 

(0,0)

(1,0)

(1,1)

(2,1)

real coordinates virtual coordinates

vs.
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What are „good“ virtual coordinates?

• Given the connectivity information for each node and knowing the 
underlying graph is a UDG find virtual coordinates in the plane 
such that all connectivity requirements are fulfilled, i.e. find a 
realization (embedding) of a UDG:
– each edge has length at most 1
– between non-neighbored nodes the distance is more than 1

• Finding a realization of a UDG from connectivity information only is 
NP-hard... 
– [Breu, Kirkpatrick, Comp.Geom.Theory 1998] 

• ...and also hard to approximate
– [Kuhn, Moscibroda, Wattenhofer, DIALM 2004]
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Geometric Routing without Geometry

• For many applications, like routing, finding a realization of a UDG is 
not mandatory

• Virtual coordinates merely as infrastructure for geometric routing
Æ Pseudo geometric coordinates:

– Select some nodes as anchors: a1,a2, ..., ak

– Coordinate of each node u is its hop-distance to all anchors: 
(d(u,a1),d(u,a2),..., d(u,ak))

• Requirements:
– each node uniquely identified: Naming Problem
– routing based on (pseudo geometric) coordinates possible: Routing 

Problem

(0) (1) (2) (3) (4)
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Pseudo-geometric routing in the grid: Naming

(4)

(4)

(4)

(4)

(4)

Anchor 1 Anchor 2

(4,4)

(4,2)

(4,6)

(4,8)

(4,10)
Lemma: The naming problem

in the grid can be solved
with two anchors.

[R.A. Melter and I. Tomescu, 
Comput. Vision, Graphics. 
Image Process., 1984]:
landmarks in graphs
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Pseudo-geometric routing in the grid: Routing

(4,10)

Anchor 1 Anchor 2

(6,4)

(5,11)

(3,9)

(5,9) (6,8)

(5,7)

(7,7)

(6,6)

(5,5)

(6,10)

(4,8)

(7,9)

Rule: pass message
to neighbor which
is closest to 
destination

Lemma: The routing problem
in the grid can be solved
with two anchors.
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Problem: UDG is usually not a grid

k

• Recursive construction 
of a unit dist tree (UDT) 
which needs Ω(n) anchors 
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Pseudo-geometric routing in the UDT: Naming

• Leaf-siblings can only be distinguished if one of them is an anchor:

(a,b,c,...)

(a+1,b+1,c+1,...)(a+1,b+1,c+1,...)
Anchor k+1

Anchor 1..Anchor k

Lemma: in a unit disk tree with n nodes
there are up to Θ(n) leaf-siblings. 
That is, we need to Θ(n) anchors.
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Pseudo-geometric routing in the ad hoc networks

• Naming and routing in grid quite good, in previous UDT example
very bad

• Real-world ad hoc networks are very probable neither perfect grids
nor naughty unit disk trees

Truth is somewhere in 
between...

Roger Wattenhofer, EWSN 2006 Tutorial
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Overview

• Location Services & Routing
– Classification of location services
– Home based
– GLS
– MLS
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Location services

• Service that maps node names to (geographic) coordinates
– Should be distributed (no require for specialized hardware)
– Should be efficient

• Lookup of the position (or COA) of a mobile node
– Mobile IP: Ask home agent
– Home agent is determined through IP (unique ID) of MN
– Possibly long detours even though sender and receiver are close
– OK for Internet applications, where latency is (normally) low

• Other application: Routing in a MANET
– MANET: mobile ad hoc network
– No dedicated routing hardware
– Limited memory on each node: cannot store huge routing tables
– Nodes are mostly battery powered and have limited energy
– Nodes route messages, e.g. using georouting
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Home based georouting in a MANET

• How can the sender learn the current position of another node?
– Flooding the entire network is undesirable (traffic and energy overhead)

• Home based approach
– Similar to Mobile IP, each node has a home node, where it stores and 

regularly updates its current position
– The home is determined by the unique ID of the node t. One possibility 

is to hash the ID to a position pt and use the node closest to pt as home. 
– Thus, given the ID of a node, every node can determine the position of 

the corresponding home.

s t

ht
Home based routing
1. Route packet to ht, the home of 

the destination t
2. Read the current position of t
3. Route to t

pt
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Home based location service – how good is it?

• Visiting the home of a node might 
be wasteful if the sender and 
receiver happen to be close, but the 
home far away

• The routing stretch is defined as 

We want routing algorithms with low 
stretch.

• Simultaneous message routing and 
node movement might cause 
problems

• Can we do better?

t

ht

s
length of route

length of optimal routestretch := 

s t

pt

ht

pt
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Classification of location services

• Proactive
– Mobile node divulges its position to all nodes whenever it moves
– E.g. through flooding

• Reactive
– Sender searches mobile host only when it wants to send a message
– E.g. through flooding

• Hybrid
– Both, proactive and reactive.
– Some nodes store information about where a node is located
– Arbitrarily complicated storage structures
– Support for simultaneous routing and node mobility
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Location services: Lookup & Publish 

• Any node A can invoke to basic operations:

– Lookup(A, B): A asks for the position of B

– Publish(A, x, y): A announces its move from position x to y

• Open questions
– How often does a node publish its current position?
– Where is the position information stored?
– How does the lookup operation find the desired information?
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The Grid Location Service (GLS), Li et. al (2000)

• Cannot get reasonable stretch with one single home. Therefore, use 
several homes (location servers) where the node publishes its 
position.

• The location servers are selected based on a grid structure:
– The area in which the nodes are located is divided into squares

– All nodes agree on the lower left corner (0,0) and upper right corner 

(2M, 2M), which forms the square called level-M

– Recursively, each level-N square is split into 4 level-(N-1) squares

– The recursion stops for level-1
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The Grid

(0,0)

(2M,2M)

Level-M

Level-(M-1)

Level-1
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Addressing of nodes

• Unique IDs are generated for each node (e.g. by using a hash-
function)

• ID space (all possible hash values) is circular
• Every node can find a least greater node w.r.t. the ID space (the 

closest node)

• Example:
Let the ID space range from 1 to 99 and consider the IDs {3, 43, 80, 92}. 
Then, the least greater node with respect to the given ID space is 
3 → 43; 43 → 80; 80 → 92; 90 → 3
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Selecting location servers

• Each node A recruits location servers using the underlying grid:
– In each of the 3 level-1 squares that, along with A, make up a level-2 

square, A chooses the node closest to its own ID as location server. 
– The same selection process is repeated on higher level squares. 
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Example for node 92, 
which selects the nodes 
{23, 17, 11} on the level-1 
and {2, 3, 31} on level-2.
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Complete example
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Querying location of other nodes

• Lookup(A, B): Find a location server of node B
1. Node A sends the request (with georouting) to the node with ID closest 

to B for which A has location information
2. Each node on the way forwards the request in the same way
3. Eventually, the query reaches a 

location server of B, which 
forwards it to B.

Example: Send packet from 81 to 23
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Lookup Example
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Analysis of GLS

• Theorem 1: A query needs no more than k location query steps to 
reach a location server of the destination when the sender and 
receiver are colocated in a level-k square. 

• Theorem 2: The query never leaves the level-k square in which the 
sender and destination are colocated. 
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GLS has no worst case guarantees

• The lookup cost between two nodes might be arbitrarily high even
though the nodes are very close

• The publish cost might be arbitrarily high even though a node only 
moved a very short distance

• In sparse networks, routing to the location server may have worst 
case cost, while routing directly can be more efficient
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GLS and mobility

• Node crosses boundary line: what happens to the 
node’s role as location server? 
– Must redistribute all information in the old level
– Gather new information in the new level
– Publish cost is arbitrarily high compared to the 

moved distance

• A lookup happening in parallel with node 
movement might fail. Thus, GLS does not 
guarantee delivery for real concurrent systems, 
where nodes might move independently at any 
time.
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Improving GLS

• Goals for MLS

– Publish cost only depends on moved distance

– Lookup cost only depends on the distance between the sender 
and receiver

– Nodes might move arbitrarily at any time, even while other 
nodes issue lookup requests

– Determine the maximum allowed node speed under which MLS 
still guarantees delivery
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Location pointers (aka location servers)

• Difference to GLS:
– Only one location pointer (LP) per level (L) (GLS: 3 location servers)
– The location pointer only knows in which sub-level the node is located 

(GLS: the location server knows the exact position)

t
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LtM
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Location pointer & Notation

• Notation:
– Location pointer for node t on level-k 

– Level-k that contains node t

• The location pointers are placed depending on their ID, as in the 
home-based lookup system. 

• The position of         is obtained by hashing the ID of node t to a 
position in      . The location pointer is stored on the nearest nodes.

LPtk

Ltk

LPtk
Ltk
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Routing in MLS

• Routing from a node s to a node t consists of two phases: 

1. Find a location pointer 

2. Once a first location pointer is found on level-k, we know in 
which of the 4 sub-squares t is located and thus in which
t has published another location pointer             . 
Recursively, the message is routed towards location pointers on 
lower levels until it reaches the lowest level, from where it can 
be routed directly to t.

