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ABSTRACT
Similar to satellite-based localization systems, messages sent by
aircraft with the ADS-B protocol can be used to estimate the loca-
tion of a mobile receiver. However, for a robust localization using a
least-squares approach, ADS-B messages have to be collected over
a long time. We propose a localization method based on matching
the received signal with known ADS-B messages from distributed
receivers. Our proposed method only requires three seconds of
recording. Compared to satellite-based localization methods, this
approach also works indoors as the signals sent by aircraft are much
stronger.

CCS CONCEPTS
• Information systems → Global positioning systems; Mo-
bile information processing systems.
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1 INTRODUCTION
Many applications rely on accurate indoor and outdoor localiza-
tion. Satellite-based localization methods such as GPS are great
for outdoor localization. These methods are based on determin-
ing the exact arrival times of signals from the navigation satellites
and solving a system of equations to determine the local time and
position.
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In difficult reception conditions however, such as in buildings
or in urban environments, the satellites are not visible or the sig-
nals are heavily affected by multipath propagation. This makes
the estimation of the arrival times and therefore also localization
inaccurate or even impossible in some situations.

In urban environments other already existing radio signals can
be used as addition or replacement of satellite-based localization.
Previously signals transmitted by aircraft in the ADS-B protocol
have been proposed [9]. Since they are transmitted by aircraft
that are much closer than navigation satellites, the received signal
strength is much higher. However for accurate localization, collect-
ing sufficiently many ADS-B messages from different aircraft can
take long, especially indoors. As the signal strength gets lower and
the environment suffers from more multipath components, many
ADS-B messages cannot be correctly decoded indoors.

We present a novel localization method based on these ADS-B
signals. We can accurately localize a mobile receiver with only
three seconds of signals from a software-defined radio (SDR). The
location is determined by comparing the received signal to a re-
constructed signal for different positions based on known ADS-B
messages. The method then finds the location where the received
signal and the reconstructed one match best. The receiver therefore
does not have to be able to correctly decode the messages sent by
the aircraft. This makes the localization resilient against interfer-
ence and low signal strength. Additionally, the method is robust
against outliers originating from multipath propagation or incor-
rect ADS-B messages. Our evaluation shows that the localization
even works far inside building in rooms without windows.

In contrast to satellite navigation systems, we do not know the
trajectory of the aircraft in advance and also the transmit times
of messages is not known. To be able to use ADS-B messages for
localization, a network of distributed reference stations based on
SDRs collects the sent messages and calculates the transmit times
of messages at the aircraft. We have implemented ways to deal with
inaccurate positions reported by aircraft and erroneous behavior
of transmitters of some aircraft.

We demonstrate the performance of our localization system
using a smartphone as the mobile receiver. As smartphones do not
contain a software-defined radio, we connect a cheap off-the-shelf
RTL-SDR receiver to the USB port of the Android smartphone.

While the proposed method is not accurate enough for precise
indoor navigation, obtaining a rough position estimate indoors is
useful in many situations. For many mobile applications, reliably
and quickly obtaining a position is necessary. For example when

505

https://doi.org/10.1145/3447993.3483257
https://doi.org/10.1145/3447993.3483257


ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Alexander Canals, Pascal Josephy, Simon Tanner, and Roger Wattenhofer

checking the public transport timetable, when calculating the best
route, or to find the nearest shop. Additionally, the method could
also help in positioning of first responders in disaster situations
where other rough localization methods based on infrastructure
such as WiFi or cellular antennas might not be available anymore.

2 RELATED WORK
Positioning and indoor positioning in particular are very active
research areas. The proposed methods mostly differ in the achiev-
able accuracy, the different environments where they work, and
the necessary hardware.

Proximity-based localization methods observe whether a certain
signal is present. The accuracy is therefore determined by the re-
ception area. For example, radio frequency identification (RFID) or
cellular radio signals can be used [13]. To allow accurate localiza-
tion, a dense grid of transmitters with known locations is necessary.
Our method in contrast uses messages from aircraft that can be
received over hundreds of kilometers. No hardware needs to be
placed close to the device that performs the localization.

In fingerprinting, a radio signal is used to calculate a fingerprint
for every possible position, e.g. everywhere in a building. Often the
received signal strength indicator (RSSI) or the channel state infor-
mation (CSI) is used. A mobile device then calculates the fingerprint
and looks up the best matching position. Such methods have been
developed using Wi-Fi [3], Bluetooth [10] or even FM-radio [7].
While fingerprinting techniques can achieve a localization accuracy
of a few meters, they need much preparation effort for building
the database containing the fingerprints for later lookup. Although
there are approaches to crowd-source the fingerprints [23], we can
consider the fingerprinting method to not be practical for large
areas. For ADS-B signals fingerprinting is not possible as the air-
craft are always at different locations and therefore the received
signal changes significantly over time. Our proposed localization
method does not need a database of data collected at each location.
However, we need a system of reference stations that observe the
sent messages.

Signal attenuation-based methods calculate the position based
on the received signal strength. These methods try to estimate the
position based on the path loss. However in indoor environments,
this can be difficult [13].

Many localization systems build on measuring the arrival times
of signals at the mobile receiver for time of arrival (ToA) or time
difference of arrival (TDoA) localization. Multiple global navigation
satellite systems (GNSS) exist, developed and operated by different
countries; GPS, GLONASS, BeiDou and Galileo. The basic principle
however for them is very similar. Modern GNSS receivers, such
as in smartphones, are often able to receive signals from multiple
GNSS. While more and more satellites are available and can be
combined for a more accurate position, the signals can be hardly
received in buildings.

For accurate indoor localization, often dedicated hardware is
needed. Systems based on ultrawideband (UWB) radio signals are
able to distinguish individual multipath components for ToA or
TDoA measurements because of their wide bandwidth. Ubisense,
BeSpoon and DecaWave achieve median accuracies of better than
one meter [16]. While these systems achieve a higher accuracy

than our localization based on ADS-B signals, they need dedicated
beacons installed in the building.

