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Abstract. Universal quantum computers are the only general purpose
quantum computers known that can be implemented as of today. These
computers consist of a classical memory component which controls the
quantum memory. In this paper, the space complexity of some data
stream problems, such as PartialMOD and Equality, is investigated on
universal quantum computers. The quantum algorithms for these prob-
lems are believed to outperform their classical counterparts. Universal
quantum computers, however, need classical bits for controlling quan-
tum gates in addition to qubits. Our analysis shows that the number of
classical bits used in quantum algorithms is equal to or even larger than
that of classical bits used in corresponding classical algorithms. These
results suggest that there is no advantage of implementing certain data
stream problems on universal quantum computers instead of classical
computers when space complexity is considered.
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1 Introduction

In the past two decades, scientists have made significant progress in the field of
quantum computation. Quantum computer protocols based on different physical
principles have been constructed and manufactured. Despite this progress, large-
scale quantum computers are still not available.

According to the no-programming Theorem [19], a quantum-controlled quan-
tum computer is not better than a classically controlled quantum computer.
Therefore, a modern quantum computer consists of a large classical memory
controlling a small quantum memory. The limited quantum memory poses great
challenges to physicists and computer scientists. In particular, one must decide
how to use this limited quantum memory efficiently. One possible way is to build
larger-scale quantum computers. Another way is to introduce algorithms that
require a small quantum memory, but a large classical memory. In this work, we
address the latter case for a special class of problems – the data stream problems.

Data stream problems process data streams where the input data comes at
a high rate. The massive input data challenges communication, computation,
and storage. In particular, one may not be able to transmit, compute and store
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the whole input. For such problems, classical and quantum algorithms have been
proposed with the aim to reduce space complexity. On quantum computers, such
algorithms usually use polynomially or even exponentially less quantum memory
than their classical counterparts using classical memory.

However, quantum algorithms are generally performed on a universal quan-
tum computer. Note that for some structures quantum gates can change contin-
uously by slowly varying some physical parameters, and it seems that one should
use a continuous set of quantum gates to describe them. However, by consider-
ing the uncertainty principle, physical parameters can only be measured with
errors. Due to these errors, quantum gates with slightly different parameters can
therefore often not be distinguished and should be regarded as the same quan-
tum gate. This brings us back to a discrete set of quantum gates and a universal
quantum computer. On such a universal quantum computer, only a finite set
of quantum gates – the universal quantum gates – can be used directly. Other
quantum gates are approximated by quantum gate array to a certain accuracy.

According to the no-programming theorem, universal quantum computers
need extra memory, in particular, they need classical memory in order to store
the program for the desired quantum gate array. Therefore, the length of the
desired quantum gate array would determine the length of the program, which
requires extra memory. In this work, we include the extra memory for programs
when considering the space complexity, and show that if the extra memory is
taken into account, the space complexity of the proposed quantum algorithm for
the PartialMOD problem is approximately equal to the space complexity of the
respective classical algorithms and that for the Equality problem is even worse.
This way, the considered streaming algorithm on universal quantum computers
have no advantage over their classical counterparts. Note that our result does
not imply that these problems cannot be solved efficiently in a different model.
Instead, it suggests that different problems may be solved more efficiently in
some particular model, but not in others. We therefore see our result as an
inspiration to consider quantum algorithms with respect to the framework in
which they can be implemented.

2 Related Work

Classical data stream problems have been first formalized and popularized by
Alon et al. [4] in order to estimate the frequency moment of a sequence using as
little memory as possible. The PartialMOD [5] and Equality-like problems [23]
are well-known examples of problems in this class. For the PartialMOD problem,
Ambainis et al. [5] proved a tight bound of log p bits in the deterministic setting.
Ablayev et al. [1, 3] proved a tight bound of n bits for the deterministic classical
streaming algorithms computing Equality problems.

