
A Limitlessly Scalable Transaction System

Max Mathys, Roland Schmid, Jakub Sliwinski, and Roger Wattenhofer

ETH Zürich

Abstract. We present Accept, a simple, asynchronous transaction sys-
tem that achieves perfect horizontal scaling.
Usual blockchain-based transaction systems come with a fundamental
throughput limitation as they require that all (potentially unrelated)
transactions must be totally ordered. Such solutions thus require serious
compromises or are outright unsuitable for large-scale applications, such
as global retail payments.
Accept provides efficient horizontal scaling without any limitation. To
that end, Accept satisfies a relaxed form of consensus and does not
establish an ordering of unrelated transactions. Furthermore, Accept
achieves instant finality and does not depend on a source of randomness.

1 Introduction

The financial world is changing around the globe. With the rise of digital cryp-
tocurrencies like Bitcoin [13] and Ethereum [16], the pressure on the traditional
banking system to implement a digital currency on its own is rising. Due to
the well-known limitations of permissionless blockchain systems thus far, such
a digital currency is mostly envisioned based on permissioned, byzantine fault-
tolerant ledger technology. Furthermore, as both central and commercial banks
have no interest in a fully distributed solution that can hardly be regulated, the
employment of a permissioned system constitutes a good fit to establish such a
digital currency.

Previously, revolutionizing the global financial infrastructure was envisioned
based on byzantine agreement protocols. Such systems are popular because they
provide a reliable and robust way of transferring funds between participants by
establishing a total order of all transactions. However, ordering all transactions
has proven to be a throughput-limiting factor for these systems, which only
achieve throughputs up to tens of thousands of transactions per second even in
lab environments [15]. Despite byzantine agreement systems being optimized for
high throughput, they only recently matched the demands of leading credit card
providers; hence, this technology does not seem future-proof in our increasingly
digital world.

Our Contribution: We present a system based on A Cheaper Consensus for
Efficient, Parallelizable Transactions (Accept), that features:

– Limitless Scalability: Accept does not order transactions that do not
depend on each other. Thus, any number of parallel transactions can be
processed given a sufficient amount of hardware.



2 Max Mathys, Roland Schmid, Jakub Sliwinski, and Roger Wattenhofer

– Instant Finality: Accept confirms transactions in 1 round-trip time to the
validator nodes. Confirmed transactions are final and cannot be reversed.

– Asynchrony: Accept does not require any network timing assumptions.
An adversary having complete control over the network can halt the progress
of the system (by simply disabling communication) but otherwise cannot
trick the participants in any way, such as reversing a confirmed transaction
or pretending that an impermissible transaction is confirmed.

– Independent Validators: Validator nodes only need to provide a basic
API to accept new transactions, verifying them internally and returning a
valid signature in case of success. This makes the nodes’ implementations
independent, as they only need to interpret other nodes’ (and clients’) sig-
natures. Validators can parallelize and balance workload as they individually
see fit, without changing the way they interact with the system.

– Simplicity:Accept does not rely on randomness and is easy to comprehend
and implement. Hence, given some deployment scenario, the validators can
easily implement the protocol themselves, thus achieving fault tolerance with
respect to software bugs in the code. In contrast, existing (complicated)
permissioned blockchain systems rely on reference implementations that are
used as a black box, where a single bug can compromise the entire system.

We demonstrate Accept’s horizontal scaling on common server hardware and
showcase its transaction throughput to be orders of magnitudes above byzantine
agreement systems.

2 Preliminaries

We assume that conflicting transactions can only be issued by a misbehaving
party. Under this crucial assumption, the system can maintain liveness and con-
sistency without solving consensus [8].

In contrast to orthodox blockchain systems, Accept does not support con-
sensus and does not attempt to order conflicting transactions issued simultane-
ously. If a misbehaving client issues two transactions spending the same funds
simultaneously, it is possible that both transactions will be rejected by the sys-
tem and the misbehaving client will lose the funds.

