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Abstract—Aircraft periodically broadcast their position, iden-
tity and other information using the ADS-B protocol. This allows
safe air traffic flow as ground stations and other aircraft can
depend on the sent information. However, these messages are not
authenticated or encrypted. Therefore, this system is vulnerable
to attacks from Software Defined Radios (SDRs) and other
transmitters. We propose a deep learning-based approach for
fingerprinting of aircraft messages based on physical character-
istics. This helps to verify the origin of an observed message.

Index Terms—Aircraft fingerprinting, deep learning, radio
frequency fingerprinting

I. INTRODUCTION

Aircraft determine their exact position using satellite naviga-
tion and then broadcast it over a protocol called Automatic De-
pendent Surveillance - Broadcast (ADS-B). They additionally
also send information such as their velocity and identification.
These messages can then be received by nearby aircraft and
on the ground by air traffic control.

However, ADS-B does not provide any means of message
authentication and therefore the origin of an aircraft message
cannot be verified. This means that an attacker using a Soft-
ware Defined Radio (SDR) or another ADS-B transponder can
inject false information without being detected. The attacker
could create messages of aircraft that do not exist or even
jam messages from an actual aircraft and then send modified
messages that seem to originate from the aircraft. These
attacks have become easily possible in recent years due to
the wide availability of SDRs.

Unfortunately, improvements to the ADS-B protocol cannot
be implemented quickly as new hardware would be required
in each aircraft. Authentication or encryption schemes face
additional challenges of key management and distribution [1].
Therefore, only approaches that do not need modified aircraft
transponders can be implemented quickly to increase the
security of ADS-B.

We propose a deep learning-based method for the identifi-
cation based on the radio signal of the aircraft. To verify the
origin of ADS-B messages, we extract different fingerprints
from aircraft messages. Using these fingerprints, we examine
whether we can determine the originating aircraft based on a
single received ADS-B message.

The observed differences in the fingerprints of different
aircraft can have different origins. The hardware design varies
between transponder manufacturers and hardware versions and
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oscillators have different errors. Additionally, silicon-based
hardware is known to be very complex. Small deviations in
the manufacturing process are inevitable and therefore no two
transponders are perfectly identical. This results in observable
characteristics in the transmitted signals, such as different rise
times/fall times, frequency errors, etc. We examine how such
physical-layer characteristics can be used to tell individual
transponders apart.

Aircraft transmit their identity and possibly other identifying
data in the messages. As we cannot trust the data contained
in the messages sent by the aircraft, we have to be careful not
to give this information to the fingerprinting methods.

To record the data from actual aircraft, we use cheap and
widely available RTL-SDR receivers. Flight tracking services
such as FlightAware and Flightradar24 use the same receivers.

II. RELATED WORK

Radio frequency fingerprinting techniques have been pro-
posed to enhance the security in multiple wireless commu-
nication protocols. Reising et al. examined physical-layer
fingerprinting for mobile phones from different manufacturers
operating on the GSM standard [2]. The authors show the
possibility of enhancing security in GSM communication by
extracting physical-layer fingerprints from different sections of
GSM signals.

Device fingerprinting has also been applied to identify Blue-
tooth transceivers [3]. The authors extracted fingerprints from
the energy envelope of the transient signal and could distin-
guish between seven individual transceivers. These approaches
require a high signal-to-noise ratio and are evaluated over
short distances. The fingerprinting of aircraft communication
however has to be performed over large distances with a wide
range of reception conditions.

Radio frequency fingerprinting has also been considered
for securing aircraft communication over ADS-B. The phase
during a message has been used to classify the aircraft into
one of seven classes depending on the shape of the phase
pattern [4]. Also the received signal strength has been used
to identify messages that do not originate from an observed
aircraft [5]. Multilateration techniques have been proposed to
localize aircraft and verify the origin of ADS-B messages [6],
[7]. For an attacker equipped with a single spoofing device,
multilateration makes it very hard to inject illegitimate aircraft
messages as the attacker has to travel along the claimed path.
However, a multi-device attacker performing a geographically
distributed coordinated attack on the receiving base stations



can imitate any location as the injected message’s origin. For
the detection of coordinated attacks on aircraft multilateration
systems, a different approach for fingerprinting has been
considered [8]. The authors compare the physical-layer fin-
gerprints determined at different receivers of the same aircraft
message to each other. Therefore, they can determine whether
the message has been sent by a single transmitter at the
correct location. Also software-dependent features such as the
interarrival time of messages can be used to cluster aircraft [9].
This however assumes that the considered messages come
from the same transmitter.