For the quantum version of data stream problems, Watrous [22] proved the
well-known result that the complexity class PrSPACE(s) is equal to the complex-
ity class PrQSPACE(s), which implies that to some extent, quantum algorithms
are not better than classical algorithms with respect to their space complexity.
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For the PartialMOD problem, Ablayev et al. [2] proposed a quantum algorithm
that requires only 1 qubit while classical algorithms need log p bits. Ablayev et
al. [3] later proposed quantum streaming algorithms for Equality Boolean func-
tions. Their results show that some problems have both logarithmic or better
quantum algorithms, whereas at least a logarithmic number of bits is needed for
classical algorithms. Based on both previous results, Khadiev et al. [14, 13, 15]
proposed quantum stream algorithms with constant space complexity, which is
better than classical streaming algorithms that require polylogarithmically many
bits. Le Gall [17] also investigated a certain variation of the Equality problem
and proposed a quantum algorithm with exponentially lower space complexity
(both quantum and classical) than the corresponding classical algorithm.

The field of communication complexity also investigated Equality problems.
Buhrman et al. [7] introduced quantum fingerprinting and proposed to use it
in communication theory. They chose the Equality problem as an example in
their paper. Recently, Guan et al. [10] managed to realize the above progress
experimentally.

In our paper, we focus on the space complexity of data stream problems
on universal quantum computers. For such computers, the Solovay-Kitaev algo-
rithm [8, 16, 11] states that any operator can be approximated to an accuracy
of ε by logc 1

ε quantum gates from a finite set of gates. Different versions of
the Solovay-Kitaev algorithm consider different values of c. In [8], Dawson and
Nielsen introduced a version with c ≈ 4. Kitaev et al. [16] proposed a version
with c ≈ 2, and Harrow et al. [11] finally proved a lower bound of c = 1. More-
over, they showed that the corresponding algorithm exists but cannot be given
explicitly.

3 Background

We will start by describing the notation for quantum computation we use in this
paper. We will introduce fundamental concepts of quantum physics using the
Dirac notation, and also present the Bloch sphere model, which is a geometric
way to comprehend quantum algorithms. In Section 3.2, we will then clarify
the Solovay-Kitaev algorithm [8] which gives a way to efficiently approximate
any desired operation on a universal quantum computer with a finite set of
operations. Finally, in Section 3.3, we will explain the quantum no-programming
theorem [19]. This theorem points out that we must use orthonormal quantum
states to perform different operators with deterministic quantum gate arrays and
as such it forms the basis of a classically controlled quantum computer.

3.1 Notation

Let |i〉 denote the i-th classical state of the (complete orthonormal) computa-
tional basis of a Hilbert space. We can write a pure state of a quantum mem-
ory as a column vector |ψ〉 = (α1, ..., αn)

T
=
∑n
i=1 αi|i〉. Its norm satisfies

〈ψ|ψ〉 =
∑n
i=1 |αi|2 = 1, where 〈ψ| is the conjugate transpose of |ψ〉.
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The evolution of a state can be represented by a unitary operator U . That
is, given an initial state |ψ〉, the final state after applying U is |ψ′〉 = U |ψ〉. It is
easy to verify that the norm of a state does not change after an evolution.

A single-qubit memory can be represented as a point on the so-called Bloch
sphere. Explicitly, a unitary operator

U =

(
cos( θ2 ) −e−iφ sin( θ2 )

eiφ sin( θ2 ) cos( θ2 )

)
.

corresponds to the vector U |0〉, pointing to (θ, φ) on the sphere, where θ is
the angle between the vector and the z-axis, and φ is the angle between the
projection of the vector onto xOy plane and the x-axis. Note that the north pole
corresponds to all (0, φ) and the south pole corresponds to all (π, φ).