2.1 Model

Accept is maintained by n different agents called validators. Similarly to other
byzantine fault tolerant systems, we assume up to f = n−1

3 of the validators
are adversarial and behave arbitrarily. Any set of 2f + 1 validators is called a
quorum. In addition, an arbitrary number of clients interact with the system by
issuing and receiving transactions.

The network is asynchronous: The adversary controls the network, dictating
when messages are delivered and in what order. There is no bound on the time
it might take to deliver a message. Under such weak network requirements,



A Limitlessly Scalable Transaction System 3

an adversary delaying the delivery of messages can delay the progress of the
protocol, but otherwise will not be able to interfere.

We assume the functionality of digital signatures where a public key al-
lows the verification of a signature of the associated secret key. We also assume
cryptographic hashing, where for every message a succinct, unique hash can be
computed. Apart from these primitives, Accept is completely deterministic.

Security & Threat Model. Validators and clients hold public/private key pairs.
All participants know the public keys of all validators.

The adversary knows the protocol and controls all adversarial validators and
any number of clients. The adversary controls the network and can delay, replay,
reorder messages, etc. The adversary does not know the private key of any correct
participant.

3 Protocol

The Accept protocol differentiates two main roles:

– Validators: Validators are agents that verify and sign transactions. There
is a fixed number of validators. Validators do not have to exchange messages
with each other. Validators can be sharded across multiple servers to increase
the throughput of the system.

– Clients: Clients are end users of the system who issue/receive transactions.
The system supports an arbitrary number of clients in the system. Clients
possess funds that can be sent to other clients via a transaction. Clients may
follow the protocol correctly or not; however, it is only guaranteed that they
can spend their funds if following the protocol.

Transactions are processed by the system in the UTXO model [7]. The initial
state of the system, called genesis, consists of (number, public key) pairs, where
the number represents the available funds, and the public key identifies the party
able to spend them. These pairs are called unspent transaction outputs (UTXO).

If a client (sender) wishes to transfer funds to another client (recipient),
the sender issues a transaction. The transaction contains input UTXOs that
the sender can spend. The sender specifies output UTXOs, where inputs and
outputs sum up to the same amount of funds. For example, a single transaction
can specify two outputs, where one output represents the transacted amount and
includes the public key of the recipient, and the second output represents the
change and includes the public key of the sender. Ultimately, the sender signs
the transaction with the private key(s) corresponding to the inputs.

Transaction Pipeline. Accept performs four steps to confirm a transaction from
client c1 to client c2:

1. Issuing a Transaction: The client c1 composes and signs a transaction.
Client c1 sends the transaction to the validators. If the inputs of the trans-
action are not part of genesis, the client also sends the confirmations of the
inputs to the validators.



4 Max Mathys, Roland Schmid, Jakub Sliwinski, and Roger Wattenhofer

2. Verifying a Transaction: Each validator vi verifies the transaction signa-
ture and inputs’ confirmations (if not part of genesis). Also, vi checks that
it has not validated any transaction spending the same inputs thus far.

3. Signing a Transaction: If the transaction is valid, validator vi signs the
transaction and returns the signature to c1.

4. Finalizing a Transaction: A set of 2f + 1 signatures of distinct validators
constitutes a confirmation of the outputs. The client c1 can show the corre-
sponding transaction output and the confirmation to c2 to prove the transfer
took place. The client c2 accepts the transfer after verifying the output and
the confirmation.

3.1 Complexity

In Section 3.5 we discuss a signature aggregation scheme where a client aggre-
gates all signatures of a given output, such that each validator receives and
verifies only one signature for each transaction input. With this improvement,
the computational and communication complexity of processing one transaction
are both O(1) for each validator.

Without aggregating signatures, each validator receives and verifies 2f + 1
signatures for each input. Thus both the computational and communication
complexity of processing one transaction are O(n) for each validator. However,
the batch signature scheme we discuss in Section 3.4 will be more efficient than
aggregating signatures for smaller n, as discussed in more detail in Section 4.1.