Most WiFi-based localization methods use signal strength mea-
surements. Li et al. [12] however have proposed a TDoA-based
system that uses passive sniffers at known locations to observe the
WiFi signals and localize a device with an accuracy of 1.5m. The
idea of having passive receivers that observe the signal is similar
to our system of distributed reference stations that observe the
messages sent by the aircraft. However, for our method the refer-
ence stations do not need to be placed close the the location of the
mobile device.

Signals transmitted in the digital television standard DVB-T
have also been proposed to be used for localization systems based
on arrival times [11]. To allow localization using DVB-T, enough
transmitters must be available and the transmitters need to be
correctly identified [6]. While these systems seem promising, only
simulation results of the achievable localization accuracy exist.

ADS-B signals have also been previously used for localization
of a mobile receiver [9]. Using the message arrival times, multilat-
eration is performed, similar to GPS. However to allow accurate
localization, messages need to recorded for a long time. As we show
in our results, we achieve a better localization accuracy for short
recordings of three seconds with our method of matching the re-
ceived signals with the known ADS-B messages. Especially indoors,
our proposed method is able to compute a location more often than
using multilateration with ADS-B. Additionally, our method is also
more robust to multipath propagation as all paths will be consid-
ered and not only the strongest which could introduce a large offset
in a least-squares estimation.

Our proposed method estimates the position of the receiver for
all messages from aircraft combined, instead of estimating the ar-
rival times of the messages independently. This idea has previously
been proposed for GPS to estimate the location where the arrival
times and Doppler shifts match best with the expected values [8].
Optimizations have been proposed to increase the speed of the
position search. However, localization indoors is rarely possible
using GPS signals [4].

Since ADS-B messages are not encrypted or cryptographically
signed, many approaches are proposed to verify the identity of the
sender and its location. This can be achieved by observing char-
acteristics of the physical signal [14] or message patterns [18]. A
different approach is to use multilateration using multiple receivers
on the ground [15]. In contrast to the localization of a mobile re-
ceiver as in our work where we receive messages from multiple
aircraft to calculate the location of the receiver, these systems use
multiple receivers to verify the origin of a message.

Data transmitted by aircraft is also interesting to the public. Plat-
forms such as Flightradar24 and FlightAware provide a global air
traffic overview. Other platforms such as the OpenSky Network
mainly focus on collecting data for research projects. These plat-
forms collect their data using many distributed receivers operated
by volunteers.

Currently, we operate our own network of distributed receivers
as this allows us to modify the code running on the receivers and
we have access to all the raw data and can implement our own
synchronization to optimize the localization performance. In the
future, a collaboration with one of these global communities would
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allow us to increase the range and accuracy of our positioning
system.

Crowd-sourced ADS-B data has been recently used for many
interesting applications. Aircraft transmissions have been used to
estimate meteorological information such as temperature, air pres-
sure, wind speed [22]. It has also been showed that such aircraft
data can be used to monitor government and military aircraft move-
ments and may leak information about meetings and relationships
between countries [19].

3 BACKGROUND
Automatic Dependent Surveillance - Broadcast (ADS-B) is used by
aircraft to automatically broadcast their position and other infor-
mation for air traffic surveillance. It originates from the Mode S
secondary surveillance radar technique that selectively interrogates
aircraft. The messages can be received by ground stations for air
traffic control, but also directly by other aircraft.

ADS-B is not a continuous signal, but rather the aircraft periodi-
cally send short messages. Depending on the ADS-B version and
aircraft equipment, different message types are sent over ADS-B,
such as position, velocity or identification messages. The interval
between messages is varied randomly to prevent continuous mes-
sage collisions of different aircraft. For example messages reporting
the position of the aircraft are broadcast every 0.4 s to 0.6 s. Each
message has a length of 112 bits which are encoded using Pulse
Position Modulation (PPM). A symbol has a duration of 1 µs where
a pulse in the first half of the symbol signals a 1-bit and a pulse in
the second half a 0-bit. To help with the detection of the messages,
a fixed preamble of 8 µs is sent before the message bits. This results
in a total length of 120 µs per message. These short bursts are sent
on 1090MHz.

The 112 message bits consist of multiple parts. The first 5 bits
are the downlink format (DF) which is 17 for all ADS-B messages.
The following 3 bits are for capability (CA). The next 24 bits are
for the unique aircraft identifier called ICAO address. Using this
identifier, messages from the same aircraft can be detected. The
56 bit data field contains the payload data, such as the position,
altitude, velocity, etc. At the end of the ADS-B message 24 parity
bits for a cyclic redundancy check (CRC) are included.

Since ADS-B does not support any encryption, the messages can
easily be detected and decoded using a software-defined radio (SDR).
For our localization system especially the messages containing the
position of the aircraft are relevant. As each ADS-B message can
only contain 56 bits of payload data, the position is encoded using
a CPR (compact position reporting) format [20]. CPR encoding
allows to transmit more accurate positions in the limited message
size but requires to have two messages in order to decode a globally
unambiguous position. One message per CPR format type (even
and odd) is required. These two types of messages are broadcast in
alternating order by the aircraft.

4 METHOD
We present a novel approach for localization using ADS-B signals.
The idea of this method is to compare the received signal with the
reconstructed signal for different positions. Essentially, we con-
struct a matched filter for every possible position. The true receiver

position should exhibit the highest correlation among all possible
positions. So, for every possible position we calculate how likely
it is that we see the received signal. The main advantage of our
proposed method is that it works without decoding the messages on
the mobile receiver. This enables localizing the mobile receiver in
conditions where the received signal is too weak to decode enough
messages correctly.