There have also been suggestions to add authentication to
ADS-B. Berthier et al. [10] suggest SAT, a new, backward-
compatible replacement for ADS-B. Using their proposed SAT
transponders, aircraft fitted with the corresponding equipment
can receive and send both ADS-B and SAT messages. The
SAT messages are authenticated using TESLA [11], a delayed
key disclosure mechanism to achieve broadcast authentication
without prior key exchange.

Message authentication approaches to secure the commu-
nication however need adapted transceivers in the aircraft or
even modifications of the ADS-B protocol. These approaches
are interesting for a future revision of the protocol but do not
solve the current security threat.

Deep learning has successfully been applied to many areas
of signal processing. It is used for tasks such as image
classification [12] and generation [13]. It has also been applied
to analyze and synthesize music [14]. Both, music signals and
the radio frequency signals used in aircraft communication, are
one-dimensional time series signals. Deep learning has also
shown good results for many tasks in communication systems
such as modulation recognition, channel estimation, etc. [15].

III. BACKGROUND

Mode S is a secondary surveillance radar technique that
allows a selective interrogation of aircraft to report informa-
tion, such as altitude. A ground-based transceiver sends the
interrogation to which the aircraft responds with a message
sent at 1090MHz. The information is encoded using Pulse
Position Modulation (PPM). A high signal level followed by
a low signal level denotes a 1-bit, and vice-versa, a 0-bit. Each
symbol has a duration of 1 µs. A Mode S message starts with
a preamble of 8 µs consisting of a fixed pattern of four pulses.
In Mode S, two lengths of messages exist, with 56 and 112
bits.

To remove the requirement of selective aircraft interroga-
tion, Automatic Dependent Surveillance - Broadcast (ADS-
B) was introduced. Aircraft periodically broadcast information
such as position, velocity, and identification over this protocol.
ADS-B messages are sent using the Mode S Extended Squitter
format which carries 112 bits. Figure 1 shows the message
format. The first 8 bits are made up of 5 bits Mode S downlink
format (DF) which is always 17 in the case of ADS-B, and
3 bits of capability (CA). The 24 bits constituting the unique
ICAO address for each aircraft are static and sent along with
every message. Information about position, altitude, velocity,
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Fig. 1: The ADS-B message format

etc. is encoded in the 56 bits of message field. A 24-bit cyclic
redundancy check (CRC) is employed to detect and account
for transmission errors. In the USA, aircraft must be equipped
with an ADS-B capable transponder since the beginning of
2020 depending on the airspace [16]. Also in the European
Union, ADS-B will become mandatory in June 2020 for large
aircraft [17].

ADS-B does not support any authentication or encryption
of the sent messages. Therefore, many different attacks on
the ADS-B system are possible [1]. We consider an attacker
that is able to inject fake messages into a ground based
receiver. We assume that a sophisticated attacker is able to
send correctly formatted messages that also follow a believable
aircraft path. We can therefore not rely on the message content
for fingerprinting.

IV. DATA COLLECTION

To collect many messages from aircraft, we record ADS-
B messages from multiple ground stations located across
Switzerland into a database. Each ground station consists of
a Raspberry Pi 3 with an attached RTL-SDR. This hardware
setup consists of easily available and affordable components.

The RTL-SDR samples the signal with 2.4MS/s. The
dump1090 [18] decoder software detects and decodes the
messages sent from the aircraft. After decoding, the messages
are forwarded to the database server together with the I/Q
samples of each message.

The messages were recorded on 11 days. On each of the
days, a network of six to seven receivers was recording for
approximately three hours. If the same message is received
by multiple receivers, the corresponding signal data recorded
by all receivers is used. As training set we use data collected
on the first six days, the test set is made up of the last five days.
In both sets, we require at least 2000 received transmissions
from each aircraft. This provides us with 274 common aircraft
in both training and test data, with a total of three million
messages over 11 days. The validation data set is randomly
split off the training data.