LPtk

Lk−1
LPtk−1
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Routing in MLS (2)

• When a node s wants to find a location pointer of a node t, it first 
searches in its immediate neighborhood and then extends the 
search area with exponential growing coverage.

– First, try to find a location pointer         in      or one of its 8 neighboring 
levels.

– Repeat this search on the next higher level until a         is found

• The lookup path draws a spiral-like shape 
with exponentially increasing radius until it 
finds a location pointer of t. 

• Once a location pointer is found, the lookup
request knows in which sub-square it can find 
the next location pointer of t.

LPt0 Ls0

LPtk

s
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Support for mobility in MLS

• A location pointer only needs to be 
updated when the node leaves the 
corresponding sub-square. 
– is OK as long as t remains in the 

shaded area. 
– Most of the time, only the closest few 

location pointers need to be updated due to 
mobility. 

• Not enough: If a node moves across a 
level boundary, many pointers need to be 
updated. E.g. a node oscillates between 
the two points a and b. 
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Lazy publishing

• Idea: Don’t update a level pointer         as long as t is still somewhat 
close to the level Lk where         points. 

• Breaks the lookup:            points to a level that does not contain 

LPtk
LPtk

LPti+2

LPti

LPti+1

t

LPti+1 LPti
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Lazy publishing with forwarding pointers

• No problem, add a forwarding pointer that indicates in which 
neighboring level the location pointer can be found.

LPti+2

LPti

LPti+1

t

FPti
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Concurrency in MLS

• Allowing for concurrent lookup requests and node mobility is 
somewhat tricky, especially the deletion of pointers.

• Note that a lookup request needs some time to travel between 
location pointers. The same holds for requests to create or delete 
location (or forwarding) pointers. 

• Example:
– A lookup request follows           , and 

node t moves as indicated
– t updates its        and             and

removes the        and the old        
– The lookup request fails if it arrives after

the        has been removed LPti

LPti+1

t

FPti

LPti

LPti+1

LPti LPti+1
FPti LPti

FPti
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Concurrency in MLS (2)

• No problem either: Instead of removing a location pointer or 
forwarding pointer, replace it with a temporary pointer that remains 
there for a short time until we are sure that no lookup request might 
arrive anymore on this outdated path.

• Similar to the forwarding pointer, a temporary pointer redirects a 
lookup to the neighbor level where the node is located. 

LPti+1

t

LPti

TPti TPti
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Properties of MLS

• Constant lookup stretch
– The length of the chosen route is only a constant longer than the 

optimal route
• Publish cost is O(d log d) where moved distance is d

– Even if nodes move considerably, the induced message overhead due 
to publish requests is moderate.

• Works in a concurrent setup
– Lookup requests and node movement might interleave arbitrarily

• Nodes might not move faster than 1/15 of the underlying routing 
speed
– We can determine the maximum node speed that MLS supports. Only if 

nodes move faster, there might arise situations where a lookup request 
fails. 
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MLS Conclusions

• It’s somewhat tricky to handle concurrency properly
– Use of temporary forwarding pointers

• MLS is the first location service that determines the maximum 
speed at which nodes might move
– Without the speed limitation, no delivery guarantees can be made!

• Drawbacks
– MLS utilizes an underlying routing algorithm that can deliver messages 

with constant stretch given the position of the destination

– MLS requires a relatively dense node population
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• Motivation
• Measurements
• Anchors
• Virtual Coordinates
• Heuristics
• Practice

Overview
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Motivation

• Why positioning?
– Sensor nodes without position information is often meaningless
– Heavy and/or costly positioning hardware
– Geo-routing

• Why not GPS (or Galileo)?
– Heavy, large, and expensive (as of yet)
– Battery drain
– Not indoors
– Accuracy?

• Solution: equip small fraction with GPS (anchors)

A

Ame
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Measurements

Distance estimation
• Received Signal Strength Indicator (RSSI)

– The further away, the weaker the received signal.
– Mainly used for RF signals.

• Time of Arrival (ToA) or Time Difference of Arrival (TDoA)
– Signal propagation time translates to distance.
– RF, acoustic, infrared and ultrasound.

Angle estimation
• Angle of Arrival (AoA)

– Determining the direction of propagation of a radio-frequency wave 
incident on an antenna array.

• Directional Antenna
• Special hardware, e.g., laser transmitter and receivers.
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Positioning (a.k.a. Localization)

• Task: Given distance or angle measurements or mere connectivity 
information, find the locations of the sensors.

• Anchor-based
– Some nodes know their locations, either by a GPS or as pre-specified.

• Anchor-free
– Relative location only. Sometimes called virtual coordinates.
– Theoretically cleaner model (less parameters, such as anchor density)

• Range-based
– Use range information (distance estimation).

• Range-free
– No distance estimation, use connectivity information such as hop count.
– It was shown that bad measurements don’t help a lot anyway.
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Trilateration and Triangulation

• Use geometry, measure the distances/angles to three anchors. 

• Trilateration: use distances
– Global Positioning System (GPS)

• Triangulation: use angles 
– Some cell phone systems

• How to deal with inaccurate 
measurements?
– Least squares type of approach
– What about strictly more than 

3 (inaccurate) measurements?
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Ambiguity Problems

• Same distances, different realization.

[J
ie

G
ao

]
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Continuous deformation, flips, etc.

[Jie Gao]

• Rigidity theory: Given a set of rigid bars connected by hinges, 
rigidity theory studies whether you can move them continuously.
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Simple hop-based algorithms

• Algorithm
– Get graph distance h to anchor(s)

– Intersect circles around anchors 
• radius = distance to anchor

– Choose point such that maximum error is minimal
• Find enclosing circle (ball) of minimal radius

• Center is calculated location

• In higher dimensions: 1 < d · h
– Rule of thumb: Sparse graph
Æ bad performance
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How about no anchors at all...?

• In absence of anchors...
Æ ...nodes are clueless about real coordinates.

• For many applications, real coordinates are not necessary
Æ Virtual coordinates are sufficient
Æ Geometric Routing requires only virtual coordinates

• Require no routing tables
• Resource-frugal and scalable

s

d
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Virtual Coordinates

• Idea: 
Close-by nodes have similar coordinates
Distant nodes have very different coordinates

Æ Similar coordinates imply physical proximity!

• Applications
– Geometric Routing
– Locality-sensitive queries
– Obtaining meta information on the network
– Anycast services („Which of the service nodes is closest to me?“)
– Outside the sensor network domain: e.g., Internet mapping
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Model

• Unit Disk Graph (UDG) to model
wireless multi-hop network
– Two nodes can communicate iff

Euclidean distance is at most 1

• Sensor nodes may not be capable of
– Sensing directions to neighbors
– Measuring distances to neighbors

• Goal: Derive topologically correct coordinate information from
connectivity information only. 
– Even the simplest nodes can derive connectivity information

1

u

v
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Context

Distance/Angle

information

Connectivity

information only

With Anchors

No Anchors

Positioning

(Solution quality depends on anchor density)

Distance/Angle based

Virtual Coordinates

Connectivity based

Virtual Coordinates

next
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Virtual Coordinates UDG Embedding

• Given the connectivity information for each node...
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• ...find a UDG embedding in the plane 
such that all connectivity requirements are
fulfilled! (Æ Find a realization of a UDG)

This problem is NP-hard!
(Simple reduction to UDG-recognition

problem, which is NP-hard)
[Breu, Kirkpatrick, Comp.Geom.Theory 1998]

...and knowing the underlying
graph is a UDG...
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UDG Approximation – Quality of Embedding

• Finding an exact realization of a UDG is NP-hard.
Æ Find an embedding r(G) which approximates a realization.

• Particularly,
Æ Map adjacent vertices (edges) to points which are close together.
Æ Map non-adjacent vertices („non-edges“) to far apart points. 

• Define quality of embedding q(r(G)) as:

Ratio between longest edge to shortest non-edge in the
embedding.

Let ρ(u,v) be the
distance between
points u and v in the
embedding. 
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UDG Approximation

• For each UDG G, there exists
an embedding r(G), such 
that, q(r(G)) · 1. 
(a realization of G)

• Finding such an embedding is NP-hard
• An algorithm ALG achieves approximation ratio α if for all unit disk

graphs G, q(rALG(G))· α.

• Example:
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r(q(G)) = 1.8 / 0.7 = 2.6 
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There is an algorithm which achieves an approximation ratio of                  
, n being the number of nodes in G. 

Some Results

• There are a few virtual coordinates algorithms
All of them evaluated only by simulation on random graphs

• In fact there is only one provable approximation algorithm

• Plus there are lower bounds on the approximability. 

There is no algorithm with approximation

ratio better than , unless P=NP.
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Approximation Algorithm: Overview

• Four major steps

1. Compute metric on MIS of input
graphÆ Spreading constraints
(Key conceptual difference to 
previous approaches!)

2. Volume-respecting, high 
dimensional embedding

3. Random projection to 2D

4. Final embedding

UDG Graph G with MIS M.

Approximate pairwise distances
between nodes such that, MIS 
nodes are neatly spread out.

Volume respecting embedding of 
nodes in Rn with small distortion.

Nodes spread out fairly well in R2.