4.1 Reference stations
Our proposed localization method is based on comparing the re-
ceived signal with a reconstructed signal for different locations.
Therefore, we first need to know what ADS-B messages are sent
by the aircraft. To achieve this, we have multiple reference stations
that continuously decode ADS-B messages and send them to a cen-
tral server. We can infer the send times at the aircraft based on the
receive time and the distance between the station and the aircraft.
Therefore, for every position in the area covered by the reference
stations we can reconstruct what signal should have been received
for a given period of time, given these messages.

A single reference station can detect messages up to several hun-
dred kilometers away, depending on the location and obstructions
such as tall buildings and mountains. With multiple reference sta-
tions, a larger area can be covered. Additionally, multiple receivers
also increase the amount of received messages in the area. Since
the ADS-B message send times are not coordinated, in areas of
high aircraft traffic, messages often interfere. Receivers at different
locations might however be able to decode the messages since the
relative message strengths are different or the messages might not
even interfere because of the different arrival times. Also messages
from aircraft at low altitudes, e.g. close to airports, can not be re-
ceived very far because of obstacles and even the curvature of the
earth. Therefore, having multiple reference stations allows to have
a more complete view of the ADS-B messages in a large area. It is
not necessary for our localization system to know every message
that was sent by an aircraft, but the localization gets more robust
if it is based on more ADS-B messages. Receiving as many ADS-B
messages as possible therefore also reduces the duration of the
signal recording for a position calculation.

Since we benefit from multiple reference stations, the required
hardware should be inexpensive and easily deployable. The refer-
ence stations are Raspberry Pis with SDR dongles. We use RTL-SDR
dongles from FlightAware that are optimized for the reception of
ADS-B signals with an on-board LNA and 1090MHz band-pass filter.
The reference stations use a slightly modified version of OpenSky’s
dump1090-hptoa [5], which itself is a fork of dump1090-mutability.
dump1090 is an ADS-B decoder optimized for RTL-SDR receivers.
Each reference station detects ADS-B messages and sends them to
a central server where they are stored in a PostgreSQL database.

The message arrival timestamps provided by the stations are
derived by counting the incoming samples from the SDR. Since
the receivers are not started at the exact same time, their clocks
have an offset. On top of that, the clock frequency of the receiver’s
oscillators are slightly different, resulting in the clocks drifting
apart. Since we need a common reference time for the localization,
the server determines this clock offset and drift for each reference
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Figure 1: Distribution of different horizontal position uncer-
tainties as indicated by aircraft. Most aircraft show an accu-
racy of 185.2m.

station. This is done by matching the arrival times of messages that
were seen by multiple reference stations.

We therefore build a system of equations to calculate the send
timestamps at the aircraft and the offsets and drifts of the refer-
ence stations as proposed in [9]. We have 𝑁 reference stations
𝑖 ∈ {1, ..., 𝑁 } and 𝑀 ADS-B position messages 𝑗 ∈ {1, ..., 𝑀}. 𝑡𝑟

𝐵𝑖 , 𝑗

denotes the receive time of message 𝑗 at reference station 𝑖 and
𝑤𝐵𝑖 , 𝑗 the noise of this timestamp. 𝑃𝐵𝑖

is the position of the refer-
ence station, 𝑃 𝑗 the position of the aircraft from where message 𝑗

was sent. Let 𝑇𝐵𝑖 , 𝑗 =
1
𝑐 | |𝑃𝐵𝑖

− 𝑃 𝑗 | |2 be the TOF (time of flight) for
message 𝑗 to station 𝑖 . 𝑡𝑡

𝐵𝑖 , 𝑗
is the transmit time for a message 𝑗 in

the time system of station 𝑖 . Let 𝐷𝐵𝑖
be the drift rate and Δ𝑡𝐵𝑖

the
offset of station 𝑖 relative to the reference time.

It is not necessary to synchronize our stations to UTC as the
goal is to have a common time just among our stations. We pick the
station 𝑖 = 1 to be the reference clock. Therefore we set 𝐷𝐵1 = 0
and Δ𝑡𝐵1 = 0.

For every receivedmessage, subtracting the TOF from the receive
time gives the send time 𝑡𝑡

𝐵𝑖 , 𝑗
. We are interested in the send time

relative to our reference clock and the clock offsets and drifts. We
can express this relation as shown in Equation 1.

𝑡𝑟𝐵𝑖 , 𝑗
−𝑇𝐵𝑖 , 𝑗 = 𝑡𝑡𝐵𝑖 , 𝑗

+𝑤𝐵𝑖 , 𝑗

= 𝑡𝑡𝐵0, 𝑗
+ Δ𝑡𝐵𝑖

+ 𝐷𝑖 (𝑡𝑡𝐵1, 𝑗
− 𝑡𝑡𝐵1,1) +𝑤𝐵𝑖 , 𝑗

(1)

To compute the offsets and drifts for all stations, we can build a
system of equations using Equation 1 for each message received by
a reference station. This equation system can then be solved using
a linear least-squares solver.

Aircraft position. The synchronization and also the localization
of a mobile receiver later on rely on the accuracy of the aircraft
positions contained in the ADS-B messages. The CPR message
format that combines two messages to encode the position allows
a position resolution of approximately 5.1m. Depending on the
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Figure 2: Given an aircraft position and its velocity, we ex-
trapolate the expected position at the time of the next posi-
tion message. Extrapolation errors show the difference be-
tween the expected and the aircraft’s transmitted position.

ADS-B Version, position messages contain information about the
integrity and uncertainty of the transmitted positions. Most aircraft
transmit messages with NUCp (ADS-B version 0) or NICp (ADS-B
version 1 and 2) values indicating a HPL (horizontal protection limit)
of 370.4m or 185.2m. Figure 1 shows the distribution of reported
uncertainties of aircraft during one day.

By ignoring messages with a HPL above 185.2m, we can limit
the aircraft position error without losing many messages. Since we
do not have access to the GPS data of the aircraft, we cannot verify
the reported uncertainty values by ourselves. However, incorrect
NUC values for some airplanes have been previously observed [21].