V. FINGERPRINTS

The goal of the fingerprinting approach is to identify the air-
craft without trusting the ICAO address sent in each message.
Additionally also other contents in the message might give
away the identity of the aircraft. The positions of the aircraft
might allow to identify the aircraft, as the same aircraft may
always be on the same route over multiple days. Therefore,
we employ only fingerprinting methods that are independent
of the message content. We base the fingerprints on the phase



and magnitude of the message preamble and on the phase
over the whole message. The phase of Mode S messages is
not specified, as only the magnitude is used to encode the
data in the PPM scheme. Therefore, we expect the phase to
be useful for distinguishing aircraft.

The observed differences in the fingerprints of different
aircraft can have different origins. The hardware design
might vary between transponder manufacturers and hardware
versions, oscillators have different errors and manufacturing
differences may also lead to individual fingerprints.

A. Preamble

The preamble of 8 µs lends itself to fingerprinting as it is
common to every Mode S message and does therefore not
contain any data. Additionally, the first five bits of each ADS-
B transmission denote the same downlink format, which is
always 17 for ADS-B messages. We can also use the raw sig-
nal data encoding these bits without leaking any identification
information. We expect to see differences between aircraft in
the phase values during the preamble as only the magnitude is
specified by the pulse position modulation. Additionally also
the exact position in time and the magnitude of the pulses
might vary slightly.

B. Phase pattern

The preamble is relatively short compared to the whole
message duration of 120 µs. Therefore, we expect to detect
more physical-layer information in the whole transmission.

We consider the phase pattern over the entire message. The
phase of the signal is only determined by the aircraft during the
pulses. Between the pulses, the phase is random. Therefore,
only the phase at the pulse positions should be evaluated.
Otherwise, the message content is visible by considering the
variance of the phase. The classifier might then recognize the
aircraft by the ICAO address or other identifying content of
the message, which may be spoofed by an attacker.

We sample the phase at each magnitude pulse and interpo-
late at non-pulse positions. This results in a sampling rate of
2MS/s. Additionally, we completely remove and interpolate
the phase samples at the position of the 24-bit ICAO address.
Since the phase angle of the signal for every sample is in the
range (−π, π], we unwrap the phase to obtain a continuous
phase pattern.

As aircraft are travelling at high speeds, the Doppler effect
causes a frequency shift of up to 1000Hz. This results in phase
patterns with different slopes. With the position and velocity of
the aircraft, we can calculate the Doppler shift with respect to
each receiving ground station and can compensate it to obtain
high quality fingerprints.

Figures 2a and 2b show collections of phase patterns of
messages from two different aircraft. However, not for all
aircraft the patterns are that easily distinguishable.

VI. CLASSIFICATION

All classifiers used for the fingerprinting are CNN-based
and have been optimized for the individual fingerprints. As
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Fig. 2: Phase patterns of multiple messages from two different
aircraft.

predictions, the classifiers output vectors where each element
expresses the confidence of the classifier that a signal origi-
nated from a certain aircraft.

For the preamble fingerprinting, we upsample the raw signal
by a factor of 20 from 2.4 to 48MS/s. The network classifying
based on preamble magnitudes consists of two convolutinal
layers, each followed by a MaxPool layer with pool size
of two. The two convolutional layers consist of 64 and 48
filters, respectively, with a kernel size of 64. Two dense layers
with 512 and #(aircraft) units produce the categorical output.
All but the last layer employ the ReLU activation, the last
layer uses the Softmax activation function. During training, the
Adam optimizer minimizes categorical crossentropy loss. The
network classifying based on the phase during the preamble,
uses a similar network architecture. The only difference is a
kernel size of 28 instead of 64 for the convolutional layers.

