
Augmenting Flows for the Consistent Migration of
Multi-Commodity Single-Destination Flows in SDNs I

Sebastian Brandta, Klaus-Tycho Foerstera, Roger Wattenhofera

aETH Zürich, Gloriastrasse 35, 8092 Zurich, Switzerland

Abstract

Updating network flows in a real-world setting is a nascent research area, es-
pecially with the recent rise of Software Defined Networks. While augmenting
s-t flows of a single commodity is a well-understood concept, we study updat-
ing flows in a multi-commodity setting: Given a directed network with flows of
different commodities, how can the capacity of some commodities be increased,
without reducing capacities of other commodities, when moving flows in the
network in an orchestrated order? To this extent, we show how the notion of
augmenting flows can be efficiently extended to multiple commodities for ap-
plications with a single logical destination. We also show that our methods
induce stronger consistency settings than previous work. Lastly, we prove the
consistent migration to new demands to be NP-hard for unsplittable flows, and
discuss extensions for the case of multiple source-destination pairs.

Keywords: Software Defined Networks, Congestion, Multi-Commodity Flow,
Anycast, Flow Augmentation, Consistent Migration

1. Introduction

The rise of Software Defined Networks (SDNs) has sparked an increasing
interest in applying network flow algorithms. While smart traffic engineering is
not only studied or enabled in SDNs, utilizing the available bandwidth almost
completely is one of the central topics in SDN research [21]. The algorithmic
tool to manage network traffic in an efficient way is provided by flow algorithms.

Since network traffic is highly dynamic, existing SDN solutions [8, 21, 24,
25, 30] frequently re-compute the optimal way to route traffic demands, usually
using an approach based on linear programming (LP), often accepting the over-
head that a new solution will re-route many existing flows that did not change
their demands.

IA preliminary extended abstract appeared in the Proceedings of the 17th International
Conference on Distributed Computing and Networking (ICDCN ’16), ACM, New York, NY,
USA, http://dx.doi.org/10.1145/2833312.2833450 [4].

Email addresses: brandts@ethz.ch (Sebastian Brandt), foklaus@ethz.ch (Klaus-Tycho
Foerster), wattenhofer@ethz.ch (Roger Wattenhofer)

Preprint submitted to Pervasive and Mobile Computing September 27, 2016

http://dx.doi.org/10.1145/2833312.2833450

In this article we propose to abandon LP-based solutions in favor of path
augmentation, a technique developed 60 years ago [15]: We believe that SDNs
should be managed in an incremental way. If a commodity (a source-destination
node pair) wants to reduce its bandwidth, no changes need to be made. If a
commodity wants to increase its bandwidth (or a new commodity is introduced
to the network), we try to increase its flow by using path augmentation. In the
best case, the increased demand fits without changing any of the other flows.
However it can be that re-routing (also called migration) of some other flows is
necessary, conceivably even recursively.

The problem of flow migration still has multiple open research questions:
It is not clear in general (1) how to classify when congestion-free migration is
possible, (2) to what solution one should actually attempt to migrate, (3) how
to reasonably bound the migration time.

Moreover, there is another problem: Apart from a few exceptions that we
discuss in the related work section, path augmentation was only developed for
s-t-flow problems with a single commodity. In real networks we have multiple
commodities, so we first need to generalize path augmentation to flow augmen-
tation, a path augmentation technique supporting multiple commodities.

It turns out that generalizing path augmentation is not as easy as one may
hope. As Hu notes in his influential article [22], “it is unlikely that similar
techniques can be developed for constructing multicommodity flows”.

This is why this article focuses on an important case of multi-commodity
flow, the so-called anycast problem, cf. [42]. In the anycast problem, we have
different commodities, one for each source node. All these commodities must be
routed to an arbitrary set T of destination nodes (or from T to the source nodes).
In contrast to general multi-commodity flow problems, it does not matter which
commodity ends up at which destination, as long as the destination is in the set
T . Commodities may route to any destination of the set T , hence anycast.

Using popular terminology, think of T as the set of servers of a cloud
provider; customers do not care which server gets the (potentially enormous [43])
data, as long as “the data gets to the cloud”. An analogous case can be made
when, e.g., migrating virtual machines inside the cloud (i.e., anycast-based data
center intra- [9] or inter-connections [18]). Furthermore, when data is requested
from the cloud, the customer does not care either from which anycast-based [2]
content delivery networks the (identical) data is obtained, cf. [6, 10]. For exam-
ple, streaming a video to digital media player, or a mobile phone requesting a
web site currently under a distributed denial-of-service (DDoS) attack [37, 38].

Applying our method of flow augmentation, we develop an efficient algorithm
for consistently migrating to any desired feasible set of traffic demands. We
require only one augmenting flow per commodity, minimizing network overhead.
Thus, for the anycast setting, we solve all the three issues (1), (2), (3) mentioned
above.

Furthermore, we show that our method can also be extended to stronger no-
tions of consistency, by adding a polynomial number of intermediate updates to
the flow migration. Lastly, we also prove that the consistent migration problem
to new demands turns out to be NP-hard for unsplittable flows.

2

1.1. Structure of our Article

After discussing the background and related work in Section 2, we continue
with the model Section 3 – where the term consistent migration is defined for-
mally. In Section 4 we develop a technique to use augmenting flows for consistent
migration in the anycast setting, before showing in Section 5 how to implement
our method efficiently in practice. We also prove that our method works for
stronger consistency models in Section 6, but that the corresponding problem
for unsplittable flows is NP-hard, cf. Section 7. After discussing the case of
general multi-commodity flows in Section 8, we conclude with Section 9.

2. Background and Related Work

To the best of our knowledge, the concept of flow augmentation has not
yet been used in the context of consistent migration. Thus, we treat both
topics separately, followed by a concise comparison of our work to current flow
migration techniques.

2.1. Augmentation & Multi-Commodity Flows

The notion of augmenting paths for single-commodity flows has been intro-
duced in the seminal works of Ford and Fulkerson [15, 16], with their concepts
influencing thousands of publications to this day. In the last decades, there has
been a great amount of research regarding (multi-commodity) flow problems.
We refer to the textbooks by Cormen et al. [11] and Ahuja et al. [1] for an
in-depth overview.

Hu [22] studied augmenting paths for a two-commodity setting and general-
ized the results of Ford and Fulkerson to maximize the simultaneous flow of two
commodities. By limiting the problem to just two commodities, he introduced
so-called backward and forward paths, which together allow for an augmentation
of the network.

Furthermore, in 1978, shortly before the celebrated publication of the Ellip-
soid method [26], Itai [23] published an improved version of Hu’s two-commodity
flow algorithm and showed that maximizing a two-commodity flow is as difficult
as linear programming in the sense that they are polynomially equivalent.

However, while many further results were published for multi-commodity
flow problems in general and augmenting path algorithms for single-commodity
flow problems in particular, the application of augmenting paths to multi-
commodity flow problems has been sparse.

Rothfarb et al. applied augmenting paths in the following way [41]: To
maximize multi-commodity flows with just one destination t, they added a log-
ical super-source s, considered all commodities as the same commodity with
new source s, and then solved the obtained single-commodity flow problem us-
ing the standard augmenting path method. Afterwards, the single-commodity
flow is split into a multi-commodity flow again, using arc-chain decomposition.
Since the arc-chain decomposition is independent of the initial flow, possibly all
single-commodity flows are re-routed completely, even though already a small

3

(a) Initial network with just
one flow from s1 to t.