The aircraft regularly calculates its own position using GNSS
and at different instances sends the position using ADS-B. The
sent position therefore does not have to correspond to the actual
position when sending the message. An uncompensated latency of
up to 200ms is allowed. This error is along the track of the aircraft:
the actual position at the time it sent the message is offset along its
current movement direction. Using the ADS-B velocity messages,
we can introduce an additional unknown to the synchronization for
every received position message to estimate this offset. We observe
that this factor stays rather constant per aircraft and therefore
calculate the factor only on a per-aircraft basis.

To analyze the position errors perpendicular to the direction of
the aircraft, we extrapolate the position using a previous position
and the velocity. Evaluation of the data shows that the distance of
the extrapolated position to the transmitted position is usually low,
except for a few outliers, as can be seen in Figure 2.

Duplicate messages. Aircraft are supposed to transmit their air-
borne position every 0.4 - 0.6 seconds. If no recent GPS data is
available, the position has to be extrapolated for up to two seconds,
afterwards the aircraft is supposed to zero out the fields and send
messages with type code 0. However we could observe aircraft vio-
lating these specifications by sending duplicate position messages.
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This behavior seems to depend on the model and manufacturer
of the aircraft. Various Airbus models such as A320, A319, A321
and A343 keep their transmission schedule but repeat a message
up to three times without alternating between odd and even CPR
formats. Newer Airbus models such as the A350 do not adhere to
the sending rate of 0.4 s to 0.6 s between positions, but continuously
repeat a message for approximately 0.5 s at a time.

Matching received messages from different reference stations or
handsets depends on the uniqueness of themessages. If receivers see
the same message multiple times, the messages cannot be matched
accurately. Therefore, aircraft broadcasting duplicate position mes-
sages need to be detected. Once a successful synchronization be-
tween the reference stations has been established, we can leverage
the calculated offsets and drifts. For messages that were seen bymul-
tiple stations, we can compare the arrival times by converting them
to the different time systems. Messages that show outliers at one or
multiple receivers are completely discarded. Since ADS-B messages
do not include detailed information about the aircraft’s ADS-B
equipment, no assumptions about erroneous ADS-B transponder
models or incompatible GPS receivers onboard the aircraft can be
made with the given data. Similar erroneous behavior was also
observed by other research [17, 21], specifically for Airbus aircraft
using Thales GPS Receiver in combination with Honeywell ADS-B
emitters [2]. Using crowd-sourced data from many receivers, it
would be possible to build a database of aircraft identifiers that
behave incorrectly and may cause problems in our system.

Multipath and location of receivers. Especially in urban and in-
door scenarios, multipath is a common occurence. In our setup,
most stations are placed next to a window in residential buildings
or offices, multipath happens mostly for messages from one di-
rection. Instead of detecting these multipath messages, we simply
add an offset to the reference station position to cancel out the
multipath effect. Whenever we compute a time of flight, we use the
corrected reference station position to calculate the distance. This is
implemented on the server by periodically excluding one reference
station from the time synchronization and instead treats it as a
mobile receiver. The excluded station is localized and the result is
averaged over time. This can also help dealing with misconfigured
reference stations with inaccurate positions.

4.2 Localization
With the known ADS-B messages from the reference stations, we
can now build our localization method based on comparing the
received signal to the known messages.

The used RTL-SDR records raw samples at a sampling rate of
2.4MHz. Because our approach relies on correlating signals, we up-
sample the signal to a sampling rate of 24MHz in order to increase
the precision of our method. The chosen up-sampling rate could be
any multiple of 2MHzwhich leads to the nice property that a single
pulse of an ADS-B message has always a length of a whole number
of samples. We denote the sampling rate by 𝑓 . Furthermore, we
use y = [𝑦0, 𝑦1, . . . , 𝑦𝑛] to refer to the samples of our up-sampled
signal. Thus, the duration of our signal is𝑇 = 𝑛

𝑓
and𝑇0 denotes the

timestamp of the first sample in the system time of the receiver.

0 10 20 30 40

0

1 PPM raw template

0 10 20 30 40

0

1 Template down-sampled
Recorded raw samples

0 10 20 30 40
Time [𝜇s]

0

1 Template up-sampled
Recorded up-sampled

Figure 3: In the first subplot, we see the first 40 µs of the pulse
position modulated template of an ADS-B message. The sec-
ond subplot shows the signal down-sampled to 2.4MHz to-
getherwith the real raw samples recorded by anRTL-SDR re-
ceiver. The last subplot shows the final template ẑ𝑗 together
with the up-sampled received samples present in y.

ADS-B message template. With the previously described system
of reference stations, we know the content of the decoded ADS-B
messages. Given a message 𝑗 , we can generate the signal that repre-
sents that message using the pulse position modulation scheme. In
order to generate a signal that is as similar as possible to the signal
present in the received and up-sampled signal, we down-sample the
raw pulse position modulated template to the hardware sampling
rate of 2.4MHz. After down-sampling, we up-sample the signal as
we do it with the received signal. Figure 3 illustrates the generation
process of an ADS-B message template. We use ẑ𝑗 to refer to the
final message template of an ADS-B message 𝑗 .

Theoretically, it would be possible to get amore accuratemessage
template by recording the raw samples of each ADS-B message
at the reference stations. These samples would contain the exact
characteristics of each transmitter. However, this would result in
a huge amount of data that the reference stations continuously
have to send to the server instead of only the decoded message bits.
Additionally, the message could be strongly affected by multipath
and noise on the channel between the aircraft and the reference
station.

The likelihood function. The main idea behind our proposed
method is that we compare the received signal to the theoreti-
cal signal for a given position. In order to reconstruct the received
signal, we have the following three parameters:

• 𝑃𝐻 , the position of the mobile receiver,
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• Δ𝑡𝐻 , the time offset between the system time of the mobile
receiver and the system time of the reference stations and

• 𝐷𝐻 , the clock drift between the two system times.
For a specific message 𝑗 we denote by 𝑡𝑡

𝑗
the synchronized time

of transmission in the system time of the reference stations and by
𝑃 𝑗 the position of the aircraft at the time of transmission.