3.2 Correctness

Double-spending. Suppose some execution of the protocol produced two con-
firmed transactions t1 and t2 that spend the same output. Each confirmed trans-
action is signed by a validator quorum. Since the adversary controls at most f
validators, at least f+1 correct validators signed t1 and t2. Since there are 2f+1
correct validators, some correct validator v signed both t1 and t2. However, when
signing a transaction, correct validators check whether they have not signed any
of the inputs previously – a contradiction.

Finality. Given a confirmed UTXO, it can only be invalidated if some validators
observe a transaction that spends the UTXO. Only the owner of the UTXO can
sign such a transaction.

Liveness. Any 2f + 1 validators can confirm any transaction. Since at least
2f + 1 validators are correct, the correct validators can confirm transactions if
the adversary refrains from participating.

3.3 Signature Protocol

Naively, validators can sign each transaction separately and verify separate sig-
natures for each output. In addition to this naive approach, we design two dif-
ferent protocols for batch-processing the transactions, thereby vastly improving
the system’s performance: the Merkle scheme and the BLS scheme.



A Limitlessly Scalable Transaction System 5

3.4 Merkle Scheme

In the Merkle scheme, validators combine many transactions into Merkle trees
and only sign the root, effectively signing many transactions at once.

Signing. By pooling multiple signing requests, the validator collects a large num-
ber p of unsigned outputs. The hashes of the outputs h0(i) = h(oi) are hashed
in pairs h1(i) = h(h0(i), h0(i + 1)), the resulting hashes are hashed in pairs
h2(i) = h(h1(i), h1(i+ 2)) and so on, to create a complete binary tree of hashes,
where the leaves are the hashes of the UTXOs to be signed.

The validator signs the root of the tree. For each output oi, the validator will
return to the issuer of oi the hashes needed to compute the path from h(oi) to
the root: the hash x1 to compute h1(i) = h(h0(i), x1), the hash x2 to compute
h2(i) = h(h1(i), x2), and so on. These hashes xj together with the signature of
the tree root constitute oi’s signature in the Merkle scheme (see Appendix A.1).

When a validator signs p outputs, only one signing operation is executed
(compared to p signing operations with the naive scheme). However, many hash
operations must be performed for both signing and verification in this scheme.

Signature verification. As in the naive scheme, for an output to be confirmed,
there must be > 2

3n signatures from different validators. We verify each Merkle
signature si = ({xj}, srooti ): we reconstruct the hash path to the root using
the xj ’s and verify the signature of the root. There are p signatures with the
same Merkle root; hence, the verification result can be cached in memory by the
validator such that the validator only verifies the root signature the first time it
is observed. For all p− 1 subsequent encounters of the root, it suffices that the
validator performs log(p) hash operations.

Optimal Merkle Tree Size. If the Merkle tree is very large, the hashing time
dominates the verification and signing process. However, if the Merkle tree size
is small, the cryptographic operations dominate. We omit the work not related
to cryptographic operations or hashing and estimate the optimal tree size.

Let q be the quorum size of the system, N the number of leaves in the
Merkle tree, ch, cs, cv the costs of hashing, signing, and verification. Let Cnaive

and Cmerkle denote the average time cost incurred by a validator to process one
UTXO under the naive and Merkle signature protocols. Each validator signs
a UTXO once and later has to verify the signatures constituting that UTXO’s
confirmation. Hence, the expected cost for the naive scheme is Cnaive = q ·cv+cs.

The expected cost of the Merkle scheme is

Cmerkle = q
(
ch logN +

cv
N

)
︸ ︷︷ ︸

Verification

+
2Nch + cs

N︸ ︷︷ ︸
Signing

= logN(qch) +
1

N
(qcv + cs) + 2ch.

The expression is minimized by N = qcv+cs
qch

ln 2. For example, if the relative
operation costs are around ch = 1, cs = 63, cv = 107 and there are 10 validators
(quorum size 7), we estimate the optimal number of leaves in the Merkle tree at



6 Max Mathys, Roland Schmid, Jakub Sliwinski, and Roger Wattenhofer

Noptimal ≈ 80.4. For binary trees (logN being an integer), either a Merkle tree
with 64 or 128 leaves is optimal.