(b) If the lower flow is in-
serted first, there will be
congestion.

(c) Desired flow placement
with two flows of two com-
modities.

Figure 1: This figure depicts a small network to introduce the concept of consistency. In the
above examples, all flows have a size of one and all edges have a capacity of one as well. If
the SDN controller desires to migrate the network from Subfigure 1a to Subfigure 1c in order
to add a flow for the second commodity outgoing from s2, then the commodity outgoing from
s1 has to be moved first. Else, due to asynchrony, s2 could start a flow before the last edge is
free, causing congestion. The concept is defined formally in Condition (5) in Subsection 3.2.

modification might have been sufficient. Furthermore, their algorithm does not
deal with the problem of asynchrony in SDNs (which is not surprising, con-
sidering the concept of SDNs was still decades away), and as thus, will induce
congestion if used for migration.

2.2. SDNs & Multi-Commodity Flows

Unlike multi-commodity flow problems regarding demand satisfaction, the
study of migration of flows is still in an emergent state. Perhaps it was not
before the rise of Software Defined Networks (SDNs) that moving flows onto
other paths became a relevant topic in practice. In SDNs, a central controller
can change the behaviour of the switches in the network, allowing for, e.g.,
arbitrary flow allocations among the links. There is a great amount of interesting
checkable properties that the controller might want to verify (for example by
model checking, cf. [31, 35]), such as waypointing via firewalls, loop freedom, or
network connectivity. We refer to [8] for an overview of SDN abstractions, with
more recent important SDN abstractions in, e.g., [27, 36]. We furthermore refer
to [14] for a recent comprehensive survey on the network update problem.

We focus our attention on preventing capacity constraint violations caused
by asynchrony during the migration of flows, i.e., consistent updates for multi-
commodity flows. Imagine a small example network, in which there are two
directed edges, each filled to the brim with a different commodity. Due to a
planned network optimization, the commodities might have to swap edges [33],
i.e., each commodity will be routed along the other edge. Should this swap not
be synchronized perfectly, then one commodity will migrate before the other,
causing one edge to be over capacity. However, clock synchronization for simul-
taneous updates in the switches is far from perfect, and even if it was, current
industry switches might straggle [24] – taking up to 100x longer than average
to implement updates [25]. The recent works of Kuzniar et al. [29] and He et
al. [20] give further evidence for the asynchrony of switch updates in practice.

4

Hong et al. [21] propose to always leave a fraction s of the capacity of each
edge unutilized s.t. when a migration of flows has to occur, it can be performed
in d1/se updates. However, this approach fails when some edges are used at
full capacity. Thus, the authors also present a linear program that essentially
tries if a migration is possible in 1, 2, 4, 8, . . . update steps, possibly temporarily
re-routing flows to arbitrary edges in the network. A similar approach is also
used in a datacenter setting by Liu et al. [30]. It can be decided in polynomial
time if a consistent migration in their model is possible [5], but the number of
necessary updates can be arbitrarily large.

The work of Jin et al. [25] follows a different approach: They build a com-
binatorial graph from the current and desired flow allocations, and try to find
an ordering of how to move the flows s.t. the individual updates are consistent.
Their search algorithm cannot guarantee to find a solution if one exists, which is
why they heuristically opt to break demand constraints temporarily if the flows
have been migrated in such a way that no local migration progress is possible.

Temporal breaking of demand constraints and congestion is also an idea
implemented by Jain et al. [24]: Instead of considering them at all, they aim to
migrate as fast as possible in order to minimize the effects of capacity constraint
violations.

A related but algorithmically more intricate technique is introduced by
Mizrahi, Rottenstreich, and Moses [32, 33, 34]: They schedule updates at syn-
chronized time slots, instead of just applying them as fast as possible. In their
work, they show that time-based updates can be a powerful mechanism in SDNs,
and make a case for its inclusion in standard protocols such as OpenFlow.

Finally, Reitblatt et al. [39, 40] deal with asynchrony by inserting version
numbers into each packet: With both old and new rules implemented in the
network at the same time, a packet will always be handled by one of the two
rule sets, but never a mix of them – a property they call per-packet consistency.
They extend their work to per-flow consistency by creating essentially multiple
“versioned” distinct flows per commodity. Unlike most other work (including
ours), they can guarantee that all packets in the same flow are forwarded ac-
cording to the same rules, an important element for, e.g., load balancers or
waypointing. Even though their method is not aimed at congestion per se, it
still prevents many issues causing capacity constraint violations.

2.2.1. Comparison with Current Flow Migration Techniques

The current (congestion-oriented) flow migration techniques for SDNs can
thus be roughly classified into two approaches:

1. Minimize congestion periods by applying updates fast [24] and/or syn-
chronized well [32].

2. Minimize congestion by carefully scheduling sequential updates, computed
by linear programming approaches, e.g., [21].

Approach 1 can be seen as orthogonal to our work. By developing and op-
timizing protocols and hardware to be fast and failure resistant [24], and by

5

synchronizing independent node updates well, e.g., [32], transient congestion
cannot be removed in a theoretically correct way, but rather avoided in a best-
effort approach. While our work avoids congestion in a theoretically sound way,
we usually need more than one single network update, making our approach
slower as we aim beyond a best-effort goal. However, approach 1 can be com-
bined with our work: We schedule the updates as described in this article, but
the practical implementation is enhanced by faster execution times.

Approach 2 is the one most related to our work. The main difference be-
tween, e.g., SWAN [21], is the number of needed updates in the worst case.
While we can bound the number of updates to be polynomial due to only need-
ing one augmenting flow per commodity, the seminal model of SWAN [21] has
cases where the minimum number of updates is unbounded. Furthermore, the
number of variables of the LP used in [21] grows with the number of updates
needed – meaning that for extreme situations, the (computational) runtime of
SWAN is no longer polynomial in the input size. Lastly, our work also extends
to stronger consistency models, cf. Section 6.

We note that at a fundamental level, the price we have to pay for the listed
advantages is that we can only operate in a limited scenario, namely multi-
commodity single-destination flows. Furthermore, most of the discussed (prac-
tical) literature is heavily fine-tuned in their implementation for real-world use:
Our work is more at a conceptual level, proving theoretical advances which can
be the building blocks of future works to come.

3. Model

3.1. Network Flows

We consider a network as a directed graph with edge capacities. For the
definition of a multi-commodity flow, we first need to define a single-commodity
flow via the usual flow constraints:

Definition 1. Let G = (V,E) be a simple connected directed graph with |V | = n
nodes and |E| = m edges. Denote the set of edges outgoing from a node v ∈ V by
out(v) and the set of incoming edges by in(v). A network is a pair N = (G, c)
where c : E → R+ is a map assigning each edge a positive capacity. We call a
pair of distinct nodes s, t ∈ V a commodity K. We define a single-commodity
flow for K as a map F : E → R≥0 s.t.