Final embedding of G in R2.
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Lower Bound: Quasi Unit Disk Graph

• Definition Quasi Unit Disk Graph: 

Let V∈ R2, and d ∈ [0,1]. The symmetric
Euclidean graph G=(V,E), such that for
any pair u,v ∈ V

• dist(u,v) · d ⇒ {u,v} ∈ E

• dist(u,v) > 1  ⇒ {u,v}    E

is called d-quasi unit disk graph. 

• Note that between d and 1, the existence of an edge is unspecified.  

d

1
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Reduction

• We want to show that finding an embedding with
, where ε goes to 0 for n Æ∞ is NP-hard.

• We prove an equivalent statement:

Given a unit disk graph G=(V,E), it is NP-
hard to find a realization of G as a d-quasi
unit disk graph with , where ε
tends to 0 for nÆ∞.

Æ Even when allowing non-edges to be smaller than 1, embedding a 
unit disk graph remains NP-hard! 

Æ It follows that finding an approximation ratio better than
is also NP-hard.  
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Reduction

• Reduction from 3-SAT (each variable appears in at most 3 clauses)
• Given a instance C of this 3-SAT, we give a polynomial time 

construction of GC=(VC, EC) such that the following holds:

– C is satisfiable ⇒ GC is realizable as a unit disk graph
– C is not satisfiable ⇒ GC is not realizable as a d-quasi unit disk

graph with

• Unless P=NP, there is no approximation algorithm with
approximation ratio better than . 
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Proof idea

• Construct a grid drawing of the SAT instance. 
• Grid drawing is orientable iff SAT instance is satisfiable.
• Grid components (clauses, literals, wires, crossings,...) are

composed of nodesÆ Graph GC. 
• GC is realizable as a d-quasi unit disk graph with

iff grid drawing is orientable.  
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Summary

• Virtual coordinates problem is important!
• Natural formulation as unit disk graph embedding. 
Æ Clear-cut optimization problem. 

Upper Bound :   
Lower Bound :  

Æ Gap between upper and lower bound is huge! 

Open Problems:

• Diminish gap between upper and lower bound

• Distributed Algorithm
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Heuristics: Spring embedder

• Nodes are “masses”, edges are “springs”. 
• Length of the spring equals the distance measurement.
• Springs put forces to the nodes, nodes move, until stabilization.
• Force: Fij =dij – rij, along the direction pipj.
• Total force on ni: Fi=Σ Fij.
• Move the node ni by a small distance (proportional to Fi).

j

pi

pj

dij

Fij

i
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Spring Embedder Discussion

• Problems: 
– may deadlock in local minimum
– may never converge/stabilize (e.g. just two nodes)

• Solution: Need to start from a reasonably good initial estimation.
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Heuristics: Priyantha et al.
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Continued

Phase 2: Spring Embedder
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Heuristics: Gotsman et al.
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Continued
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Heuristics: Shang et al.
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Heuristics: Bruck et al.
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Practical lessons

Theory Practice

• RSSI in sensor networks: good, but not for “reasonable” localization

• For exact indoor localization
• Buy special hardware (e.g., UWB)
• Place huge amount of short range anchors for single-hop localization
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Overview

• Motivation
• Data gathering with coding

– Self-coding
• Excursion: Shallow Light Tree

– Foreign coding
– Multicoding

• Universal data gathering tree
– Max, Min, Average, Median, Count Distinct, …

• Energy-efficient broadcasting
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Sensor networks

• Sensor nodes
– Processor & memory
– Short-range radio
– Battery powered

• Requirements
– Monitoring geographic region
– Unattended operation
– Long lifetime
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Data gathering

• All nodes produce relevant 
information about their vicinity 
periodically.

• Data is conveyed to an 
information sink for further 
processing.

Routing scheme

On which path is node u’s
data forwarded to the sink?
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Time coding

• The simplest trick in the 
book: If the sensed data of a 
node changes not too often 
(e.g. temperature), the node 
only needs to send a new 
message when its data 
changes.

• Improvement: Only send 
change of data, not actual 
data (similar to video 
codecs)
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More than one sink?

• Use the anycast approach, and send to the closest sink.

• In the simplest case, a source wants to minimize the number of 
hops. To make anycast work, we only need to implement the regular 
distance-vector routing algorithm.

• However, one can imagine more complicated schemes where e.g. 
sink load is balanced, or even intermediate load is balanced.
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Correlated Data

• Different sensor nodes partially 
monitor the same spatial region.

• Data might be processed as it is 
routed to the information sink.

Data correlation

In-network coding

At which node is node 
u’s data encoded?

Find a routing scheme and a coding scheme to deliver data 
packets from all nodes to the sink such that the overall 
energy consumption is minimal.
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Coding strategies

• Multi-input coding
– Exploit correlation among several nodes.
– Combined aggregation of all incoming data.

• Single-input coding
– Encoding of a nodes data only depends on the side 

information of one other node.

Recoding at intermediate nodes

Synchronous communication model

No recoding at intermediate nodes

No waiting for belated information at 
intermediate nodes
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Single-input coding

• Self-coding
– A node can only encode its raw

data in the presence of side
information.

• Foreign coding
– A node can use its raw data to 

encode data it is relaying.

u v

w

t

sr sr

2sr+se

u v

w

t

sr sr

sr+2se

Raw data size

Encoded data size

4sr+ se

3sr + 2se
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Self-coding

• Lower-bound the cost of an optimal topology

Set of nodes with no 
side information

Set of nodes that encode 
with data from u

Steiner tree
Shortest path

• Two ways to lower-bound this equation:

–

–
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Algorithm

• LEGA (Low Energy Gathering Algorithm)

• Based on the shallow light tree (SLT) 

• Compute SLT rooted at the sink t.
• The sink t transmits its packet pt

• Upon reception of a data packet pj at node vi
– Encode pi with pj→ pi

j

– Transmit pi
j to the sink t

– Transmit pi to all children

Size = sr

Size = se
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Excursion: Shallow-Light Tree (SLT)

• Introduced by [Awerbuch, Baratz, Peleg, PODC 1990] 

• Improved by [Khuller, Raghavachari, Young, SODA 1993]
– new name: Light-Approximate-Shortest-Path-Tree (LAST)

• Idea: Construct a spanning tree for a given root r that is both a MST-
approximation as well as a SPT-approximation for the root r. In 
particular, for any γ > 0
–
–

• Remember:
– MST: Easily computable with e.g. Prim’s greedy edge picking algorithm
– SPT: Easily computable with e.g. Dijkstra’s shortest path algorithm
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MST vs. SPT

• Is a good SPT not automatically a good MST (or vice versa)?

MST          SPT     SLT
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Result & Preordering

• Main Theorem: Given an α > 1, the algorithm returns a tree T rooted 
at r such that all shortest paths from r to u in T have cost at most α
the shortest path from r to u in the original graph (for all nodes u). 
Moreover the total cost of T is at most β = 1+2/(α-1) the cost of the 
MST.

• We need an ingredient:
A preordering of a rooted
tree is generated when
ordering the nodes
of the tree as visited by 
a depth-first search
algorithm.
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The SLT Algorithm

1. Compute MST H of Graph G; 
2. Compute all shortest paths (SPT) from the root r. 
3. Compute preordering of MST with root r.
4. For all nodes v in order of their preordering do

• Compute shortest path from r to u in H. If the cost of this shortest path 
in H is more than a factor α more than the cost of the shortest path in 
G, then just add the shortest path in G to H. 

5. Now simply compute the SPT with root r in H.

• Sounds crazy… but it works!
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An example, α = 2

Graph

MST
SPT

x
x
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Proof of Main Theorem

• The SPT α-approximation is clearly given since we included all 
necessary paths during the construction and in step 5 only removed 
edges which were not in the SPT.

• We need to show that our final tree is a β-approximation of the MST. 
In fact we show that the graph H before step 5 is already a β-
approximation!

• For this we need a little helper lemma first…
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A preordering lemma

• Lemma: Let T be a rooted spanning tree, with root r, and let z0, z1, 
…, zk be arbitrary nodes of T in preorder. Then,

• “Proof by picture”: Every edge 
is traversed at most twice. 

• Remark: Exactly like the 
2-approximation algorithm 
for metric TSP.

Roger Wattenhofer, EWSN 2006 Tutorial 0/143

Proof of Main Theorem (2)

• Let z1, z2, …, zk be the set of k nodes for which we added their 
shortest paths to the root r in the graph in step 4. In addition, let z0 be 
the root r. The node zi can only be in the set if (for example) 
dG(r,zi-1) + dMST(zi-1,zi) > αdG(r,zi), since the shortest path (r,zi-1) and 
the path on the MST (zi-1,zi) are already in H when we study zi.