From satellite based localization and least-squares based local-
ization for ADS-B messages, we know that the geometric distance
should be equal to the measured range:

| |𝑃𝐻 − 𝑃 𝑗 | |2︸        ︷︷        ︸
geometric distance

!
= 𝑐 (

time of flight︷    ︸︸    ︷
𝑡𝑟𝐻,𝑗 − 𝑡𝑡𝑗 +

clock offset and drift︷                       ︸︸                       ︷
Δ𝑡𝐻 + 𝐷𝐻 (𝑡𝑟𝐻,𝑗 − 𝑡𝑟𝐻,1))︸                                              ︷︷                                              ︸

range measurement

(2)

Given the parameters enumerated above, we are able to calculate
the theoretical time of arrival 𝑡𝑟

𝐻,𝑗
by reformulating Equation 2:

𝑡𝑟𝐻,𝑗 =
𝑡𝑡
𝑗
− Δ𝑡𝐻 + 𝐷𝐻 𝑡

𝑟
𝐻,1 +

| |𝑃𝐻−𝑃 𝑗 | |2
𝑐

𝐷𝐻 + 1
(3)

Once we know the theoretical time of arrival 𝑡𝑟
𝐻,𝑗

, we can in-
fer the index of the sample within our received raw signal y that
corresponds to this time:

𝛿 𝑗 = ⌊(𝑡𝑟𝐻,𝑗 −𝑇0) · 𝑓 ⌋ (4)

An ADS-B message has a duration of 120 µs, which corresponds
to 2880 samples at our sampling rate of 24MHz. The sub-sequence
of samples in our received signal y where message 𝑗 should be
present is therefore given by

z𝑗 = [𝑦𝛿 𝑗
, 𝑦𝛿 𝑗+1, . . . , 𝑦𝛿 𝑗+2879] (5)

The idea of our proposed method is to correlate the samples z𝑗
where the message should be present with the message template
ẑ𝑗 .

Given that not all ADS-B messages will be present in our signal,
we often correlate the message template with random noise. We
therefore shift the range of the samples of ẑ𝑗 from [0, 1] to [-0.5, 0.5].
As a result of the pulse position modulation scheme, the mean of
the samples is now close to zero. This ensures that the correlation
with random noise is also close to zero in expectation.

As the received ADS-B messages are from different airplanes
which have different distances to the mobile receiver, we expect
different amplitudes of the messages present in y. We therefore
divide the correlation by the norm of z𝑗 . This ensures that the
correlation of different messages have comparable values.

The final likelihood function L is the sum of these normalized
correlation values of all 𝑘 messages:

L(𝑃𝐻 ,Δ𝑡𝐻 , 𝐷𝐻 |y) =
𝑘∑
𝑗=1

z𝑗 · (ẑ𝑗 − 0.5)
∥z𝑗 ∥

(6)

Efficient evaluation. We have seen how we can assign a like-
lihood to all tuples (𝑃𝐻 ,Δ𝑡𝐻 , 𝐷𝐻 ). However, the function is not
convex (because even the correlation between two ADS-B message
templates is not convex). As a consequence, there is no efficient
method to find the tuple and therefore also the desired 𝑃𝐻 that
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Figure 4: In the first subplot we see a recorded message z𝑗
together with the corresponding message template ẑ𝑗 . The
second and third plot show the correlation of the recorded
message with its template. While the second subplot shows
the whole correlation, the third subplot only shows the re-
gion of interest around the time offset zero. For correlation
we used the shifted message template ẑ𝑗 − 0.5.

maximizes the likelihood. Here we propose an evaluation strategy
that finds the best position with a very high probability.

The clock drift of the used RTL-SDR sticks is below 0.5 ppm.
Assuming extreme clock drifts of both, the reference stations and
the mobile receiver, this implies that over a period of one second
the first and the last sample drift no further than 1 µs in time. The
search space of possible drift values 𝐷𝐻 is therefore bounded and
only depends on the length of the recorded signal.

Also, we assume that we have an initial guess 𝑃𝐻 of the approx-
imate mobile receiver position. Given that in urban areas there
are cell towers every few hundred meters, we can simply map our
position to the position of the cell tower we are connected to to
get an accurate reference position. Therefore, the search space of
the position 𝑃𝐻 is also bounded. Furthermore, we can remove one
spatial dimension and only optimize 𝑃𝐻 in two dimensions, assum-
ing that the mobile receiver is placed on the ground. We use the
elevation model "ALOS World 3D – 30m (AW3D30) Version 2.2"
with a resolution of 1 arcsecond which corresponds to a mesh of
approximately 30 meters at the equator, with increasing accuracy
towards the poles. The elevation model gives the height of any
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point on earth, given its two-dimensional coordinates (longitude
and latitude).

As aircraft signals are strong enough to penetrate walls, we can
generally assume that the received signal y contains at least one
ADS-B message 𝑗 that we are able to fully decode. By using the
time of arrival of this message, we can obtain an initial guess for
the clock offset. As the impact of the clock drift 𝐷𝐻 is bounded,
we can assume a clock drift of zero for simplicity and reformulate
Equation 2:

Δ𝑡𝐻 =
| |𝑃𝐻 − 𝑃 𝑗 | |2

𝑐
− (𝑡𝑟𝐻,𝑗 − 𝑡𝑡𝑗 ) (7)

Hence, the search space of possible clock offsets Δ𝑡𝐻 is also
bounded and only depends on the accuracy of the reference posi-
tion.

We have shown that the search space of all unknowns can be
bounded. However, we still require too many evaluations of the
likelihood function to localize the mobile receiver with meter-lever
accuracy, even if the reference position is known to a few hundred
meters. We propose an iterative approach to tackle this problem.
Initially, we evaluate the search space with only a coarse grid and
refine the resolution iteratively.