F (e) ≤ c(e) for all e ∈ E, (1)

∑
e∈out(v)

F (e) =
∑

e∈in(v)

F (e) for all v ∈ V \ {s, t}, (2)

∑
e∈out(s)

F (e) = dF =
∑

e∈in(t)

F (e), (3)

where dF is called the demand of K (w.r.t. F). We also call dF the size of F .

6

We now extend the definition of a single flow to multi-commodity anycast,
for which we encompass all nodes in T in a single node t. Our results can be
applied analogously to the “edge reversed” model variant, where an arbitrary
set of source nodes S routes multiple commodities to their assigned distinct
destinations.

Definition 2. Let N be a network and let Ki = (si, t) be commodities where
s1, s2, . . . , sk, t ∈ V are pairwise distinct nodes. Then we call a tuple K =
(K1,K2, . . . ,Kk) a multi-commodity. Let Fi be a flow for the commodity Ki

for all 1 ≤ i ≤ k. A tuple F = (F1, . . . , Fk) is called a multi-commodity flow
for K if

k∑
i=1

Fi(e) ≤ c(e) for all e ∈ E. (4)

We will assume in the following that all considered flows are cycle-free.
In the presented algorithms, cycles may appear temporarily, but will always
be explicitly removed. In particular, this implies that

∑
e∈in(s) F (e) = 0 =∑

e∈out(t) F (e) if dF > 0. For the sake of simplicity, we assume that this equa-

tion also holds for the case of dF = 0 (which is a natural assumption from a
practical point of view as we want to study the traffic from a source s to a
destination t).

Definition 3. We call a flow F cycle-free, if there is no directed cycle C in N
s.t. F (e) > 0 for all e ∈ C.

Lastly, we will need the concept of a partial flow in the following sections:

Definition 4. Let F be a single-commodity flow for the commodity K = (s, t)
and let v ∈ V . We call a flow F ′ for the commodity K ′ = (v, t) a partial flow
of F starting in v if the following conditions hold:

F ′(e) ≤ F (e) for all e ∈ E

F ′(e) = F (e) for all e ∈ out(v)

Furthermore, we call a flow F ′′ for the commodity K a subflow of F if F ′′(e) ≤
F (e) for all e ∈ E.

Note that, since we assume all considered flows to be cycle-free, all the traffic
leaving v (in the flow F) must finally end up in t which implies that (for each
v ∈ V) there exists a partial flow of F starting in v.

3.2. Consistent Migration

We define the term consistent migration (i.e., not violating edge capacity
constraints due to asynchrony in node updates) as proposed in [21, 25, 30],
who implemented and evaluated the consistent migration of flows in SDNs with
multiple production data center networks across three continents with tens of
thousands of servers. We note that the term consistent updates is sometimes
used for different concepts in SDNs, e.g., in [7, 13]. We refer to Figure 1 for an
introductory example.

7

Definition 5. Let N be a network and let F = (F1, . . . , Fk), F ′ = (F ′1, . . . , F
′
k)

be multi-commodity flows for the multi-commodity K s.t. dFi ≤ dF ′i , 1 ≤ i ≤ k.
The tuple (N,F ,F ′) is a consistent migration update from F to F ′ if

k∑
i=1

max (Fi(e), F
′
i (e)) ≤ c(e) for all e ∈ E. (5)

A consistent migration from F to F∗ is a sequence of consistent migration
updates (N,F ,F1), (N,F1,F2), . . . , (N,Fj ,F∗).

Note that for each K ∈ K the demand of K w.r.t F ,F1, . . . ,Fj ,F∗ is non-
decreasing. If the demand of flows was smaller in F ′, then one would drop
corresponding parts of the flows before migration.

4. Augmenting Flows for Multiple Commodities

In the case of one source and one destination, it is well-known [16] how to
use an obtained augmenting path P in order to transform a given flow into a
new enhanced flow whose size is increased by the “capacity” of P . When we
have multiple sources, the “standard” augmenting path does not account for
moving multiple commodities at once, since it is only defined to modify the flow
of a single commodity.

In the following Definition 6, we define an augmenting flow for the case of
a multi-commodity flow where we have multiple sources (but only one destina-
tion). The augmenting flow may use edges from the residual network, which is
created by adding a back-edge in the reverse direction for every edge with some
flow on it, cf. the dashed edges in Subfigure 2b. Note that while the augmenting
flow may use these back-edges, there will be never any “real” flow routed over
these edges, as they are not part of the physical network and just used for our
algorithms.

We further introduce the notion of a farthest back-edge which is a back-
edge used by the augmenting flow “after which” the augmenting flow only uses
forward edges.

Definition 6. Let N be a network and let F be a multi-commodity flow for the
multi-commodity K. We denote by G the graph obtained from G by adding an
edge e∗ = (v, u) to G for any edge e = (u, v) ∈ E. Let E∗ be the set of all
newly added edges. If an edge e∗ ∈ E∗ starts and ends in the same vertices
as some edge in E, we still consider them as distinct edges. Set N :=

(
G, c

)
where c(e∗) := c(e) := c(e) for all e ∈ E. Let K ∈ K. We call a cycle-
free (single-commodity) flow FA for K in N an augmenting flow w.r.t. F if
FA(e) ≤ c(e) −

∑
F∈F F (e) and FA(e∗) ≤

∑
F∈F F (e) for all e ∈ E. Set

E∗FA
:= {e∗ ∈ E∗|FA(e∗) > 0}. We call an edge (u, v) ∈ E∗FA

a farthest back-
edge if there is no path P from v to t s.t. for all edges e ∈ P we have FA(e) > 0
and there is an edge e∗ ∈ P with e∗ ∈ E∗FA

. Since FA is cycle-free, such a
farthest back-edge exists if E∗FA

6= ∅.

8

(a) Initial network with just one flow from
s1 to t. Currently, there is no space for a
flow from s2 to t, the red flow needs to be
moved first.

(b) An augmenting flow for s2 is found
from s2 to t, using a dashed edge in G
that pushes the red flow back to the top.

(c) After the red flow has been pushed
to the top, the resulting green augment-
ing flow uses only “real” edges from the
network. Thus, in a next step, it can be
replaced with a proper “real” flow.

(d) The resulting flows are feasible and
use only edges in the “real” network, none
of the (hidden) dashed ones from G.

Figure 2: In this small introductory example network to illustrate augmenting flows, all edges
have a capacity of one and all flows have a size of one. The solid edges are the “real” edges
in the network N , while the dashed edges in Subfigure 2b exist just in G: A reverse edge
for every edge with some flow on it. Dashed edges from G are never used for routing, they
are just used to find augmenting flows. If the task is to add a flow from s2 to t, then one
searches for an (augmenting) flow from s2 to t – but not just in N , the dashed edges from G
are allowed as well.

Note that in this article, such an augmenting flow always “belongs” to a
specific commodity K contained in the respective multi-commodity.

We develop a technique in the following Algorithm 1 to transform the given
multi-commodity flow step by step into a multi-com-modity flow where the
flow size for K is increased by the size of the augmenting flow, see Theorem
2. A very small introductory example is given in Figure 2. We show that the
transformation steps correspond to consistent migration updates, thus proving
that the new (multi-commodity) flow can be obtained from the old one by a
consistent migration.