3.5 BLS Scheme

BLS [6] is a signature scheme where signatures can be aggregated. One verifica-
tion operation on an aggregated signature can be used to verify all constituent
signatures at once. Combining the properties of BLS with Shamir’s secret shar-
ing, it is possible to construct a threshold signature scheme. In this scheme,
each validator possesses a different private key and signs transactions for clients
individually. Once a client obtains at least 2f + 1 signatures for their transac-
tion, they can use the signatures to compute a unique master signature of their
transaction. The master signature is unique and the same, irrespective of which
2f + 1 validators’ signatures were used to compute it.

Due to space constraints, we do not describe the working of this threshold
scheme in detail (the reader can find an instructive description at [5]).

The BLS signatures are relatively costly to produce and verify. However, the
scheme comes with the great advantage that aggregated BLS threshold signa-
tures have a constant verification time, irrespective of the number of validators
in the system.

Each validator receives a BLS private key, and the corresponding public keys
are publicly known. The master public key is publicly known (or can be computed
given the validator public keys). The validators sign the outputs of the clients
with their BLS keys, similarly to the naive scheme. The validators’ signatures
function on their own as usual, so clients can verify that they receive the correct
signatures. After receiving 2f + 1 signatures, a client can compute the unique
master signature for their outputs. Most importantly, when validators receive
transactions to be signed, they only need to verify one master signature for each
input of the transaction.

4 Implementation

The validator node and client are written in Go due to its performance and ease
of parallelization. The implementation features the three different signature pro-
tocols described in Sections 3.3-3.5: the naive scheme, the Merkle scheme, and
the BLS scheme. For signing and verification, the naive, and Merkle schemes
use EdDSA with Curve25519 (Ed25519). A Go library [1] provides bindings to
ed25519-donna [4]. Ed25519-donna is written in C++ and provides a fast im-
plementation of the Ed25519 public-key signature system [3]. Batch verification
can be used for greater throughput. The BLS scheme is implemented using the
herumi/bls [11] with Go-bindings [12].

Benchmarking Merkle tree size. The signing and verification times for the Merkle
signature scheme have been measured on the AWS reference instance for different
Merkle tree sizes and 10 validators. The observed global minimum of around 64-
128 leaves matched the conclusion from Section 3.4.



A Limitlessly Scalable Transaction System 7

4.1 Cryptographic Scheme Comparison

The benchmark of the cryptographic operations executed on a single core on the
reference instance is denoted in Table 1.

Scheme Operation ns per signature

Naive

Signing 29,967

Verifying, single 100,663

Verifying, batch of 64 51,247

Merkle

Signing 2709

Verifying, no caching 106,771

Verifying, cached 6473

BLS
Signing 640,205

Verifying 1,918,578

Table 1: Benchmarks for relevant cryptographic operations for each scheme. Fort
the Merkle scheme, the number of leaves is 64.

If multiple signatures are verified in one batch, EdDSA can take advantage of
x86 SIMD instructions. This gives verification a speedup of up to ≈ 2. Assuming
that the Merkle tree has 64 leaves, the Merkle scheme is about a magnitude
faster than the naive scheme. Since verification of threshold BLS signatures is
constant for any number of validators, we find BLS to be faster than the naive
and Merkle schemes if the number of validators is > 37 and > 475, respectively.
Moreover, for larger quorum sizes, the naive and Merkle schemes yield larger
transaction confirmations, whereas BLS confirmations have a constant size.

4.2 Storage

Each validator keeps track of outputs they signed as spent. The spent outputs
are stored in a thread-safe and efficient hash map. Golang’s built-in thread-
safe hash map, sync/map, exhibits excessive lock usage and coroutine blocking;
hence, we implemented a purpose-built hash map (see Appendix A.2). Running
on the AWS reference instance with one coroutine per processor, Golang’s im-
plementation reaches 7.04·105 inserts per second, and our implementation about
3.30 · 107 inserts per second.