A projective measurement can be represented by a set of orthogonal projec-
tors followed by a normalization. That is, if we apply a measurement {Pi} to
the initial state |ψ〉, the final state becomes |ψ′i〉 = Pi|ψ〉/‖Pi|ψ〉‖ with prob-
ability |〈ψ|P |ψ〉|. In particular, if the measurement is {|i〉〈i|} and the initial
state is

∑
αi|i〉, the final state is |i〉 with probability |αi|2. Note that the total

probability of all possible final states is 1.

3.2 Solovay-Kitaev Algorithm

In order to present the Solovay-Kitaev algorithm, we first need to introduce the
concept of universality.

Definition 1 (Universal quantum gates [20]). A set of quantum gates is
universal for quantum computation if any unitary operator can be approximated
to arbitrary accuracy by a quantum circuit involving only these gates.

Note that an example of such a set can be found in Chapter 4 of [20].

Based on the well-defined universal set, we can now state the Solovay-Kitaev
theorem which talks about how efficient a universal set is:

Theorem 1 (Solovay-Kitaev [8]). There exist algorithms that can approxi-
mate any unitary operator U to an accuracy of ‖U−Uapprox‖2 ≤ ε with O(logc 1

ε )
universal quantum gates.

The proof of the theorem can be found in [8].

According to Harrow [11], Ω(log 1
ε ) quantum gates are needed in order to

approximate any unitary operator in two dimensions to an accuracy of ε. The
Solovay-Kitaev algorithm is optimal if we disregard poly-logarithmic differences
in the number of quantum gates.

The Solovay-Kitaev theorem does not exclude the possibility that we can
approximate some unitary operator with a quantum gate array much shorter
than O(log 1

ε ) to an accuracy of ε.
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3.3 No-Programming Theorem

The no-programming theorem [19] shows that we cannot use fewer qubits than
classical bits for programming if we want to implement a quantum gate array
deterministically. We view our quantum computer as a unitary operator G acting
on both the quantum program |P 〉 and the memory |d〉. G acting on a quan-
tum program |P 〉 for unitary U results in U |d〉 ⊗ |P ′〉. After measurement we
get U |d〉 deterministically. However, G acting on a superposition of orthogonal
quantum programs 1√

2
(|P1〉+|P2〉) results in a superposition of orthogonal states

1√
2
(U1|d〉 ⊗ |P ′1〉 + U2|d〉 ⊗ |P ′2〉). Therefore, after our measurement, we obtain

either U1|d〉 or U2|d〉 stochastically.

Theorem 2. On a fixed, general purposed quantum computer, if we want to de-
terministically implement a quantum gate array, quantum programs |P1〉,...,|Pn〉
performing distinct unitary operator U1,...,Un are orthogonal. The program mem-
ory is at least N -dimensional, that is, it contains at least log(N) qubits.

The theorem shows that, when used for programming a deterministic quan-
tum gate array, a quantum program has no advantage over a classical program,
i.e. in this aspect a quantum controlled quantum computer is no better than a
classically controlled quantum computer.

When used for programming a probabilistic quantum gate array, there are
quantum programs that use exponentially less space but succeed with expo-
nentially smaller probability, which is not practical. In our paper, we thus only
consider classical bits for programming.

4 Data Stream Problems

In this section, we present selected examples of data stream problems and study
their space complexity. Each section is organized as follows: we first introduce
the problem statement and the corresponding proposed algorithm for quantum
computers with a continuous set of gates. In practice, quantum computers with a
continuous set of gates cannot be realized, which makes such algorithms only of
theoretic interest. In the following section, we assume that our universal quantum
computer first selects a certain universal set of gates, then it is asked data stream
problems with any possible scale and parameter. The quantum computer should
answer any possible question using the same universal set of gates. We therefore
analyze the space complexity of the respective algorithm on such a universal
quantum computer and show that it has no advantage over the space complexity
of the best known classical algorithm.

4.1 PartialMOD Problem

In this section, we study the PartialMOD problem as presented in [15, 5, 1]. In
this problem, we receive some unknown bitstring bit by bit of which we know
that the number of bits with value 1 is a multiple of a given number. The task
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is to determine the parity of the multiplier of this number while storing as few
bits as possible in the memory.