The general idea is as follows: Given a multi-commodity flow and an aug-
menting flow, Algorithm 1 will perform a consistent migration update (Lemma
6) in the network.1 Essentially, one execution of Algorithm 1 will process one

1The calculation of the corresponding augmenting flow for Algorithm 1 is discussed in
Section 5. Essentially, we will calculate one augmenting flow per commodity that needs to be
augmented, and apply Algorithm 1 sequentially.

9

edge of the augmenting flow. As the augmenting flow can have at most m = |E|
edges, the augmenting flow will be inserted consistently after a linear number of
iterations of the algorithm (Theorem 2). We refer to Figure 3 for an advanced
illustration of Algorithm 1.

Algorithm 1. Let N be a network and F = (F1, . . . , Fk) be a multi-commodity
flow for the multi-commodity K = (K1, . . . ,Kk). Let FA be an augmenting flow
w.r.t. F for some commodity (s, t) = K ∈ K. Let E∗FA

be non-empty and let
(u0, v0) = e∗0 ∈ E∗FA

be a farthest back-edge. Let Fk1
, ..., Fkq

∈ F , k1 < · · · < kq
be the flows2 which assign the edge e0 (i.e., the edge which induced the adding
of e∗0 to G) a non-zero value, i.e., the flows which are present on this edge. Let
r be the smallest index such that

∑r
z=1 Fkz

(e0) ≥ FA(e∗0). Set U := FA(e∗0) −∑r−1
z=1 Fkz

(e0). We migrate to a new multi-commodity flow F ′ = (F ′1, . . . , F
′
k)

for K and a new augmenting flow F ′A w.r.t. F ′ as follows:

1. Begin by setting F ′y(e) := Fy(e) for all e ∈ E and all 1 ≤ y ≤ k, and
F ′A(e) := FA(e) for all e ∈ E ∪ E∗.

2. Redefine F ′ on e0 and F ′A on e∗0: Set F ′kz
(e0) := 0 for all 1 ≤ z ≤ r − 1,

F ′kr
(e0) := F ′kr

(e0)− U , and F ′A(e∗0) := 0.

3. Choose a partial flow of FA starting in v0 and choose a subflow Fa (of this
partial flow) of size FA(e∗0). (Note that Fa(e∗) = 0 for all e∗ ∈ E∗ because

e∗0 is a farthest back-edge.) Decompose Fa in r subflows F
(1)
a , . . . , F

(r)
a of

sizes Fk1
(e0), . . . , Fkr−1

(e0), U such that, for each edge e ∈ E, we have∑r
z=1 F

(z)
a (e) = Fa(e). Now set F ′kz

(e) := F ′kz
(e)+F

(z)
a (e) for all 1 ≤ z ≤

r and all e ∈ E, and set F ′A(e) := F ′A(e)− Fa(e) for all e ∈ E.

4. For all 1 ≤ z ≤ r, choose a partial flow of Fkz
starting in u0 and choose

a subflow F (z) (of this partial flow) of size Fkz (e0) if z 6= r and of size
U if z = r. Then replace these subflows by the augmenting flow, i.e.,
set F ′kz

(e) := F ′kz
(e) − F (z)(e) for all 1 ≤ z ≤ r and all e ∈ E, and set

F ′A(e) := F ′A(e) +
∑r

z=1 F
(z)(e) for all e ∈ E.

5. Replace possible cycles for flows in F ′ by cycles for F ′A: If there is some
flow F ′ ∈ F ′ which is not cycle-free, then find a (directed) cycle C s.t.
F ′(e) > 0 for all e ∈ C. Set F ′(e) := F ′(e)−mine′∈C F ′(e′) for all e ∈ C,
thus “removing” the cycle, and set F ′A(e) := F ′A(e) + mine′∈C F ′(e′) for
all e ∈ C. Continue removing (and replacing) cycles in this way (for all
flows in F ′) until there are no cycles left in F ′. (Note that the removal
of a cycle implies that there is some edge e which changes in the process
from F ′(e) > 0 to F ′(e) = 0. Thus, all flows contained in F ′ are cycle-free
after removing at most O(mk) cycles.)

2We note that one could order the flows by decreasing size to further decrease the amount
of flows being re-routed.

10

6. Remove possible cycles for F ′A: First remove cycles for the flow F ′A which
consist only of an edge e ∈ E and its corresponding edge e∗ ∈ E∗, until no
such cycles remain. Subsequently, remove arbitrarily chosen cycles for F ′A
iteratively until F ′A is cycle-free. Analogously to the above, at most O(m)
cycles need to be removed.

In the following, we will state and prove various lemmas to lastly prove
Theorem 2 in this section. We begin with Lemma 1 and Lemma 2, which state
that the new augmenting flow F ′A will not violate the capacity constraints set
in Definition 6:

Lemma 1. F ′A(e) +
∑

F ′∈F ′ F
′(e) ≤ c(e) for all e ∈ E.

Proof. Since FA is an augmenting flow w.r.t. F , it holds that FA(e)+
∑

F∈F F (e)
≤ c(e) for all e ∈ E. Thus, after step 1 we have F ′A(e) +

∑
F ′∈F ′ F

′(e) ≤ c(e)
for all e ∈ E. In step 2, F ′A(e) +

∑
F ′∈F ′ F

′(e) remains unchanged for all
e ∈ E. In steps 3, 4, and 5 this is also the case since for each e ∈ E, F ′A(e) is
diminished by the same amount by which

∑
F ′∈F ′ F

′(e) grows larger, resp. vice
versa. As the cycle removals in step 6 can only diminish the above sum, we
obtain Lemma 1.

Lemma 2. F ′A(e∗) ≤
∑

F ′∈F ′ F
′(e) for all e ∈ E.

Proof. Since FA is an augmenting flow w.r.t. the multi-commodity flow F , it
holds for F ′A(e∗) that F ′A(e∗) ≤

∑
F ′∈F ′ F

′(e) for all e ∈ E after step 1. In step
2, both

∑
F ′∈F ′ F

′(e0) and F ′A(e∗0) are diminished by F ′A(e∗0), while nothing
changes for the edges e 6= e0. In step 3,

∑
F ′∈F ′ F

′(e) cannot decrease, while
F ′A(e∗) cannot be increased. Thus, at this point, F ′A(e∗) ≤

∑
F ′∈F ′ F

′(e) still
holds for all e ∈ E. In step 4, the left hand side of the inequality is not increased,
since e∗ /∈ E. As in this step F ′A(e) is increased by the same amount by which∑

F ′∈F ′ F
′(e) is diminished, we obtain F ′A(e∗) ≤

∑
F ′∈F ′ F

′(e) + F ′A(e), for all
e ∈ E after step 4. By an analogous argument, this new inequality holds also
after step 5. After removing the “small” cycles in the first part of step 6 we
have F ′A(e∗) = 0 or F ′A(e) = 0 for all e ∈ E, while the new inequality still holds.
As the subsequent cycle removals in the second part of step 6 cannot decrease∑

F ′∈F ′ F
′(e) to less than 0, the inequality given in Lemma 2 holds for all e ∈ E

with F ′A(e∗) = 0. Thus, consider the edges e ∈ E with F ′A(e) = 0. For these
edges, F ′A(e∗) ≤

∑
F ′∈F ′ F

′(e) + F ′A(e) implies F ′A(e∗) ≤
∑

F ′∈F ′ F
′(e) which

yields the desired statement of Lemma 2 since the cycle removals in the second
part of step 6 cannot decrease

∑
F ′∈F ′ F

′(e).