4.3 Sharding

Crucially, validators can easily shard their workload among multiple machines.
Clients are assigned to different shards based on their public keys; in this imple-
mentation, inputs corresponding to different public keys cannot be mixed in one



8 Max Mathys, Roland Schmid, Jakub Sliwinski, and Roger Wattenhofer

transaction. In our implementation, the assignment of clients to shards is pub-
licly known and clients request the machines they are assigned to. Alternatively,
validators could use some load balancing approach.

5 Evaluation

We performed end-to-end benchmarks of the system using the Merkle scheme
with servers rented at AWS. We tested with 4, 10, and 28 validators. For each
number of validators, we experimented with 1, 2, and 4 shards (machines) for
each validator. The server instances used in these benchmarks were c3.8xlarge
with 32 virtual CPU threads and 60 GiB of RAM. Each test consisted of a preset
number of client servers (corresponding to the expected throughput) generating
transactions and sending them to appropriate shards of the validators. The du-
ration of each test was ten minutes. The results of the experiment are presented
in Table 2. The average CPU utilization observed was 80.9%.

We performed an additional experiment with 4 validators and 37 shards per
validator (and otherwise the same setup), yielding a throughput of 1,449,847
transactions per second on average, with an average CPU utilization of 71.9%.
The results of this experiment are presented with logarithmic scales in Figure 1.

#validators 4 10 28

1 shard 48,667 34,451 22,015

2 shards 92,115 72,079 44,764

4 shards 183,380 141,767 80,917

Table 2: Average transactions per second in the experiment.

Fig. 1: TPS scalability results for 4 validators, log scales.



A Limitlessly Scalable Transaction System 9

6 Related Work

The first work to suggest a simpler, consensus-free approach to processing trans-
actions in a permissioned system was Gupta [9]. Gupta focuses on providing
verifiable audit trails. We employ a similar transaction confirmation principle
and focus on designing and implementing a system around horizontal scaling
without loss of efficiency.

Guerraoui et al. [8] prove that the consensus number of a payment system is
indeed 1 in Herlihy’s hierarchy [10].

FastPay [2] might be closest related to our work. FastPay provides an im-
plementation of a permissioned settlement system and focuses on interfacing
with a preceding, primary system. FastPay is similar in spirit to Accept but
more complicated in crucial aspects; for example, FastPay employs a two-phase
confirmation protocol that complicates the interaction between the validators.
However, FastPay does not implement the efficiency improvements described
in Sections 3.4 and 3.5. Parallel processing in FastPay’s implementation is only
process-based and hence does not exemplify multi-machine sharding. The perfor-
mance is also not reported clearly: benchmarks are presented for the two confir-
mation phases separately, whereas one exhibits a bottleneck in the process-based
implementation.

Cascade [14] describes how a consensus-free system can be managed similarly
to proof-of-stake blockchains, thus extending the approach to the permissionless
setting. Cascade also contributes some features of the protocol, such as pruning
redundant contents from the blockchain and discusses some economic aspects of
the permissionless setting. However, Cascade does not provide an implementa-
tion.

References

1. ed25519 - optimized ed25519 for go. https://github.com/oasisprotocol/ed25519
(2020)

2. Baudet, M., Danezis, G., Sonnino, A.: Fastpay: High-performance byzantine fault
tolerant settlement. arXiv preprint arXiv:2003.11506 (2020)

3. Bernstein, D., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. Journal of Cryptographic Engineering 2 (2012)

4. Bernstein, D., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: ed25519 donna.
https://github.com/floodyberry/ed25519-donna (2020)

5. Block, A.: https://blog.dash.org/secret-sharing-and-threshold-signatures-with-bls-
954d1587b5f (2018)

6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. Journal
of cryptology 17(4), 297–319 (2004)

