

Chapter 0 INTRODUCTION Distributed EWSN 2006

Computing

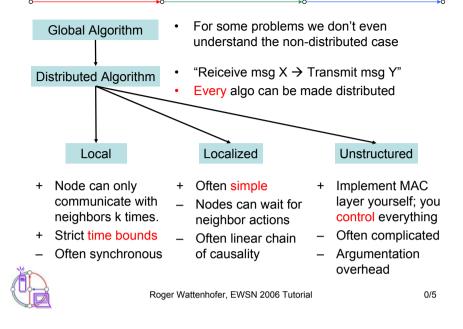
Introductory comments

- Way too many slides...
 - But don't worry, we won't do all of them
- Heterogeneous audience
 - Some students, some industry folks, some famous professors, ...
 - I assume everybody knows 101 of sensor networking
 - Instead of a real introduction, I will show some "opinion" slides
- This tutorial has a quite narrow definition of the term "algorithm"
- An algorithm is an algorithm only if it features an analytical proof of efficiency.
- If performance is proved by simulation only, we call it a heuristic.
- We look a distributed algorithms mostly.

My Own Private View on Networking Research

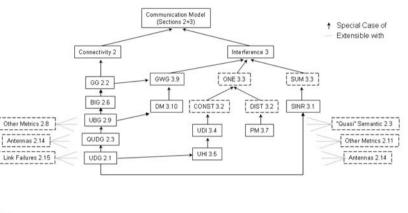
Class	Analysis	Communi cation model	Node distribution	Other drawbacks	Popu larity
Imple- mentation	Testbed	Reality	Reality(?)	"Too specific"	5%
Heuristic	Simulation	UDG to SINR	Random, and more	Many! (no benchmarks)	80%
Scaling law	Theorem/ proof	SINR, and more	Random	Existential (no protocols)	10%
Algorithm	Theorem/ proof	UDG, and more	Any (worst- case)	Worst-case unusual	5%

Algorithm Classes



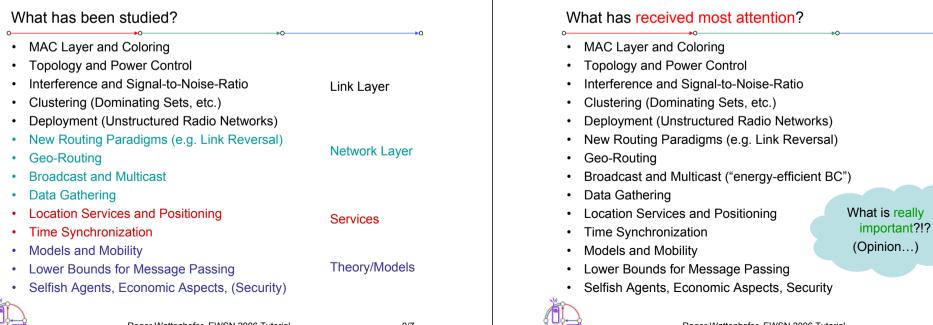
Some algorithmic communication models

Some of them we will see in this lecture, most of them not... •



Roger Wattenhofer, EWSN 2006 Tutorial

0/6



Roger Wattenhofer, EWSN 2006 Tutorial

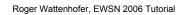
Philosophy

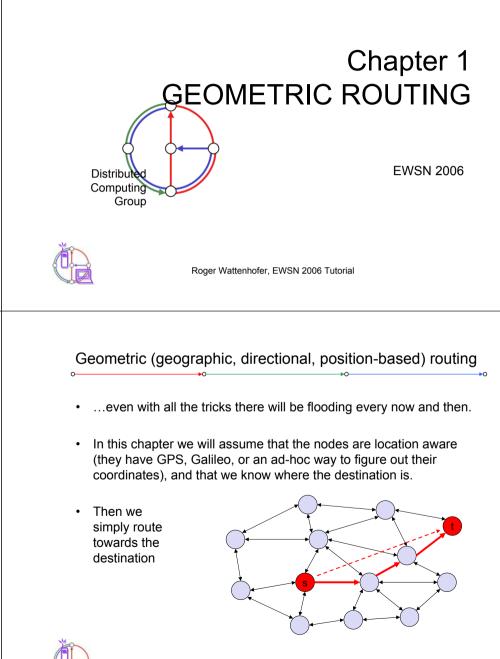
- Understand algorithmic fundamentals of sensor networks.
 - See some algorithms with implementation appeal
- Find models that capture reality
 - No random distribution
 - No random mobility
- Show a few examples
 - Mix between well-studied and "important" topics
- More material
 - Reading list on www.dcg.ethz.ch

Roger Wattenhofer, EWSN 2006 Tutorial

Overview – Geometric Routing

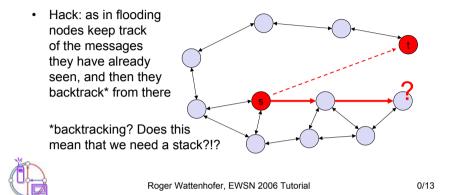
- Geometric routing
- Greedy geometric routing
- Euclidean and planar graphs
- Unit disk graph
- Gabriel graph and other planar graphs
- Face Routing
- Greedy and Face Routing
- Geometric Routing without Geometry





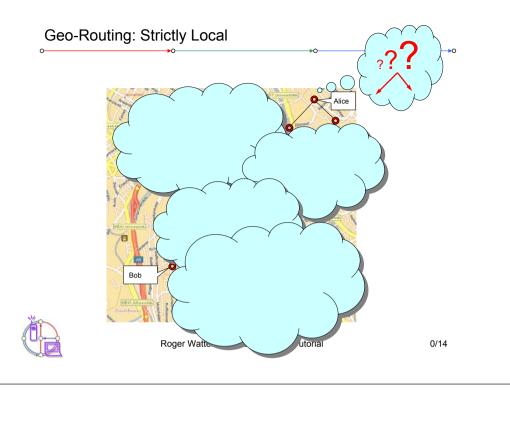
Geometric routing

- Problem: What if there is no path in the right direction?
- We need a guaranteed way to reach a destination even in the case when there is no directional path...



Greedy Geo-Routing?

0/15



Greedy Geo-Routing?

What is Geographic Routing?

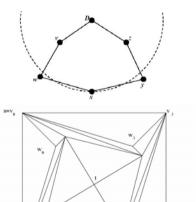
- A.k.a. geometric, location-based, position-based, etc.
- Each node knows its own position and position of neighbors
- Source knows the position of the destination
- No routing tables stored in nodes!
- Geographic routing makes sense
 - Own position: GPS/Galileo, local positioning algorithms
 - Destination: Geocasting, location services, source routing++
 - Learn about ad-hoc routing in general

Roger Wattenhofer, EWSN 2006 Tutorial

0/17

Examples why greedy algorithms fail

• We greedily route to the neighbor which is closest to the destination: But both neighbors of x are not closer to destination D

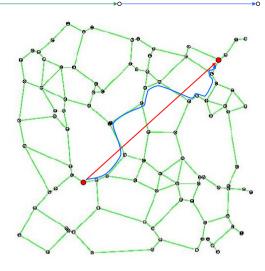


 Also the best angle approach might fail, even in a triangulation: if, in the example on the right, you always follow the edge with the narrowest angle to destination t, you will forward on a loop v₀, w₀, v₁, w₁, ..., v₃, w₃, v₀, ...

Roger Wattenhofer, EWSN 2006 Tutorial

Greedy routing

- Greedy routing looks promising.
- Maybe there is a way to choose the next neighbor and a particular graph where we always reach the destination?

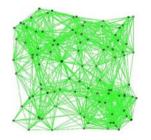


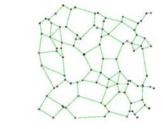
Roger Wattenhofer, EWSN 2006 Tutorial

0/18

Euclidean and Planar Graphs

- Euclidean: Points in the plane, with coordinates
- Planar: can be drawn without "edge crossings" in a plane

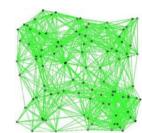




• Euclidean planar graphs (planar embeddings) simplify geometric routing.

Unit disk graph

- We are given a set *V* of nodes in the plane (points with coordinates).
- The unit disk graph *UDG(V)* is defined as an undirected graph (with *E* being a set of undirected edges). There is an edge between two nodes *u*,*v* iff the Euclidean distance between *u* and *v* is at most 1.
- · Think of the unit distance as the maximum transmission range.
- We assume that the unit disk graph *UDG* is connected (that is, there is a path between each pair of nodes)
- The unit disk graph has many edges.
- Can we drop some edges in the UDG to reduced complexity and interference?



Roger Wattenhofer, EWSN 2006 Tutorial

0/21

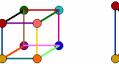
Gabriel Graph

- Let disk(*u*,*v*) be a disk with diameter (*u*,*v*) that is determined by the two points *u*,*v*.
- The Gabriel Graph GG(*V*) is defined as an undirected graph (with *E* being a set of undirected edges). There is an edge between two nodes *u*,*v* iff the disk(*u*,*v*) including boundary contains no other points.
- As we will see the Gabriel Graph has interesting properties.

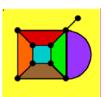
Roger Wattenhofer, EWSN 2006 Tutorial

Planar graphs

• Definition: A planar graph is a graph that can be drawn in the plane such that its edges only intersect at their common end-vertices.



- Kuratowski's Theorem: A graph is planar iff it contains no subgraph that is edge contractible to K_5 or $K_{3,3}$.
- Euler's Polyhedron Formula: A connected planar graph with *n* nodes, *m* edges, and *f* faces has *n* – *m* + *f* = 2.
- Right: Example with 9 vertices, 14 edges, and 7 faces (the yellow "outside" face is called the infinite face)



 Theorem: A simple planar graph with n nodes has at most 3n–6 edges, for n≥3.

Roger Wattenhofer, EWSN 2006 Tutorial

Delaunay Triangulation

- Let disk(*u*,*v*,*w*) be a disk defined by the three points *u*,*v*,*w*.
- The Delaunay Triangulation (Graph) DT(*V*) is defined as an undirected graph (with *E* being a set of undirected edges). There is a triangle of edges between three nodes *u*,*v*,*w* iff the disk(*u*,*v*,*w*) contains no other points.
- The Delaunay Triangulation is the dual of the Voronoi diagram, and widely used in various CS areas; the DT is planar; the distance of a path (s,...,t) on the DT is within a constant factor of the s-t distance.

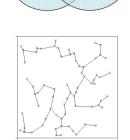
disk(*u*.v

Other planar graphs

- Relative Neighborhood Graph RNG(V)
- An edge e = (u,v) is in the RNG(V) iff there is no node w with (u,w) < (u,v) and (v,w) < (u,v).

which forms a tree on V.

• A subset of *E* of *G* of minimum weight



0/25

Ö

Roger Wattenhofer, EWSN 2006 Tutorial

Routing on Delaunay Triangulation?

- Let *d* be the Euclidean distance of source *s* and destination *t*
- Let *c* be the sum of the distances of the links of the shortest path in the Delaunay Triangulation

• It was shown that $c = \Theta(d)$

- S d
- Three problems:
- 1) How do we find this best route in the DT? With flooding?!?
- 2) How do we find the DT at all in a distributed fashion?
- 3) Worse: The DT contains edges that are not in the UDG, that is, nodes that cannot receive each other are "neighbors" in the DT

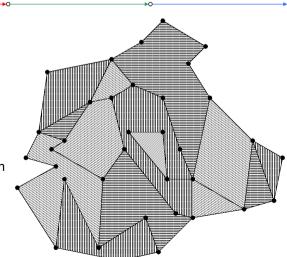
Properties of planar graphs

- Theorem 1: $MST(V) \subseteq RNG(V) \subseteq GG(V) \subseteq DT(V)$
- Corollary: Since the MST(V) is connected and the DT(V) is planar, all the planar graphs in Theorem 1 are connected and planar.
- Theorem 2: The Gabriel Graph contains the Minimum Energy Path (for any path loss exponent $\alpha \ge 2$)
- Corollary: $GG(V) \cap UDG(V) \text{ contains the Minimum Energy Path in } UDG(V)$

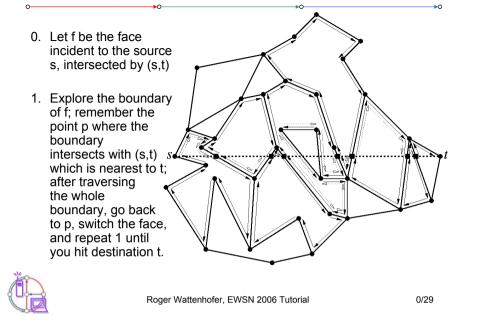
Roger Wattenhofer, EWSN 2006 Tutorial

Breakthrough idea: route on faces

- Remember the faces...
- Idea: Route along the boundaries of the faces that lie on the source-destination line



Face Routing

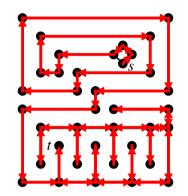


Face Routing Properties

- · All necessary information is stored in the message
 - Source and destination positions
 - Point of transition to next face
- Completely local:
 - Knowledge about direct neighbors' positions sufficient
 - Faces are implicit

- Planarity of graph is computed locally (not an assumption)
 - Computation for instance with Gabriel Graph

Face Routing Works on Any Graph



Roger Wattenhofer, EWSN 2006 Tutorial

Face routing is correct

- Theorem: Face routing terminates on any simple planar graph in O(n) steps, where n is the number of nodes in the network
- Proof: A simple planar graph has at most 3n–6 edges. You leave each face at the point that is closest to the destination, that is, you never visit a face twice, because you can order the faces that intersect the source—destination line on the exit point. Each edge is in at most 2 faces. Therefore each edge is visited at most 4 times. The algorithm terminates in O(n) steps.

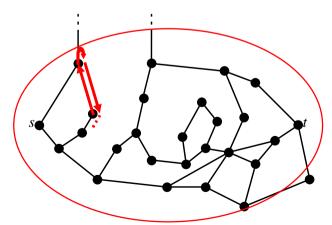
Is there something better than Face Routing?

- How to improve face routing? A proposal called "Face Routing 2"
- Idea: Don't search a whole face for the best exit point, but take the first (better) exit point you find. Then you don't have to traverse huge faces that point away from the destination.
- Efficiency: Seems to be practically more efficient than face routing. But the theoretical worst case is worse $-O(n^2)$.
- Problem: if source and destination are very close, we don't want to route through all nodes of the network. Instead we want a routing algorithm where the cost is a function of the cost of the best route in the unit disk graph (and independent of the number of nodes).

Roger Wattenhofer, EWSN 2006 Tutorial

0/33

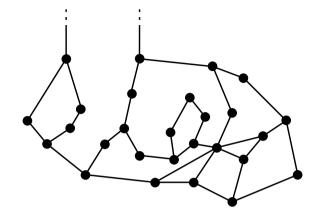
Bounding Searchable Area



Roger Wattenhofer, EWSN 2006 Tutorial

Face Routing

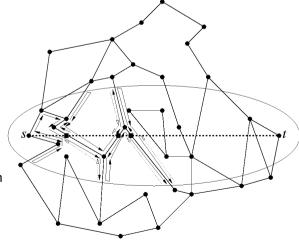
- Theorem: Face Routing reaches destination in O(n) steps
- But: Can be very bad compared to the optimal route



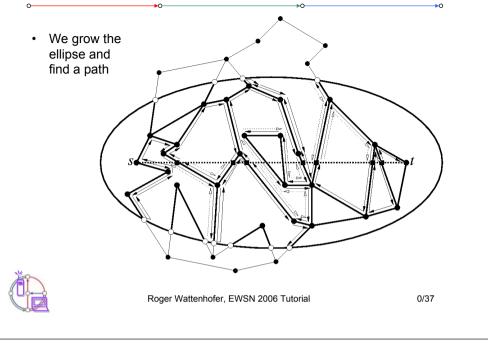
0/34

Adaptive Face Routing (AFR)

- Idea: Use face routing together with ad hoc routing trick 1!!
- That is, don't route beyond some radius r by branching the planar graph within an ellipse of exponentially growing size.



AFR Example Continued



The $\Omega(1)$ Model

- We simplify the model by assuming that nodes are sufficiently far apart; that is, there is a constant d₀ such that all pairs of nodes have at least distance d₀. We call this the Ω(1) model.
- This simplification is natural because nodes with transmission range 1 (the unit disk graph) will usually not "sit right on top of each other".
- Lemma: In the $\Omega(1)$ model, all natural cost models (such as the Euclidean distance, the energy metric, the link distance, or hybrids of these) are equal up to a constant factor.
- Remark: The properties we use from the $\Omega(1)$ model can also be established with a backbone graph construction.

Roger Wattenhofer, EWSN 2006 Tutorial

AFR Pseudo-Code

- 0. Calculate G = GG(V) \cap UDG(V) Set c to be twice the Euclidean source—destination distance.
- Nodes w ∈ W are nodes where the path s-w-t is larger than c. Do face routing on the graph G, but without visiting nodes in W. (This is like pruning the graph G with an ellipse.) You either reach the destination, or you are stuck at a face (that is, you do not find a better exit point.)
- 2. If step 1 did not succeed, double c and go back to step 1.
- Note: All the steps can be done completely locally, and the nodes need no local storage.

Roger Wattenhofer, EWSN 2006 Tutorial

Analysis of AFR in the $\Omega(1)$ model

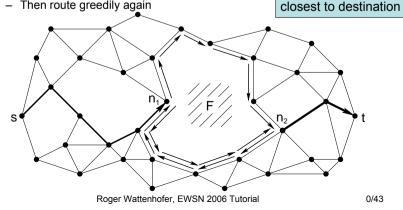
- Lemma 1: In an ellipse of size c there are at most O(c²) nodes.
- Lemma 2: In an ellipse of size c, face routing terminates in O(c²) steps, either by finding the destination, or by not finding a new face.
- Lemma 3: Let the optimal source—destination route in the UDG have cost c*. Then this route c* must be in any ellipse of size c* or larger.
- Theorem: AFR terminates with cost O(c*2).
- Proof: Summing up all the costs until we have the right ellipse size is bounded by the size of the cost of the right ellipse size.

- The network on the right constructs a lower bound.
- The destination is the center of the circle. the source any node on the ring.
- · Finding the right chain costs $\Omega(c^{*2})$. even for randomized algorithms
- Theorem: AFR is asymptotically optimal.

Roger Wattenhofer, EWSN 2006 Tutorial

GOAFR - Greedy Other Adaptive Face Routing

- Back to geometric routing...
- AFR Algorithm is not very efficient (especially in dense graphs)
- Combine Greedy and (Other Adaptive) Face Routing •
 - Route greedily as long as possible Other AFR: In each
 - Circumvent "dead ends" by use of face routing face proceed to node
 - Then route greedily again



Non-geometric routing algorithms

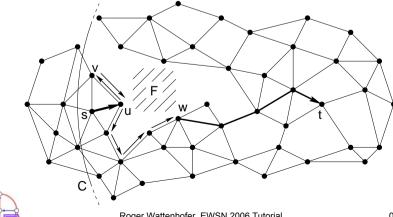
- In the $\Omega(1)$ model, a standard flooding algorithm enhanced with trick 1 will (for the same reasons) also cost $O(c^{*2})$.
- However, such a flooding algorithm needs O(1) extra storage at each node (a node needs to know whether it has already forwarded a message).
- Therefore, there is a trade-off between O(1) storage at each node or that nodes are location aware, and also location aware about the destination. This is intriguing.

0/41

Roger Wattenhofer, EWSN 2006 Tutorial

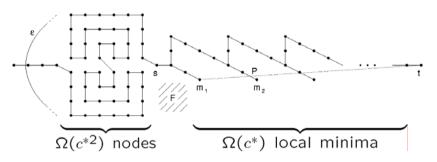
GOAFR+

- GOAFR+ improvements:
 - Early fallback to greedy routing
 - (Circle centered at destination instead of ellipse)



Early Fallback to Greedy Routing?