• We can rewrite this as αdG(r,zi) - dG(r,zi-1) < dMST(zi-1,zi). Summing up:
αdG(r,z1) - dG(r,z0) <    dMST(z0,z1) (i=1)
αdG(r,z2) - dG(r,z1) <    dMST(z1,z2) (i=2)

… … …
αdG(r,zk) - dG(r,zk-1) <    dMST(zk-1,zk) (i=k)

Σi=1…k(α-1) dG(r,zi)     + dG(r,zk) <    Σi=1…k dMST(zi-1,zi)
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Proof of Main Theorem (3)

• In other words, (α-1) Σi=1…k dG(r,zi) < Σi=1…k dMST(zi-1,zi)

• All we did in our construction of H was to add exactly at most the 
cost Σi=1…k dG(r,zi) to the cost of the MST. In other words,
cost(H) · cost(MST) + Σi=1…k dG(r,zi).

• Using the inequality on the top of this slide we have 
cost(H) < cost(MST) + 1/(α-1) Σi=1…k dMST(zi-1,zi).

• Using our preordering lemma we have
cost(H) · cost(MST) + 1/(α-1) 2cost(MST) = 1+2/(α-1) cost(MST)

• That’s exactly what we needed: β = 1+2/(α-1).
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How the SLT can be used

• The SLT has many applications in communication networks.

• Essentially, it 
bounds the 
cost of unicasting
(using the SPT) 
and broadcasting 
(using the MST).

• Remark: If you 
use α =              , 
then 
β = 1+2/(α-1) = α.

www.dia.unisa.it/~ventre
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Analysis of LEGA

Theorem: LEGA achieves a                   -approximation 
of the optimal topology. (We use α =              .)

tt

Slide 9/10
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Foreign coding

• MEGA (Minimum-Energy Gathering Algorithm)
– Superposition of two tree constructions.

• Compute the shortest path tree (SPT) rooted at t.

• Compute a coding tree.
– Determine for each node u a corresponding

encoding node v.

u v

w

t

sr sr

sr+2se

Encoding must not result
in cyclic dependencies.

t

Coding tree
SPT u

t

u

vv
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Coding tree construction

• Build complete directed graph
• Weight of an edge e=(vi,vj)

Cost from vi to the
encoding node vj.

Cost from vj to 
the sink t.

• Compute a directed minimum spanning tree (arborescence) of this
graph. (This is not trivial, but possible.)

Theorem: MEGA computes a minimum-energy 
data gathering topology for the given network.

All costs are summarized in the edge weights
of the directed graph. 

Number of bits when
encoding vi‘s info at vj
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Summary

• Self-coding: 
– The problem is NP-hard [Cristescu et al, INFOCOM 2004]
– LEGA uses the SLT and gives a                     -approximation.
– Attention: We assumed that the raw data resp. the encoded data 

always needs sr resp. se bits (no matter how far the encoding data is!). 
This is quite unrealistic as correlation is usually regional.

• Foreign coding
– The problem is in P, as computed by MEGA.

• What if we allow both coding strategies at the same time?
• What if multicoding is still allowed?

Roger Wattenhofer, EWSN 2006 Tutorial 0/150

Multicoding

• Hierarchical matching algorithm [Goel & Estrin SODA 2003].

• We assume to have concave, 
non-decreasing aggregation
functions. That is, to transmit
data from k sources, we need
f(k) bits with f(0)=0, f(k) ≥ f(k-1),
and f(k+1)/f(k) · f(k)/f(k-1).

• The nodes of the network must be a metric space*, that is, the cost 
of sending a bit over edge (u,v) is c(u,v), with
– Non-negativity: c(u,v) ≥ 0
– Zero distance: c(u,u) = 0 (*we don’t need the identity of indescernibles)
– Symmetry: c(u,v) = c(v,u)
– Triangle inequality: c(u,w) · c(u,v) + c(v,w)

#nodes

#b
its
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The algorithm

• Remark: If the network is not a complete graph, or does not obey
the triangle inequality, we only need to use the cost of the shortest 
path as the distance function, and we are fine.

• Let S be the set of source nodes. Assume that S is a power of 2. (If 
not, simply add copies of the sink node until you hit the power of 2.) 
Now do the following:

1. Find a min-cost perfect matching in S.
2. For each of the matching edges, remove one of the two nodes from 

S (throw a regular coin to choose which node).
3. If the set S still has more than one node, go back to step 1. Else 

connect the last remaining node with the sink.
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The result

• Theorem: For any concave, non-decreasing aggregation function f, 
and for [optimal] total cost C[*], the hierarchical matching algorithm 
guarantees

• That is, the expectation of the worst cost overhead is logarithmically 
bounded by the number of sources.

• Proof: Too intricate to be featured in this lecture.
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Remarks

• For specific concave, non-decreasing aggregation functions, there 
are simpler solutions. 
– For f(x) = x the SPT is optimal.
– For f(x) = const (with the exception of f(0) = 0), the MST is optimal.
– For anything in between it seems that the SLT again is a good choice. 
– For any a priori known f one can use a deterministic solution by [Chekuri, 

Khanna, and Naor, SODA 2001]
– If we only need to minimize the maximum expected ratio (instead of the 

expected maximum ratio), [Awerbuch and Azar, FOCS 1997] show how it 
works.

• Again, sources are considered to aggregate equally well with other 
sources. A correlation model is needed to resemble the reality 
better.
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Other work using coding

• LEACH [Heinzelman et al. HICSS 2000]: randomized clustering with data 
aggregation at the clusterheads.
– Heuristic and simulation only.
– For provably good clustering, see the next chapter.

• Correlated data gathering [Cristescu et al. INFOCOM 2004]:
– Coding with Slepian-Wolf
– Distance independent correlation among nodes.
– Encoding only at the producing node in presence of side information.
– Same model as LEGA, but heuristic & simulation only.
– NP-hardness proof for this model.

Roger Wattenhofer, EWSN 2006 Tutorial 0/155

TinyDB and TinySQL

• Use paradigms
familiar from 
relational
databases to
simplify the
“programming”
interface for 
the application
developer.

• TinyDB then supports
in-network aggregation to
speed up communication.
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Data Aggregation: N-to-1 Communication

• SELECT MAX(temp) FROM sensors WHERE node_id < “H”.

Average, Median, Count Distinct, ...?!
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Selective data aggregation

• In sensor network applications
– Queries can be frequent 
– Sensor groups are time-varying
– Events happen in a dynamic fashion

• Option 1: Construct aggregation trees for each group
– Setting up a good tree incurs communication overhead

• Option 2: Construct a single spanning tree
– When given a sensor group, simply use the induced tree
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Group-Independent (a.k.a. Universal) Spanning Tree

• Given
– A set of nodes V in the Euclidean plane (or forming a metric space)
– A root node r ∈ V 
– Define stretch of a universal spanning tree T to be 

• We’re looking for a spanning tree T on V with minimum stretch.
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root/sink

Example

• The red tree is the universal spanning tree. All links cost 1.
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root/sink

Given the lime subset…
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root/sink

Induced Subtree

• The cost of the induced subtree for this set S is 11. The optimal was 8.
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Main results

• [Jia, Lin, Noubir, Rajaraman and Sundaram, STOC 2005]

• Theorem 1: (Upper bound)
For the minimum UST problem on Euclidean plane, an 
approximation of O(log n) can be achieved within polynomial time.

• Theorem 2: (Lower bound)
No polynomial time algorithm can approximate the minimum UST 
problem with stretch better than Ω(log n / log log n).

• Proofs: Not in this lecture.

Roger Wattenhofer, EWSN 2006 Tutorial 0/163

Algorithm sketch

• For the simplest Euclidean case:
• Recursively divide the plane and select random node.

• Results: The induced tree 
has logarithmic overhead.
The aggregation delay is 
also constant. 
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Simulation with random node distribution & random events
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Minimum Energy Broadcasting

• First step for data gathering, sort of.
• Given a set of nodes in the plane 
• Goal: Broadcast from a source 

to all nodes
• In a single step, a node may 

transmit within a range by 
appropriately adjusting 
transmission power. 

• Energy consumed by a 
transmission of radius r is 
proportional to rα, with α ≥ 2.

• Problem: Compute the sequence 
of transmission steps that consume 
minimum total energy, even in a centralized way.
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Three natural greedy heuristics

• In a tree, power for each parent node proportional to α’th exponent 
of distance to farthest child in tree:

• Shortest Paths Tree (SPT)
• Minimum Spanning Tree (MST)
• Broadcasting Incremental Power (BIP)

– “Node” version of Dijkstra’s SPT algorithm
– Maintains an arborescence rooted at source
– In each step, add a node that can be reached with minimum increment 

in total cost.

• Results: 
– NP, not even PTAS, there is a constant approximation. [Clementi, 

Crescenzi, Penna, Rossi, Vocca, STACS 2001]
– Analysis of the three heuristics. [Wan, Calinescu, Li, Frieder, Infocom 2001]

– Optimal MST approximation constant, e.g. [Ambühl, ICALP 2005]
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Lower Bound on SPT

• Assume (n-1)/2 nodes per ring

• Total energy of SPT:

• Better solution:
• Broadcast to all nodes
• Cost 1

• Approximation ratio Ω(n).
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• Weight of an edge (u,v) equals d(u,v)α.