Figure 4 shows the correlation of a recorded ADS-Bmessage with
its message template. Each pulse in the received ADS-B messages
is at least 0.5 µs long. As the likelihood function is the sum of such
individual correlations, its peak shape will be similar. We see that it
suffices to evaluate the correlation every 0.5 µs to find its peak. In
the space domain, this corresponds to a distance of approximately
150m in terms of speed of light. For that reason, we will also find
the peak of the likelihood function using a coarse resolution of
0.5 µs in the time and 150m in the space domain. Only in few cases
this will result in an incorrect position.

Once the tuple that maximizes the likelihood is found, all param-
eters can be refined. For that reason, we can put tighter bounds on
the parameters and increase the resolution.

Figure 5 illustrates the evaluated likelihood function of the iter-
ations for four recorded ADS-B messages. Three of the messages
contain more than 2 bit errors and could not have been used for
localization with the traditional approach. For this illustration we
use a simplified two dimensional model, assuming no drift and
offset and that the mobile receiver and the airplanes are placed on
the ground. While the mobile receiver position 𝑃𝐻 is placed at the
origin, the airplanes are placed at four random positions 𝑃 𝑗 .

Remaining sources of error. Even though we can find the position
where our message templates match best, this will not always be
exactly the location of the mobile receiver. Besides random noise
and the multipath channel between the aircraft and the mobile
receiver, multiple sources of error can affect the estimation.

As stated in Equation 3, the calculation of the time of arrival 𝑡𝑟
𝐻,𝑗

depends on the time of transmission 𝑡𝑡
𝑗
. The accuracy of synchro-

nization and calculation of the transmission times directly affects
the localization performance. Therefore the previously described
steps to ensure a precise synchronization are very important.

Also, our proposed method works by correlating the known
templates of the messages with the received signal. This relies on
the assumption that we can reconstruct the source signal given
the decoded message bits. However, this is not perfectly possible

- 1 km

𝑃𝑥

+ 1 km

- 1 km 𝑃𝑦 + 1 km

(a) Resolution of 150m.

- 100 m

𝑃𝑥

+ 100 m

- 100 m 𝑃𝑦 + 100 m

(b) Resolution of 15m.

Figure 5: The likelihood of different values for 𝑃𝐻 given a
fixed offset and drift. The reference point 𝑃 in the first sub-
plot corresponds to the reference position 𝑃𝐻 . The reference
point in the second subplot is given by the positionmaximiz-
ing the likelihood in the first subplot. We clearly see that al-
ready the first iteration shows a clear peak. The exact peak
position is then refined in the second iteration with a finer
resolution.

in the case of real-world ADS-B messages. Both the position and
the duration of the individual pulses of the bits can vary by up to
50 ns [5]. While this is absolutely fine for the decoding of ADS-B
messages, in our case this can have an impact on the correlation.
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Figure 6: The evaluation setup consists of an Android smart-
phone with an RTL-SDR receiver attached to it.

5 EVALUATION
We have presented a new localization method based on ADS-B mes-
sages from aircraft based on finding the location that best matches
the received raw signal. We now evaluate the accuracy and reliabil-
ity in different conditions, such as outdoors and in buildings and
compare it to classical multilateration with ADS-B messages and
multilateration using GNSS.

5.1 Data collection
We evaluate the system using a Sony Xperia 10 smartphone running
Android 9 with an RTL-SDR receiver attached to it over USB. The
setup can be seen in Figure 6. On the smartphone a ported version
of dump1090-hptoa is running to access the raw signal from the
SDR and also decode ADS-B messages and an auxiliary app records
the data directly to JSON files. The app also records raw GNSS
measurements reported by the GNSS sub-system of the smartphone
for GPS and GLONASS.

Each recording consists of three seconds of raw signal samples
and additionally the decoded ADS-B messages and all raw GNSS
measurements during this time. This allows us to collect all data
necessary to compare our method to classical multilateration with
ADS-B messages and multilateration using GNSS.

As ADS-B messages are short bursts that are sent only peri-
odically, the recording duration directly influences the number of
messages that are received and can be used for localization. A longer
recording yields more ADS-B messages and a higher localization
accuracy. The mobile receiver should however not move far dur-
ing the recording for a single localization. The recording duration
should be therefore chosen as a compromise.

The app was used to record data sets consisting of many indi-
vidual recordings at different locations and at different times of the
day. The collected recordings were then transferred to a computer
for offline processing. For deploying the localization system, the
recordings could be processed directly on the smartphone or sent
to a server for the position calculations.

For each recording of three seconds we calculate the following
position estimates:

ADS-B multilateration For this estimate, we only use the de-
coded ADS-B messages of each recording to calculate the po-
sition using a least-squares approach. This method also uses
the same elevation model as our newly proposed method to
remove one spatial dimension and allow a fair comparison
to our new method.

GNSS This position estimate is based on theGPS andGLONASS
satellite range measurements recorded by the GNSS receiver
on the smartphone. We use the open-source framework
laika [1] to calculate a position for every set of range mea-
surements. As we have three independent sets of range mea-
surements in a recording, one per second, the final position
estimate is obtained by averaging the three positions.

ADS-B likelihood This position estimate is calculated using
our novel likelihood localization method based on the record-
ed raw ADS-B signal from the RTL-SDR.

For our novel approach, we use a position estimation strategy
with three iterations of increasing resolution. Our initial search
space spans an area of 2.4 km by 2.4 km, which always contains
the actual receiver position, with a resolution of 150m. The second
iteration uses a smaller search space of 600m by 600m and a reso-
lution of 15m. The search space of the last iteration is 30m by 30m
with a resolution of 1.5m. For the drift values we evaluate nine
values in the first iteration and refine the best drift trying three
values in the second and third iteration.