For phase patterns, a CNN with four convolutional layers
and one dense layer is used. Average pooling with a pool size

TABLE I: Classification metrics using preamble magnitudes

precision recall F1-score

macro avg 0.173 0.171 0.156

accuracy: 0.171

TABLE II: Classification metrics using preamble phase

precision recall F1-score

macro avg 0.278 0.284 0.264

accuracy: 0.284
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Fig. 3: Confusion matrix for aircraft classification using phase
patterns

of two is applied before the first, third, and fourth layer. The
first two convolutional layers consist of 32 filters, layers three
and four consist of 64 filters, each with a kernel size of 64.
The dense layer has #(aircraft) units and produces the output.
LeakyReLU is used as activation for all but the last layer which
uses the Softmax activation. The categorical crossentropy loss
is optimized by the Adam optimizer.

VII. EVALUATION

As evaluation metric, we consider accuracy on the test set,
defined as the percentage of signals for which the correct air-
craft was predicted. We undersample the test set to overcome
class imbalance and obtain more balanced results. Otherwise
aircraft that are over-represented in the test data contribute
more to the classification accuracy.

A. Preamble

The preamble magnitude allows to expose information about
the pulse positions which are not uniform among different
aircraft transponders. Even at a low sampling rate of 2.4MS/s,
we expect to still extract some characteristics about the exact
pulse positions.

Among 274 aircraft, our CNN-based classifier achieves an
accuracy of 17.13% and an F1-score of 0.156 as we can see
in Table I. This is still relatively high when we take into
consideration the number of aircraft and the limited resolution
of the recorded signals.

Using the same upsampling strategy as for the magnitude
of the preamble, we extract the phase over the ADS-B trans-
mission start.

As can be seen in Table II, with a classification accuracy
of 28.4% and an F1-score of 0.264, we can conclude that the
phase contains considerably more information about transpon-
der hardware than the magnitude of an aircraft signal.
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Fig. 4: Confusion matrix for aircraft classification when com-
bining preamble phase and phase patterns

B. Phase pattern

When we consider the phase pattern, i.e., the interpolated
and unwrapped phase angle over an entire ADS-B transmis-
sion, we can see in Figure 3 that this fingerprint allows to very
accurately classify certain aircraft transponders.

Even at a low sampling rate of 2MS/s, an accuracy of
36.7% and an F1-score of 0.342 is achieved among signals
from 274 individual aircraft (see Table III). The fingerprints
vary slightly by day, as environmental conditions or uncontrol-
lable factors impacting the transponder’s oscillator on the test
days do not perfectly reproduce the conditions on the training
days. As certain aircraft have very similar phase patterns, they
become indistinguishable.

C. Combining predictions

As different classifiers show different confidences for certain
aircraft, we examine the usefulness of combining fingerprints.
This is where the categorical predictions from each classifier
are beneficial.

We achieve the best results by combining preamble phase
and phase patterns over the whole message. With a classifica-

TABLE III: Classification metrics using phase patterns

precision recall F1-score

macro avg 0.367 0.367 0.342

accuracy: 0.367

TABLE IV: Classification metrics when combining preamble
phase and phase patterns

precision recall F1-score

macro avg 0.416 0.419 0.391

accuracy: 0.419



tion accuracy of 41.9% and an F1-score of 0.391 as shown in
Table IV, we observe considerable improvements compared to
using only phase patterns. The confusion matrix in Figure 4 is
very similar to the one for only the phase patterns in Figure 3,
but some of the outliers have disappeared.

This means among 274 aircraft observed over eleven days,
for four out of ten received messages, the originating aircraft
transponder can be determined using only physical-layer char-
acteristics.

Combining the predictions of the different fingerprints leads
to a more reliable classification. While it is not possible to
reliably classify all aircraft, it is possible to classify many
aircraft transponders accurately.

VIII. CONCLUSION

We have introduced a novel fingerprinting method for ADS-
B messages using deep learning methods.

Our results show that it is possible to distinguish between
274 aircraft that fly by on multiple days with an accuracy
of 41.9%. This result shows that the used fingerprints are
stable over multiple days. Compared to [4] that classified
messages into seven classes, our physical-layer fingerprints
can distinguish many more transmitters.

The proposed physical-layer fingerprinting approach for
single ADS-B messages could be used in combination with
other security mechanisms such as higher-level fingerprinting
techniques [9], e.g. using the interarrival times, or aircraft
multilateration to build a complete security system for ADS-B.
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