• MST for these weights same as Euclidean MST
– Weight is an increasing function of distance
– Follows from correctness of Prim’s algorithm 

• Upper bound on total MST weight 
• Lower bound on optimal broadcast tree

Performance of the MST Heuristic
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Upper Bound on Weight of MST

• Assume α = 2
• For each edge e, its diamond 

accounts for an area of exactly

• Diamonds for edges in circle can be slightly outside circle, but not 
too much: The radius factor is at most           , hence the total area 
accounted for is at most 

• Now we can bound the cost of the MST in a unit disk with 

• This analysis can be extended to α > 2, and improved to 12.

60°

| e |2

2 3

π(2 / 3)2 = 4π / 3
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• Also the optimal algorithm needs a few transmissions. Let u0, u1, …, 
uk be the nodes which need to transmit, each ui with radius ri. These 
transmissions need to form a spanning tree since each node needs
to receive at least one transmission.

• Then the optimal algorithm needs power

• Now replace each transmission (“star”) by
an MST of the nodes. Since all new edges
are part of the transmission circle, the cost
of the new graph is at most 

• Since the cost of the global MST is
at most the cost of this spanner, the MST is 12-competitive.
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• Motivation
• Reference-Broadcast Synchronization (RBS)
• Time-sync Protocol for Sensor Networks (TSPN) 
• Gradient Clock Synchronization

Overview
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Motivation

Time synchronization is essential for many applications
• Coordination of wake-up and sleeping times
• TDMA schedules
• Ordering of sensed events in habitat environments
• Estimation of position information
• …

Scope of a Clock Synchronization Algorithm
• Packet delay / latency
• Offset between clocks
• Drift between clocks 
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Disturbing Influences on Packet Latency

Influences
• Sending Time S
• Medium Access Time A
• Propagation Time PA,B
• Reception Time R

Asymmetric packet delays due to non-determinism

Example: RTT-based synchronization
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Reference-Broadcast Synchronization (RBS)

A sender synchronizes a set of receivers with one another
Point of reference: beacon’s arrival time
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Time-sync Protocol for Sensor Networks (TSPN)

Traditional sender-receiver synchronization (RTT-based) 
Initialization phase: Breadth-first-search flooding
• Root node at level 0 sends out a level discovery packet
• Receiving nodes which have not yet an assigned level set their level

to +1 and start a random timer
• After the timer is expired, a new level discovery packet will be sent

Synchronization phase
• Root node issues a time sync packet which triggers a random timer at 

all level 1 nodes
• After the timer is expired, the node asks its parent for synchronization 

using a synchronization pulse
• The parent node answers with an acknowledgement
• Thus, the requesting node knows the round trip time and can calculate 

its clock offset
• Child nodes receiving a synchronization pulse also start a random timer 

themselves to trigger their own synchronization
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Time-sync Protocol for Sensor Networks (TSPN)

Time stamping packets at the MAC layer 
In contrast to RBS, the signal propagation time might be negligible
About “two times” better than RBS
Again, clock drifts are taken into account using periodical 
synchronization messages

Problem: What happens in a ring?!? 
• Two neighbors will have exceptionally badly synchronization
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Theoretical Bounds for Clock Synchronization

• Network Model:
– Each node has a private clock
– n node network, with diameter Δ · n.
– Reliable point-to-point communication with minimal delay µ
– Jitter ε is the uncertainty in message delay

• Two neighboring nodes u, v cannot distinguish whether message is
faster from u to v and slower from v to u, or vice versa. Hence 
clocks of neighboring nodes can be up to ε off.

• Hence, two nodes at distance Δ might have clocks which are εΔ off.

• This can be achieved by a simple flooding algorithm: Whenever a 
node receives a new minimum value, it sets its clock to the new 
value and forwards its new clock value to all its neighbors.
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Gradient Clock Synchronization

• It could happen that a clock has to jump back to a much lower value
– Think again about a ring example, assume that in one leg of the ring 

messages are forwarded fast all of a sudden.

• Problem: At a node, you don’t want a clock to jump back all of a sudden. 
– You don’t want new events to be registered earlier than older events.
– Instead, you want your clock always to move forward. Sometimes 

faster, sometimes slower is OK. But there should be a minimum and a 
maximum speed.

– This is called “gradient” clock synchronization in [Fan and Lynch, PODC 
2004] .

• In [Fan and Lynch, PODC 2004] it is shown that when logical clocks need to 
obey minimum/maximum speed rules, the skew of two neighboring clocks 
can be up to  
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• Motivation
• Dominating Set
• Connected Dominating Set

• General Algorithms:
– The “Greedy” Algorithm
– The “Tree Growing” Algorithm
– The “Marking” Algorithm
– The “k-Local” Algorithm

• Algorithms for Special Models:
– Unit Ball Graphs: The “Largest ID” Algorithm
– Independence-Bounded Graphs: The “MIS” Algorithm
– Unstructured Radio Network Model

Overview
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Discussion

• We have seen: 10 TricksÆ 210 routing algorithms
• In reality there are almost that many!

• Q: How good are these routing algorithms?!? Any hard results?
• A: Almost none! Method-of-choice is simulation…
• Perkins: “if you simulate three times, you get three different results”

• Flooding is key component of (many) proposed algorithms, including 
most prominent ones (AODV, DSR)

• At least flooding should be efficient
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Finding a Destination by Flooding
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Finding a Destination Efficiently
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Backbone

• Idea: Some nodes become backbone nodes (gateways). Each node 
can access and be accessed by at least one backbone node. 

• Routing:
1. If source is not a

gateway, transmit
message to gateway

2. Gateway acts as
proxy source and
routes message on
backbone to gateway
of destination.

3. Transmission gateway
to destination.

Roger Wattenhofer, EWSN 2006 Tutorial 0/187

(Connected) Dominating Set

• A Dominating Set DS is a subset of nodes such that each node is 
either in DS or has a neighbor in DS.

• A Connected Dominating Set CDS is a connected DS, that is, there 
is a path between any two nodes in CDS that does not use nodes 
that are not in CDS.

• A CDS is a good choice
for a backbone. 

• It might be favorable to
have few nodes in the 
CDS. This is known as the
Minimum CDS problem
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Formal Problem Definition: M(C)DS

• Input: We are given an (arbitrary) undirected graph. 

• Output: Find a Minimum (Connected) Dominating Set,
that is, a (C)DS with a minimum number of nodes.

• Problems
– M(C)DS is NP-hard
– Find a (C)DS that is “close” to minimum (approximation)
– The solution must be local (global solutions are impractical for 

mobile ad-hoc network) – topology of graph “far away” should 
not influence decision who belongs to (C)DS
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Greedy Algorithm for Dominating Sets

• Idea: Greedy choose “good” nodes into the dominating set.

• Black nodes are in the DS
• Grey nodes are neighbors of nodes in the DS
• White nodes are not yet dominated, initially all nodes are white.

• Algorithm: Greedily choose a node that colors most white nodes.

• One can show that this gives a log Δ approximation, if Δ is the 
maximum node degree of the graph. (The proof is similar to the 
“Tree Growing” proof on 6/13ff.) 

• One can also show that there is no polynomial algorithm with better 
performance unless P≈NP.
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CDS: The “too simple tree growing” algorithm

• Idea: start with the root, and then greedily choose a neighbor of the 
tree that dominates as many as possible new nodes

• Black nodes are in the CDS
• Grey nodes are neighbors of nodes in the CDS
• White nodes are not yet dominated, initially all nodes are white.

• Start: Choose a node with maximum degree, and make it the root of 
the CDS, that is, color it black (and its white neighbors grey).

• Step: Choose a grey node with a maximum number of white 
neighbors and color it black (and its white neighbors grey).
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Example of the “too simple tree growing” algorithm

u u u

v v v

Graph with 2n+2 nodes; tree growing: |CDS|=n+2; Minimum |CDS|=4

tree growing: start                        … Minimum CDS
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Tree Growing Algorithm

• Idea: Don’t scan one but two nodes!

• Alternative step: Choose a grey node and its white neighbor node
with a maximum sum of white neighbors and color both black (and 
their white neighbors grey).
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Analysis of the tree growing algorithm

• Theorem: The tree growing algorithm finds a connected set of size 
|CDS| · 2(1+H(Δ)) · |DSOPT|. 

• DSOPT is a (not connected) minimum dominating set
• Δ is the maximum node degree in the graph
• H is the harmonic function with H(n) ≈ log(n)+0.7

• In other words, the connected dominating set of the tree growing
algorithm is at most a O(log(Δ)) factor worse than an optimum 
minimum dominating set (which is NP-hard to compute).

• With a lower bound argument (reduction to set cover) one can show 
that a better approximation factor is impossible, unless P≈NP.
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Proof Sketch

• The proof is done with amortized analysis. 

• Let Su be the set of nodes dominated by u ∈ DSOPT, or u itself. If a 
node is dominated by more than one node, we put it in one of the
sets.

• We charge the nodes in the graph for each node we color black. In 
particular we charge all the newly colored grey nodes. Since we 
color a node grey at most once, it is charged at most once.

• We show that the total charge on the vertices in an Su is at most 
2(1+H(Δ)), for any u.
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Charge on Su

• Initially |Su| = u0.
• Whenever we color some nodes of Su, we call this a step.
• The number of white nodes in Su after step i is ui.
• After step k there are no more white nodes in Su.