- We could fall back to greedy routing as soon as we are closer to t than the local minimum
- But:



"Maze" with $\Omega(c^{*2})$ edges is traversed $\Omega(c^{*})$ times $\rightarrow \Omega(c^{*3})$ steps

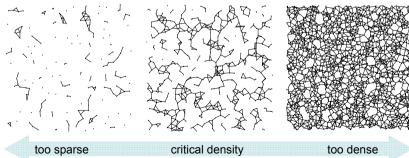
•

Roger Wattenhofer, EWSN 2006 Tutorial

0/45

Average Case

- Not interesting when graph not dense enough
- · Not interesting when graph is too dense
- Critical density range ("percolation")
 - Shortest path is significantly longer than Euclidean distance



Ö

Roger Wattenhofer, EWSN 2006 Tutorial

GOAFR – Greedy Other Adaptive Face Routing

- Early fallback to greedy routing:
 - Use counters p and q. Let u be the node where the exploration of the current face F started
 - · p counts the nodes closer to t than u
 - q counts the nodes not closer to t than u
 - Fall back to greedy routing as soon as p > $\sigma \cdot q$ (constant σ > 0)

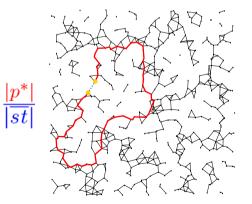
Theorem: GOAFR is still asymptotically worst-case optimal... ...and it is efficient in practice, in the average-case.

- What does "practice" mean?
 - Usually nodes placed uniformly at random

Roger Wattenhofer, EWSN 2006 Tutorial

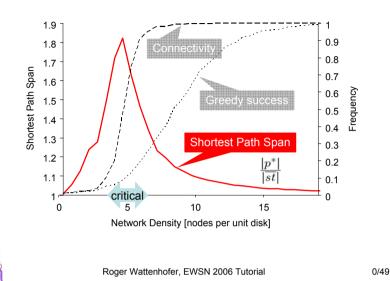
Critical Density: Shortest Path vs. Euclidean Distance

• Shortest path is significantly longer than Euclidean distance



Critical density range mandatory for the simulation of any routing algorithm (not only geographic)

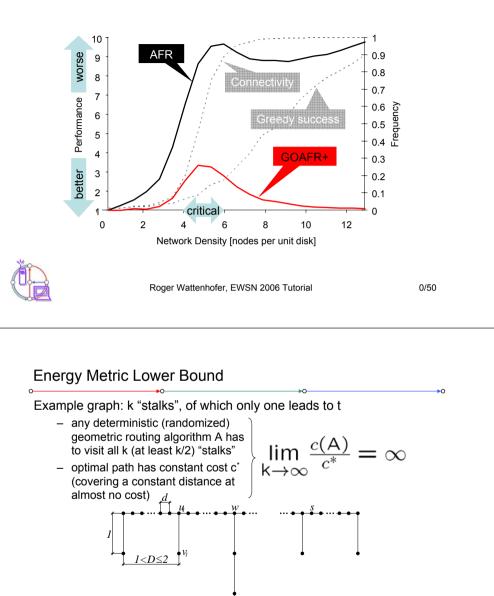
Randomly Generated Graphs: Critical Density Range



A Word on Performance

- What does a performance of 3.3 in the critical density range mean?
- If an optimal path (found by Dijkstra) has cost c, then GOAFR+ finds the destination in 3.3.c steps.
- It does *not* mean that the *path* found is 3.3 times as long as the optimal path! The path found can be much smaller...
- Remarks about cost metrics
 - In this lecture "cost" c = c hops
 - There are other results, for instance on distance/energy/hybrid metrics
 - In particular: With energy metric there is no competitive geometric routing algorithm

Simulation on Randomly Generated Graphs



 \rightarrow With energy metric there is no competitive geometric routing algorithm

COAFR: Summary (adaptive (adaptiv

Roger Wattenhofer, EWSN 2006 Tutorial

Attach GPS to each sensor node

Obtaining Position Information

- Often undesirable or impossible
- GPS receivers clumsy, expensive, and energy-inefficient
- · Equip only a few designated nodes with a GPS
 - Anchor (landmark) nodes have GPS
 - Non-anchors derive their position through communication (e.g., count number of hops to different anchors)

Anchor density determines quality of solution

× A

0/55

0/53

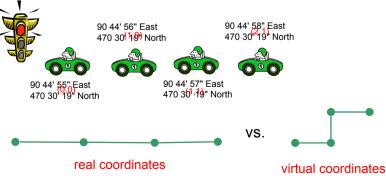
Routing with and without position information

- Without position information:
 - Flooding
 - → does not scale
 - Distance Vector Routing
 → does not scale
 - Source Routing
 - increased per-packet overhead
 - no theoretical results, only simulation
- With position information:
 - Greedy Routing
 - \rightarrow may fail: message may get stuck in a "dead end"
 - Geometric Routing
 → It is assumed that each node knows its position

Roger Wattenhofer, EWSN 2006 Tutorial

What about no GPS at all?

- In absence of GPS-equipped anchors...
 - \rightarrow ...nodes are clueless about real coordinates.
- For many applications, real coordinates are not necessary
 - → Virtual coordinates are sufficient

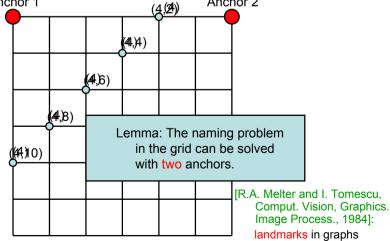


What are "good" virtual coordinates?

- Given the connectivity information for each node and knowing the underlying graph is a UDG find virtual coordinates in the plane such that all connectivity requirements are fulfilled, i.e. find a realization (embedding) of a UDG:
 - each edge has length at most 1
 - between non-neighbored nodes the distance is more than 1
- Finding a realization of a UDG from connectivity information only is NP-hard...
 - [Breu, Kirkpatrick, Comp.Geom.Theory 1998]
- ...and also hard to approximate
 - [Kuhn, Moscibroda, Wattenhofer, DIALM 2004]

Roger Wattenhofer, EWSN 2006 Tutorial

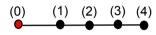
Anchor 1 (4 (%) Anchor 2



Roger Wattenhofer, EWSN 2006 Tutorial

Geometric Routing without Geometry

- For many applications, like routing, finding a realization of a UDG is not mandatory
- · Virtual coordinates merely as infrastructure for geometric routing
- → Pseudo geometric coordinates:
 - Select some nodes as anchors: a₁,a₂, ..., a_k
 - Coordinate of each node *u* is its hop-distance to all anchors:
 (d(u,a₁),d(u,a₂),..., d(u,a_k))



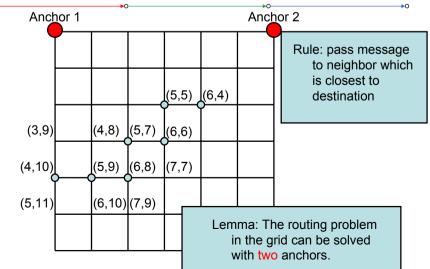
- · Requirements:
 - each node uniquely identified: Naming Problem
 - routing based on (pseudo geometric) coordinates possible: Routing Problem

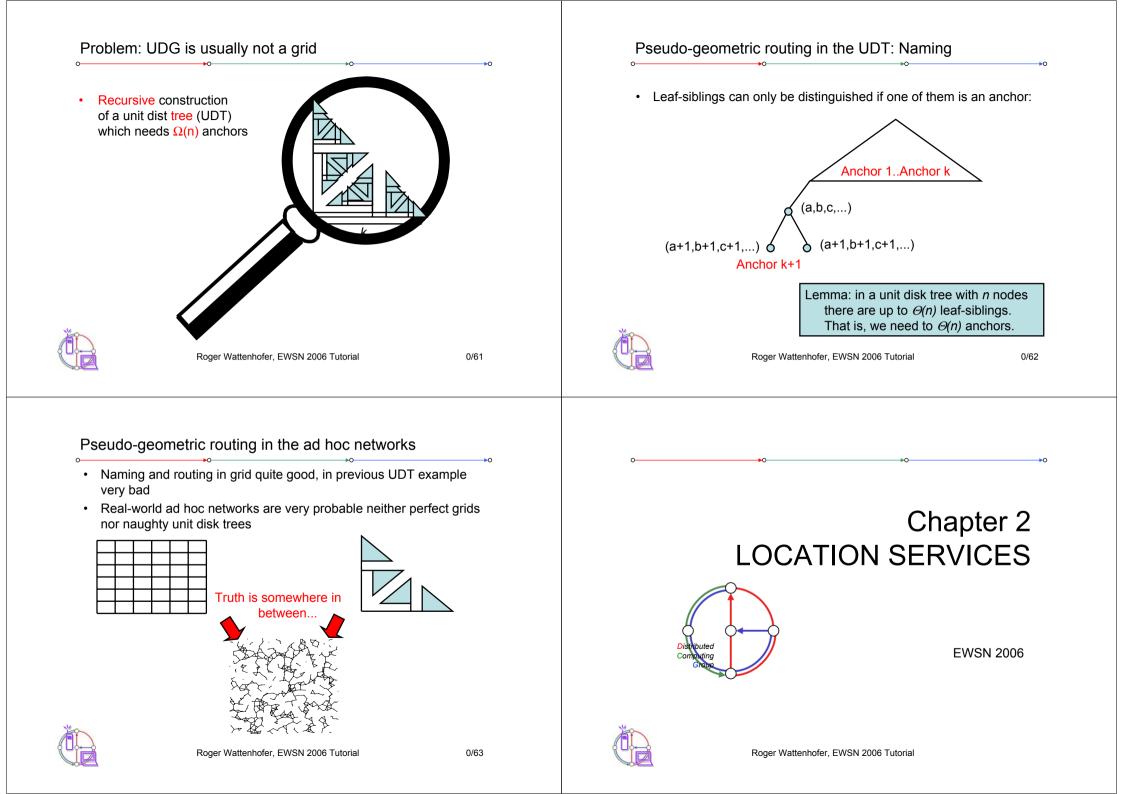
0/57

0/59

Roger Wattenhofer, EWSN 2006 Tutorial

Pseudo-geometric routing in the grid: Routing





Overview

- Location Services & Routing
 - Classification of location services
 - Home based
 - GLS
 - MLS

Roger Wattenhofer, EWSN 2006 Tutorial

0/65

Home based georouting in a MANET

- How can the sender learn the current position of another node?
 - Flooding the entire network is undesirable (traffic and energy overhead)
- Home based approach
 - Similar to Mobile IP, each node has a *home* node, where it stores and regularly updates its current position
 - The home is determined by the unique ID of the node t. One possibility is to hash the ID to a position p_t and use the node closest to p_t as home.
 - Thus, given the ID of a node, every node can determine the position of the corresponding home.

Home based routing

- 1. Route packet to h_t , the home of the destination t
- 2. Read the current position of *t*
- 3. Route to t

Location services

- Service that maps node names to (geographic) coordinates
 - Should be distributed (no require for specialized hardware)
 - Should be efficient
- Lookup of the position (or COA) of a mobile node
 - Mobile IP: Ask home agent
 - Home agent is determined through IP (unique ID) of MN
 - Possibly long detours even though sender and receiver are close
 - OK for Internet applications, where latency is (normally) low
- Other application: Routing in a MANET
 - MANET: <u>m</u>obile <u>a</u>d hoc <u>net</u>work
 - No dedicated routing hardware
 - Limited memory on each node: cannot store huge routing tables
 - Nodes are mostly battery powered and have limited energy
 - Nodes route messages, e.g. using georouting

Roger Wattenhofer, EWSN 2006 Tutorial

0/66

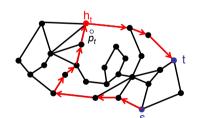
Home based location service - how good is it?

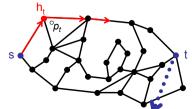
- Visiting the home of a node might be wasteful if the sender and receiver happen to be close, but the home far away
- The routing stretch is defined as

stretch := length of route length of optimal route

We want routing algorithms with low stretch.

- Simultaneous message routing and node movement might cause problems
- Can we do better?





Classification of location services

Proactive

- Mobile node divulges its position to all nodes whenever it moves
- E.g. through flooding

Reactive

- Sender searches mobile host only when it wants to send a message
- E.g. through flooding
- Hybrid
 - Both, proactive and reactive.
 - Some nodes store information about where a node is located
 - Arbitrarily complicated storage structures
 - Support for simultaneous routing and node mobility

- Any node A can invoke to basic operations:
 - Lookup(A, B): A asks for the position of B
 - Publish(A, x, y): A announces its move from position x to y

Open questions

The Grid

- How often does a node publish its current position?
- Where is the position information stored?
- How does the lookup operation find the desired information?

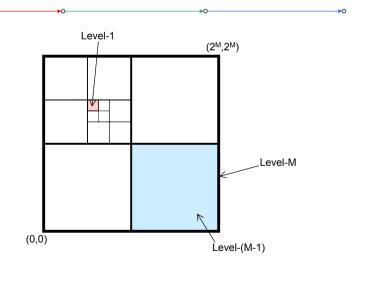
Roger Wattenhofer, EWSN 2006 Tutorial

Roger Wattenhofer, EWSN 2006 Tutorial

0/69

The Grid Location Service (GLS), Li et. al (2000)

- Cannot get reasonable stretch with one single home. Therefore, use several homes (**location servers**) where the node publishes its position.
- The location servers are selected based on a grid structure:
 - The area in which the nodes are located is divided into squares
 - All nodes agree on the lower left corner (0,0) and upper right corner (2^M, 2^M), which forms the square called **level-M**
 - Recursively, each level-N square is split into 4 level-(N-1) squares
 - The recursion stops for level-1



Addressing of nodes

- **Unique IDs** are generated for each node (e.g. by using a hash-function)
- ID space (all possible hash values) is circular
- Every node can find a least greater node w.r.t. the ID space (the closest node)
- · Example:

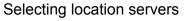
Let the ID space range from 1 to 99 and consider the IDs {3, 43, 80, 92}. Then, the least greater node with respect to the given ID space is $3 \rightarrow 43$; $43 \rightarrow 80$; $80 \rightarrow 92$; $90 \rightarrow 3$

Roger Wattenhofer, EWSN 2006 Tutorial

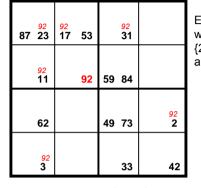
0/73

Complete example

	·				0	
70, 72, 76, 81,	1, 5, 6, 10, 12,				19, 35, 37, 45,	
	90, 91					
90	16					
		23, 26, 28, 31,	19, 35, 39, 45, 51, 82		39, 41, 43	
		37	50		45	
1, 5, 16, 37, 39, 41, 43, 45,	1, 2, 16, 37, 62, 70, 90, 91			35, 39, 45, 50		19, 35, 39, 45, 50, 51, 55, 61,
⁹¹ 62	5			51		62, 63, 70, 72, 76, 81 82
62, 91, 98				19, 20, 21, 23, 26, 28, 31, 32,	1, 2, 5, 6, 10, 12, 14, 16, 17,	
1				51, 82 35	82, 84, 87, 90, 91, 98 19	
	2, 17, 20, 63	2, 17, 23, 26,	28, 31, 32, 35,		10, 20, 21, 28,	
		61, 62			51, 55, 61, 62,	
	-		41		12	
2, 12, 26, 87, 98	1, 17, 23, 63, 81, 87, 98	2, 12, 14, 16, 23, 63		23, 26, 41, 72,	6, 72, 76, 84	
14	2	17		28	10	
31, 32, 81, 87, 90, 91	12, 43, 45, 50, 51, 61	12, 43, 55	1, 2, 5, 21, 76, 84, 87, 90, 91,	6, 10, 20 , 76		6, 10, 12, 14, 16, 17, 19, 84
98	55	61	98 6	21		20
2, 12, 14, 17, 23, 26, 28, 32,	12, 14, 17, 23, 26, 31, 32, 35,	2, 5, 6, 10, 43, 55, 61,		6, 21, 28, 41, 72	20, 21, 28, 41, 72, 76, 81, 82	
81.98	37. 39. 41. 55.	63. 81. 87.		76		
	70, 72, 76, 81, 82, 84, 87 90 1, 5, 16, 37, 39, 41, 43, 45, 50, 51, 55, 61, 91 62, 91, 98 1 2, 12, 26, 87, 98 2, 12, 14, 17, 98 2, 12, 14, 17,	82, 84, 87 14, 37, 62, 70, 90, 91 900 16 15, 516, 37, 39, 41, 64, 62, 70, 90, 91 30, 71, 84, 64, 70, 90, 91 91, 62, 70, 90, 91 5 62, 91, 98 2, 70, 90, 91 1 2, 17, 20, 63 22, 91, 26, 87, 91 1, 17, 23, 63, 93 2, 12, 26, 87, 91 1, 17, 23, 63, 93 90, 91 12, 43, 45, 50, 93 90, 91 12, 43, 45, 50, 93 90, 91 12, 43, 45, 50, 93 90, 91 12, 14, 17, 12, 14, 17, 23, 74	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$



- Each node A recruits location servers using the underlying grid:
 - In each of the 3 level-1 squares that, along with A, make up a level-2 square, A chooses the node closest to its own ID as location server.
 - The same selection process is repeated on higher level squares.



Example for node 92, which selects the nodes {23, 17, 11} on the level-1 and {2, 3, 31} on level-2.

Roger Wattenhofer, EWSN 2006 Tutorial

0/74

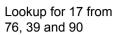
Querying location of other nodes

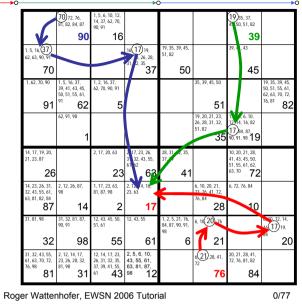
• Lookup(A, B): Find a location server of node B

- 1. Node *A* sends the request (with georouting) to the node with ID closest to B for which *A* has location information
- 2. Each node on the way forwards the request in the same way
- 3. Eventually, the query reaches a location server of *B*, which forwards it to *B*.