Next, in Lemma 3 and 4, we show that the flows adhere to the flow conditions
and keep their demand unchanged.

Lemma 3. F ′A is a (single-commodity) flow for the commodity K and dF ′A =
dFA

.

Proof. We first show that F ′A is non-negative on all edges in E ∪ E∗ and then
that F ′A satisfies Conditions (1)–(3) from Definition 1.

11

(a) Multi-commodity flow F = (F1, F2, F3, F4) and augmenting flow FA, before applying
Algorithm 1 w.r.t. e∗0.

(b) Multi-commodity flow F ′ = (F ′1, F
′
2, F
′
3, F
′
4) and augmenting flow FA, after applying

Algorithm 1.

Figure 3: In this example network, all unmarked edges have a capacity of one. The green
flow F3 starting in s3 has a size of two, all other solid flows have a size of one. The dashed
augmenting flow FA for the commodity K1 starting in s1 has a size of three. In Subfigure
3a, the (not drawn) edge (u, v) = e∗0 in N is a farthest back-edge. When executing Algorithm
1, we obtain q = 3, k1 = 1, k2 = 3, k3 = 4, FA(e∗0) = 2, r = 2, and U = 1. A part of the
augmenting flow is re-routed in the node u via former paths of F1 and F3, whereas F1 and
half of F3 are re-routed in the node v via a former path of the augmenting flow. The occurring
cycles wvx and zyu are removed afterwards by Algorithm 1.

12

The only step where F ′A can switch to a negative value on some edge e ∈
E ∪ E∗ is step 3 and this can only be the case if e ∈ E. But since Fa is a
subflow of a partial flow of FA, we have Fa(e) ≤ F ′A(e) for all e ∈ E and F ′A(e)
remains non-negative in step 3. Note that at the beginning of step 3, it holds
that F ′A(e) = FA(e) for all e ∈ E.

By an analogous argument, F ′y(e) is non-negative for all 1 ≤ y ≤ k and
all e ∈ E. Since, in addition, F ′A(e∗) is never increased in steps 2 to 6 for all
e∗ ∈ E∗ (which implies F ′A(e∗) ≤ FA(e∗)), Condition (1) holds due to Lemma
1 and Definition 6.

We will now show that Conditions (2) and (3), i.e., flow conservation and
demand satisfaction, are maintained. Consider DA(v) :=

∑
e∈in(v) F

′
A(e) −∑

e∈out(v) F
′
A(e) for all v ∈ V . After step 1, DA(v) = 0 for all v ∈ V \ {s, t},

and −DA(s) = DA(t) = dFA
. However, in step 2, DA(u0) is increased by

F ′A(e∗0) and DA(v0) is diminished by F ′A(e∗0). In step 3, DA(v0) is increased by
F ′A(e∗0), DA(t) gets diminished by F ′A(e∗0), and DA(v) remains unchanged for all
other nodes v. In step 4, DA(u0) is diminished by F ′A(e∗0), DA(t) gets increased
by F ′A(e∗0), and DA(v) remains unchanged for all other nodes v. Lastly, the
replacement of cycles in step 5 and the removal of cycles in step 6 do not change
any DA(v). Thus, DA(v) = 0 for all v ∈ V \{s, t}, and −DA(s) = DA(t) = dFA

.
Since F ′A is cycle-free, this implies

∑
e∈out(s) F

′
A(e) = dFA

=
∑

e∈in(t) F
′
A(e),

i.e., dF ′A = dFA
.

Lemma 4. F ′ is a multi-commodity flow for K and dF ′y = dFy for all 1 ≤ y ≤ k.

Proof. Lemma 4 follows by a proof analogous to the proof of Lemma 3. Note
that Condition (4) holds due to Lemma 1.

Combining Lemmas 1 to 4, we obtain the following corollary:

Corollary 1. F ′A is an augmenting flow w.r.t. F ′.

Furthermore, we need to prove that Algorithm 1 actually makes progress,
i.e., at least one of the edges e∗ has an augmenting flow of zero afterwards.

Lemma 5. The number of edges e∗ ∈ E∗ with F ′A(e∗) > 0 is strictly smaller
than the number of edges e∗ ∈ E∗ with FA(e∗) > 0.

Proof. As observed in the proof of Lemma 3, we have F ′A(e∗) ≤ FA(e∗) for all
e∗ ∈ E∗. Thus, F ′A(e∗) > 0 implies FA(e∗) > 0. Moreover, FA(e∗0) > 0, but
F ′A(e∗0) = 0 (due to step 2). The result follows.

Lastly, we show that the update performed by Algorithm 1 is actually con-
sistent:

Lemma 6. (N,F ,F ′) is a consistent migration update.

Proof. By Lemma 4, we only have to show that Condition 5 holds, i.e., that for
all e ∈ E:

∑k
y=1 max

(
Fy(e), F ′y(e)

)
≤ c(e) . Let e be an arbitrary edge in E.

We observe that, for all 1 ≤ y ≤ k, the only step (after setting F ′y(e) := Fy(e))

13

where F ′y(e) gets possibly increased is step 3. Moreover, a positive increase in
step 3 is only possible if y = kz for some 1 ≤ z ≤ r. More specifically, we have

F ′kz
(e) ≤ Fkz (e) + F

(z)
a (e) after step 6 for all 1 ≤ z ≤ r. Since F

(z)
a (e) ≥ 0 for

all 1 ≤ z ≤ r, we obtain

k∑
y=1

max
(
Fy(e), F ′y(e)

)
≤

k∑
y=1

Fy(e) +

r∑
z=1

F (z)
a (e) = Fa(e) +

k∑
y=1

Fy(e) .

Since Fa is a subflow of a partial flow of FA (compare step 3), we have Fa(e) ≤
FA(e). Thus,

k∑
y=1

max
(
Fy(e), F ′y(e)

)
≤ FA(e) +

k∑
y=1

Fy(e) ≤ c(e) .

The last inequality follows since FA is an augmenting flow w.r.t. F .

We can now prove Theorem 2, which states that we can update consistently
to the new augmented flow in just a linear number of updates3, resulting from
applying the augmenting flow:

Theorem 2. Let N be a network and let F = (F1, . . . , Fk) be a multi-commodity
flow for the multi-commodity K = (K1, . . . ,Kk). Let FA be an augmenting flow
w.r.t. F for the commodity (s, t) = Kx ∈ K where 1 ≤ x ≤ k. Then there is
a multi-commodity flow F∗ for K s.t. dF∗x = dFx

+ dFA
and dF∗y = dFy

for all
1 ≤ y ≤ k with y 6= x. Moreover, there is a consistent migration from F to F∗,
consisting of at most m + 1 consistent migration updates.