• In the first step u0 – u1 nodes are colored 
(grey or black). Each vertex gets a charge of 
at most 2/(u0 – u1).

• After the first step, node u becomes eligible to be colored (as 
part of a pair with one of the grey nodes in Su). If u is not 
chosen in step i (with a potential to paint ui nodes grey), then 
we have found a better (pair of) node. That is, the charge to 
any of the new grey nodes in step i in Su is at most 2/ui. 

u
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Adding up the charges in Su
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Discussion of the tree growing algorithm

• We have an extremely simple algorithm that is asymptotically 
optimal unless P≈NP. And even the constants are small.

• Are we happy?

• Not really. How do we implement this algorithm in a real mobile 
network? How do we figure out where the best grey/white pair of 
nodes is? How slow is this algorithm in a distributed setting?

• We need a fully distributed algorithm. Nodes should only consider 
local information. 
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The Marking Algorithm

• Idea: The connected dominating set CDS consists of the nodes that 
have two neighbors that are not neighboring.

1. Each node u compiles the set of neighbors N(u)
2. Each node u transmits N(u), and receives N(v) from all its neighbors
3. If node u has two neighbors v,w and w is not in N(v) (and since the 

graph is undirected v is not in N(w)), then u marks itself being in the 
set CDS.

+ Completely local; only exchange N(u) with all neighbors
+ Each node sends only 1 message, and receives at most Δ
+ Messages have size O(Δ)
• Is the marking algorithm really producing a connected dominating

set? How good is the set?
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Example for the Marking Algorithm

[J. Wu]
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Correctness of Marking Algorithm

• We assume that the input graph G is connected but not complete. 

• Note: If G was complete then constructing a CDS would not make 
sense. Note that in a complete graph, no node would be marked.

• We show: 

The set of marked nodes CDS is
a) a dominating set
b) connected
c) a shortest path in G between two nodes of the CDS is in CDS
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Proof of a) dominating set

• Proof: Assume for the sake of contradiction that node u is a node 
that is not in the dominating set, and also not dominated. Since no 
neighbor of u is in the dominating set, the nodes N+(u) := u ∪ N(u) 
form:

• a complete graph 
– if there are two nodes in N(u) that are not connected, u must be in the 

dominating set by definition
• no node v ∈ N(u) has a neighbor outside N(u) 

– or, also by definition, the node v is in the dominating set

• Since the graph G is connected it only consists of the complete 
graph N+(u). We precluded this in the assumptions, therefore we 
have a contradiction
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Proof of b) connected, c) shortest path in CDS

• Proof: Let p be any shortest path between the two nodes u and v,
with u,v ∈ CDS.

• Assume for the sake of contradiction that there is a node w on this 
shortest path that is not in the connected dominating set.

• Then the two neighbors of w must be connected, which gives us a 
shorter path. This is a contradiction.

w
vu
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Improved Marking Algorithm

• If neighbors with larger ID are connected and cover all other 
neighbors, then don’t join CDS, else join CDS

5

6

1

9

4

7

2

3

8

Roger Wattenhofer, EWSN 2006 Tutorial 0/204

Correctness of Improved Marking Algorithm

• Theorem: Algorithm computes a CDS S

• Proof (by induction of node IDs):
– assume that initially all nodes are in S
– look at nodes u in increasing ID order and remove from S if higher-ID 

neighbors of u are connected
– S remains a DS at all times: (assume that u is removed from S)

– S remains connected:
replace connection v-u-v’ by v-n1,…,nk-v’ (ni: higher-ID neighbors of u)

u

higher-ID
neighbors

lower-ID
neigbors higher-ID neighbors

cover lower-ID neighbors
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Quality of the (Improved) Marking Algorithm

• Given an Euclidean chain of n homogeneous nodes
• The transmission range of each node is such that it is connected to 

the k left and right neighbors, the id’s of the nodes are ascending.

• An optimal algorithm (and also the tree growing algorithm) puts 
every k’th node into the CDS. Thus |CDSOPT| ≈ n/k; with k = n/c for 
some positive constant c we have |CDSOPT| = O(1).

• The marking algorithm (also the improved version) does mark all the 
nodes (except the k leftmost ones). Thus |CDSMarking| = n – k; with 
k = n/c we have |CDSMarking| = Ω(n).

• The worst-case quality of the marking algorithm is worst-case! ☺
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Algorithm Overview
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Phase A is a Distributed Linear Program

• Nodes 1, …, n: Each node u has variable xu with xu ≥ 0
• Sum of x-values in each neighborhood at least 1 (local)
• Minimize sum of all x-values (global)

0.5+0.3+0.3+0.2+0.2+0 = 1.5 ≥ 1

• Linear Programs can be solved optimally in polynomial time
• But not in a distributed fashion! That’s what we need here…
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Phase A Algorithm
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• Distributed Approximation for Linear Program
• Instead of the optimal values xi

* at nodes, nodes have xi
(α), with

• The value of α depends on the number of rounds k (the locality)

• The analysis is rather intricate… ☺

Result after Phase A
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Phase B Algorithm

Each node applies the following algorithm:

1. Calculate (= maximum degree of neighbors in distance 2)

2. Become a dominator (i.e. go to the dominating set) with probability

3. Send status (dominator or not) to all neighbors

4. If no neighbor is a dominator, become a dominator yourself

From phase A Highest degree in distance 2

Roger Wattenhofer, EWSN 2006 Tutorial 0/211

Result after Phase B

• Randomized rounding technique 

• Expected number of nodes joining the dominating set in step 2 is
bounded by α log(Δ+1) · |DSOPT|.

• Expected number of nodes joining the dominating set in step 4 is
bounded by |DSOPT|.

• Phase C Æ essentially the same result for CDS

Theorem:

Roger Wattenhofer, EWSN 2006 Tutorial 0/212

A better algorithm?

R

R

Unit Disk GraphUnit Disk Graph
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Better and faster algorithm

• Assume that graph is a unit 
disk graph (UDG)

• Assume that nodes know 
their positions (GPS)

1
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Grid Algorithm

1. Beacon your position

2. If, in your virtual grid cell, you are the node closest to the center of 
the cell, then join the DS, else do not join.

3. That’s it.

• 1 transmission per node, O(1) approximation.

• If you have mobility, then simply “loop” through algorithm, as fast as 
your application/mobility wants you to.
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The model determines the distributed
complexity of clustering

Comparison

k-local algorithm 

• Algorithm computes DS

• k2+O(1) transmissions/node
• O(ΔO(1)/k log Δ) approximation

• General graph
• No position information

Grid algorithm

• Algorithm computes DS

• 1 transmission/node
• O(1) approximation

• Unit disk graph (UDG)
• Position information (GPS)
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Let’s talk about models…

• General Graph

• Captures obstacles
• Captures directional radios
• Often too pessimistic

• UDG & GPS

• UDG is not realistic
• GPS not always available

– Indoors
• 2D Æ 3D?
• Often too optimistic

too pessimistic too optimistic

Let‘s look at models in 
between these extremes!
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Real Networks
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Models

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
No GPS

Quasi
UDG

d

1

Bounded 
Independence

Unit Ball
Graph
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Unit Ball Graphs

• ∃ metric (V,d) describing distances between nodes u,v ∈ V

such that:  d(u,v) · 1 : (u,v) ∈ E
such that: d(u,v) ≥ 1 : (u,v) ∈ E

• Assume that doubling dimension of metric is constant
– Doubling dimension: log(#balls of radius r/2 to cover ball of radius r)

UBG based on
underlying doubling metric.
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The “Largest-ID” Algorithm

• All nodes have unique IDs, chosen at random.

• Algorithm for each node:
1. Send ID to all neighbors
2. Tell node with largest ID in neighborhood that it has to join the DS

• Algorithm computes a DS in 2 rounds (extremely local!)
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“Largest ID” Algorithm, Analysis I

• To simplify analysis: assume graph is UDG
(same analysis works for UBG based on doubling metric)

• We look at a disk S of diameter 1:

S

Diameter: 1

Nodes inside S have
distance at most 1.
→ they form a clique

How many nodes in S
are selected for the DS?
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S

“Largert ID” Algorithm, Analysis II

1 11

• Nodes which select nodes in S are in disk of radius 3/2 which
can be covered by S and 20 other disks  Si of diameter 1
(UBG: number of small disks depends on doubling dimension)
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“Largest ID” Algorithm: Analysis III

• How many nodes in S are chosen by nodes in a disk Si?

• x = # of nodes in S, y = # of nodes in Si:

• A node u∈S is only chosen by a node in Si if 
(all nodes in Si see each other).

• The probability for this is: 

• Therefore, the expected number of nodes in S chosen by nodes in 
Si is at most:

Because at most y nodes in Si can
choose nodes in S
and because of linearity of expectation.
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“Largest ID” Algorithm, Analysis IV

• From x·n and y·n, it follows that:

• Hence, in expectation the DS contains at most              nodes
per disk with diameter 1.

• An optimal algorithm needs to choose at least 1 node in the disk
with radius 1 around any node.

• This disk can be covered by a constant (9) number of disks of 
diameter 1.