Example: Send packet from 81 to 23

Lookup Example





GLS has no worst case guarantees

- The lookup cost between two nodes might be arbitrarily high even though the nodes are very close
- The publish cost might be arbitrarily high even though a node only moved a very short distance
- In sparse networks, routing to the location server may have worst case cost, while routing directly can be more efficient

	70, 72, 76, 81, 82, 84,	1, 5, 6, 10, 12, 14, 37,				19, 35, 37, 45, 50, 51,	
	⁸⁷ 90	62, 70, 90, 91 16				[≈] 39	
1, 5, 16, 37,		. 10	16, 17, 19,	19, 35, 39,		39, 41, 43	
62, 63, 90, 91			21, 23, 26, 28, 31, 32,	45, 51, 82			
70			³⁵ 37	50		45	
1, 62, 70, 90	1, 5, 16, 37, 39, 41, 43,	1, 2, 16, 37, 62, 70, 90,			35, 39, 45, 50		19, 35, 39, 45, 50, 51,
91	45, 50, 51, 55, 61, 62	⁹¹ 5			51		55, 61, 62, 63, 70, 82
31	62.91.98	5		-	19.20.21.	1.2.5.6	16.81 02
					23, 26, 28, 31, 32, 51,	10, 12, 14, 16, 17, 82,	
	1				² 35	a. a 🕅 9	
14, 17, 19,		2, 17, 20, 63	2, 17, 23,	28, 31, 32,		10, 20, 21,	
20, 21, 23,			2, 17, 23, 26, 31, 32, 43, 55, 61,	35, 37, 39		28, 41, 43,	
14, 17, 19, 20, 21, 23, 87 26		2, 17, 20, 63 23	26, 31, 32,			28, 41, 43, 45, 50, 5 <u>1</u> 55, 61, 6 7 2	
20, 21, 23, 87 14, 23, 26, 31, 32, 43,	2, 12, 26, 87, 98	23	2, 17, 23, 26, 31, 32, 43, 55, 61, 62 63 2, 12, 14, 16, 23, 63	35, 37, 39	6, 10, 20, 21, 23, 26,	28, 41, 43,	
20, 21, 23, 87 26 14, 23, 26	2, 12, 26, 87, 98 14	23	26, 31, 32, 43, 55, 61 62 63	35, 37, 39	21, 23, 26, 41, 72, 76	28, 41, 43, 45, 50, 5 <u>1</u> 55, 61, 6 72 6, 72, 36, 84	
20, 21, 23, 87 14, 23, 26, 31, 32, 43, 55, 61, 63	87, 98 14	23 1, 17, 23, 63, 81, 87, 98 2 12, 43, 45,	26, 31, 32, 43, 55, 61 62 63 2, 12, 14, 16, 23, 63	1.2.5.21.	21, 23, 26, 41, 72, 76, 84 28 6, 10, 20,	28, 41, 43, 45, 50, 5 <u>1</u> 55, 61, 6 7 2	6, 10, 12,
20, 21, 23, 87 26 14, 23, 36, 31, 32, 43, 55, 61, 63, 81, 82, 87 31, 81, 98	87,98 14 31,32,81, 87,90,91	23 1, 17, 23, 63, 81, 87, 98 2 12, 43, 45, 50, 51, 61	26, 31, 32, 43, 55, 61 62 63 2, 12, 14, 16, 23, 63 17, 43, 55	15, 37, 39 41 1, 2, 5, 21, 76, 84, 87, 90, 91, 98	21, 23, 26, 41, 72, 76, 84 28 6, 10, 20, 76	28, 41, 43, 45, 50, 5 <u>1</u> 55, 61, 6 72 6, 72, 36, 84	14, 16, 17, 19, 84
20, 21, 23, 87 26 14, 23, 26, 31, 32, 43, 55, 61, 63, 81, 82, 87 31, 81, 98 32	87, 98 14 31, 32, 81, 87, 90, 91 98	23 1, 17, 23, 43, 81, 87, 98 2 12, 43, 45, 50, 51, 61 55	26, 31, 32, 43, 55, 61 62 63 2, 12, 14, 16, 23, 63 17, 43, 55 12, 43, 55 12, 43, 55	1, 2, 5, 21, 76, 84, 87,	21,23,26, 41,72,76, 84 28 5,10,20, 76 21	28, 41, 43, 45, 50, 51 55, 61, 6 7 2 6, 72, 76, 84 10	14.16.17.
20, 21, 23, 87 26 14, 23, 36, 31, 32, 43, 55, 61, 63, 81, 82, 87 31, 81, 98	87, 98 14 31, 32, 81, 87, 90, 91 98 2, 12, 14,	23 1, 17, 23, 63, 81, 87, 98 2 12, 43, 45, 50, 51, 61	26, 31, 32, 43, 55, 61 62 63 2, 12, 14, 16, 23, 63 17, 43, 55	15, 37, 39 41 1, 2, 5, 21, 76, 84, 87, 90, 91, 98	21, 23, 26, 41, 72, 76, 84 28 6, 10, 20, 76	28, 41, 43, 45, 50, 51 55, 51, 6 7 2 6, 12, 36, 84 10 20, 21, 28, 41, 72, 76,	14, 16, 17, 19, 84
20, 21, 23, 87 26 14, 23, 36, 31, 32, 43, 55, 61, 63, 81, 82, 87 31, 81, 98 32, 32, 43, 31, 32, 43,	87, 98 14 31, 32, 81, 87, 90, 91 98 2, 12, 14,	23 1, 17, 23, 43, 81, 87, 98 2 12, 43, 45, 50, 51, 61 55 12, 14, 17,	26, 31, 32, 43, 55, 61 62 2, 12, 14, 16, 23, 63 17, 43, 55 12, 43, 55 17, 43, 55 61 2, 5	15, 37, 39 41 1, 2, 5, 21, 76, 84, 87, 90, 91, 98	21,23,26, 41,72,76, 84 28 6,10,20, 76 21 6,21,28,	28, 41, 43, 45, 50, 51 55, 61, 67 6, 72, 76, 84 10 20, 21, 28,	14, 16, 17, 19, 84

Ö

Roger Wattenhofer, EWSN 2006 Tutorial

0/79

Analysis of GLS

- **Theorem 1:** A query needs no more than *k* location query steps to reach a location server of the destination when the sender and receiver are colocated in a level-*k* square.
- **Theorem 2:** The query never leaves the level-*k* square in which the sender and destination are colocated.

Roger Wattenhofer, EWSN 2006 Tutorial

0/78

GLS and mobility

- Node crosses boundary line: what happens to the node's role as location server?
 - Must redistribute all information in the old level
 - Gather new information in the new level
 - Publish cost is arbitrarily high compared to the moved distance
- A lookup happening in parallel with node movement might fail. Thus, GLS does not guarantee delivery for real concurrent systems, where nodes might move independently at any time.

Improving GLS

- Goals for MLS
 - Publish cost only depends on moved distance
 - Lookup cost only depends on the distance between the sender and receiver
 - Nodes might move arbitrarily at any time, even while other nodes issue lookup requests
 - Determine the maximum allowed node speed under which MLS still guarantees delivery

Roger Wattenhofer, EWSN 2006 Tutorial

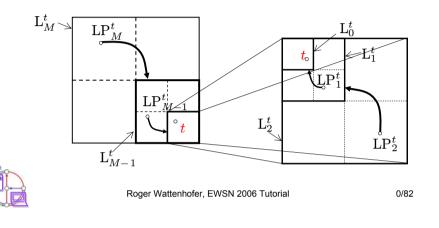
0/81

Location pointer & Notation

- Notation:
 - LP_k^t Location pointer for node *t* on level-*k*
 - \mathbf{L}_{k}^{t} Level-*k* that contains node *t*
- The location pointers are placed depending on their ID, as in the home-based lookup system.
- The position of LP_k^t is obtained by hashing the ID of node *t* to a position in L_k^t . The location pointer is stored on the nearest nodes.

Location pointers (aka location servers)

- Difference to GLS:
 - Only one location pointer (LP) per level (L) (GLS: 3 location servers)
 - The location pointer only knows in which sub-level the node is located (GLS: the location server knows the exact position)



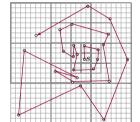
Routing in MLS

- Routing from a node *s* to a node *t* consists of two phases:
 - 1. Find a location pointer LP_k^t
 - 2. Once a first location pointer is found on level-*k*, we know in which of the 4 sub-squares *t* is located and thus in which L_{k-1} *t* has published another location pointer LP_{k-1}^{t} .

Recursively, the message is routed towards location pointers on lower levels until it reaches the lowest level, from where it can be routed directly to t.

Routing in MLS (2)

- When a node *s* wants to find a location pointer of a node *t*, it first searches in its immediate neighborhood and then extends the search area with exponential growing coverage.
 - First, try to find a location pointer LP_0^t in L_0^s or one of its 8 neighboring levels.
 - Repeat this search on the next higher level until a LP_k^t is found
- The lookup path draws a spiral-like shape with exponentially increasing radius until it finds a location pointer of *t*.
- Once a location pointer is found, the lookup request knows in which sub-square it can find the next location pointer of *t*.

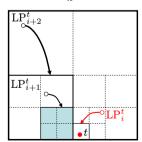


Roger Wattenhofer, EWSN 2006 Tutorial

0/85

Lazy publishing

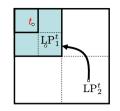
Idea: Don't update a level pointer LP^t_k as long as t is still somewhat close to the level L_k where LP^t_k points.

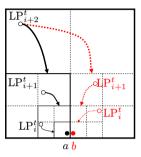


- Breaks the lookup: LP_{i+1}^t points to a level that does not contain LP_i^t

Support for mobility in MLS

- A location pointer only needs to be updated when the node leaves the corresponding sub-square.
 - LP_2^t is OK as long as t remains in the shaded area.
 - Most of the time, only the closest few location pointers need to be updated due to mobility.
- Not enough: If a node moves across a level boundary, many pointers need to be updated. E.g. a node oscillates between the two points *a* and *b*.



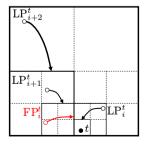


Roger Wattenhofer, EWSN 2006 Tutorial

0/86

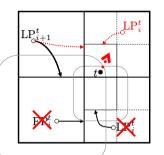
Lazy publishing with forwarding pointers

• No problem, add a **forwarding pointer** that indicates in which neighboring level the location pointer can be found.



Concurrency in MLS

- Allowing for concurrent lookup requests and node mobility is somewhat tricky, especially the deletion of pointers.
- Note that a lookup request needs some time to travel between location pointers. The same holds for requests to create or delete location (or forwarding) pointers.
- · Example:
 - A lookup request follows LP_{i+1}^{t} , and node *t* moves as indicated
 - t updates its LP_i^t and LP_{i+1}^t and removes the FP_i^t and the old LP_i^t
 - The lookup request fails if it arrives after the FP^t_i has been removed



0/89

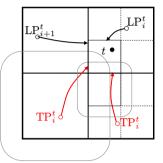
Roger Wattenhofer, EWSN 2006 Tutorial

Properties of MLS

- · Constant lookup stretch
 - The length of the chosen route is only a constant longer than the optimal route
- Publish cost is O(d log d) where moved distance is d
 - Even if nodes move considerably, the induced message overhead due to publish requests is moderate.
- Works in a concurrent setup
 - Lookup requests and node movement might interleave arbitrarily
- Nodes might not move faster than 1/15 of the underlying routing speed
 - We can determine the maximum node speed that MLS supports. Only if nodes move faster, there might arise situations where a lookup request fails.

Concurrency in MLS (2)

- No problem either: Instead of removing a location pointer or forwarding pointer, replace it with a **temporary pointer** that remains there for a *short time* until we are sure that no lookup request might arrive anymore on this outdated path.
- Similar to the forwarding pointer, a temporary pointer redirects a lookup to the neighbor level where the node is located.

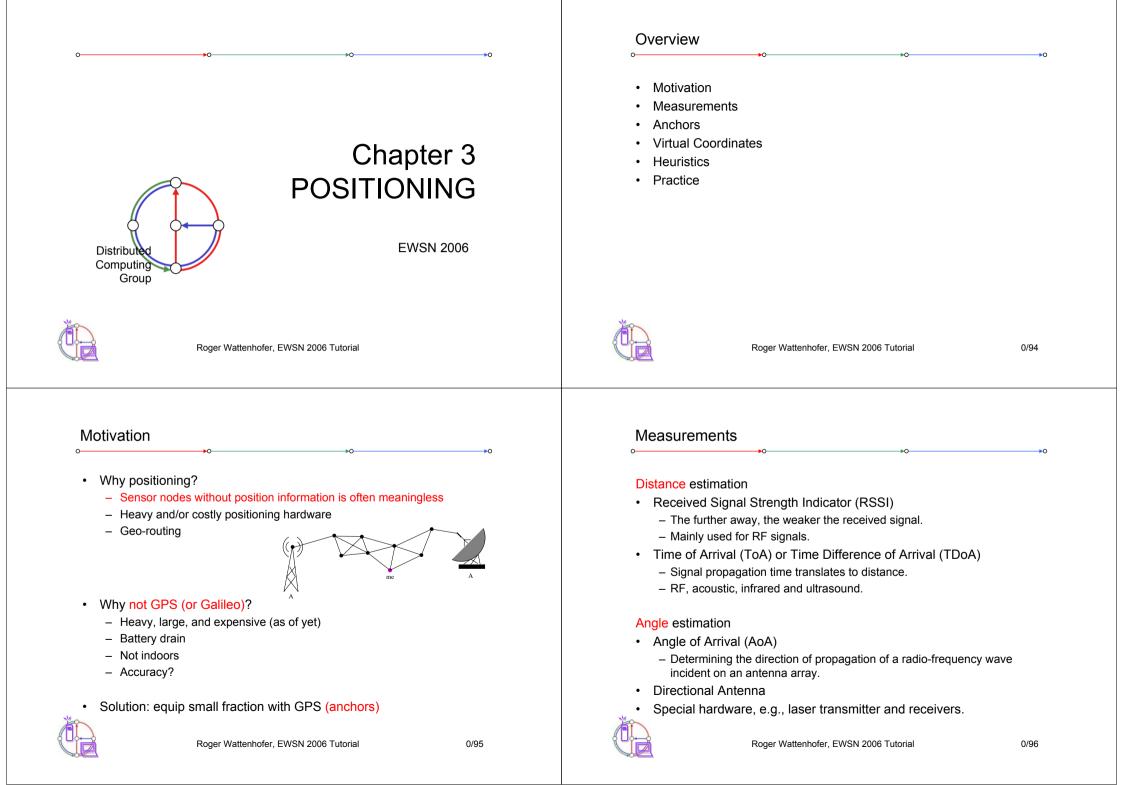


Roger Wattenhofer, EWSN 2006 Tutorial

0/90

MLS Conclusions

- · It's somewhat tricky to handle concurrency properly
 - Use of temporary forwarding pointers
- MLS is the first location service that determines the maximum speed at which nodes might move
 - Without the speed limitation, no delivery guarantees can be made!
- Drawbacks
 - MLS utilizes an underlying routing algorithm that can deliver messages with constant stretch given the position of the destination
 - MLS requires a relatively dense node population



Positioning (a.k.a. Localization)

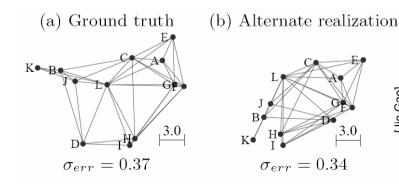
- Task: Given distance or angle measurements or mere connectivity information, find the locations of the sensors.
- Anchor-based
 - Some nodes know their locations, either by a GPS or as pre-specified.
- Anchor-free
 - Relative location only. Sometimes called virtual coordinates.
 - Theoretically cleaner model (less parameters, such as anchor density)
- Range-based •
 - Use range information (distance estimation).
- Range-free
 - No distance estimation, use connectivity information such as hop count.
 - It was shown that bad measurements don't help a lot anyway.

Roger Wattenhofer, EWSN 2006 Tutorial

0/97

Ambiguity Problems

· Same distances, different realization.



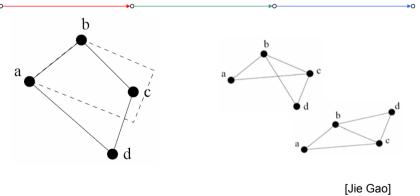
[Jie Gao]

Trilateration and Triangulation

- Use geometry, measure the distances/angles to three anchors.
- Trilateration: use distances - Global Positioning System (GPS)
- Triangulation: use angles - Some cell phone systems
- How to deal with inaccurate • measurements?
 - Least squares type of approach
 - What about strictly more than 3 (inaccurate) measurements?

Roger Wattenhofer, EWSN 2006 Tutorial

Continuous deformation, flips, etc.



Rigidity theory: Given a set of rigid bars connected by hinges, • rigidity theory studies whether you can move them continuously.

Simple hop-based algorithms

- Algorithm
 - Get graph distance h to anchor(s)
 - Intersect circles around anchors
 - radius = distance to anchor
 - Choose point such that maximum error is minimal
 - Find enclosing circle (ball) of minimal radius
 - Center is calculated location
- In higher dimensions: $1 < d \le h$
 - Rule of thumb: Sparse graph
 → bad performance

Roger Wattenhofer, EWSN 2006 Tutorial

Virtual Coordinates

• Idea:

Close-by nodes have similar coordinates Distant nodes have very different coordinates

→ Similar coordinates imply physical proximity!

- Applications
 - Geometric Routing
 - Locality-sensitive queries
 - Obtaining meta information on the network
 - Anycast services ("Which of the service nodes is closest to me?")
 - Outside the sensor network domain: e.g., Internet mapping

0/101

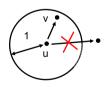
How about no anchors at all ...?

- In absence of anchors...
 - → ...nodes are clueless about real coordinates.
- · For many applications, real coordinates are not necessary
 - → Virtual coordinates are sufficient
 - → Geometric Routing requires only virtual coordinates
 - Require no routing tables
 - Resource-frugal and scalable

0/102

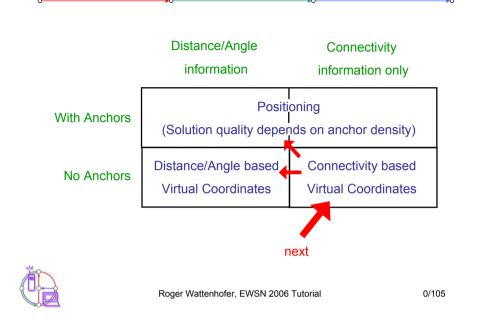
Model

- Unit Disk Graph (UDG) to model wireless multi-hop network
 Two nodes can communicate iff
 - Two nodes can communicate iff Euclidean distance is at most 1



- Sensor nodes may not be capable of
 - Sensing directions to neighbors
 - Measuring distances to neighbors
- Goal: Derive topologically correct coordinate information from connectivity information only.
 - Even the simplest nodes can derive connectivity information

Context



UDG Approximation – Quality of Embedding

- Finding an exact realization of a UDG is NP-hard. \rightarrow Find an embedding r(G) which approximates a realization.
- Particularly,
 - \rightarrow Map adjacent vertices (edges) to points which are close together. \rightarrow Map non-adjacent vertices ("non-edges") to far apart points.
- Define quality of embedding q(r(G)) as:

Ratio between longest edge to shortest non-edge in the embedding.

Let $\rho(u,v)$ be the distance between points u and v in the embedding.

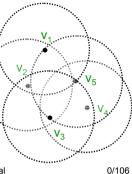
$q(r(G)) := \frac{1}{\min_{\{u',v'\} \notin E} \rho(u',v')}$ Roger Wattenhofer, EWSN 2006 Tutorial

 $\max_{\{u,v\}\in E} \rho(u,v)$

· Given the connectivity information for each node... ...and knowing the underlying V₅ V₄ V1 ٧2 graph is a UDG... V_2 V₁ V₁ **V**₂ **V**₃ **V**₅ V_3 V_4 **V**₅ V_3 V_5 V₄ • ...find a UDG embedding in the plane such that all connectivity requirements are fulfilled! (\rightarrow Find a realization of a UDG)

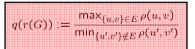
This problem is NP-hard! (Simple reduction to UDG-recognition problem, which is NP-hard) [Breu, Kirkpatrick, Comp.Geom.Theory 1998]

Roger Wattenhofer, EWSN 2006 Tutorial

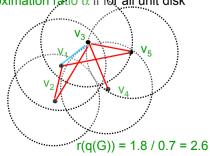


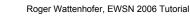
UDG Approximation

· For each UDG G, there exists an embedding r(G), such that, $q(r(G)) \leq 1$. (a realization of G)



- Finding such an embedding is NP-hard
- An algorithm ALG achieves approximation ratio α if for all unit disk graphs G, $q(r_{Al G}(G)) \leq \alpha$.
- Example:





Some Results

- There are a few virtual coordinates algorithms All of them evaluated only by simulation on random graphs
- In fact there is only one provable approximation algorithm

There is an algorithm which achieves an approximation ratio of $O(\log^{2.5} n \sqrt{\log \log n})$, n being the number of nodes in G.

• Plus there are lower bounds on the approximability.

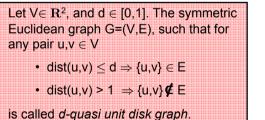
There is no algorithm with approximation ratio better than $\sqrt{3/2} - \epsilon$, unless P=NP.

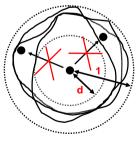
Roger Wattenhofer, EWSN 2006 Tutorial

0/109

Lower Bound: Quasi Unit Disk Graph

• Definition Quasi Unit Disk Graph:





• Note that between d and 1, the existence of an edge is unspecified.