Each position estimate of the compared methods is based solely
on the data from a three second recording. No filtering over multiple
recordings from the same location has been performed. In an actual
application the position accuracy could be improved by using for
example a Kalman filter over multiple position estimates to remove
noise in the position estimation.

We are interested in evaluating our localization method in indoor
and outdoor settings. The reliability of the localization outdoors
depends on different factors such as nearby obstacles, the satellite
constellation for GNSS measurements and the number of aircraft
nearby for localization based on ADS-B messages. Indoors however,
many additional parameters affect the quality of the localization,
such as the distance to windows, size of windows, building material
of walls, etc. We therefore recorded ten data sets at eight different
locations. Table 1 shows the different data sets and the achieved
performance. Two data sets were recorded outdoors while the other
eight were recorded indoors in different rooms of different buildings.
Most rooms had windows on one side and the receiver was not
placed close to the windows. Data set 3 set was recorded in a
bathroom with no windows in the middle of an apartment. This
recording shows the performance of the localization with extremely
difficult signal reception. Data sets 5, 6, and 7 were recorded in the
same building on different days. In total the data sets contain 926
individual recordings of three seconds length.

5.2 Computational effort
Before we evaluate the localization accuracy, let us consider the
computational effort and memory utilization necessary to calculate
the position estimates.
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# Date recordings ADS-B multilatera-
tion [m]

GNSS [m] ADS-B likelihood
[m] (our work)

1 2020-03-14 89 51.7 13.5 21.3
2 2020-03-15 90 81.9 173.1 70.7
3 2020-02-24 50 - - 75.0
4 2020-03-15 80 40.5 21.6 36.3
5 2020-02-21 164 20.0 90.5 14.9
6 2020-02-24 93 30.8 33.2 22.9
7 2020-03-10 90 55.1 192.1 31.28
8 2020-03-18 90 - - 97.5
all indoor sets 746 46.8 77.8 29.9

9 2020-03-14 90 46.6 8.7 23.7
10 2020-03-15 90 23.0 9.7 18.0
all outdoor sets 180 31.6 9.0 20.4

Table 1: Median position error for all data sets and all position estimates. The data sets are additionally also separated into
indoor and outdoor data. In total ten different data sets recorded on different days are evaluated for the three localization
methods.

0 50 100 150 200

| |𝑃𝐻 − 𝑃𝐻 | |2 [m]

0.00

0.25

0.50

0.75

1.00

EC
D
F

ADS-B multilateration
GNSS
ADS-B likelihood

Figure 7: The empirical cumulative distribution function of
the position error for the 746 indoor recordings. The ADS-B
likelihood estimate is more often successful and more accu-
rate than the ADS-B multilateration and GNSS estimates.

As our proposed localization method requires the raw ADS-B
signal, much disk space is needed. Specifically, each sample consists
of an I and Q component, both requiring 8 bits of memory. Given
the hardware sampling rate of 2.4MHz and the recording duration
of three seconds, the overall space requirement per recording is
14.4MB. In contrast, the decoded ADS-B messages and the satellite
range measurements only use a couple of kilobytes. For our offline
evaluation this amounts to a large amount of data for all recordings
combined. If the position was computed directly on the phone, the
memory could be freed after each localization.

Let us now analyze the processing time of the different tasks
involved. There is no efficient way of finding the parameters that
maximize the likelihood function. However, using our iterative
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Figure 8: The empirical cumulative distribution function of
the position error for the 180 outdoor recordings. The GNSS
estimate is the most accurate, but also the ADS-B likelihood
achieves a median accuracy of 20.4m and is more accurate
than the ADS-B multilateration estimate.

evaluation strategy, we are able to significantly reduce the com-
putational effort to get a precise position. As we described before,
the first iteration spans a search space of 2.4 km with a resolution
of 150m. The offset search space is 8 µs with a resolution of 0.5 µs.
Therefore, the search space consists of 17 values in those three
dimensions and 9 drift values. This leads to 44 217 evaluations of
the likelihood function in the first iteration. Analogously, in the
second and third iteration we perform 45 387 respectively 6615 eval-
uations of the likelihood function. Each evaluation of the likelihood
function itself consists of correlating the message templates of all
ADS-B messages with the corresponding samples of the received
signal.
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Figure 9: Indoor localization accuracy in relation to the number of airplanes decodable at the mobile receiver. The figure on
the left shows the distribution of the number of aircraft in the recordings and the figure on the right shows the localization
accuracy. The accuracy is expressed as themedian error for the respective number of airplanes decodable at themobile receiver.
TheADS-B likelihoodmethod is more accurate, especially for low numbers of visible aircraft where a localization usingADS-B
multilateration is not possible anymore because of the low number of directly decodable messages.

In contrast, for the GNSS and the classical ADS-B localization,
a system of non-linear equations has to be solved. For the evalua-
tion we used an iterative solver that numerically differentiates the
residual function.

To evaluate the computational effort, we timed the processing
of one data set. For processing, we used a MacBook Pro (16-inch,
2019) with a 2.3GHz 8-Core Intel Core i9 processor. Currently, the
evaluation script is only single threaded. On average the processing
time to calculate a ADS-B likelihood position estimate is 118.2 s.
For ADS-B multilateration the estimation takes 2.47 s and for GNSS
0.24 s.

The computation could be accelerated by a native implemen-
tation, currently the evaluation is performed by a python script.
Especially the likelihoodmethodwould be suitable to parallelization
as each position guess can be evaluated independently. This could
be achieve using multiple CPU cores or even a GPU. Calculations
could also be implemented directly in hardware.