Definition 2 (PartialMOD problem). Let (x1, ..., xn) be an input sequence
of classical bits. Assume that we know in advance that #1 is a multiple of p,
i.e., #1 = v · p, where #1 denotes the number of ones in the string. The bits are
received one by one by the algorithm. The problem is to determine the parity of
v, i.e., to output v mod 2.

Algorithm with a Continuous Set of Gates Ambainis and Yakaryilmaz [5]
showed that there exists no deterministic or probabilistic algorithm to compute
PartialMOD problem with o(log p) classical bits. In their paper, they also propose
a quantum algorithm solving PartialMOD using only one qubit. This algorithm
works as follows: There is only one qubit in the quantum memory. Let the initial
state of the qubit be |0〉, which is the north pole of the Bloch sphere, and set
θp = π

2p . Each time we receive a 1 as the next bit, we apply a unitary operator

R(θp) =

(
cos θp sin θp
− sin θp cos θp

)
.

on the qubit, which is a rotation by 2θp around y-axis on the Bloch sphere. After
v · p steps, we receive all the input bit and get the state

|ψf 〉 =
(

cos(v
π

2
) − sin(v

π

2
)
)T

.

If v mod 2 = 0, we return to the north pole of the Bloch sphere and the final
state of the qubit is |0〉. If v mod 2 = 1, we reach the south pole of the Bloch
sphere and the final state is |1〉. Finally, we can measure the qubit and obtain
its state.

With this procedure, we only need one qubit to solve the PartialMOD prob-
lem on quantum computers. In contrast, a classical computer requires to use
log p bits, as is shown in [1].

Analysis on Universal Quantum Computers In the following, we show
that the proposed quantum algorithm is not space efficient on universal quantum
computers. We suppose that our universal quantum computer is able to solve any
specific PartialMOD problem, which requires that we should be able to apply
any R(θp) to the demanded accuracy. Observe that there are infinitely many
choices of p, and thus infinitely many different R(θp). Since only finitely many
gates can be selected in the universal set of a quantum computer, R(θp) have to
be approximated by a quantum gate array, where each gate of the array is from
the universal set. This leads to possibly wrong outputs. Assume therefore that
we approximate R(θp) by R(θp + εp), which satisfies

‖R(θp)−R(θp + εp)‖2 = 4 sin
εp
4
.
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Starting with the initial state |0〉, we reach the state

|ψf 〉 =

(
cos(v π2 + vp · εp)
− sin(v π2 + vp · εp)

)
.

after vp steps. With probability sin2(vp ·εp) we may get an incorrect output from
the measurement. If vp · εp is small enough, we can bound the probability of an
incorrect output by a positive constant δ as follows

1

2
vp · 4 sin

(εp
4

)
≤ sin (vp · εp) ≤

√
δ.

Therefore, an accuracy of 2
√
δ

vp must be achieved. Such an accuracy comes at the
cost of additional quantum gates.

Intuitively, applying the Solovay-Kitaev algorithm, we need a quantum gate
array of log vp

2
√
δ
. We will show next that a quantum gate array of at least

Ω(log( v√
δ

log p)) gates must be used in order to approximate R(θp) in the pro-

posed algorithm to an accuracy of 2
√
δ

vp . Note that in this theorem we do not
assume the optimality of the Solovay-Kitaev algorithm. Because the optimality
of Solovay-Kitaev algorithm is in the sense of polylogarithmic equivalence, and
the truly optimal algorithm has not been given, simply assuming this algorithm
to be optimal may cause difficulties. However, even without such an assump-
tion, Theorem 3 still shows that the quantum algorithm performs worse in some
situations.