Ö

Approximation Algorithm: Overview

UDG Graph G with MIS M. UDG Graph G with MIS M. UDG Graph G with MIS M. UDG Graph G with MIS M. Approximate pairwise distances between nodes such that, MIS nodes are neatly spread out. high ding
constraints erence to s!) Approximate pairwise distances between nodes such that, MIS nodes are neatly spread out.
ling
Volume respecting embedding of nodes in \mathbb{R}^n with small distortion.
o 2D \downarrow Nodes spread out fairly well in \mathbb{R}^2 .
↓ Final e <i>mbedding of G in R</i> ².
Wattenhofer, EWSN 2006 Tutorial 0/110

• We prove an equivalent statement:

Given a unit disk graph G=(V,E), it is NPhard to find a realization of <u>G</u> as a d-quasi unit disk graph with $d \ge \sqrt{2/3} + \epsilon$, where ϵ tends to 0 for $n \rightarrow \infty$.

- → Even when allowing non-edges to be smaller than 1, embedding a unit disk graph remains NP-hard!
- → It follows that finding an approximation ratio better than $\sqrt{3/2} \epsilon$ is also NP-hard.

Reduction

- Reduction from 3-SAT (each variable appears in at most 3 clauses)
- Given a instance C of this 3-SAT, we give a polynomial time construction of $G_C = (V_C, E_C)$ such that the following holds:

```
\begin{array}{ll} - \mbox{ C is satisfiable } \Rightarrow \mbox{ G}_{\rm C} \mbox{ is realizable as a unit disk graph } \\ - \mbox{ C is not satisfiable } \Rightarrow \mbox{ G}_{\rm C} \mbox{ is not realizable as a d-quasi unit disk graph with } d \geq \sqrt{2/3} + \epsilon \end{array}
```

• Unless P=NP, there is no approximation algorithm with approximation ratio better than $\sqrt{3/2} - \epsilon$.

Roger Wattenhofer, EWSN 2006 Tutorial

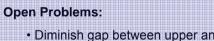
0/113

Summary

- Virtual coordinates problem is important!
- Natural formulation as unit disk graph embedding.
 - \rightarrow Clear-cut optimization problem.

Upper Bound : $\alpha \in O(\log^{2.5}n\sqrt{\log\log n})$	
μ	
Lower Bound : $\alpha \geq \sqrt{3/2 - \epsilon}$	
$- \sqrt{2}$	

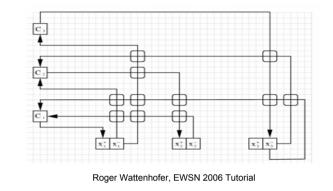
 \rightarrow Gap between upper and lower bound is huge!



- Diminish gap between upper and lower bound
- Distributed Algorithm

Proof idea

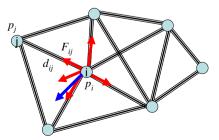
- Construct a grid drawing of the SAT instance.
- Grid drawing is *orientable* iff SAT instance is satisfiable.
- Grid components (clauses, literals, wires, crossings,...) are composed of nodes → Graph G_C.
- G_{c} is realizable as a d-quasi unit disk graph with $d \ge \sqrt{2/3} + \epsilon$ iff grid drawing is orientable.



0/114

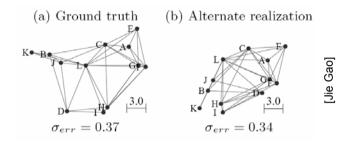
Heuristics: Spring embedder

- Nodes are "masses", edges are "springs".
- · Length of the spring equals the distance measurement.
- Springs put forces to the nodes, nodes move, until stabilization.
- Force: $F_{ij} = d_{ij} r_{ij}$, along the direction $p_i p_j$.
- Total force on n_i : $F_i = \Sigma F_{ij}$.
- Move the node n_i by a small distance (proportional to F_i).



Spring Embedder Discussion

- Problems:
 - may deadlock in local minimum
 - may never converge/stabilize (e.g. just two nodes)
- Solution: Need to start from a reasonably good initial estimation.



Roger Wattenhofer, EWSN 2006 Tutorial

0/117

Continued

Phase 1: compute initial layout

- determine periphery nodes u_N, u_S, u_W, u_E
- determine central node u_C
- use polar coordinates

$$\rho_{\mathbf{v}} = d(\mathbf{v}, u_{C}) \quad \theta_{\mathbf{v}} = \arctan\left(\frac{d(\mathbf{v}, u_{N}) - d(\mathbf{v}, u_{S})}{d(\mathbf{v}, u_{W}) - d(\mathbf{v}, u_{E})}\right)$$

as positions of node v

Phase 2: Spring Embedder

Roger Wattenhofer, EWSN 2006 Tutorial

[Fleischer & Pich]

Heuristics: Priyantha et al.

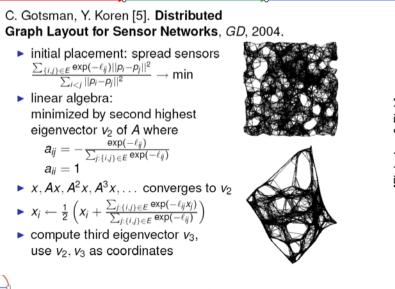
N.B. Priyantha, H. Balakrishnan, E. Demaine, S. Teller: Anchor-Free Distributed Localization in Sensor Networks, *SenSys*, 2003.

$${m E}({m
ho}) = \sum_{\{i,j\}\in {m E}} \left(||{m
ho}_i - {m
ho}_j|| - \ell_{ij}
ight)^2$$

- fact: layouts can have *foldovers* without violating the distance constraints
- problem: optimization can converge to such a local optimum
- ► solution: find a good initial layout fold-free → already close to the global optimum (="real layout")

Roger Wattenhofer, EWSN 2006 Tutorial

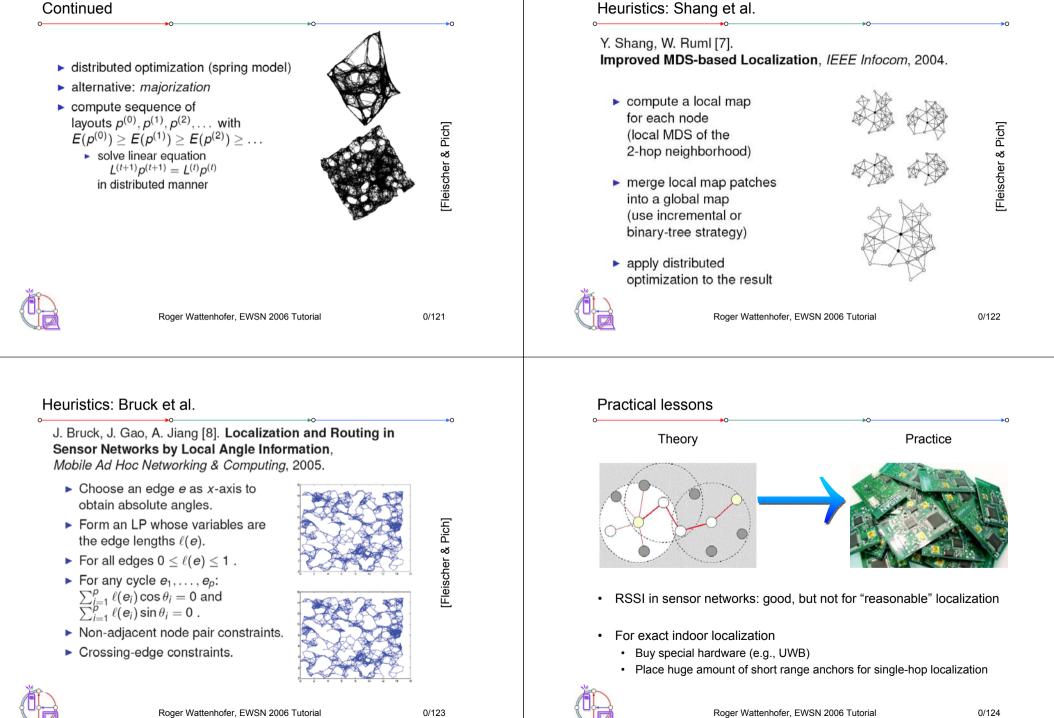
Heuristics: Gotsman et al.



Fleischer & Pich]

Fleischer & Pich]

Continued

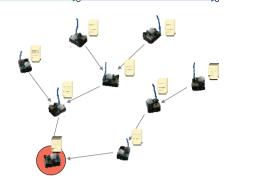


• Motivation Data gathering with coding Chapter 4 - Self-coding • Excursion: Shallow Light Tree DATA GATHERING - Foreign coding - Multicoding Universal data gathering tree - Max, Min, Average, Median, Count Distinct, ... · Energy-efficient broadcasting EWSN 2006 Roger Wattenhofer, EWSN 2006 Tutorial Roger Wattenhofer, EWSN 2006 Tutorial 0/126 Sensor networks Data gathering · All nodes produce relevant Sensor nodes information about their vicinity - Processor & memory periodically. - Short-range radio • Data is conveyed to an - Battery powered information sink for further processing. Requirements - Monitoring geographic region Routing scheme - Unattended operation - Long lifetime On which path is node u's data forwarded to the sink?

Overview

Time coding

 The simplest trick in the book: If the sensed data of a node changes not too often (e.g. temperature), the node only needs to send a new message when its data changes.



 Improvement: Only send change of data, not actual data (similar to video codecs)

Roger Wattenhofer, EWSN 2006 Tutorial

Correlated Data

- Different sensor nodes partially monitor the same spatial region.
 - Data correlation
- Data might be processed as it is routed to the information sink.
 - In-network coding

At which node is node u's data encoded?

Find a routing scheme and a coding scheme to deliver data packets from all nodes to the sink such that the overall energy consumption is minimal.

Roger Wattenhofer, EWSN 2006 Tutorial

0/129

More than one sink?

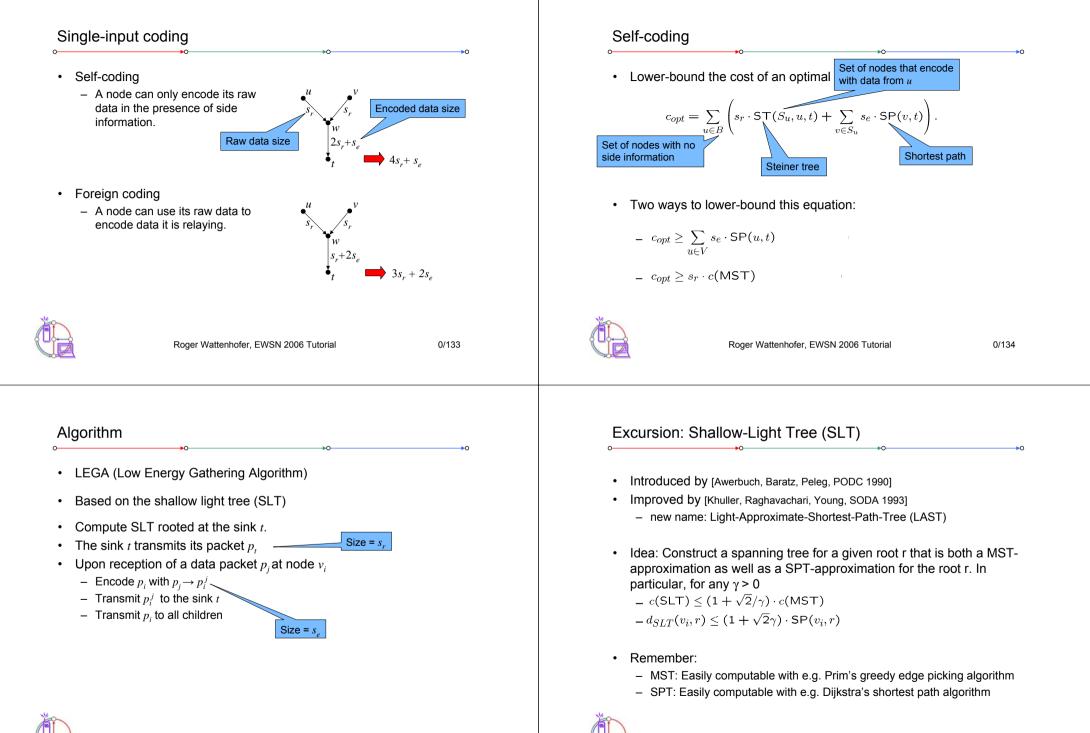
- Use the anycast approach, and send to the closest sink.
- In the simplest case, a source wants to minimize the number of hops. To make anycast work, we only need to implement the regular distance-vector routing algorithm.
- However, one can imagine more complicated schemes where e.g. sink load is balanced, or even intermediate load is balanced.

Roger Wattenhofer, EWSN 2006 Tutorial

0/130

Coding strategies

- Multi-input coding
 - Exploit correlation among several nodes.
 - Combined aggregation of all incoming data.
 - Recoding at intermediate nodes
 - Synchronous communication model
- Single-input coding
 - Encoding of a nodes data only depends on the side information of one other node.
 - No recoding at intermediate nodes
 - No waiting for belated information at intermediate nodes

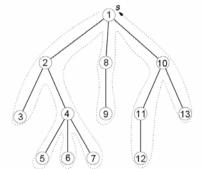


MST vs. SPT

• Is a good SPT not automatically a good MST (or vice versa)?

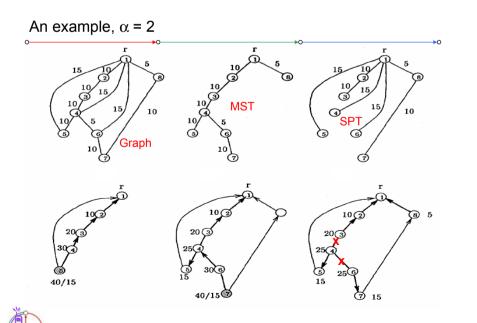
Result & Preordering

- Main Theorem: Given an α > 1, the algorithm returns a tree T rooted at r such that all shortest paths from r to u in T have cost at most α the shortest path from r to u in the original graph (for all nodes u). Moreover the total cost of T is at most β = 1+2/(α-1) the cost of the MST.
- We need an ingredient: A preordering of a rooted tree is generated when ordering the nodes of the tree as visited by a depth-first search algorithm.



Roger Wattenhofer, EWSN 2006 Tutorial

0/138



Roger Wattenhofer, EWSN 2006 Tutorial

0/137

The SLT Algorithm

- 1. Compute MST H of Graph G;
- 2. Compute all shortest paths (SPT) from the root r.
- 3. Compute preordering of MST with root r.
- 4. For all nodes v in order of their preordering do
 - Compute shortest path from r to u in H. If the cost of this shortest path in H is more than a factor α more than the cost of the shortest path in G, then just add the shortest path in G to H.
- 5. Now simply compute the SPT with root r in H.
- Sounds crazy... but it works!

Proof of Main Theorem

- The SPT α-approximation is clearly given since we included all necessary paths during the construction and in step 5 only removed edges which were not in the SPT.
- We need to show that our final tree is a β -approximation of the MST. In fact we show that the graph H before step 5 is already a β -approximation!
- For this we need a little helper lemma first...

Roger Wattenhofer, EWSN 2006 Tutorial

0/141

Proof of Main Theorem (2)

- Let $z_1, z_2, ..., z_k$ be the set of k nodes for which we added their shortest paths to the root r in the graph in step 4. In addition, let z_0 be the root r. The node z_i can only be in the set if (for example) $d_G(r, z_{i-1}) + d_{MST}(z_{i-1}, z_i) > \alpha d_G(r, z_i)$, since the shortest path (r, z_{i-1}) and the path on the MST (z_{i-1}, z_i) are already in H when we study z_i .
- We can rewrite this as $\alpha d_G(r,z_i) d_G(r,z_{i-1}) < d_{MST}(z_{i-1},z_i)$. Summing up:

$\alpha d_{G}(r,z_{1}) - d_{G}(r,z_{0})$ $\alpha d_{G}(r,z_{2}) - d_{G}(r,z_{1})$	$ d_{MST}(z_0, z_1) d_{MST}(z_1, z_2) $	(i=1) (i=2)
\ldots $\alpha d_G(r,z_k) - d_G(r,z_{k-1})$	< d _{MST} (z _{k-1} ,z _k)	(i=k)
$\Sigma_{i=1k}(\alpha-1) d_G(r,z_i) + d_G(r,z_k)$	< $\sum_{i=1k} d_{MST}(z_{i-1}, z_i)$	

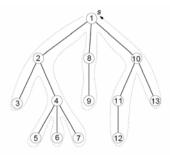
Roger Wattenhofer, EWSN 2006 Tutorial

A preordering lemma

- Lemma: Let T be a rooted spanning tree, with root r, and let z_0 , z_1 , ..., z_k be arbitrary nodes of T in preorder. Then,

$$\sum_{i=1}^k d_T(z_{i-1}, z_i) \le 2 \cdot cost(T).$$

- "Proof by picture": Every edge is traversed at most twice.
- Remark: Exactly like the 2-approximation algorithm for metric TSP.



Roger Wattenhofer, EWSN 2006 Tutorial

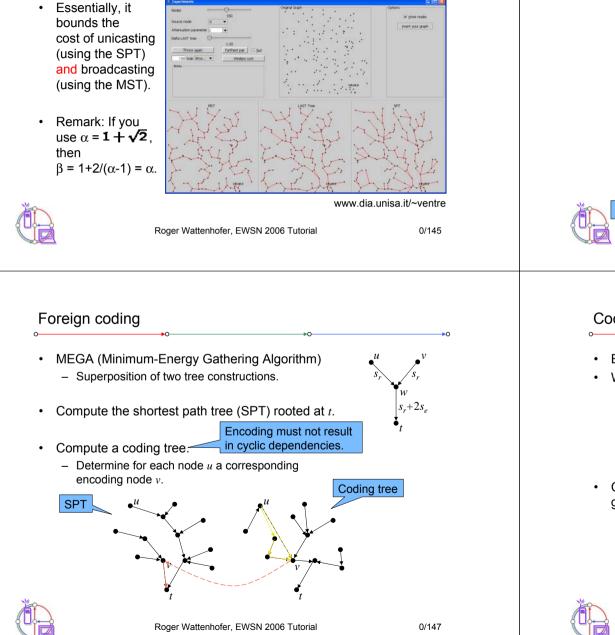
0/142

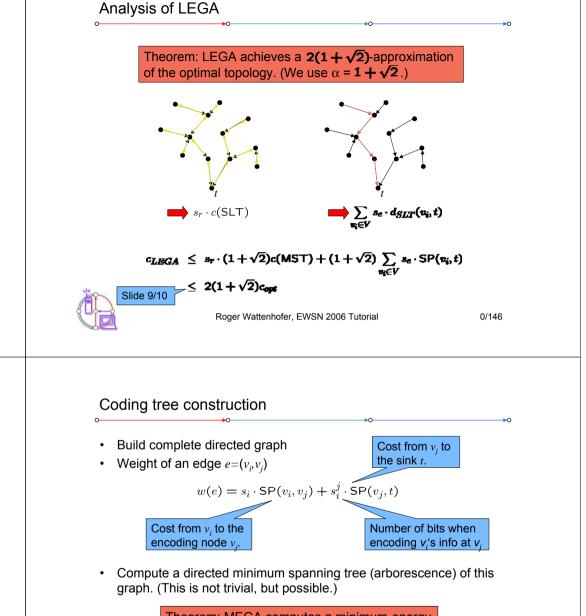
Proof of Main Theorem (3)

- In other words, (α -1) $\sum_{i=1...k} d_G(r,z_i) < \sum_{i=1...k} d_{MST}(z_{i-1},z_i)$
- All we did in our construction of H was to add exactly at most the cost $\Sigma_{i=1...k} d_G(r,z_i)$ to the cost of the MST. In other words, $cost(H) \leq cost(MST) + \Sigma_{i=1...k} d_G(r,z_i)$.
- Using the inequality on the top of this slide we have $cost(H) < cost(MST) + 1/(\alpha-1) \sum_{i=1...k} d_{MST}(z_{i-1}, z_i).$
- Using our preordering lemma we have cost(H) \leq cost(MST) + 1/(α -1) 2cost(MST) = 1+2/(α -1) cost(MST)
- That's exactly what we needed: $\beta = 1+2/(\alpha-1)$.

How the SLT can be used

• The SLT has many applications in communication networks.





Theorem: MEGA computes a minimum-energy data gathering topology for the given network.