For this evaluation, each position estimation of the ADS-B likeli-
hood estimate is computed independently. While tracking a device,
the search space could be reduced significantly as we already know
a previous position. Depending on the time between measurements
and the expected maximum velocity of the device, even the first
or second iteration could be omitted. As long as the correct posi-
tion lies within the search space, the accuracy of the algorithm is
not affected by reducing the search space or removing the earlier
iterations. The computation time of the position is proportional
to the number of evaluations of the likelihood function. For the
three iterations with the search space as described before, 96 219
evaluations of the likelihood function need to be performed. Using
the result of a previous localization, we can not only reduce the
area in which we search the receiver, but also the search space for

the offset is reduced as we have a closer initial position guess. Also
the search space for the drift is smaller, as we can assume that the
drift does not change significantly in a short time. Therefore, if we
assume a search area of 150m by 150m, we can directly start at
the second iteration with a smaller search space. This will result in
a total of only 7704 evaluations of the likelihood function for the
second and third iteration together, reducing the computation time
by a factor of 12.5.

5.3 Localization accuracy
Of course, we are most interested in the position accuracy of our
proposed localization method. For this purpose, we calculate all
position estimates for our method, classical ADS-B localization
and GNSS for every recording. The position error is defined as the
horizontal distance between the calculated position estimate and
the actual receiver position. The median position errors of all data
sets and all position estimates are presented in Table 1.

Indoors, we have a total of 746 recordings from eight data sets.
The empirical cumulative distribution function of the position error
of these recordings is shown in Figure 7. The median error of the
ADS-B likelihood estimate is 29.9m. The two baseline estimates
ADS-B multilateration and GNSS result in a median error of 46.8m
and 77.8m. The data set 5 is the best in the indoor setting with a
median error of 14.9m for the ADS-B likelihood estimate.

In the outdoor setting, we recorded two data sets with 180 record-
ings. The corresponding empirical cumulative distribution function
of the position error is shown in Figure 8. A receiver under open sky
is best suited for satellite-based localization systems. As we expect,
the GNSS estimates are very accurate with a median position error
of only 9.0m. The median position errors for the ADS-B multilater-
ation and ADS-B likelihood estimates are 31.6m and 20.4m.
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Figure 10: The number of ADS-B messages received by the
reference stations over time. We observe that the number
of received messages drastically decreased in March of 2020.
The outliers (days with very fewADS-Bmessages) are due to
some server outages.

Our novel likelihood method uses only three seconds of record-
ing and is better in both the indoor and outdoor scenario with a
median position error of under 29.9m.

Indoor localization accuracy. If we look at the results of the indoor
data sets, we note that the accuracy of the ADS-B multilateration
estimate is very low with a median position error of 46.8m. As we
see in Figure 7, in many cases it could not calculate the location.
There were just too few ADS-B messages from different aircraft in
order to solve the system of equations. By using our proposed ADS-
B likelihood method, the accuracy can be improved to a median
position error of 29.9m. The method is also able to find compute a
location in more cases as the weak message indoors do not have to
be decoded correctly.

The median position error for the GNSS estimate is higher than
for the methods based on ADS-B messages. This is expected as only
a fraction of the available satellites are visible in an indoor setting.
Also, as often most satellite signals are received through the same
window, the system of equation is very ill-posed and the resulting
errors are large.

Impact of the number of aircraft. We want to take a closer look
at the impact of the number of visible aircraft on the localization
accuracy for the indoor data sets. Figure 9 compares the localization
accuracy of our proposed ADS-B likelihood estimate and the ADS-B
multilateration in relation to the number of aircraft for which we
were able to decode messages at the mobile receiver. Note that
we consider the number of distinct aircraft, which is usually lower
than the number of ADS-B messages, as there are normally multiple
messages from the same aircraft. Clearly, the more aircraft present
in a recording the more accurate the position estimates become. We
note that our novel ADS-B likelihood method is more accurate than
ADS-B multilateration. The difference is especially large for low
numbers of visible aircraft. Our method can even find a position
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Figure 11: The empirical cumulative distribution function of
the position error for data set 3. This data set was recorded
in a room with no windows. Only our proposed ADS-B like-
lihood could successfully estimate the position.

when the mobile receiver sees too few messages for a successful
multilateration, as we can compare the signal to messages that were
very weak and not decodable locally.

Although the overall median position error for our proposed
ADS-B likelihood is better than the classical multilateration using
ADS-B, the method still needs sufficient aircraft that send messages.
Weaker ADS-B messages are still usable but towards the end of
March 2020 the amount of aircraft dropped drastically. The reason
is the worldwide coronavirus pandemic that lead to travel restric-
tions and forced most airlines to ground a substantial part of their
fleet. Figure 10 shows the moving average of the daily number of
ADS-B messages received by our network of reference stations.
The number significantly decreased in March. Our data sets were
collected at the end of February and in March as indicated in Ta-
ble 1. The performance of some of our data sets may already be
affected by sparse air traffic and, as a result, a lower number of
ADS-B messages. As the global air traffic has not yet recovered, we
are restricted to these data sets.

Very low signal strength. Data set 3 was recorded in extreme
conditions in a building with concrete walls in a room with no
windows. The empirical cumulative distribution of the position
error of this data set is depicted Figure 11. Only very few ADS-B
messages were decoded on the receiver and there were no satellites
in view. Not surprisingly, the ADS-B multilateration estimate never
results in a successful localization. However, by using our proposed
ADS-B likelihood estimate, we can successfully calculate a position
estimate in most recordings.

6 CONCLUSION
We have proposed a new method for localization of a mobile re-
ceiver based on ADS-B messages. It compares the received signal to
the expected ADS-B messages and finds the most probable location.
Our novel likelihood method uses only three seconds of recording
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and works reliably in many different settings. It achieves a median
accuracy of 20.4m outdoors and 29.9m in buildings. As the mobile
receiver does not need to be able to decode the ADS-B messages,
also very weak messages help in the localization. To achieve an ac-
curate localization, we have implemented a robust synchronization
between distributed reference receivers.

In the future it would be interesting to combine the proposed
method based on ADS-B messages with a similar method for GNSS.
This could allow to improve the performance outdoors to the level
of GNSS multilateration while still having the benefits of the ADS-B
messages in buildings.
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