Theorem 3. No algorithm can approximate all R(θp), where θp = ε
2p and

p ≤ p0, to an accuracy of εp = ε
2p using o(log( 1

ε log p0)) quantum gates on a
universal computer, where p0 is sufficiently large and ε sufficiently small. We do
not assume the optimality of the Solovay-Kitaev algorithm here.

We will not present the proof here, but the general idea of the proof is inspired
by [11].

Theorem 3 implies that at least O(log( v√
δ

log p0)) quantum gates are needed

in order to approximate all R(θp), where p ≤ p0, to the demanded accuracy of

εp = 2
√
δ

vp in order to ensure a success probability of at least 1− δ. Since we have

to store the arrangement of the quantum gate array for each R(θp), the number
of classical bits required is equal to the number of gates in the quantum gate
array, that is, at least O(log( v√

δ
log p)) classical bits. It is obvious that when v ap-

proaches infinity while p remains finite, the quantum algorithm for PartialMOD
is not more space-efficient than the corresponding classical algorithm.

Assuming the optimality of the Solovay-Kitaev algorithm, which is discussed
in [11], we can also show that in order to obtain such an accuracy, at least
O(log( vp√

δ
)) quantum gates must be used by any algorithm.

Theorem 4. Let p be sufficiently large. No algorithm can approximate all R(θp),
where θp = π

2p to any accuracy εp with o(log( 1
εp

)) quantum gates on a universal

computer, if the optimality of the Solovay-Kitaev algorithm is assumed.
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This theorem can be proved by contradiction: if one can approximate these
operators with o(log( 1

εp
)) quantum gates, then it is possible to construct a better

algorithm than the Solovay-Kitaev algorithm.
Theorem 4 shows that there exists some R(θp) for which we need at least

Ω(log 1
εp

) = Ω(log v + log p) gates in order to approximate it to the demanded

accuracy of εp = 2
√
δ

vp , assuming the optimality of the Solovay-Kitaev theorem.
Since we have to store the arrangement of the quantum gate array, the number
of classical bits needed is Ω(log v + log p). When v or p approach infinity, the
quantum algorithm is not more space-efficient than the classical algorithm.

Theorem 3 and Theorem 4 are proved under different assumptions. Together
they show that the previously proposed algorithm is not more space-efficient
than its classical counterpart under certain conditions.

4.2 Equality Problem

In this section, we investigate the so-called Equality problem [3, 18, 7]. In this
problem, two bitstrings are received once one after another bit by bit. The task
is to find out whether these two given sequences of bits are equal while storing
a minimal amount of information.

Definition 3 (Equality problem). We are given an input sequence (x, y) =
(x1, ..., xn, y1, ..., yn) of classical bits. The bits are received one by one by the
algorithm. We do not receive any bit of y before we have received all bits of x.
The output is whether x and y are equal, i.e., O = δ(‖x−y‖) = 1, x = y; 0, x 6= y.

Algorithm with a Continuous Set of Gates According to [21, 18], there
is no classical deterministic algorithm that can compute the equality problem
with o(n) classical bits, while there is a randomized algorithm, i.e. Karp-Rabin
algorithm, with a space complexity of O(log n) [12]. There also exists a quantum
algorithm that has the same performance. Ablayev et al. [3] applied quantum
fingerprinting in a quantum streaming algorithm to solve this problem with
O(log n) qubits on a quantum computer with a continuous set of gates. Their
algorithm seems to have the same performance as the Karp-Rabin algorithm.

The quantum memory is divided into two parts. The first part is the first
qubit, whose state is in a 2-dimensional space. The second part contains the
remaining log t qubits in a t-dimensional space. The initial state is |0〉⊗ |0〉. The
strategy is to first apply Hadamard gates on all qubits of the second part and
receive 1√

t
|0〉 ⊗

∑t
j=1 |j〉. If we receive a 1 for xi, we apply a unitary operator

Ui =
∑t
j=1{R(θij) ⊗ |j〉〈j|}, where R(θij) is a rotation on the first qubit by

θij =
2πmj

2i+1 and mj some positive integer. If we receive a 1 for yi, we replace
R(θij) with R(−θij) in Ui. After receiving all the input bits, the state is

1√
t

∑
j

R

(
2πmj(x− y)

2n+1

)
|0〉 ⊗ |j〉.
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Then we apply Hadamard gates on all qubits in the second part. The final state
becomes

1

t

∑
j

(
cos

2πmj(x− y)

2n+1

)
|0〉 ⊗ |0〉+ rest.