7. Delgado-Segura, S., Pérez-Sola, C., Navarro-Arribas, G., Herrera-Joancomart́ı, J.:
Analysis of the bitcoin UTXO set. In: International Conference on Financial Cryp-
tography and Data Security. pp. 78–91. Springer (2018)

8. Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovič, M., Seredinschi, D.A.: The
consensus number of a cryptocurrency. Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing - PODC ’19 (2019)



10 Max Mathys, Roland Schmid, Jakub Sliwinski, and Roger Wattenhofer

9. Gupta, S.: A Non-Consensus Based Decentralized Financial Transaction Processing
Model with Support for Efficient Auditing. Master’s thesis, Arizona State Univer-
sity (Jun 2016)

10. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 13(1), 124–149 (1991)

11. Mitsunari, S.: BLS threshold signature. https://github.com/herumi/bls (2020)

12. Mitsunari, S.: BLS threshold signature for ETH with compiled static library.
https://github.com/herumi/bls-eth-go-binary (2020)

13. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

14. Sliwinski, J., Wattenhofer, R.: Asynchronous proof-of-stake. In: International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems. pp. 194–208.
Springer (2021)

15. Stathakopoulou, C., David, T., Vukolić, M.: Mir-bft: High-throughput bft for
blockchains. arXiv preprint arXiv:1906.05552 (2019)

16. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

A Concepts

This section will clarify the concepts of Merkle signatures and hash maps. Merkle
signatures are used in Section 3.4 to improve the efficiency of validators. A
custom hash map is developed to improve the performance of the UTXO store,
as described in Section 4.2.

A.1 Merkle Signatures

A signature scheme based on Merkle trees is used to optimize the performance
of validators when creating and verifying signatures.

Signing. A validator Si collects n hashes to sign where n = 2k, k ∈ N. The
hashes are combined into a Merkle tree. The validator Si signs the Merkle root
m using EdDSA, denoted as mSi

. For each hash hi, i ∈ {1, .., n}, the validator
calculates the Merkle path and outputs pathhi . pathhi consists of the hashes
and side (left or right) of the nodes from hi to the Merkle root (in blue). The
resulting signature for hi by Si is the tuple (pathhi

,mSi
). An example can be

seen in Figure 2.

Signing n hashes using Merkle signatures is more efficient than signing n
hashes separately: the cost of an EdDSA signing operation cs is much higher
than the cost of a hash operation ch. The cost of signing n hashes with Merkle
signatures is 2n ·ch +cv whereas the cost of signing n hashes separately (without
Merkle signatures) is n · cv.



A Limitlessly Scalable Transaction System 11

m

h13

h9

h1 h2

h10

h3 h4

h14

h11

h5 h6

h12

h7 h8

pathh3 = {h4, right}, {h9, left}, {h14, right}
sig = (pathh3 ,mSi)

Fig. 2: Merkle tree and Merkle signature for hash h3.

Verifying. First, the Merkle root m′ is reconstructed from the path pathhi
. If

pathhi
is a valid path, m′ matches m. Finally, mSi

is verified using EdDSA.
Verifying n hashes using Merkle signatures is also more efficient than verifying

n hashes separately because the cost of an EdDSA verification operation is high,
even higher than an EdDSA signing operation (and thus also higher than the
cost of a hashing operation). The Merkle root can be reconstructed with a cost
of log2(n) · ch where ch is the cost of hashing. The Merkle root m only has to be
verified for the first encountered Merkle signature, after that, the result of the
verification can be cached, making this signature perform very well.

A.2 Hash Maps

Hash maps are used to efficiently calculate set membership in the context of
spent UTXO identifiers. Elements e ∈ E (in our case idi) are hashed into the
hash range H = {0, ..., l} and used as an index to an array of linked lists. A
linked list at index i ∈ {0, ..., l} contains all items e where hash(e) = i. The
linked list is then traversed.

Hashing and indexing are implemented as a lock-free operation; traversing
and modifying a linked list are protected by a mutex. If l is large enough, the
probability of hash collisions is small, minimizing lock contention and the length
of the linked list.