• The algorithm chooses at most                  times more disks than an 
optimal one
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“Largest ID” Algorithm, Remarks

• For typical settings, the “Largest ID” algorithm produces very good
dominating sets (also for non-UDGs)

• There are UDGs where the “Largest ID” algorithm computes an
-approximation (analysis is tight).

complete
sub-graph

complete
sub-graph

nodes

Optimal DS: size 2

“Largest ID” alg:

• bottom nodes choose 
top nodes with 
probability≈1/2

• 1 node every 2nd group
• nodes
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Iterative “Largest ID” Algorithm

• Assume that nodes know the distances to their neighbors:

all nodes are active;
for i := k to 1 do
∀ act. nodes: select act. node with largest ID in dist. · 1/2i;
selected nodes remain active

od;
DS = set of active nodes

• Set of active nodes is always a DS (computing CDS also possible)
• Number of rounds: k
• Approximation ratio n(1/2k)

• For k=O(loglog n), approximation ratio = O(1)
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Iterative “Largest ID” Algorithm, Remarks

• Possible to do everything in O(1) rounds
(messages get larger, local computations more complicated)

• If we slightly change the algorithm such that largest radius is 1/4:
– Sufficient to know IDs of all neighbors, distances to neighbors, and 

distances between adjacent neighbors
– Every node can then locally simulate relevant part of algorithm to find 

out whether or not to join DS

Doubling UBG: O(1) approximation in O(1) rounds
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Models

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
No GPS

Quasi
UDG

d

1

Bounded 
Independence

Unit Ball
Graph

In a doubling 
metric:

Number of
independent
neighbors
is bounded
(UDG: 5)
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Real Networks

• No links between far-away nodes

• Close nodes tend to be connected

• In particular: Densely covered area Æ many connections

Wireless Networks are not unit disk graphs, but:

Bounded Independence:
Bounded neighborhoods have bounded independent sets
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• Def.: A graph G has bounded independence if there is a function f(r)
such that every r-neighborhood in G contains at most f(r)
independent nodes.
– Note: f(r) does not depend on size of the graph!
– Polynomially Bounded Independence:  f(r) = poly(r), e.g. O(r3)

Bounded Independence

1) A node can have many neighbors
2) But not all of them can be

independent!
3) Can model obstacles, walls, ... 

• Definition includes:
- (Quasi) Unit Disk Graphs, Doubling Unit Ball Graphs
- Coverage Area Graphs, Bounded Disk Graphs, ...

f(1) = 5f(1) = 6
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Maximal Independent Set I

• Maximal Independent Set (MIS):
(non-extendable set of pair-wise non-adjacent nodes)

• An MIS is also a dominating set:
– assume that there is a node v which is not dominated
– v∉MIS, (u,v)∈E → u∉MIS
– add v to MIS
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Maximal Independent Set II

• Lemma:

On independence-bounded graphs: |MIS| · O(1)·|DSOPT|

• Proof:
1. Assign every MIS node to an adjacent node of DSOPT

2. u∈DSOPT has at most f(1) neighbors v∈MIS
3. At most f(1) MIS nodes assigned to every node of DSOPT

Æ |MIS| · f(1)·|DSOPT|

• Time to compute MIS on independence-bounded graphs:
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MIS (DS) Æ CDS

• MIS gives a dominating set.
• But it is not connected.

• Connect any two MIS nodes 
which can be connected by 
one additional node.

• Connect unconnected MIS 
nodes which can be conn. by 
two additional nodes.

• This gives a CDS!

• #2-hop connectors·f(2)·|MIS|
#3-hop connectors·2f(3)·|MIS|

• |CDS| = O(|MIS|)
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Models

too pessimistic too optimistic

General
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UDG
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Quasi
UDG
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Unit Ball
Graph
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Passing
Models

Physical Signal
Propagation

Radio Network
Model

Unstructured Radio 
Network Model
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Unstructured Radio Network Model 

• Multi-Hop
• No collision detection

– Not even at the sender!
• No knowledge about (the number of) neighbors
• Asynchronous Wake-Up

– Nodes are not woken up by messages !
• Unit Disk Graph (UDG) to model wireless multi-hop network

– Two nodes can communicate iff Euclidean distance is at most 1
• Upper bound n for number of nodes in network is known

– This is necessary due to Ω(n / log n) lower bound
[Jurdzinski, Stachowiak, ISAAC 2002]
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• Can MDS and MIS be solved efficiently in such a harsh model?

Unstructured Radio Network Model

There is a MIS algorithm
with running time

O(log2n) with high probability. 
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Result Overview

tx / node

qu
al

ity

O(1)

log

√n

1 2 O(log*) O(log)

General Graph 2

UDG67

UDG4

UDG5

UDG/GPS1

BIG8 

UDG = Unit Disk Graph
UBG = Unit Ball Graph
BIG = Bounded Independ.
/GPS = With Position Info
/D = With Distance InfoLower Bound for General Graphs9

be
tte

r

better

UBG/D3

loglog ?
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Summary Dominating Set I
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Summary  Dominating Set II
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Chapter 7
INTERFERENCE
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• Gabriel Graph et al.
• XTC
• Interference
• SINR & Scheduling Complexity

Overview – Topology Control
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Topology Control

• Drop long-range neighbors: Reduces interference and energy!
• But still stay connected (or even spanner)
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Topology Control as a Trade-Off

Network Connectivity
Spanner Property

Topology Control

Conserve Energy
Reduce Interference
Sparse Graph, Low Degree
Planarity
Symmetric Links
Less Dynamics

Sometimes also clustering, 
Dominating Set construction

(See later)

d(u,v) · t ≥ dTC(u,v) 
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Gabriel Graph

• Let disk(u,v) be a disk with diameter (u,v)
that is determined by the two points u,v. 

• The Gabriel Graph GG(V) is defined 
as an undirected graph (with E being 
a set of undirected edges). There is an 
edge between two nodes u,v iff the 
disk(u,v) including boundary contains no 
other points.

• As we will see the Gabriel Graph 
has interesting properties.

disk(u,v)

v

u
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Delaunay Triangulation

• Let disk(u,v,w) be a disk defined by
the three points u,v,w. 

• The Delaunay Triangulation (Graph) 
DT(V) is defined as an undirected 
graph (with E being a set of undirected 
edges). There is a triangle of edges 
between three nodes u,v,w iff the 
disk(u,v,w) contains no other points.

• The Delaunay Triangulation is the
dual of the Voronoi diagram, and
widely used in various CS areas;
the DT is planar; the distance of a
path (s,…,t) on the DT is within a 
constant factor of the s-t distance.

disk(u,v,w)

v

u
w
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Other planar graphs

• Relative Neighborhood Graph RNG(V)

• An edge e = (u,v) is in the RNG(V) iff
there is no node w with (u,w) < (u,v) 
and (v,w) < (u,v).

• Minimum Spanning Tree MST(V)

• A subset of E of G of minimum weight
which forms a tree on V.

vu
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Properties of planar graphs

• Theorem 1:

• Corollary:
Since the MST(V) is connected and the DT(V) is planar, all the 
planar graphs in Theorem 1 are connected and planar.

• Theorem 2:
The Gabriel Graph contains the Minimum Energy Path
(for any path loss exponent α ≥ 2)

• Corollary:
GG(V) ∩ UDG(V) contains the Minimum Energy Path in UDG(V)

⊆ ⊆ ⊆MST( ) RNG( ) GG( ) DT( )V V V V
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More examples

• β-Skeleton
– Generalizing Gabriel (β = 1) and 

Relative Neighborhood (β = 2) Graph

• Yao-Graph
– Each node partitions directions in 

k cones and then connects to the
closest node in each cone

• Cone-Based Graph
– Dynamic version of the Yao

Graph. Neighbors are visited
in order of their distance, 
and used only if they cover
not yet covered angle
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XTC: Lightweight Topology Control

• Topology Control commonly assumes that the node positions are 
known.

• What if we do not have access to position information?

• XTC algorithm

• XTC analysis
– Worst case
– Average case
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XTC: lightweight topology control without geometry

• Each node produces 
“ranking” of neighbors. 

• Examples
– Distance (closest)
– Energy (lowest)
– Link quality (best)

• Not necessarily depending 
on explicit positions

• Nodes exchange rankings 
with neighbors

C

D

E

F

A

1. C
2. E
3. B
4. F
5. D
6. G

B G
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XTC Algorithm (Part 2)

• Each node locally goes 
through all neighbors in 
order of their ranking

• If the candidate (current 
neighbor) ranks any of 
your already processed 
neighbors higher than 
yourself, then you do not 
need to connect to the 
candidate.

A

B
C

D

E

F

G

1. C
2. E
3. B
4. F
5. D
6. G

1. F
3. A
6. D

7. A
8. C
9. E

3. E
7. A

2. C
4. G
5. A

3. B
4. A
6. G
8. D

4. B
6. A
7. C
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XTC Analysis (Part 1)

• Symmetry: A node u wants a node v as a neighbor if and only if v 
wants u.