If x = y, we return to the initial state. If x 6= y, we reach a non-initial state. We
require that the coefficient of |0〉 ⊗ |0〉 in the final state is approximately a delta
function, that is, ∥∥∥∥∥∥1

t

∑
j

cos
2πmj(x− y)

2n+1
− δ(x− y)

∥∥∥∥∥∥ ≤ √ε.
Then we can easily verify whether x = y by checking whether we get |0〉 ⊗ |0〉
after measurement. If x = y, we obtain |0〉 with probability 1. If x 6= y, we obtain
|0〉 ⊗ |0〉 with probability less than ε.

If we apply discrete Fourier transform to δ(g), that is, mjs take t = 2n

integers from 0 to 2n, ε is exactly 0. But in that case we need log(t) = n qubits.
It is however possible that if we do not apply discrete Fourier transform, that
is, mjs only take t = O(n log 1

ε ) � 2n integers from 0 to 2n, ε is also bounded.
The next theorem states this fact, its proof can be found in [3].

Theorem 5. There exists a set of t > 2
ε ln(2m) elements, {mj , j = 1, ..., t}

such that

1

t

∥∥∥∥∥∥
∑
j

cos

(
2πmjg

m

)∥∥∥∥∥∥ ≤ √ε, ∀g 6= 0.

Theorem 5 implies that there exists a set of t = 2
ε ln(2m) + 1 elements,

{mj , j = 1, ..., t}, which ensures cos
(

2πkig
m

)
’s to almost cancel each other. In-

deed, if we select integers uniformly at random from 0 to m − 1, we are likely
to get such mj . By applying Theorem 5 to the Equality problem, we only need
log(n)+1 qubits on quantum computers with a continuous set of gates, which is
exponentially better than n bits deterministic algorithms on computers, as was
shown by Babai et al. [6].

Analysis on Universal Quantum Computers The proposed algorithm to
solve the Equality problem is not space-efficient on universal quantum comput-
ers. Similar to the PartialMOD problem, we will first bound the accuracy of each
operator. Let us denote the probability for the algorithm to accept the input,
i.e., in the case where the final state is |0〉 ⊗ |0〉, as Pr(x, y). Further, assume
that it is possible to approximate the operator R(θij) to an accuracy of δij . After
applying Theorem 5, the partial derivative of Pr(x, y) becomes

δ Pr(x, y) ≤
√
ε

t

∥∥∥∥∥∥
t∑

j=1

∑
i

sin

(
mjπ2i(x− y)i

2n

)
δij

∥∥∥∥∥∥ .
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Differently than in the PartialMOD problem, it is challenging to bound the
accuracy for the Equality problem precisely. Instead, we simply assume we need
Ω(1) gates for each R(θij). The following theorem defines an upper bound on
the accuracy needed, and shows our simple assumption is reasonable.

Theorem 6. Let |δij | ≤ 1
n . Then, there exists a set of t = 2

ε (n + 3) elements
mj , j = 1, ..., t, such that the following two inequalities are satisfied

1

t

∥∥∥∥∥∥
∑
j

cos
(πmjg

2n

)∥∥∥∥∥∥ ≤ √ε, ∀g 6= 0,

and

1

t

∥∥∥∥∥∥
t∑

j=1

∑
i

sin

(
mjπ2igi

2n

)
δij

∥∥∥∥∥∥ ≤ √ε, ∀g 6= 0.