All costs are summarized in the edge weights of the directed graph.

Summary

- Self-coding:
 - The problem is NP-hard [Cristescu et al, INFOCOM 2004]
 - LEGA uses the SLT and gives a $2(1 + \sqrt{2})$ -approximation.
 - Attention: We assumed that the raw data resp. the encoded data always needs s_r resp. s_e bits (no matter how far the encoding data is!). This is quite unrealistic as correlation is usually regional.
- Foreign coding
 - The problem is in P, as computed by MEGA.
- What if we allow both coding strategies at the same time?
- What if multicoding is still allowed?

Roger Wattenhofer, EWSN 2006 Tutorial

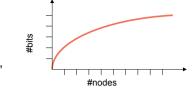
0/149

The algorithm

- Remark: If the network is not a complete graph, or does not obey the triangle inequality, we only need to use the cost of the shortest path as the distance function, and we are fine.
- Let S be the set of source nodes. Assume that S is a power of 2. (If not, simply add copies of the sink node until you hit the power of 2.) Now do the following:
- 1. Find a min-cost perfect matching in S.
- 2. For each of the matching edges, remove one of the two nodes from S (throw a regular coin to choose which node).
- 3. If the set S still has more than one node, go back to step 1. Else connect the last remaining node with the sink.

Multicoding

- Hierarchical matching algorithm [Goel & Estrin SODA 2003].
- We assume to have concave, non-decreasing aggregation functions. That is, to transmit data from k sources, we need f(k) bits with f(0)=0, $f(k) \ge f(k-1)$, and $f(k+1)/f(k) \le f(k)/f(k-1)$.



- The nodes of the network must be a metric space*, that is, the cost of sending a bit over edge (u,v) is c(u,v), with
 - $\ \ \text{Non-negativity:} \ c(u,v) \geq 0$
 - Zero distance: c(u,u) = 0 (*we don't need the identity of indescernibles)
 - Symmetry: c(u,v) = c(v,u)
 - Triangle inequality: $c(u,w) \le c(u,v) + c(v,w)$

Roger Wattenhofer, EWSN 2006 Tutorial

0/150

The result

• Theorem: For any concave, non-decreasing aggregation function f, and for [optimal] total cost C[*], the hierarchical matching algorithm guarantees

$$E\left[\max_{\forall f} \frac{C(f)}{C^*(f)}\right] \le 1 + \log k.$$

- That is, the expectation of the worst cost overhead is logarithmically bounded by the number of sources.
- Proof: Too intricate to be featured in this lecture.

Remarks

- For specific concave, non-decreasing aggregation functions, there are simpler solutions.
 - For f(x) = x the SPT is optimal.
 - For f(x) = const (with the exception of f(0) = 0), the MST is optimal.
 - For anything in between it seems that the SLT again is a good choice.
 - For any a priori known f one can use a deterministic solution by [Chekuri, Khanna, and Naor, SODA 2001]
 - If we only need to minimize the maximum expected ratio (instead of the expected maximum ratio), [Awerbuch and Azar, FOCS 1997] show how it works.
- Again, sources are considered to aggregate equally well with other sources. A correlation model is needed to resemble the reality better.

Roger Wattenhofer, EWSN 2006 Tutorial

TinyDB and TinySQL

- Use paradigms familiar from relational databases to simplify the "programming" interface for the application developer.
- TinyDB then supports in-network aggregation to speed up communication.

SELECT roomno, AVERAGE(light), AVERAGE(volume)
FROM sensors
GROUP BY roomno
HAVING AVERAGE(light) > l AND AVERAGE(volume) > v
EPOCH DURATION 5min

SELECT <aggregates>, <attributes> [FROM {sensors | <buffer>}] [WHERE <predicates>] [GROUP BY <exprs>] [SAMPLE PERIOD <const> | ONCE] [INTO <buffer>] [TRIGGER ACTION <command>]

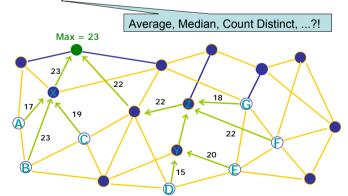
Other work using coding

- LEACH [Heinzelman et al. HICSS 2000]: randomized clustering with data aggregation at the clusterheads.
 - Heuristic and simulation only.
 - For provably good clustering, see the next chapter.
- Correlated data gathering [Cristescu et al. INFOCOM 2004]:
 - Coding with Slepian-Wolf
 - Distance independent correlation among nodes.
 - Encoding only at the producing node in presence of side information.
 - Same model as LEGA, but heuristic & simulation only.
 - NP-hardness proof for this model.

Roger Wattenhofer, EWSN 2006 Tutorial

Data Aggregation: N-to-1 Communication

• SELECT MAX(temp) FROM sensors WHERE node_id < "H".



0/154

Selective data aggregation

- In sensor network applications
 - Queries can be frequent
 - Sensor groups are time-varying
 - Events happen in a dynamic fashion
- Option 1: Construct aggregation trees for each group
 - Setting up a good tree incurs communication overhead
- Option 2: Construct a single spanning tree
 - When given a sensor group, simply use the induced tree

Group-Independent (a.k.a. Universal) Spanning Tree

- Given
 - A set of nodes V in the Euclidean plane (or forming a metric space)
 - A root node $r \in V$
 - Define stretch of a universal spanning tree T to be

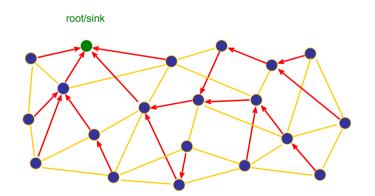
 $\max_{S \subseteq V} \frac{\operatorname{cost}(\operatorname{induced tree of } S+r \text{ on } T)}{\operatorname{cost}(\operatorname{minimum Steiner tree of } S+r)}.$

• We're looking for a spanning tree T on V with minimum stretch.

Roger Wattenhofer, EWSN 2006 Tutorial

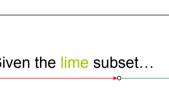
Example

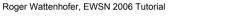
• The red tree is the universal spanning tree. All links cost 1.



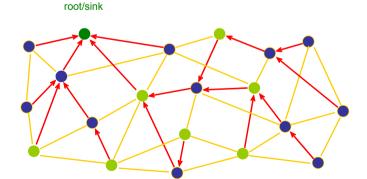
0/157

->0





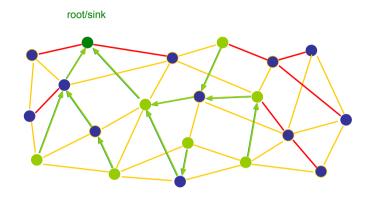
Given the lime subset...



•0

Induced Subtree

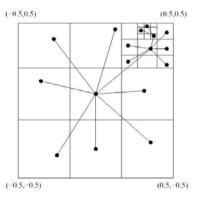
• The cost of the induced subtree for this set S is 11. The optimal was 8.



Roger Wattenhofer, EWSN 2006 Tutorial

Algorithm sketch

- For the simplest Euclidean case:
- Recursively divide the plane and select random node.
- Results: The induced tree has logarithmic overhead. The aggregation delay is also constant.



0/161

Main results

- [Jia, Lin, Noubir, Rajaraman and Sundaram, STOC 2005]
- Theorem 1: (Upper bound)

For the minimum UST problem on Euclidean plane, an approximation of O(log n) can be achieved within polynomial time.

• Theorem 2: (Lower bound)

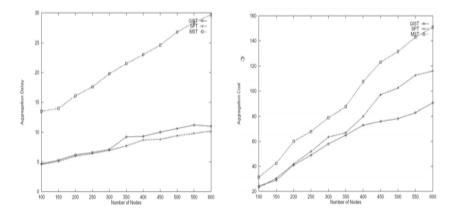
No polynomial time algorithm can approximate the minimum UST problem with stretch better than $\Omega(\log n / \log \log n)$.

• Proofs: Not in this lecture.

Roger Wattenhofer, EWSN 2006 Tutorial

0/162

Simulation with random node distribution & random events



Minimum Energy Broadcasting

- First step for data gathering, sort of.
- Given a set of nodes in the plane
- Goal: Broadcast from a source to all nodes
- In a single step, a node may transmit within a range by appropriately adjusting transmission power.

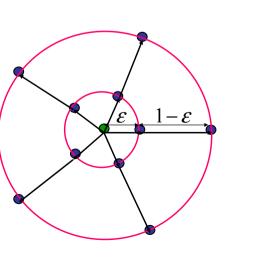
[Rajomohan Rajaraman]

- Energy consumed by a transmission of radius r is proportional to r^{α} , with $\alpha \geq 2$.
- Problem: Compute the sequence of transmission steps that consume minimum total energy, even in a centralized way.

Roger Wattenhofer, EWSN 2006 Tutorial

Lower Bound on SPT

- Assume (n-1)/2 nodes per ring
- Total energy of SPT: $(n-1)(\varepsilon^{\alpha}+(1-\varepsilon)^{\alpha})/2$
- Better solution:
- · Broadcast to all nodes
- Cost 1
- Approximation ratio $\Omega(n)$.



Three natural greedy heuristics

- In a tree, power for each parent node proportional to α 'th exponent of distance to farthest child in tree:
- Shortest Paths Tree (SPT)
- Minimum Spanning Tree (MST)
- Broadcasting Incremental Power (BIP)
 - "Node" version of Dijkstra's SPT algorithm
 - Maintains an arborescence rooted at source
 - In each step, add a node that can be reached with minimum increment in total cost.
- Results:
 - NP, not even PTAS, there is a constant approximation. [Clementi, Crescenzi, Penna, Rossi, Vocca, STACS 2001]
 - Analysis of the three heuristics. [Wan, Calinescu, Li, Frieder, Infocom 2001]
 - Optimal MST approximation constant, e.g. [Ambühl, ICALP 2005]

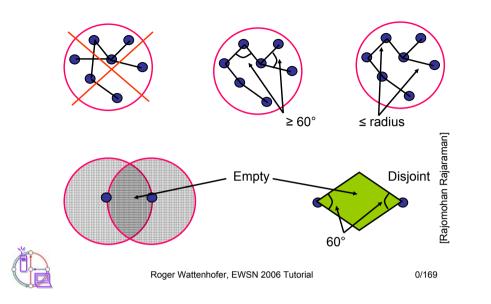
Roger Wattenhofer, EWSN 2006 Tutorial

Performance of the MST Heuristic

- Weight of an edge (u,v) equals d(u,v)^α.
- · MST for these weights same as Euclidean MST
 - Weight is an increasing function of distance
 - Follows from correctness of Prim's algorithm
- Upper bound on total MST weight
- Lower bound on optimal broadcast tree

0/165

Structural Properties of MST



Lower Bound on Optimal and Conclusion of Proof

- Also the optimal algorithm needs a few transmissions. Let u₀, u₁, ..., u_k be the nodes which need to transmit, each u_i with radius r_i. These transmissions need to form a spanning tree since each node needs to receive at least one transmission.
- Then the optimal algorithm needs power $\sum r_{u}^{\alpha}$
- Now replace each transmission ("star") by an MST of the nodes. Since all new edges are part of the transmission circle, the cost of the new graph is at most $12\sum r_u^{\alpha}$
- Since the cost of the global MST is at most the cost of this spanner, the MST is 12-competitive.

Roger Wattenhofer, EWSN 2006 Tutorial

Upper Bound on Weight of MST

- Assume α = 2
- For each edge e, its diamond accounts for an area of exactly $\frac{|e|^2}{2\sqrt{3}}$

- Diamonds for edges in circle can be slightly outside circle, but not too much: The radius factor is at most $2/\sqrt{3}$, hence the total area accounted for is at most $\pi(2/\sqrt{3})^2 = 4\pi/3$
- Now we can bound the cost of the MST in a unit disk with $\operatorname{cost}(\mathsf{MST}) \leq \sum_{e} |e|^2 = 2\sqrt{3} \sum_{e} \frac{|e|^2}{2\sqrt{3}} \leq 2\sqrt{3} \frac{4\pi}{3} = \frac{8\pi}{\sqrt{3}} \approx 14.51.$
- This analysis can be extended to α > 2, and improved to 12.

Roger Wattenhofer, EWSN 2006 Tutorial

0/170

Distributed Computing Group

Chapter 5 TIME SYNC

EWSN 2006

Overview

- Motivation
- Reference-Broadcast Synchronization (RBS)
- Time-sync Protocol for Sensor Networks (TSPN)
- Gradient Clock Synchronization

Motivation

Time synchronization is essential for many applications Coordination of wake-up and sleeping times TDMA schedules Ordering of sensed events in habitat environments Estimation of position information ... Scope of a Clock Synchronization Algorithm Packet delav / latencv • Offset between clocks Perfect Drift between clocks Clock with . Clock Aeasured Time Drift . Jittering Clock Time according to B Answer Clock from A from B with Offset Time accor Actual Time 0/174 Roger Wattenhofer, EWSN 2006 Tutorial Reference-Broadcast Synchronization (RBS) A sender synchronizes a set of receivers with one another Point of reference: beacon's arrival time $t_2 = t_1 + S_s + A_s + P_{SA} + R_A$ $t_3 = t_1 + S_s + A_s + P_{s_B} + R_B$ $\theta = t_2 - t_3 = (P_{S_A} - P_{S_B}) + (R_A - R_B)$ Only sensitive to the difference in propagation and reception time ▶ Time stamping at the interrupt time when a beacon is received ▶ After a beacon is sent, all receivers exchange their reception times to calculate their clock offset Post-synchronization possible Least-square linear regression to tackle clock drifts

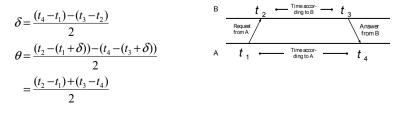
Roger Wattenhofer, EWSN 2006 Tutorial

Disturbing Influences on Packet Latency

- Influences
 - Sending Time S
 - Medium Access Time A
 - Propagation Time P_{A,B}
 - Reception Time R

> Asymmetric packet delays due to non-determinism

Example: RTT-based synchronization



Time-sync Protocol for Sensor Networks (TSPN)

- Traditional sender-receiver synchronization (RTT-based)
- Initialization phase: Breadth-first-search flooding
 - Root node at level 0 sends out a level discovery packet
 - Receiving nodes which have not yet an assigned level set their level to +1 and start a random timer
 - · After the timer is expired, a new level discovery packet will be sent

Synchronization phase

- Root node issues a *time sync* packet which triggers a random timer at all level 1 nodes
- After the timer is expired, the node asks its parent for synchronization using a *synchronization pulse*
- The parent node answers with an *acknowledgement*
- Thus, the requesting node knows the round trip time and can calculate
 its clock offset
- Child nodes receiving a synchronization pulse also start a random timer themselves to trigger their own synchronization

Roger Wattenhofer, EWSN 2006 Tutorial

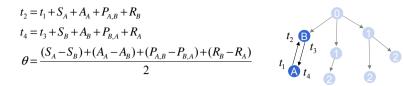
Theoretical Bounds for Clock Synchronization

- · Network Model:
 - Each node has a private clock
 - *n* node network, with diameter $\Delta \leq n$.
 - Reliable point-to-point communication with minimal delay μ
 - Jitter ε is the uncertainty in message delay
- Two neighboring nodes u, v cannot distinguish whether message is faster from u to v and slower from v to u, or vice versa. Hence clocks of neighboring nodes can be up to ε off.
- Hence, two nodes at distance Δ might have clocks which are $\epsilon\Delta$ off.
- This can be achieved by a simple flooding algorithm: Whenever a node receives a new minimum value, it sets its clock to the new value and forwards its new clock value to all its neighbors.

Roger Wattenhofer, EWSN 2006 Tutorial

0/177

Time-sync Protocol for Sensor Networks (TSPN)



- Time stamping packets at the MAC layer
- In contrast to RBS, the signal propagation time might be negligible
- About "two times" better than RBS
- Again, clock drifts are taken into account using periodical synchronization messages

Problem: What happens in a ring?!?

· Two neighbors will have exceptionally badly synchronization

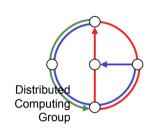
Roger Wattenhofer, EWSN 2006 Tutorial

Gradient Clock Synchronization

- It could happen that a clock has to jump back to a much lower value
 - Think again about a ring example, assume that in one leg of the ring messages are forwarded fast all of a sudden.
- Problem: At a node, you don't want a clock to jump back all of a sudden.
 - You don't want new events to be registered earlier than older events.
 - Instead, you want your clock always to move forward. Sometimes faster, sometimes slower is OK. But there should be a minimum and a maximum speed.
 - This is called "gradient" clock synchronization in [Fan and Lynch, PODC 2004].
- In [Fan and Lynch, PODC 2004] it is shown that when logical clocks need to obey minimum/maximum speed rules, the skew of two neighboring clocks can be up to (100 A)

$$\Omega\left(\frac{\log\Delta}{\log\log\Delta}\right)$$

Chapter 6 **CLUSTERING**



EWSN 2006

Roger Wattenhofer, EWSN 2006 Tutorial

Discussion

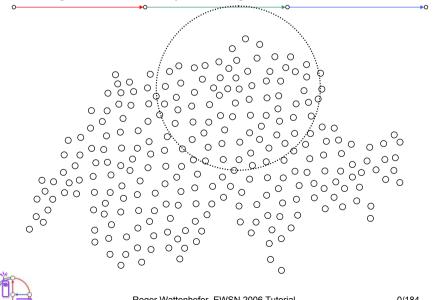
- We have seen: 10 Tricks \rightarrow 2¹⁰ routing algorithms
- In reality there are almost that many!
- Q: How good are these routing algorithms?!? Any hard results?
- A: Almost none! Method-of-choice is simulation...
- · Perkins: "if you simulate three times, you get three different results"
- · Flooding is key component of (many) proposed algorithms, including most prominent ones (AODV, DSR)
- At least flooding should be efficient

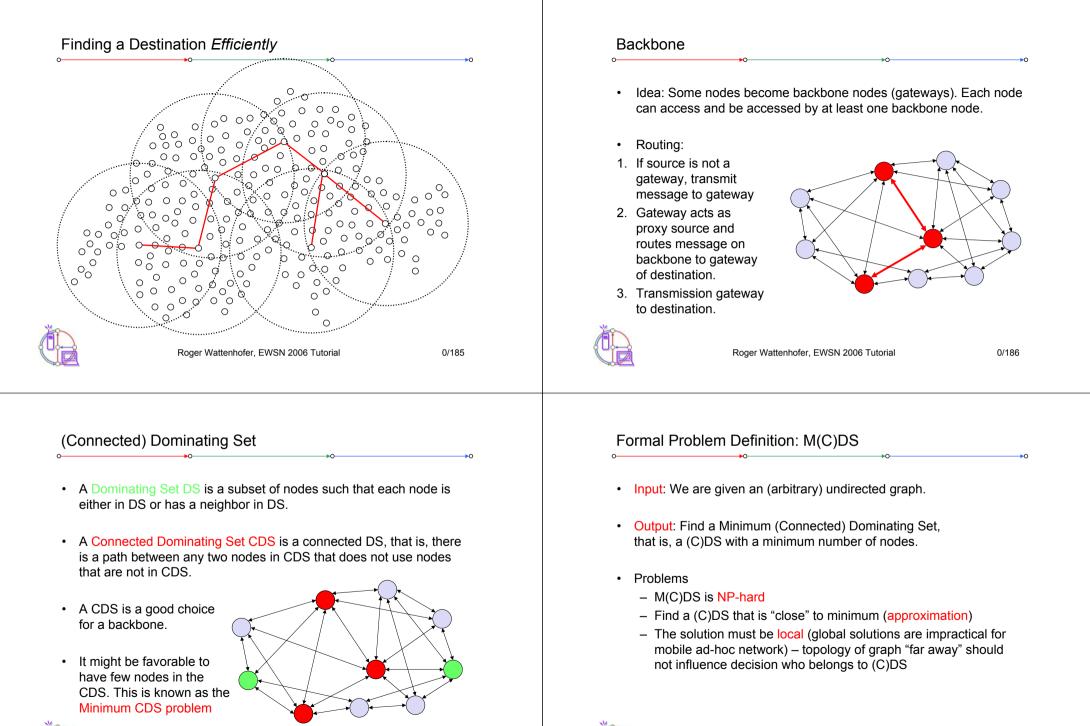
Overview

- Motivation •
- Dominating Set
- Connected Dominating Set ٠
- General Algorithms: ٠
 - The "Greedy" Algorithm
 - The "Tree Growing" Algorithm
 - The "Marking" Algorithm
 - The "k-Local" Algorithm
- · Algorithms for Special Models:
 - Unit Ball Graphs: The "Largest ID" Algorithm
 - Independence-Bounded Graphs: The "MIS" Algorithm
 - Unstructured Radio Network Model

Roger Wattenhofer, EWSN 2006 Tutorial

Finding a Destination by Flooding



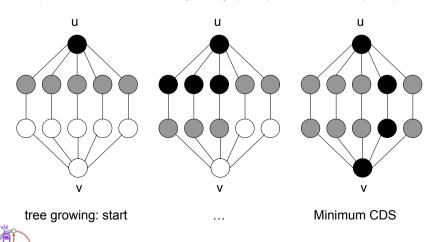


Greedy Algorithm for Dominating Sets

- Idea: Greedy choose "good" nodes into the dominating set.
- Black nodes are in the DS
- · Grey nodes are neighbors of nodes in the DS
- White nodes are not yet dominated, initially all nodes are white.
- Algorithm: Greedily choose a node that colors most white nodes.
- One can show that this gives a log ∆ approximation, if ∆ is the maximum node degree of the graph. (The proof is similar to the "Tree Growing" proof on 6/13ff.)
- One can also show that there is no polynomial algorithm with better performance unless P≈NP.