• Proof:
– Assume 1) u → v and 2) u ← v
– Assumption 2) ⇒ ∃w: (i) w ≺v u and (ii) w ≺u v

Contradicts Assumption 1)
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XTC Analysis (Part 1)

• Symmetry: A node u wants a node v as a neighbor if and only if v 
wants u.

• Connectivity: If two nodes are connected originally, they will stay so 
(provided that rankings are based on symmetric link-weights).

• If the ranking is energy or link quality based, then XTC will choose a 
topology that routes around walls and obstacles.
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XTC Analysis (Part 2)

• If the given graph is a Unit Disk Graph (no obstacles, nodes 
homogeneous, but not necessarily uniformly distributed), then …

• The degree of each node is at most 6.
• The topology is planar.
• The graph is a subgraph of the RNG.

• Relative Neighborhood Graph RNG(V):
• An edge e = (u,v) is in the RNG(V) iff

there is no node w with (u,w) < (u,v) 
and (v,w) < (u,v).

vu
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Unit Disk Graph XTC

XTC Average-Case
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XTC Average-Case (Stretch Factor)
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k-XTC: More connectivity

• A graph is k-(node)-connected, if k-1 arbitrary nodes can be 
removed, and the graph is still connected.

• In k-XTC, an edge (u,v) is only removed if there exist k nodes w1, 
…, wk such that the 2k edges (w1, u), …, (wk, u), (w1,v), …, (wk,v) 
are all better than the original edge (u,v).

• Theorem: If the original graph is k-connected, then the pruned graph 
produced by k-XTC is as well. 

• Proof: Let (u,v) be the best edge that was removed by k-XTC. Using 
the construction of k-XTC, there is at least one common neighbor w 
that survives the slaughter of k-1 nodes. By induction assume that 
this is true for the j best edges. By the same argument as for the 
best edge, also the j+1st edge (u’,v’), since at least one neighbor 
survives w’ survives and the edges (u’,w’) and (v’,w’) are better.
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Implementing XTC, e.g. BTnodes v3
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Implementing XTC, e.g. on mica2 motes

• Idea: 
– XTC chooses the reliable links
– The quality measure is a moving average of the received packet ratio
– Source routing: route discovery (flooding) over these reliable links only 
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Topology Control as a Trade-Off

Network Connectivity
Spanner Property

Topology Control

Conserve Energy
Reduce Interference
Sparse Graph, Low Degree
Planarity
Symmetric Links
Less Dynamics

Really?!?
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What is Interference?

Link-based Interference Model Node-based Interference Model

„How many nodes are affected by 
communication over a given link?“

Exact size of interference range
does not change the results

„By how many other nodes can a 
given network node be disturbed?“

Interference 8

Interference 2

• Problem statement
– We want to minimize maximum interference
– At the same time topology must be connected or a spanner etc.
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Low Node Degree Topology Control?

Low node degree does not necessarily imply low interference:

Very low node degree
but huge interference
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Let’s Study the Following Topology!

…from a worst-case perspective
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Topology Control Algorithms Produce…

• All known topology control algorithms (with symmetric edges) 
include the nearest neighbor forest as a subgraph and produce 
something like this:

• The interference of this 
graph is Ω(n)!
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But Interference…

• Interference does not need to be high…

• This topology has interference O(1)!!
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u v

Link-based Interference Model

There is no local algorithm
that can find a good
interference topology

The optimal topology
will not be planar

99
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• Interference-optimal topologies:
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Link-based Interference Model

• LIFE (Low Interference Forest Establisher)

– Preserves Graph Connectivity

– Attribute interference values as 
weights to edges

– Compute minimum spanning 
tree/forest (Kruskal’s algorithm)

LIFE

LIFE constructs a minimum-
interference forest
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Link-based Interference Model

• LISE (Low Interference Spanner Establisher)

– Constructs a spanning subgraph

– Add edges with increasing 
interference until spanner 
property fulfilled

LISE

LISE constructs a minimum-
interference t-spanner
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Link-based Interference Model

• LocaLISE

– Constructs a spanner locally

– Nodes collect
(t/2)-neighborhood

– Locally compute interference-
minimal paths guaranteeing 
spanner property

– Only request that path to stay in 
the resulting topology

LocaLISE

LocaLISE constructs a 
minimum-interference t-spanner
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Link-based Interference Model

• LocaLISE (Low Interference Spanner Establisher)

– Constructs a spanner locally

– Nodes collect
(t/2)-neighborhood

– Locally compute interference-
minimal paths guaranteeing 
spanner property

– Only request that path to stay in 
the resulting topology

LocaLISE

LocaLISE constructs a 
minimum-interference t-spanner
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Average-Case Interference: Spanners
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Link-based Interference Model

UDG, I = 50 RNG, I = 25

LocaLISE2, I = 23 LocaLISE10, I = 12
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Connecting linearly results 
in interference O(n)

Node-based Interference Model

• Already 1-dimensional node distributions seem to yield inherently 
high interference...

1 2 4 8

• ...but the exponential node chain can be connected in a better way
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Connecting linearly results 
in interference O(n)

Node-based Interference Model

• Already 1-dimensional node distributions seem to yield inherently 
high interference...

• ...but the exponential node chain can be connected in a better way

Matches an existing 
lower bound

Interference
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Node-based Interference Model

• Arbitrary distributed nodes in one dimension

– Approximation algorithm with approximation ratio in O(      )

• Two-dimensional node distributions

– Randomized algorithm resulting in interference O(            )

– No deterministic algorithm so far...
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Towards a More Realistic Interference Model...

• Signal-to-interference and noise ratio (SINR)

Minimum signal-to-
interference ratio

Power level 
of node u Path-loss exponent

Noise

Distance between 
two nodes

• Problem statement
– Determine a power assignment and a schedule for each node 

such that all message transmissions are successful
SINR is always 

assured
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Quiz: Can these two links transmit simultaneously?

A BC D

100m
1m

• Graph-theoretical models: No!
– Neither in- nor out-interference

• SINR model: constant power: No!
– Node B will receive the transmission of node C

• SINR model: power according to distance-squared: No! 
– Node D will receive the transmission of node A
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Let’s try harder…

A BC D

100m
1m

• Let’s forget about noise first…
– Then the SINR at B is: (PA/1002)/(PC/502) = ρ/4, with ρ = PA/PC.
– And the SINR at D is: (PC/12)/(PA/502) = 2’500/ρ.
– Making both SINR equal, ρ2 = 10’000 ⇒ ρ = 100.  

• Let’s try with noise N = 1, PA = 100’000, PC = 1’000:
– Then SINR at B = (PA/1002)/(PC/502+1) > 7
– And SINR at D = (PC/12)/(PA/502+1) > 24
– (Include noise directly, and you get both SINR’s above 10.)

Huge!
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A Simple Problem

• Each node in the network wants to send a message to an arbitrary
other node

– Commonly assumed power assignment schemes

Uniform Linear

Proportional to 
(receiver distance)α

Constant 
power level

Both lead to a schedule of length

– A clever power assignment results in a schedule of length 

This has strong implications to 
MAC layer protocols 

Asymptotically 
worst possible!
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Example: Linear Power Assignment

• Consider again the exponential chain:

• How many links can we schedule simultaneously?
• Let us start with the first node v1...   
Æ its power is P1≥ ρ2α(i+10) for some constant ρ

• This creates interference of at least ρ/2α at every other node! 
• The second node v2 also sends with power P2=ρ2α(i+7)

• Again, this creates an additional interference of at least ρ/2α at every
other node! 

2i 2i+1 2i+2 2i+3 2i+4 2i+5 2i+6 2i+7 2i+8 2i+9 2i+10

Why?

f1 v1

ρ(f1)α Power

Interference>ρ/2α>ρ/2α>ρ/2α>ρ/2α>ρ/2α>ρ/2α>ρ/2α

ρ(f2)α

v2f2

>ρ/2α>ρ/2α >ρ/2α
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Example: Linear Power Assignment

• Consider again the exponential chain:

• How many links can we schedule simultaneously?
• Let us start with the first node v1...   
Æ its power is P1≥ ρ2α(i+10) for some constant ρ

• This creates interference of at least ρ/2α at every other node! 
• The second node v2 also sends with power P2=ρ2α(i+7)

• Again, this creates an additional interference of at least ρ/2α at every
other node! 

2i 2i+1 2i+2 2i+3 2i+4 2i+5 2i+6 2i+7 2i+8 2i+9 2i+10

f1 v1

ρ(f1)α Power

Interference
>2ρ/2α

>2ρ/2α

ρ(f2)α

v2f2

>2ρ/2α >2ρ/2α

>2ρ/2α>2ρ/2α
>2ρ/2α

And so on…

v3f3

ρ(f3)α

>3ρ/2α
>3ρ/2α

>3ρ/2α
>3ρ/2α

Why?
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Example: Linear Power Assignment

• Assume we can schedule R nodes in parallel. 
• The left-most receiver xr faces an interference of R· ρ/2α

Æ yet, xr receives the message, say from xs. 
• How large can R be?
• The SINR at xr must be at least β, and hence

• From this, it follows that R is at most 2α/β
• And therefore....

.... at least n· min{1,β/2α} time slots are required for all links!

A clever power assignment solves this instance
in a constant number of time slots!