Proof. W.l.o.g., let h ∈ N be the number of times that the steps 1 to 6 of
Algorithm 1 are performed until, for the resulting augmenting flow Fh

A w.r.t. the
resulting multi-commodity flow Fh, there is no edge e∗ ∈ E∗ with Fh

A(e∗) > 0.
Note that, due to Lemma 5, it holds that h ≤ m. Thus, by Lemmas 4 and 6,
every one of the h iterations of the steps 1 to 6 corresponds to a consistent
migration update. Moreover, dFh

y
= dFy

for all 1 ≤ y ≤ k, by Lemma 4, and

Fh
A(e)+

∑
Fh∈Fh Fh(e) ≤ c(e) for all e ∈ E, by Lemma 1. Therefore, increasing

Fh
x (e) by Fh

A(e) for all e ∈ E corresponds to a consistent migration update
and the resulting multi-commodity flow F∗ satisfies the conditions given in
Theorem 2.

5. Augmenting the Network in Practice with Algorithm 1

A standard approach in the single-commodity case for increasing the size
of a flow is to compute augmenting paths, apply them to the network, and

3We note that other mechanisms such as, e.g., SWAN [21] or zUpdate [30], do not give
any bound on the number of updates needed for consistent migration.

14

iterate this process until the desired demand is reached, if possible. However,
this method requires a lot of updates in the network itself, as the number of
augmenting paths needed can be linear in the number of edges. Due to the fact
that we augment our multi-commodity flow in Section 4 with a flow instead of
a path, in our framework just one augmenting flow per commodity suffices to
satisfy any possible new demands, as we show in this section.

While a linear programming solution does not show how to migrate the
network consistently, we can use LPs to compute the augmenting flows needed
for the consistent migration. For our method we will first need the notion of
difference flows, which are flows obtained by “subtracting” a multi-commodity
flow from another.

Definition 7. Let N be a network, let K = (K1, . . . ,Kk) be a multi-commodity,
and fix some i ∈ N with 1 ≤ i ≤ k. Let F = (F1, . . . , Fk),F ′ = (F ′1, . . . , F

′
k) be

multi-commodity flows for K with dFi
< dF ′i and dFj

= dF ′j for all 1 ≤ j ≤ k,

j 6= i. We define a difference flow ZF,F ′ for F and F ′ in N as follows: First, for
all e ∈ E: i) If

∑k
y=1 F

′
y(e)−

∑k
y=1 Fy(e) ≥ 0, then ZF,F ′(e) :=

∑k
y=1 F

′
y(e)−∑k

y=1 Fy(e) and ZF,F ′(e∗) := 0. ii) If
∑k

y=1 F
′
y(e) −

∑k
y=1 Fy(e) < 0, then

set ZF,F ′(e∗) := −
(∑k

y=1 F
′
y(e)−

∑k
y=1 Fy(e)

)
and ZF,F ′(e) := 0. Second,

remove cycles until ZF,F ′ is cycle-free.

A difference flow is also an augmenting flow:

Lemma 7. Let ZF,F ′ be a difference flow for F and F ′ with dFi
< dF ′i . Then,

ZF,F ′ is an augmenting flow w.r.t. F for the commodity Ki of size dF ′i−dFi
> 0.

Proof. Recall that F and F ′ are multi-commodity flows in N .
We start by checking the conditions for an augmenting flow given in Def-

inition 6. For all e ∈ E, we have ZF,F ′(e) ≤
∑k

y=1 F
′
y(e) −

∑k
y=1 Fy(e) ≤

c(e) −
∑k

y=1 Fy(e) in case i), and ZF,F ′(e) = 0 ≤ c(e) −
∑k

y=1 Fy(e) in case

ii). For all e∗ ∈ E∗, we have ZF,F ′(e∗) = 0 ≤
∑k

y=1 Fy(e) in case i), and

ZF,F ′(e∗) ≤ −
(∑k

y=1 F
′
y(e)−

∑k
y=1 Fy(e)

)
≤
∑k

y=1 Fy(e) in case ii). Note

that removing cycles can never increase the flow on any edge.
As ZF,F ′ is cycle-free, it is only left to show that ZF,F ′ is a single-commodity

flow for Ki in N of size dF ′i−dFi
. Condition (1) follows directly from the previous

considerations. The definition of ZF,F ′ ensures that Condition (2) is satisfied
for all nodes except si and t. Note that removing cycles does not change the
difference between the amount of outgoing and incoming flow for a node.

As dF ′i − dFi
> 0 holds due to the construction of ZF,F ′ and as all cycles

were removed from ZF,F ′ , we obtain that
∑

e∈out(si) Z
F,F ′(e) = dF ′i − dFi

=∑
e∈in(t) Z

F,F ′(e), i.e., Condition (3) holds and ZF,F ′ is an augmenting flow for
the commodity Ki of size dF ′i − dFi

> 0.

In the following Algorithm 2, we will show how any desired demands can be

15

obtained by consistent migration, if there is a multi-commodity flow satisfying
these demands.

Algorithm 2. Let N be a network and let F be a multi-commodity flow for the
multi-commodity K. Let (d1, . . . , dk) be a vector of demands s.t. i) there exists a
multi-commodity flow for K satisfying these demands, and ii) d1 ≥ dF1

, . . . , dk
≥ dFk

.

1. Compute a multi-commodity flow F ′1 with a demand vector of (d1, dF2
, . . . ,

dFk
) using an LP.

2. Compute the difference flow ZF,F ′1 .

3. Augment F with ZF,F ′1 by using Algorithm 1 iteratively until no more
back-edges exist for the resulting augmenting flow FA. Then, replace FA

by a flow of commodity K1 and eliminate all cycles for commodity K1,
thereby obtaining some flow F1 with a demand vector of (d1, dF2

, . . . , dFk
).

4. Iterate the above three steps for the remaining commodities K2, . . . ,Kk,
thereby obtaining the flows F2, . . . ,Fk with the demand vectors of
(d1, d2, dF3

, . . . , dFk
), . . . , (d1, d2, d3, . . . , dk−1, dFk

), (d1, . . . , dk).

Corollary 3. Algorithm 2 performs a consistent migration from F to some
multi-commodity flow with a demand vector of (d1, . . . , dk), using only k aug-
menting flows.

We note that Algorithm 2 can be used for any imaginable purpose, as long
as the respective desired demand vector (for which some flow exists) can be
computed. Common examples in practice are maximizing the sum of all com-
modities or reaching max-min fairness. The respective desired demand vectors
can be computed with an LP, cf., e.g., [1][11]. If the computation time is an
issue as well, one can also resort to approximation algorithms with a better
runtime [19].

Furthermore, the actual updates performed in the network itself are expen-
sive, while “off-line” computations are cheap regarding the execution time in
SDNs, rendering the computation overhead induced by the LPs to be bearable
in practice.

6. A Stronger Consistency Model

In Definition 5 we defined the consistency model for capacity constraints as
proposed in [21, 25, 30]. A main motivation behind this model is that changes
in the flow should not violate the capacity of any edge, no matter what “mix”
of old and new flow rules is currently in place due to asynchrony. However,
the model only considers specific discrete points in time: Either a flow Fi has
changed completely or it has not. Thus, the impact of latency on the different
routes is neglected.