Roger Wattenhofer, EWSN 2006 Tutorial

Example of the "too simple tree growing" algorithm



Roger Wattenhofer, EWSN 2006 Tutorial

Graph with 2n+2 nodes; tree growing: |CDS|=n+2; Minimum |CDS|=4

CDS: The "too simple tree growing" algorithm

- Idea: start with the root, and then greedily choose a neighbor of the tree that dominates as many as possible new nodes
- Black nodes are in the CDS
- · Grey nodes are neighbors of nodes in the CDS
- · White nodes are not yet dominated, initially all nodes are white.
- Start: Choose a node with maximum degree, and make it the root of the CDS, that is, color it black (and its white neighbors grey).
- Step: Choose a grey node with a maximum number of white neighbors and color it black (and its white neighbors grey).

0/189

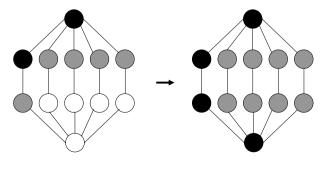
0/191

Roger Wattenhofer, EWSN 2006 Tutorial

0/190

Tree Growing Algorithm

- Idea: Don't scan one but two nodes!
- Alternative step: Choose a grey node and its white neighbor node with a maximum sum of white neighbors and color both black (and their white neighbors grey).



Analysis of the tree growing algorithm

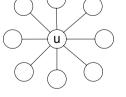
- Theorem: The tree growing algorithm finds a connected set of size $|CDS| \le 2(1+H(\Delta)) \cdot |DS_{OPT}|.$
- DS_{OPT} is a (not connected) minimum dominating set
- Δ is the maximum node degree in the graph
- H is the harmonic function with H(n) $\approx \text{log}(n)\text{+}0.7$
- In other words, the connected dominating set of the tree growing algorithm is at most a O(log(Δ)) factor worse than an optimum minimum dominating set (which is NP-hard to compute).
- With a lower bound argument (reduction to set cover) one can show that a better approximation factor is impossible, unless P≈NP.

Roger Wattenhofer, EWSN 2006 Tutorial

0/193

Charge on S_u

- Initially $|S_u| = u_0$.
- Whenever we color some nodes of S_u, we call this a step.
- The number of white nodes in S_u after step i is u_i.
- After step k there are no more white nodes in S_u.
- In the first step u₀ u₁ nodes are colored (grey or black). Each vertex gets a charge of at most 2/(u₀ – u₁).



• After the first step, node u becomes eligible to be colored (as part of a pair with one of the grey nodes in S_u). If u is not chosen in step i (with a potential to paint u_i nodes grey), then we have found a better (pair of) node. That is, the charge to any of the new grey nodes in step i in S_u is at most 2/u_i.

Proof Sketch

- The proof is done with amortized analysis.
- Let S_u be the set of nodes dominated by $u \in \mathsf{DS}_{\mathsf{OPT}},$ or u itself. If a node is dominated by more than one node, we put it in one of the sets.
- We charge the nodes in the graph for each node we color black. In particular we charge all the newly colored grey nodes. Since we color a node grey at most once, it is charged at most once.
- We show that the total charge on the vertices in an S_u is at most 2(1+H(Δ)), for any u.

Roger Wattenhofer, EWSN 2006 Tutorial

0/194

Adding up the charges in S_u

$$C \leq \frac{2}{u_0 - u_1} (u_0 - u_1) + \sum_{i=1}^{k-1} \frac{2}{u_i} (u_i - u_{i+1})$$
$$= 2 + 2 \sum_{i=1}^{k-1} \frac{u_i - u_{i+1}}{u_i}$$
$$\leq 2 + 2 \sum_{i=1}^{k-1} \left(H(u_i) - H(u_{i+1}) \right)$$

$$= 2 + 2(H(u_1) - H(u_k)) = 2(1 + H(u_1)) = 2(1 + H(\Delta))$$

Discussion of the tree growing algorithm

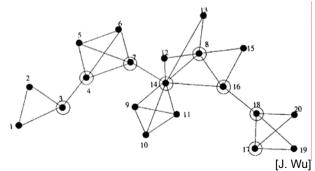
- We have an extremely simple algorithm that is asymptotically optimal unless P≈NP. And even the constants are small.
- · Are we happy?
- Not really. How do we implement this algorithm in a real mobile network? How do we figure out where the best grey/white pair of nodes is? How slow is this algorithm in a distributed setting?
- We need a fully distributed algorithm. Nodes should only consider local information.

Roger Wattenhofer, EWSN 2006 Tutorial

0/197

0/199

Example for the Marking Algorithm



Roger Wattenhofer, EWSN 2006 Tutorial

⊷ The Marking Algorithm

- Idea: The connected dominating set CDS consists of the nodes that have two neighbors that are not neighboring.
- 1. Each node u compiles the set of neighbors N(u)
- 2. Each node u transmits N(u), and receives N(v) from all its neighbors
- If node u has two neighbors v,w and w is not in N(v) (and since the graph is undirected v is not in N(w)), then u marks itself being in the set CDS.
- + Completely local; only exchange N(u) with all neighbors
- Each node sends only 1 message, and receives at most ∆
- Messages have size O(Δ)
- Is the marking algorithm really producing a connected dominating set? How good is the set?

Roger Wattenhofer, EWSN 2006 Tutorial

0/198

Correctness of Marking Algorithm

- We assume that the input graph G is connected but not complete.
- Note: If G was complete then constructing a CDS would not make sense. Note that in a complete graph, no node would be marked.
- We show:

The set of marked nodes CDS is

- a) a dominating set
- b) connected
- c) a shortest path in G between two nodes of the CDS is in CDS

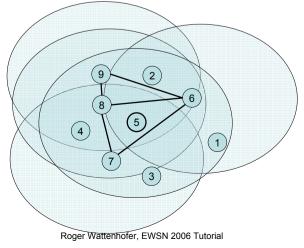
Proof of a) dominating set

- Proof: Assume for the sake of contradiction that node u is a node that is not in the dominating set, and also not dominated. Since no neighbor of u is in the dominating set, the nodes N⁺(u) := u ∪ N(u) form:
- a complete graph
 - if there are two nodes in N(u) that are not connected, u must be in the dominating set by definition
- no node $v \in N(u)$ has a neighbor outside N(u)
 - or, also by definition, the node v is in the dominating set
- Since the graph G is connected it only consists of the complete graph $N^+(u)$. We precluded this in the assumptions, therefore we have a contradiction

Roger Wattenhofer, EWSN 2006 Tutorial

Improved Marking Algorithm

• If neighbors with larger ID are connected and cover all other neighbors, then don't join CDS, else join CDS



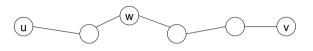
Č)

0/203

0/201

Proof of b) connected, c) shortest path in CDS

- Proof: Let p be any shortest path between the two nodes u and v, with $u,v\in CDS.$
- Assume for the sake of contradiction that there is a node w on this shortest path that is not in the connected dominating set.



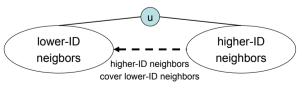
Then the two neighbors of w must be connected, which gives us a shorter path. This is a contradiction.

Roger Wattenhofer, EWSN 2006 Tutorial

0/202

Correctness of Improved Marking Algorithm

- Theorem: Algorithm computes a CDS S
- Proof (by induction of node IDs):
 - assume that initially all nodes are in S
 - look at nodes u in increasing ID order and remove from S if higher-ID neighbors of u are connected
 - S remains a DS at all times: (assume that u is removed from S)



 S remains connected: replace connection v-u-v' by v-n₁,...,n_k-v' (n_i: higher-ID neighbors of u)

Quality of the (Improved) Marking Algorithm

- Given an Euclidean chain of n homogeneous nodes
- The transmission range of each node is such that it is connected to the k left and right neighbors, the id's of the nodes are ascending.

- An optimal algorithm (and also the tree growing algorithm) puts • every k'th node into the CDS. Thus $|CDS_{OPT}| \approx n/k$; with k = n/c for some positive constant c we have $|CDS_{OPT}| = O(1)$.
- The marking algorithm (also the improved version) does mark all the nodes (except the k leftmost ones). Thus $|CDS_{Marking}| = n - k$; with k = n/c we have $|CDS_{Marking}| = \Omega(n)$.
- The worst-case quality of the marking algorithm is worst-case! ③

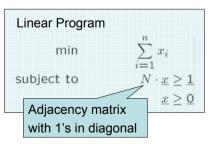
Roger Wattenhofer, EWSN 2006 Tutorial

0/205

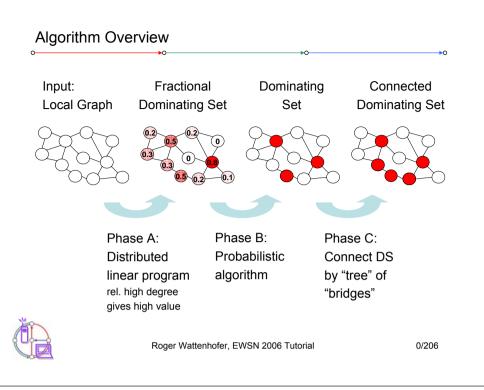
Phase A is a Distributed Linear Program

- Nodes 1, ..., *n*: Each node *u* has variable x_u with $x_u \ge 0$
- Sum of x-values in each neighborhood at least 1 (local)
- Minimize sum of all x-values (global)

0.5+0.3+0.3+0.2+0.2+0 = 1.5 ≥ 1



- Linear Programs can be solved optimally in polynomial time ٠
- But not in a distributed fashion! That's what we need here...



Phase A Algorithm

LP Approximation Algorithm for Primal Node $v_i^{(p)}$:	LP Approximation Algorithm for Dual Node $v_i^{(d)}$:
1: $x_i := 0;$ 2: for $e_p := k_p - 2$ to $-f - 1$ by -1 do 3: for 1 to h do 4: $(*\gamma_i := \frac{g_{max}}{c_i} \sum_j a_{ji}r_{ji} *)$ 5: for $e_d := k_d - 1$ to 0 by -1 do 6: $\tilde{\gamma}_i := \frac{g_{max}}{c_i} \sum_j a_{ji}\tilde{r}_{ji};$ 7: if $\tilde{\gamma}_i \ge 1/\Gamma_{p_i}^{p_j/k_p}$ then	$\begin{array}{ll} \mathbf{i} : y_i := y_i^+ := w_i := f_i := 0; \ r_i := 1;\\ 2: \ \mathbf{for} \ e_p := k_p - 2 \ \mathbf{to} - f - 1 \ \mathbf{by} - 1 \ \mathbf{do}\\ 3: \mathbf{for} \ 1 \ \mathbf{to} \ h \ \mathbf{do}\\ 4: \vec{r_i} := r_i;\\ 5: \mathbf{for} \ e_d := k_d - 1 \ \mathbf{to} \ 0 \ \mathbf{by} - 1 \ \mathbf{do}\\ 6:\\ 7: \end{array}$
8: $x_i^+ := 1/\Gamma_d^{e_d/k_d}$; $x_i := x_i + x_i^+$; 9: fi ; 10: send x_i^+ , $\tilde{\gamma}_i$ to dual neighbors; 11: 12: 13: 14: 15: receive r_j from dual neighbors 16: od ; 17: 18: receive r_j from dual neighbors 19: od 20: od ; 21: $x_i := x_i / \min_{j \in N_i^{(p)}} \sum_{\ell} a_j \ell x_{\ell}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Result after Phase A

- Distributed Approximation for Linear Program
- Instead of the optimal values x_i^* at nodes, nodes have $x_i^{(\alpha)}$, with

 $\sum_{i=1}^n x_i^{(\alpha)} \leq \alpha \cdot \sum_{i=1}^n x_i^*$

• The value of α depends on the number of rounds *k* (the locality)

 $\alpha \leq (\Delta + 1)^{c/\sqrt{k}}$

- The analysis is rather intricate...

Roger Wattenhofer, EWSN 2006 Tutorial

Result after Phase B

- Randomized rounding technique
- Expected number of nodes joining the dominating set in step 2 is bounded by $\alpha \log(\Delta+1) \cdot |DS_{OPT}|$.
- Expected number of nodes joining the dominating set in step 4 is bounded by |DS_{OPT}|.

Theorem: $E[|DS|] = O((\Delta + 1)^{c/\sqrt{k}} \log \Delta \cdot |DS_{OPT}|)$

- Phase C \rightarrow essentially the same result for CDS

Roger Wattenhofer, EWSN 2006 Tutorial

0/209

Phase B Algorithm

Each node applies the following algorithm:

- 1. Calculate $\delta_i^{(2)}$ (= maximum degree of neighbors in distance 2)
- 2. Become a dominator (i.e. go to the dominating set) with probability

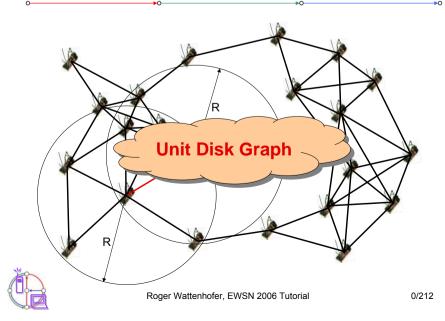
$$p_i := \min\{1, x_i^{(\alpha)} \cdot \ln(\delta_i^{(2)} + 1)\}$$
From phase A Highest degree in distance 2

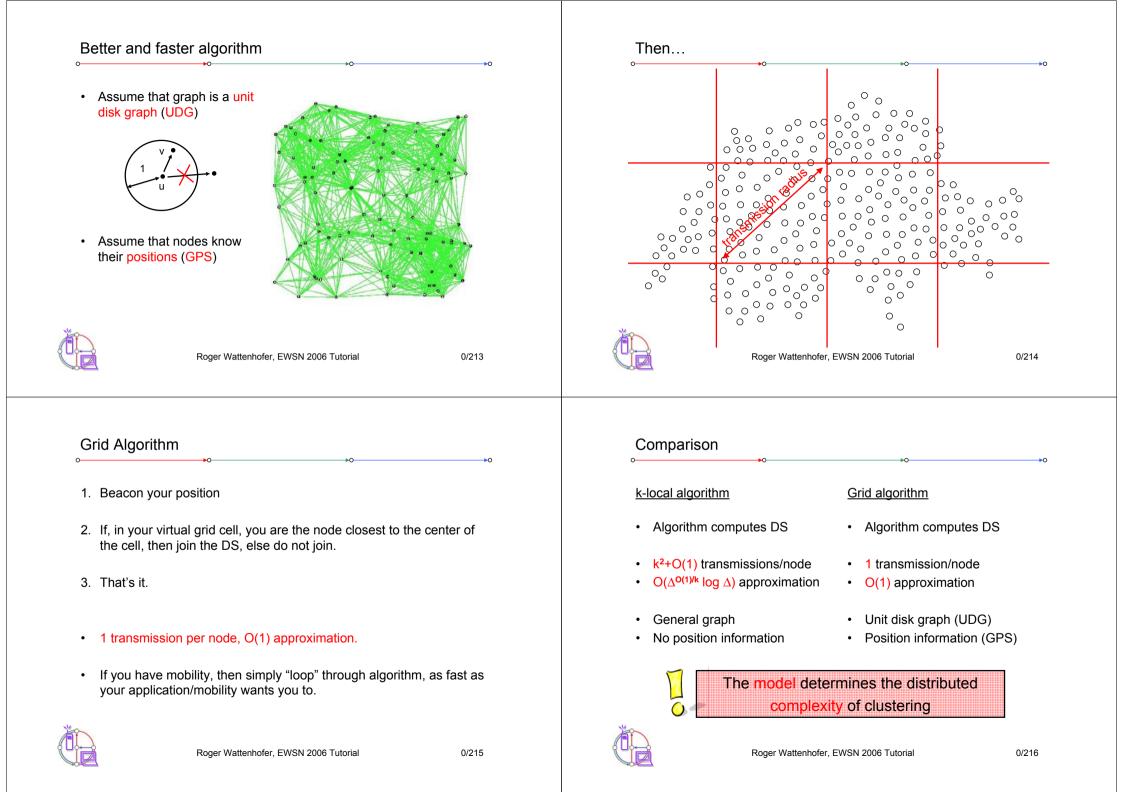
- 3. Send status (dominator or not) to all neighbors
- 4. If no neighbor is a dominator, become a dominator yourself

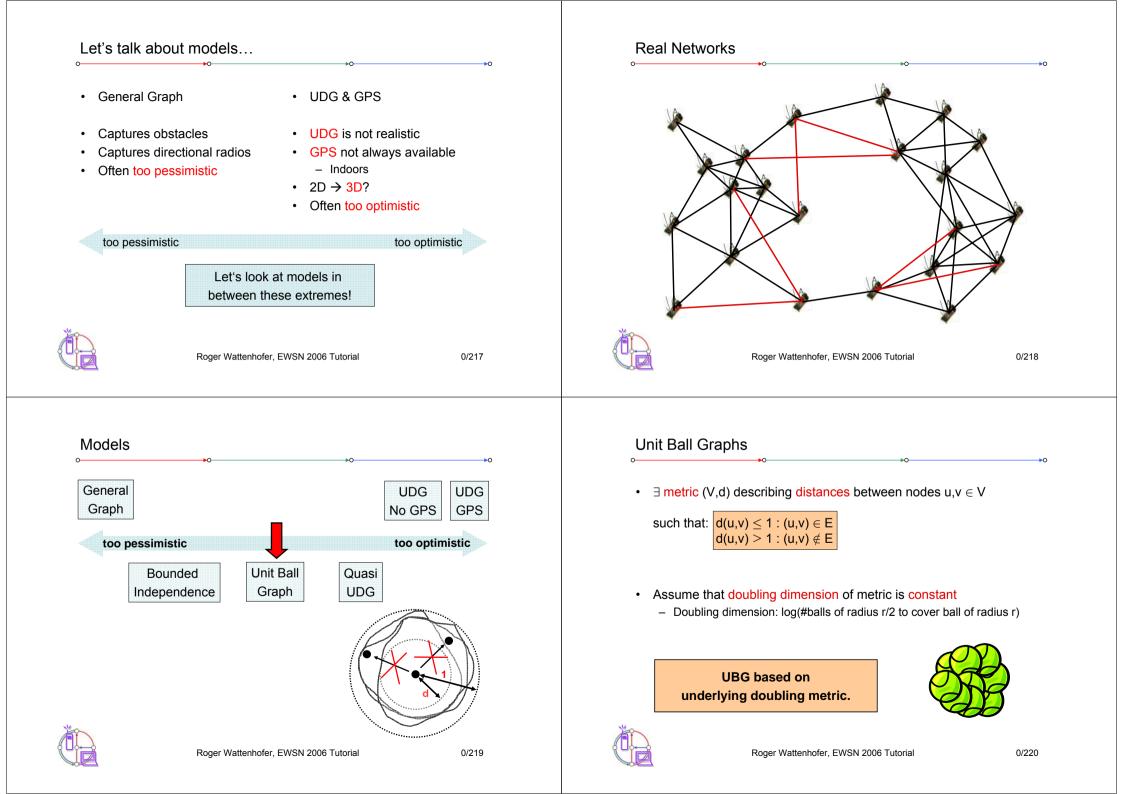
Roger Wattenhofer, EWSN 2006 Tutorial

0/210

A better algorithm?