Here, we prove it via a method similar to that of Theorem 5, shown in [3].
The algorithm for the Equality problem will succeed as long as we reach an

accuracy of 1
n for a suitably chosen set of O(n) elements. In order to achieve such

accuracy, we need at most O(log4 n) quantum gates according to the Solovay-
Kitaev theorem. Since we need to apply at least one quantum gate in order to
be able to implement an operator, it is reasonable to assume that we need at
least Ω(1) quantum gates for each operator to achieve such accuracy.

Now we can analyze the space complexity, for which we also take into account
classical bits. When we perform the above algorithm we need to store the set
{mj}, since the set {mj} is not chosen arbitrarily. There are two natural ways
to do so. One way is to store {mj} directly: consider mj that range from 0 to 2n,
and thus need n classical bits. We have n such integers, and thus at least Ω(n2)
bits are needed. This strategy requires even more bits than a classical brute
force method which saves all O(n) bits of the input. The second way is to store
{R(θij)}: note that R(θij) need at least Ω(1) quantum gates for each operator,
and thus each need Ω(1) classical bits. Since we have n2 such operators in our
algorithm, at least Ω(n2) bits of storage are needed, which is more than that
in the classical deterministic algorithm. In the following theorem, we provide a
more rigorous proof.

Theorem 7. At least Ω(n2) bits are needed in order to store a set {mj , j = 1...t}
where mj ∈ [0, 2n − 1] and t = 2

ε (n+ 3) without pre-knowledge of the set.

Proof. We first consider the classical case. The number of possible choices in the
classical case is

C2n

t =
2n!

t! · (2n − t)!
.

The information entropy of knowing a certain choice from all possible choices
with equal possibility is S = ln

(
C2n

t

)
. Consider when n is sufficiently large,

2n � t = 2
ε (n+ 3), use ln(1 + x) ≈ x an ln(x!) ≈ x ln(x)− x, we have

S = ln(2n) + ...+ ln(2n − t+ 1)− ln(t!) ≈ nt− t2

2n
− t ln(t) + t = O(n2).
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Since the number of bits required is linearly dependent on the information en-
tropy, O(n2) bits are needed in order to store this set.

We next consider the quantum case. The set {mj , j = 1...t,mj ∈ [0, 2n − 1]}
is used to program our quantum computer. Due to the quantum no-programming
theorem in 3.3, quantum programs have no advantage over the classical program
with respect to space complexity. Therefore, Ω(n2) bits or qubits are needed to
store this set.

Therefore, the considered algorithm for the Equality problem has no advan-
tage over the classical deterministic algorithm.

5 Conclusion

Based on the Solovay-Kitaev algorithm, we investigated the space complexity
of streaming algorithms on a universal computer when only a finite number of
quantum gates are available. We used the PartialMOD problem and the Equality
problem to analyze the quantum streaming algorithms in systems where classical
bits are used in order to control quantum gates. By applying the Solovay-Kitaev
algorithm we concluded that the considered quantum streaming algorithms do
not beat their classical counterparts in this system.

Our work shows that not all quantum streaming algorithms can perform
well on a universal quantum computer. There are also data stream problems for
which quantum algorithms may perform well on a universal quantum computer.
One example is the variation of the Equality problem proposed in [17]. In this
problem, the input is repeated many times, which is different from the Equality
problem discussed in this paper, where we receive the input only once. Another
possible candidate is the problem based on the universal (ε, l,m)-code of matrices
proposed by Sauerhoff et al. in [21] and Gavinsky et al. [9], where the input
directly corresponds to a quantum gate array, and one can therefore save space
when storing quantum gates for application. By comparing these algorithms, we
conclude that a framework can be extremely efficient for a certain set of problems
and corresponding algorithms, but not necessarily for all problems. We therefore
think that the space complexity of algorithms should be analyzed with respect
to the framework of the quantum computer in which they can be implemented.
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