In order to avoid congestion due to latency, we suggest the following: A part
of the old flow that coincides with a part of the new flow is left in the network

16

unchanged. The remaining part B of the old flow is migrated to the remaining
part B′ of the new flow, but we only consider this migration to be strongly
consistent if B′ can be added to the complete old flow without violating any
edge capacity constraints. This ensures that there cannot be any congestion
due to latency. What is required for the migrated part B′ of the new flow is
that any packets in B′ stay in B′ until they reach their destination (otherwise,
again, congestion can occur due to latency). In other words, we require B′ to
be a half flow as given by the following definition:

Definition 8. A half flow is a function H : E → R≥0 s.t. for all nodes v ∈
V \ {s} it holds that

∑
e∈in(v) H(e) ≤

∑
e∈out(v) H(e). A multi-commodity half

flow is a tuple H = (H1, . . . ,Hk) of half flows.

By formalizing the above considerations, we obtain a stronger consistency
model:

Definition 9. Let N be a network and let F = (F1, . . . , Fk) and F ′ = (F ′1, . . . ,
F ′k) be multi-commodity flows for the multi-commodity K s.t. dFi ≤ dF ′i , 1 ≤ i ≤
k. A consistent migration update from F to F ′ is called a strongly consistent
migration update if there exists a multi-commodity half flow H = (H1, . . . ,Hk)
s.t. the following three conditions hold: 1) Hi(e) ≤ F ′i (e) for all e ∈ E and all
1 ≤ i ≤ k, 2) F ′i (e) − H ′i(e) ≤ Fi(e) for all e ∈ E and all 1 ≤ i ≤ k, and 3)

F(e) +
∑k

i=1 Hi(e) ≤ c(e) for all e ∈ E.
A strongly consistent migration is a sequence of strongly consistent migration

updates.

Condition 1) ensures that each half flow is contained in the respective new
flow, Condition 2) ensures that when subtracting the half flow from the respec-
tive new flow, the result is contained in the respective old flow (thus, it can
remain in the network unchanged) and Condition 3) ensures that even if the old
flow is still completely present in the network, the multi-commodity half flow
can be added without violating any edge capacity constraints.

As Figure 4 shows, the migration updates performed by Algorithm 1 are not
necessarily strongly consistent.

In the following, we show how to adapt Algorithm 1 in order to make the
performed migration update strongly consistent. In a way, the point where the
strong consistency breaks in Algorithm 1 is the replacement/removal of cycles
in steps 5 and 6. More precisely, if there are no cycles in any flow in F after step
4, then the performed update is strongly consistent as the flows added in step 3
can be taken as the multi-commodity half flow whose existence is required. The
design of Algorithm 1 asserts immediately that the flow added in step 3 indeed
satisfies the half flow conditions. Note that cycles occurring in the augmenting
flow FA do not change this assessment and therefore do not have to be avoided
specifically.

Our adapted algorithm proceeds as follows: Starting from the destination
t, find a first back-edge along the augmenting flow. However, now, starting
from this farthest back-edge, we will consider each commodity individually, and

17

(a) Initial network with a solid green flow
F of size 2 and a dashed augmenting flow
FA for F of size 1 via s1, w, u, v, x, y, t. All
edges have a capacity of 1.

(b) Network with F ′ after applying a con-
sistent update via Algorithm 1. The pur-
ple arrows depict where strong consistency
cannot be maintained.

Figure 4: In this small example, Algorithm 1 updates directly from F in Subfigure 4a to F ′ in
Subfigure 4b. While the update is consistent, it is not strongly consistent: The purple arrows in
Subfigure 4b from u to v, from v to x, and from v to t depict where strong consistency cannot
be maintained: Assume that the update is strongly consistent and a half flow as required
exists. Due to Condition 1), the half flow on (v, x) needs to be zero. Due to Condition 2),
the half flow on (u, v) needs to be positive. Lastly, due to Condition 3), the half flow on
(v, t) needs to be zero as well. Hence the half flow definition is violated at node v, since the
incoming half flow is positive, but all outgoing half flow is zero.

augment along the farthest cycle beyond this back-edge (seen from s), made up
of the augmenting flow and the respective commodity.

If one arc of the cycle is constituted by the augmenting path and the remain-
ing arc by the chosen commodity (i.e., the cycle consists only of two continuous
segments of commodity or augmenting flow), then we can augment along a cycle
analogously to augmenting w.r.t. a back-edge. As we will show, there is always
a farthest cycle of this kind.

Initially starting from t, in each of these augmenting updates, we will progress
closer towards the farthest back-edge, guaranteeing that the number of updates
is polynomial. As such, we need a more fine-grained Algorithm 3, that handles
these updates.

For ease of readability, we give a high-level description of the algorithm:

Algorithm 3.

1. Choose a farthest back-edge (u, v) = e∗.

2. Choose a commodity Ki.

3. Choose a partial flow Fa of FA starting from u of size min(Fi(e), FA(e∗))
s.t. Fa(e∗) = min(Fi(e), FA(e∗)).

18

4. Decompose Fa into r ≤ m augmenting unsplitted flows F 1
a , . . . , F

r
a , i.e.,∑r

j=1 F
j
a = Fa.

5. Mark edges on F 1
a successively from t towards u until a cycle composed

of marked edges and Fi appears. Let e′ = (u′, v′) be the edge which was
marked last.

6. Choose such a cycle where one continuous arc consists of marked edges
and the remaining arc of commodity Ki. Augment along this cycle. Iterate
until there is no cycle composed of marked edges and Fi left.

7. Delete cycles of F 1
a until no more cycles of F 1

a exist. For this, always
choose cycles of the following kind: There exists a node y on the not re-
routed part of F 1

a s.t. the cycle consists of a part of F 1
a from y to u′ that

was not re-routed in step 6 and a part of F 1
a from u′ to y that was re-

routed. Of these cycles, choose one with the largest number of edges in the
second part. From now on, consider just the edges of F 1

a between u′ and t
(according to the order given by F 1

a) as marked.

8. Iterate steps 5 to 7, always starting from the farthest unmarked edge and
proceeding towards u in step 5, until all edges in F 1

a are marked.

9. Iterate steps 5 to 8 for the flows F 2
a , . . . , F

r
a successively.

10. Iterate steps 3 to 9 for all other commodities than Ki successively.

11. Iterate steps 2 to 10, always choosing a farthest back-edge, until no back-
edge remains.

12. Iterate steps 3 to 9 for the commodity K to which the augmenting flow FA

“belongs”, where we set u := s. However, after each execution of step 8,
replace the respective augmenting flow F j

a with a flow of commodity K.

We will now show that Algorithm 3 performs a strongly consistent migra-
tion for a given multi-commodity flow and a corresponding augmenting flow FA

belonging to commodity K. Recall that all flows are cycle-free and observe that
the design of the algorithm prevents the occurrence of cycles for any commod-
ity. The only cycles occurring are those containing augmenting flow, which are
subsequently deleted.

Further observe that in step 4, Fa can be decomposed into at most m aug-
menting paths by, e.g., iteratively choosing a path F j

a in Fa from u to t s.t. there
exists some edge e′′ with F j

a (e′′) = Fa(e′′) and removing F j
a from Fa.