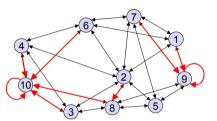






The "Largest-ID" Algorithm

- All nodes have unique IDs, chosen at random.
- Algorithm for each node:
 - 1. Send ID to all neighbors
 - 2. Tell node with largest ID in neighborhood that it has to join the DS
- Algorithm computes a DS in 2 rounds (extremely local!)



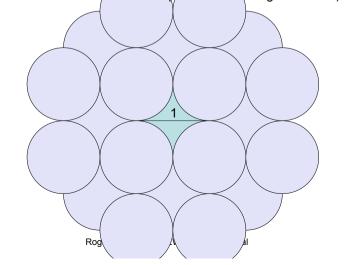
Roger Wattenhofer, EWSN 2006 Tutorial

0/221

0/223

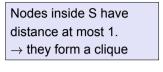
"Largert ID" Algorithm, Analysis II

 Nodes which select nodes in S are in disk of radius 3/2 which can be covered by S and 20 other disks S, of diameter 1 (UBG: number of small disks depends on doubling dimension)

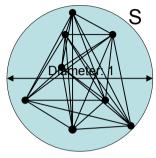


"Largest ID" Algorithm, Analysis I

- To simplify analysis: assume graph is UDG (same analysis works for UBG based on doubling metric)
- We look at a disk S of diameter 1:



How many nodes in S are selected for the DS?



Roger Wattenhofer, EWSN 2006 Tutorial

"Largest ID" Algorithm: Analysis III

- How many nodes in S are chosen by nodes in a disk S_i?
- x = # of nodes in S, y = # of nodes in S_i:
- A node u∈S is only chosen by a node in S_i if ID(u) > max{ID(v)} (all nodes in S_i see each other).
- The probability for this is: $\frac{1}{1+y}$
- Therefore, the expected number of nodes in S chosen by nodes in S_i is at most:

$$\min\left\{y, \frac{x}{1+y}\right\}$$

Because at most y nodes in S_i can choose nodes in S and because of linearity of expectation.

"Largest ID" Algorithm, Analysis IV

• From x \leq n and y \leq n, it follows that: min $\left\{y, \frac{x}{1+y}\right\} \leq \sqrt{n}$

- Hence, in expectation the DS contains at most $20\sqrt{n}$ nodes per disk with diameter 1.
- An optimal algorithm needs to choose at least 1 node in the disk with radius 1 around any node.
- This disk can be covered by a constant (9) number of disks of diameter 1.
- The algorithm chooses at most O(√n) times more disks than an optimal one

Roger Wattenhofer, EWSN 2006 Tutorial

Iterative "Largest ID" Algorithm

· Assume that nodes know the distances to their neighbors:

all nodes are active;

- for i := k to 1 do
 - \forall act. nodes: select act. node with largest ID in dist. $\leq 1/2^i;$ selected nodes remain active

od;

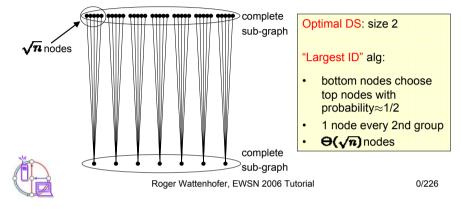
- DS = set of active nodes
- Set of active nodes is always a DS (computing CDS also possible)
- Number of rounds: k
- Approximation ratio n^(1/2^k)
- For k=O(loglog n), approximation ratio = O(1)

Roger Wattenhofer, EWSN 2006 Tutorial

0/225

"Largest ID" Algorithm, Remarks

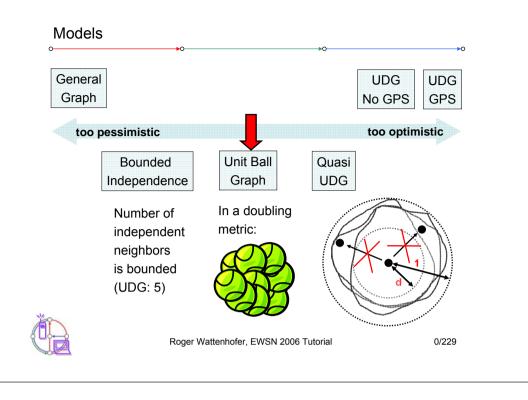
- For typical settings, the "Largest ID" algorithm produces very good dominating sets (also for non-UDGs)
- There are UDGs where the "Largest ID" algorithm computes an ⊖(√n)-approximation (analysis is tight).



Iterative "Largest ID" Algorithm, Remarks

- Possible to do everything in O(1) rounds (messages get larger, local computations more complicated)
- If we slightly change the algorithm such that largest radius is 1/4:
 - Sufficient to know IDs of all neighbors, distances to neighbors, and distances between adjacent neighbors
 - Every node can then locally simulate relevant part of algorithm to find out whether or not to join DS

Doubling UBG: O(1) approximation in O(1) rounds



Bounded Independence

- Def.: A graph *G* has bounded independence if there is a function *f*(*r*) such that every *r*-neighborhood in G contains at most *f*(*r*) independent nodes.
 - Note: *f*(*r*) does not depend on size of the graph!
 - Polynomially Bounded Independence: f(r) = poly(r), e.g. $O(r^3)$

 A node can have many neighbors
 But not all of them can be independent!
 Can model obstacles, walls, ...

f(1) = 6

- Definition includes:
- (Quasi) Unit Disk Graphs, Doubling Unit Ball Graphs
- Coverage Area Graphs, Bounded Disk Graphs, ...

Real Networks

Wireless Networks are not unit disk graphs, but:

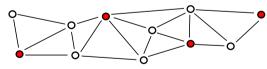
- No links between far-away nodes
- Close nodes tend to be connected
- In particular: Densely covered area → many connections

Roger Wattenhofer, EWSN 2006 Tutorial

0/230

Maximal Independent Set I

Maximal Independent Set (MIS):
 (non-extendable set of pair-wise non-adjacent nodes)



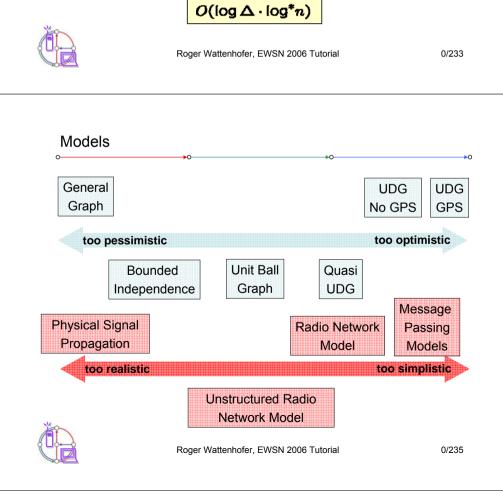
- An MIS is also a dominating set:
 - assume that there is a node v which is not dominated
 - $\ v {\not\in} \, MIS, \, (u, v) {\in} \, E \rightarrow u {\not\in} \, MIS$
 - add v to MIS

Maximal Independent Set II

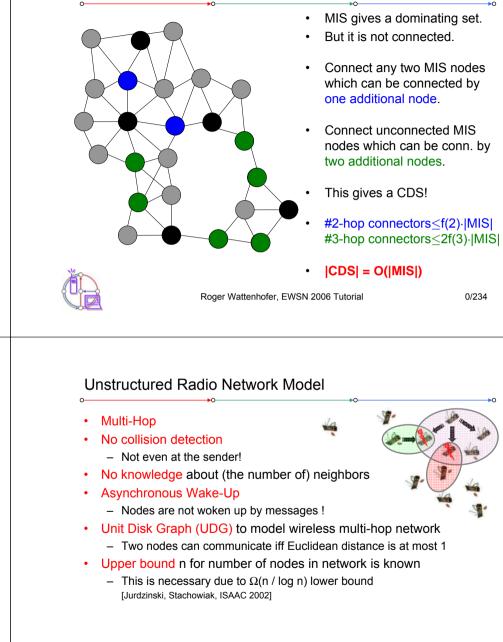
• Lemma:

On independence-bounded graphs: $|MIS| \le O(1) \cdot |DS_{OPT}|$

- Proof:
 - 1. Assign every MIS node to an adjacent node of $\mathsf{DS}_{\mathsf{OPT}}$
 - 2. $u \in DS_{OPT}$ has at most f(1) neighbors $v \in MIS$
 - 3. At most f(1) MIS nodes assigned to every node of $\mathsf{DS}_{\mathsf{OPT}}$
 - $\textbf{ } \textbf{ } |\text{MIS}| \leq f(1) \cdot |\text{DS}_{\text{OPT}}|$
- Time to compute MIS on independence-bounded graphs:



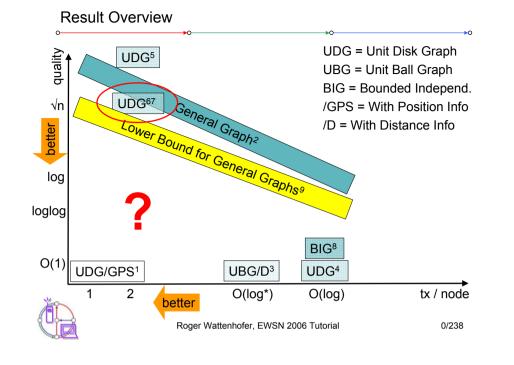
$\mathsf{MIS}\,(\mathsf{DS}) \xrightarrow{} \mathsf{CDS}$



Unstructured Radio Network Model

Can MDS and MIS be solved efficiently in such a harsh model?

There is a MIS algorithm with running time O(log²n) with high probability.



Ö

Roger Wattenhofer, EWSN 2006 Tutorial

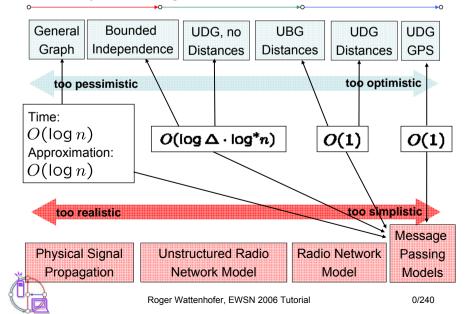
0/237

References

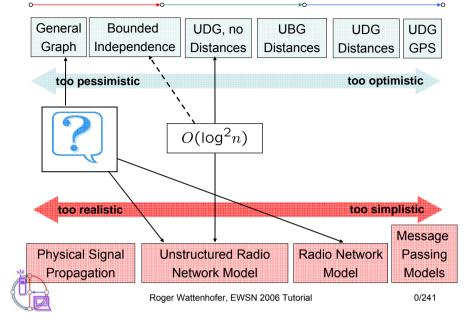
- 1. Folk theorem, e.g. Kuhn, Wattenhofer, Zhang, Zollinger, PODC 2003
- 2. Kuhn, Wattenhofer, PODC 2003
 - CDS improvement by Dubhashi et al, SODA 2003
 - Improved version: Kuhn, Moscibroda, Wattenhofer, SODA 2006
- 3. Kuhn, Moscibroda, Wattenhofer, PODC 2005
- 4. Alzoubi, Wan, Frieder, MobiHoc 2002
- 5. Wu and Li, DIALM 1999
- 6. Gao, Guibas, Hershberger, Zhang, Zhu, SCG 2001
- 7. Wu and Li (several papers, improved here)
- 8. Kuhn, Moscibroda, Nieberg, Wattenhofer, DISC 2005
- 9. Kuhn, Moscibroda, Wattenhofer, PODC 2004

Roger Wattenhofer, EWSN 2006 Tutorial

Summary Dominating Set I

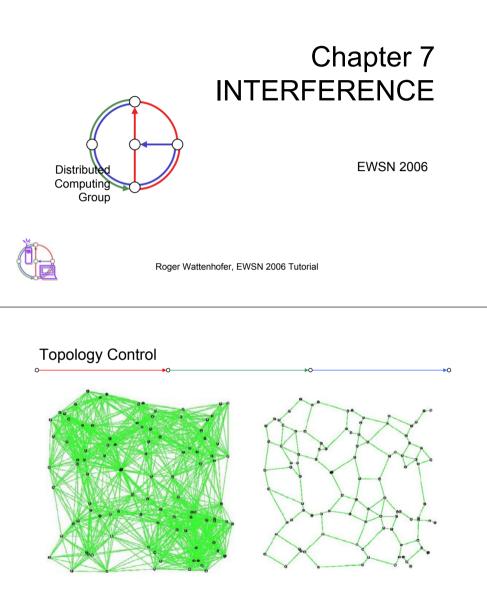


Summary Dominating Set II

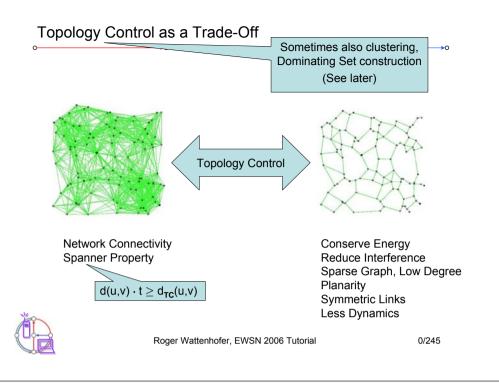


Overview – Topology Control

- · Gabriel Graph et al.
- XTC
- Interference
- SINR & Scheduling Complexity

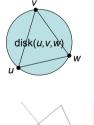


- Drop long-range neighbors: Reduces interference and energy!
- But still stay connected (or even spanner)



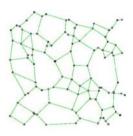
Delaunay Triangulation

- Let disk(*u*,*v*,*w*) be a disk defined by the three points *u*,*v*,*w*.
- The Delaunay Triangulation (Graph) DT(V) is defined as an undirected graph (with E being a set of undirected edges). There is a triangle of edges between three nodes u,v,w iff the disk(u,v,w) contains no other points.
- The Delaunay Triangulation is the dual of the Voronoi diagram, and widely used in various CS areas; the DT is planar; the distance of a path (s,...,t) on the DT is within a constant factor of the s-t distance.



Gabriel Graph

- Let disk(*u*,*v*) be a disk with diameter (*u*,*v*) that is determined by the two points *u*,*v*.
- The Gabriel Graph GG(*V*) is defined as an undirected graph (with *E* being a set of undirected edges). There is an edge between two nodes *u*,*v* iff the disk(*u*,*v*) including boundary contains no other points.
- As we will see the Gabriel Graph has interesting properties.

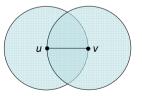


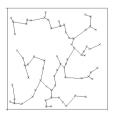
Roger Wattenhofer, EWSN 2006 Tutorial

0/246

Other planar graphs

- Relative Neighborhood Graph RNG(V)
- An edge e = (u,v) is in the RNG(V) iff there is no node w with (u,w) < (u,v) and (v,w) < (u,v).
- Minimum Spanning Tree MST(V)
- A subset of *E* of *G* of minimum weight which forms a tree on *V*.





Properties of planar graphs

- Theorem 1: $MST(V) \subseteq RNG(V) \subseteq GG(V) \subseteq DT(V)$
- Corollary: Since the MST(V) is connected and the DT(V) is planar, all the

planar graphs in Theorem 1 are connected and planar.

Theorem 2:

The Gabriel Graph contains the Minimum Energy Path (for any path loss exponent $\alpha \geq$ 2)

- Corollary: $GG(V) \cap UDG(V) \text{ contains the Minimum Energy Path in } UDG(V)$

Roger Wattenhofer, EWSN 2006 Tutorial

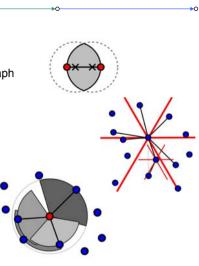
0/249

XTC: Lightweight Topology Control

- Topology Control commonly assumes that the node positions are known.
- · What if we do not have access to position information?
- XTC algorithm
- XTC analysis
 - Worst case
 - Average case

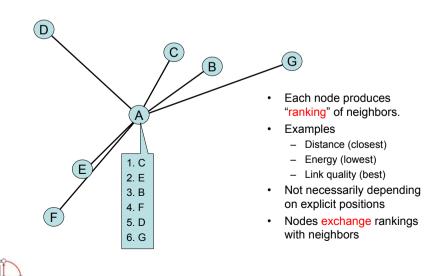
More examples

- β-Skeleton
 - Generalizing Gabriel (β = 1) and Relative Neighborhood (β = 2) Graph
- Yao-Graph
 - Each node partitions directions in k cones and then connects to the closest node in each cone
- Cone-Based Graph
 - Dynamic version of the Yao Graph. Neighbors are visited in order of their distance, and used only if they cover not yet covered angle

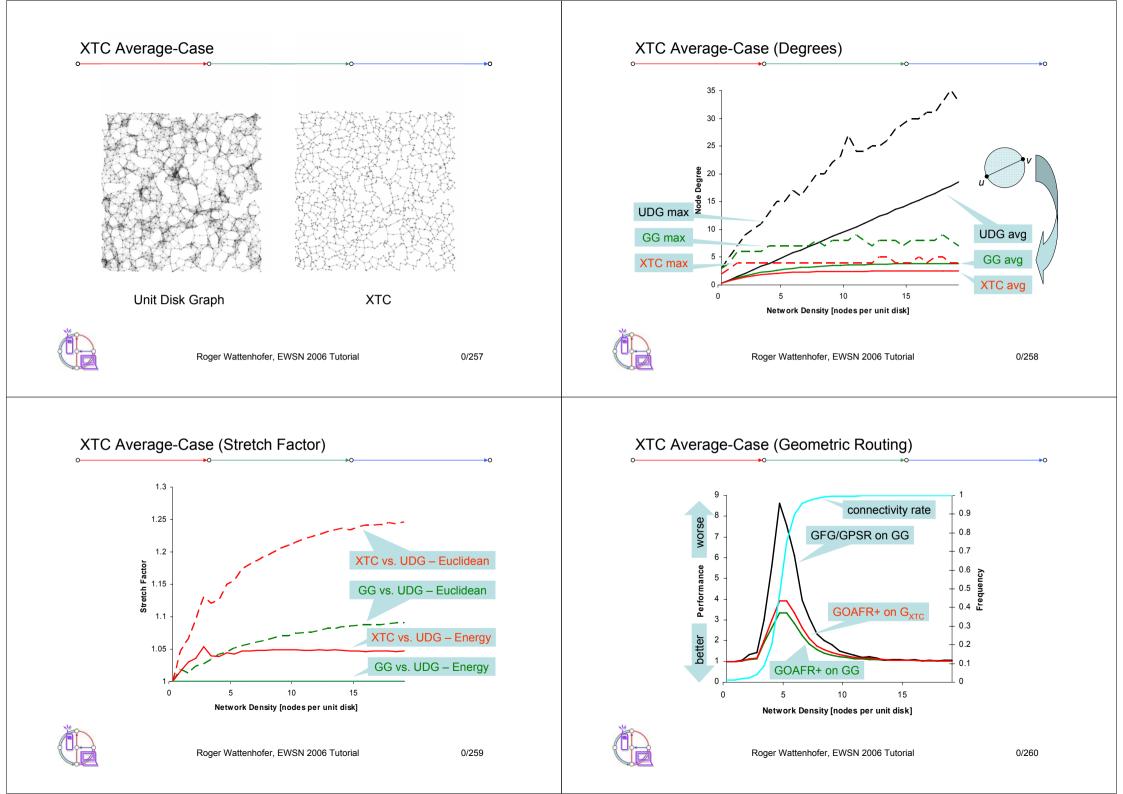


Roger Wattenhofer, EWSN 2006 Tutorial

XTC: lightweight topology control without geometry



XTC Algorithm (Part 2) XTC Analysis (Part 1) 3. B 2. C 4. B Symmetry: A node u wants a node v as a neighbor if and only if v 4. A 4. G D 6. A wants u. 6. G 5. A 7. C 8. D G 7. A B • Proof: 8. C – Assume 1) $u \rightarrow v$ and 2) $u \leftrightarrow v$ 9. E 1. F Each node locally goes - Assumption 2) \Rightarrow 3w: (i) w \prec , u and (ii) w \prec , v through all neighbors in 3. A order of their ranking 6. D • If the candidate (current **Contradicts** Assumption 1) neighbor) ranks any of 1. C your already processed 2. E neighbors higher than 3. B yourself, then you do not 4. F need to connect to the 5. D candidate. 3. E 6. G 7. A 0/254 Roger Wattenhofer, EWSN 2006 Tutorial 0/253 Roger Wattenhofer, EWSN 2006 Tutorial XTC Analysis (Part 1) XTC Analysis (Part 2) • Symmetry: A node u wants a node v as a neighbor if and only if v • If the given graph is a Unit Disk Graph (no obstacles, nodes homogeneous, but not necessarily uniformly distributed), then ... wants u. Connectivity: If two nodes are connected originally, they will stay so • The degree of each node is at most 6. (provided that rankings are based on symmetric link-weights). The topology is planar. • The graph is a subgraph of the RNG. · If the ranking is energy or link quality based, then XTC will choose a topology that routes around walls and obstacles. Relative Neighborhood Graph RNG(V): • An edge e = (u,v) is in the RNG(V) iff there is no node w with (u,w) < (u,v)and (v,w) < (u,v).



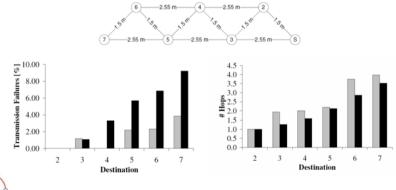
k-XTC: More connectivity

- A graph is k-(node)-connected, if k-1 arbitrary nodes can be removed, and the graph is still connected.
- In k-XTC, an edge (u,v) is only removed if there exist k nodes w₁, ..., w_k such that the 2k edges (w₁, u), ..., (w_k, u), (w₁,v), ..., (w_k,v) are all better than the original edge (u,v).
- Theorem: If the original graph is k-connected, then the pruned graph produced by k-XTC is as well.
- Proof: Let (u,v) be the best edge that was removed by k-XTC. Using the construction of k-XTC, there is at least one common neighbor w that survives the slaughter of k-1 nodes. By induction assume that this is true for the j best edges. By the same argument as for the best edge, also the j+1st edge (u',v'), since at least one neighbor survives w' survives and the edges (u',w') and (v',w') are better.

Roger Wattenhofer, EWSN 2006 Tutorial

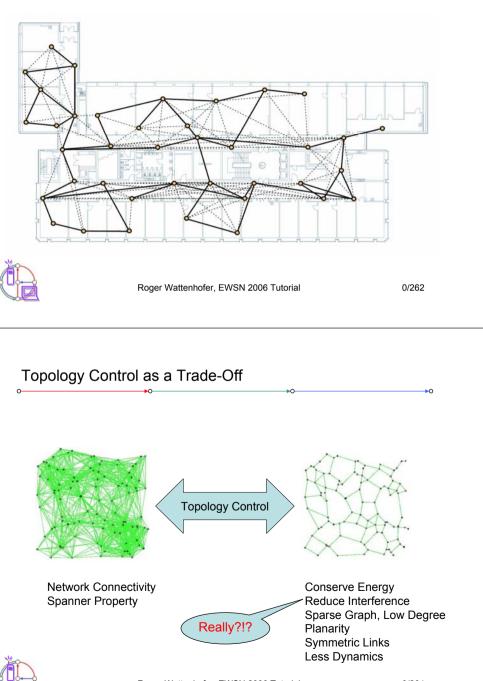
Implementing XTC, e.g. on mica2 motes

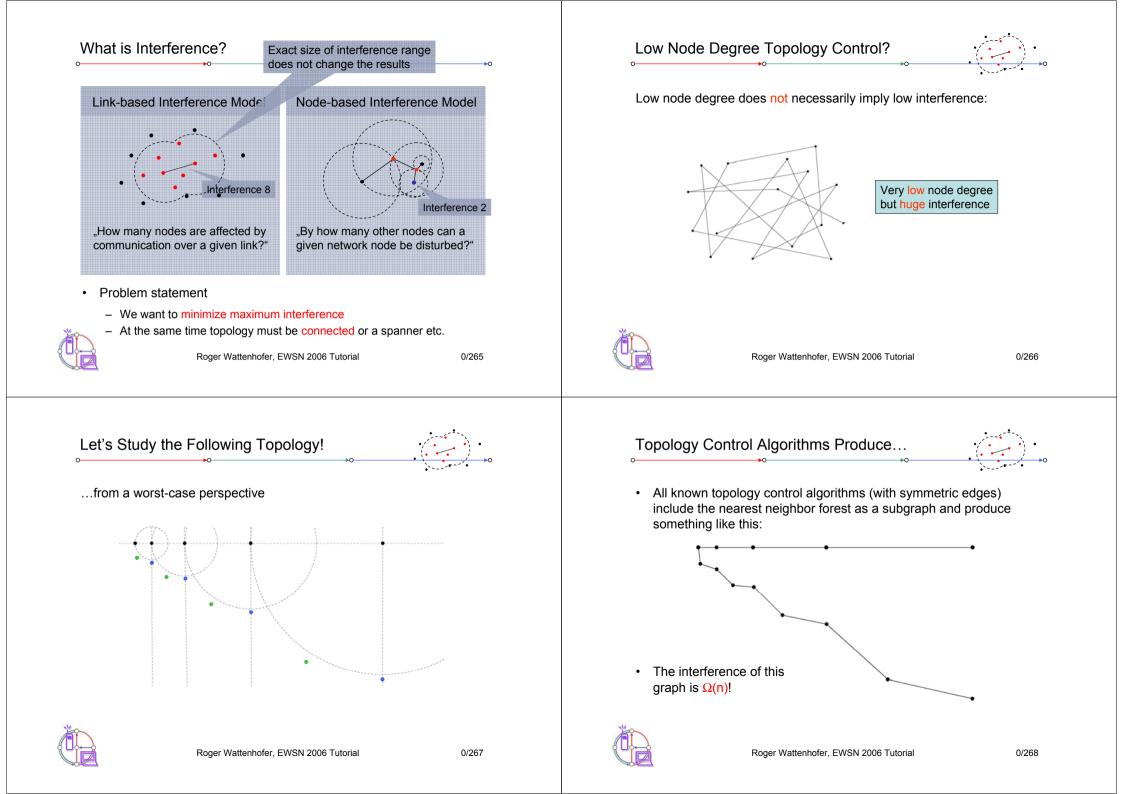
- · Idea:
 - XTC chooses the reliable links
 - The quality measure is a moving average of the received packet ratio
 - Source routing: route discovery (flooding) over these reliable links only

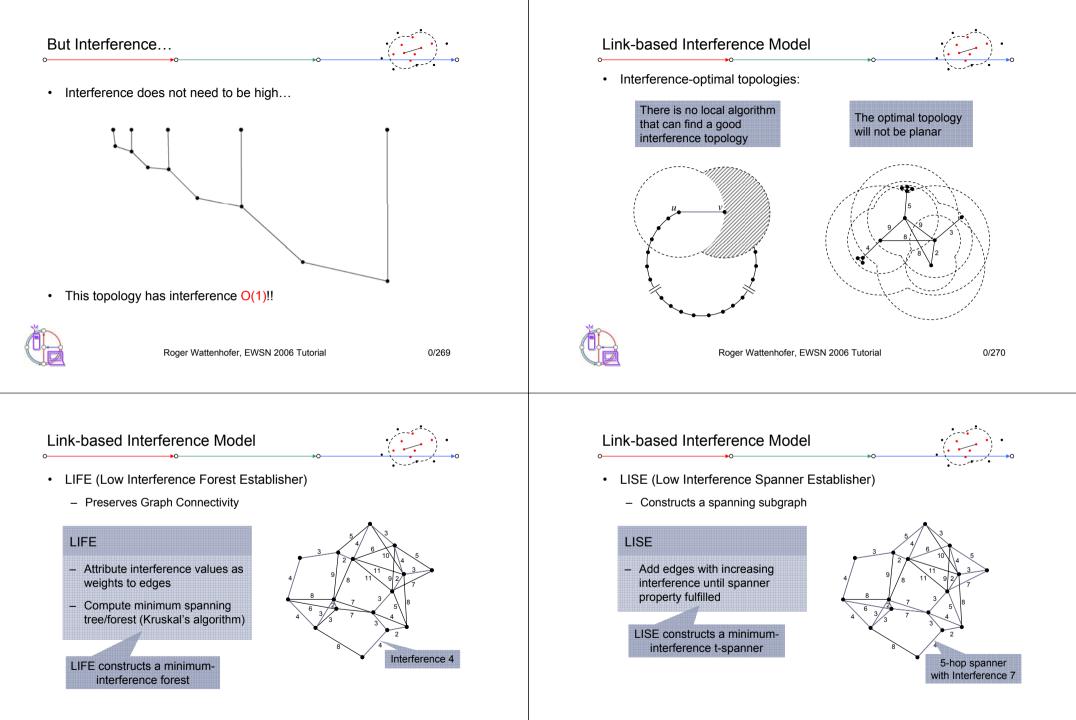


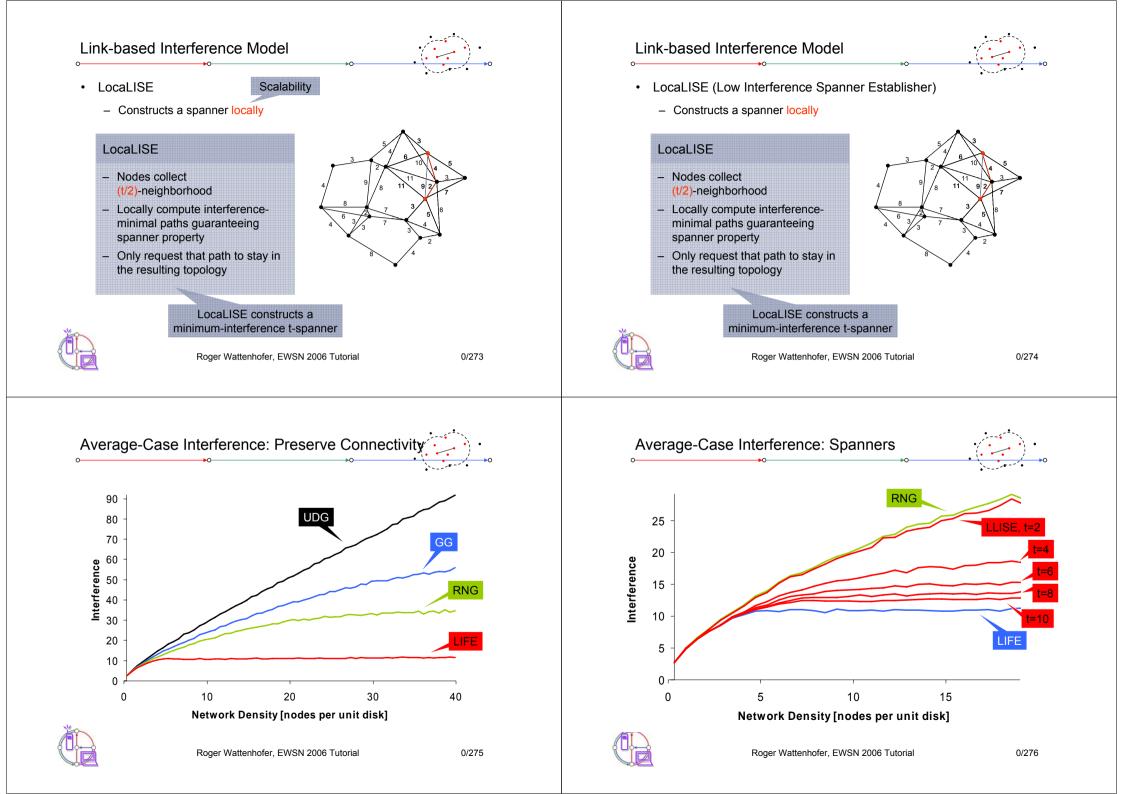
0/261

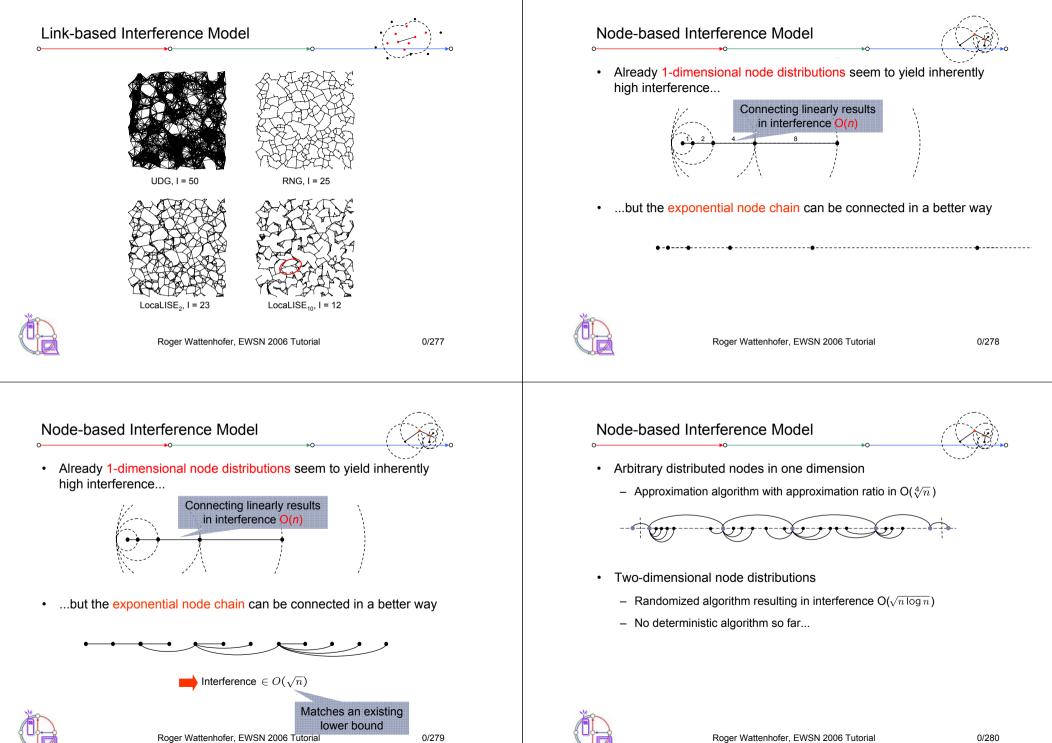
Implementing XTC, e.g. BTnodes v3







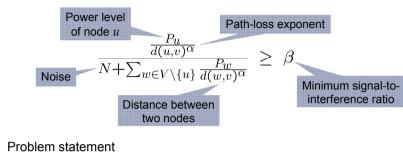




Towards a More Realistic Interference Model...

• Signal-to-interference and noise ratio (SINR)

•0



 Determine a power assignment and a schedule for each node such that all message transmissions are successful

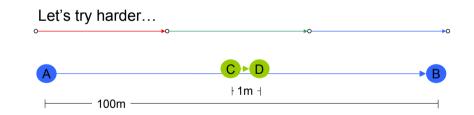
٠

Roger Wattenhofer, EWSN 2006 Tutorial

0/281

SINR is always

assured



Quiz: Can these two links transmit simultaneously? **⊦1m** + 100m -Graph-theoretical models: No! ٠ - Neither in- nor out-interference SINR model: constant power: No! ٠ - Node B will receive the transmission of node C SINR model: power according to distance-squared: No! ٠ Node D will receive the transmission of node A Roger Wattenhofer, EWSN 2006 Tutorial 0/282 A Simple Problem • Each node in the network wants to send a message to an arbitrary other node - Commonly assumed power assignment schemes Proportional to (receiver distance)^a Uniform Linear Constant power level Asymptotically Both lead to a schedule of length $\in \Theta(n)$ worst possible! - A clever power assignment results in a schedule of length $\in O(\log^2 n)$

This has strong implications to MAC layer protocols

Example: Linear Power Assignment

· Consider again the exponential chain: · Consider again the exponential chain: $f_3 V_3$ f₁ v₁ 2ⁱ⁺² 2ⁱ⁺³ 2ⁱ⁺⁴ 2ⁱ⁺⁵ 2ⁱ⁺⁶ 2ⁱ⁺² 2ⁱ⁺³ 2ⁱ⁺⁴ 2ⁱ⁺⁵ 2ⁱ⁺⁶ 2ⁱ⁺⁷ 2ⁱ⁺⁸ 2ⁱ⁺⁷ 2ⁱ⁺⁸ 2ⁱ⁺¹⁰ $\rho(f_2)^o$ $\rho(f_1)^{\alpha}$ Power $\rho(f_3)^{\alpha}$ $\rho(f_2)^{\alpha}$ $\rho(f_1)^{\alpha}$ Power $>2\rho/2^{\alpha}$ $>\rho/2^{\alpha}>\rho/2$ Interference $>30/2^{\alpha}$ $>30/2^{\alpha}$ $>20/2^{\alpha}$ Interference $>3\rho/2^{\alpha}$ $>3\rho/2^{\alpha}$ $>2\rho/2^{\circ}$ · How many links can we schedule simultaneously? · How many links can we schedule simultaneously? • Let us start with the first node v₁... • Let us start with the first node v₁... Why? Why? \rightarrow its power is P₁ $\geq \rho 2^{\alpha(i+10)}$ for some constant ρ \rightarrow its power is P₁ $\geq \rho 2^{\alpha(i+10)}$ for some constant ρ • This creates interference of at least $\rho/2^{\alpha}$ at every other node! • This creates interference of at least $\rho/2^{\alpha}$ at every other node! The second node v₂ also sends with power P₂= $\rho 2^{\alpha(i+7)}$ The second node v₂ also sends with power $P_2 = \rho 2^{\alpha(i+7)}$ Again, this creates an additional interference of at least $\rho/2^{\alpha}$ at every Again, this creates an additional interference of at least $\rho/2^{\alpha}$ at every other node! other node! And so on... 0/286 Roger Wattenhofer, EWSN 2006 Tutorial 0/285 Roger Wattenhofer, EWSN 2006 Tutorial

Example: Linear Power Assignment

Example: Linear Power Assignment

- Assume we can schedule *R* nodes in parallel.
- The left-most receiver x_r faces an interference of R· ρ/2^α
 → yet, x_r receives the message, say from x_s.
- How large can R be?
- The SINR at x_r must be at least $\beta,$ and hence

$$\frac{\frac{\rho \cdot d(x_s, x_r)^{\alpha}}{d(x_s, x_r)^{\alpha}}}{N + R \cdot \frac{\rho}{2^{\alpha}}} \geq \frac{\rho 2^{\alpha}}{2^{\alpha} N + \rho R} \geq \beta$$

- From this, it follows that ${\it R}$ is at most $2^{\alpha\!/}\!\beta$
- And therefore....
 - at least $n\cdot\mbox{ min}\{1,\beta/2^{\alpha}\}$ time slots are required for all links!

A clever power assignment solves this instance in a constant number of time slots!

Roger Wattenhofer, EWSN 2006 Tutorial