After every execution of step 7 (and also during every execution of 5), the
respective augmenting flow F j

a has the following property Q: There is a node w
(after step 7 we have w = u′) s.t. all edges beyond w are marked and all edges
before w are not marked, with the flow F j

a constituting the same simple path
between u and w as in the last iteration of steps 5 to 7. Note that even though
we start with an unsplitted flow F j

a in step 5, the augmenting flow F j
a beyond

w may be splitted due to the performed augmentations.

19

Before showing property Q, we assume for now that Q holds, in order to
show two things: First, we show that in step 6, when choosing a cycle, we can
actually choose a cycle as described in step 6.

Property Q guarantees the existence of at least one such cycle: Just choose
some arbitrary cycle and then follow the continuous part of the cycle consisting
of commodity Ki from u′ to the other end, given by some node x. Then there
must be a path from u′ to x consisting of marked edges, which together with
the aforementioned path forms a cycle as described. After augmenting along
this cycle, we may consider the re-routed augmenting flow as marked. Thus,
property Q still holds and hence guarantees the existence of another cycle as
described, under the condition that a cycle of marked edges and commodity Ki

still exists. Note that in this context we still speak of marked edges, though
technically some specific flow on the edges is marked (which is necessary because
of potential cycles in the augmenting flow after augmenting along the first cycle).

Second, we show that in step 7, when choosing a cycle, we can actually
choose a cycle as described in step 7. Again assuming property Q, for the first
cycle deletion we can choose a cycle as described due to the choice of u′ (if a
cycle exists).

According to the properties of the deleted cycle, the (deleted) flow going
from y to u′ must continue towards t only along edges which cannot be part of a
cycle. Thus, if we ignore this deleted flow and its continuation towards t, all the
(augmenting) flow re-routed in step 6 still arises from u′. Hence, after deleting
the first (and any subsequent) cycle, we can again choose a cycle as described,
should a cycle still exist. Note that the amount of flow in F j

a going from u to u′

is sufficient for all cycle deletions determined by the re-routed flow. Moreover,
note that the considered cycles may use any edge only once, but are allowed to
contain a node more than once in the corresponding cyclic order of nodes.

We now show that property Q holds: Observe that property Q holds in the
beginning of each iteration of steps 5 to 8. If property Q holds in the beginning
of step 5, then it holds during the whole step 5. Also, it holds after step 7,
due to the last sentence in step 7 in conjunction with the above considerations
regarding step 7. In particular, a part of the (unmarked) flow from u to u′ must
remain after the deletion of cycles in step 7, since all the flow in F j

a starts along
this path and some part of F j

a must actually arrive at t.
Note that the edges marked at the end of any execution of step 7 together

with the edges of commodity Ki cannot form a cycle, since these newly marked
edges were used by commodity Ki before the augmentation in step 6 (while the
reverse applies to the re-routed flow of commodity Ki).

All of the above applies analogously for the execution of step 12.
After these preliminaries regarding the correctness of Algorithm 3, we will

now show the strong consistency. Observe that the only updates performed in
the physical network occur in step 6 and step 12. We first deal with step 6:

When flow of commodity Ki is re-routed in step 6, it replaces (parts of) the
augmenting flow F j

a , yielding a half flow Hj
a. As this replaced flow did not form

a cycle with itself or together with flow of the commodity Ki, adding flow Fi

along these edges will not form a cycle with F j
a or the commodity Ki either.

20

It remains to show for step 6 that Hj
a satisfies the strong consistency condi-

tions given in Definition 9. As Hj
a is part of the new flow, it satisfies Condition

1). Furthermore, the new flow was just increased by Hj
a, thus guaranteeing

Condition 2). Lastly, as the augmenting flow F j
a together with the old flow

did not violate any edge capacity constraints (and the augmenting flow is not
actually inserted in the physical network), Condition 3) follows.

Again, analogous arguments apply for step 12, as the newly added flow just
replaces an augmenting flow. Hence, the migration performed by Algorithm 3
is a strongly consistent migration.

Furthermore, observe that the only (physical) network updates performed
occur in steps 6 and 12. Careful analysis shows that step 6 will be executed at
most km2n times, where each execution requires at most n updates. As step 12
invokes iterations of steps 3 to 9, and performs a strongly consistent migration
update after each invocation of step 8, the asymptotic number of updates does
not change. Hence, we can bound the total number of updates by O(km2n2).

However, in order to strongly consistently migrate to new desired demands,
we still need a framework akin to Algorithm 2, which we will now provide:

Algorithm 4. Let N be a network and let F be a multi-commodity flow for the
multi-commodity K. Let (d1, . . . , dk) be a vector of demands s.t. i) there exists a
multi-commodity flow for K satisfying these demands, and ii) d1 ≥ dF1

, . . . , dk
≥ dFk

.

1. Compute a multi-commodity flow F ′1 with a demand vector of (d1, dF2
, . . . ,

dFk
) using an LP.

2. Compute the difference flow ZF,F ′1 .

3. Augment F with ZF,F ′1 by using Algorithm 3.

4. Iterate the above three steps for the remaining commodities K2, . . . ,Kk,
thereby obtaining the flows F2, . . . ,Fk with the demand vectors of
(d1, d2, dF3

, . . . , dFk
), . . . , (d1, d2, d3, . . . , dk−1, dFk

), (d1, . . . , dk).

Note that all calculations performed by Algorithm 4 (and by its invoked
Algorithm 3) can be performed in polynomial time.

Corollary 4. Algorithm 4 performs a strongly consistent migration from F to
some multi-commodity flow with a demand vector of (d1, . . . , dk), using only
O(k2m2n2) strongly consistent migration updates.

7. NP-Hardness of Consistently Migrating Unsplittable Flows

So far we considered splittable multi-commodity flows as defined in Section 3,
however this is just one side of the coin. Not only recently, “Motivated by routing
problems arising in real-life applications [...] unsplittable flows have moved into
the focus of research.” [3] An unsplittable flow is defined as a flow only taking
one simple path from its source to its destination:

21

Definition 10. A single-commodity flow F is called an unsplittable single-
commodity flow if the set of edges e ∈ E : F (e) > 0 forms a simple (i.e.,
cycle-free) path from s to t. A multi-commodity flow F is called an unsplittable
multi-commodity flow if all of its single-commodity flows are unsplittable single-
commodity flows.

Similarly, we define an unsplittable consistent migration to be a consistent
migration using only unsplittable flows:

Definition 11. A consistent migration update (N,F ,F ′) is called an unsplit-
table consistent migration update if both F ,F ′ are unsplittable multi-commodity
flows. A consistent migration is called an unsplittable consistent migration if
it consists of unsplittable consistent migration updates.

7.1. Hardness of Deciding if Demands can be Satisfied

Even et al. [12] showed for general4 multi-commodity flow problems that it is
NP-hard to decide if even the demand of two commodities can be met by integral
flows in graphs with unit capacities; this case is equivalent to unsplittable multi-
commodity flows. Kleinberg showed the NP-hardness also for the single-source
unsplittable multi-commodity flow case [28], which is equivalent to the model
used in this article (by reversing all edge directions). From the results of Baier et
al. [3], it can be inferred that the NP-hardness also holds for just two unsplittable
flows with common source s and destination t. The case of just one unsplittable
single-commodity flow can be solved in polynomial time by, e.g., finding the
path with the highest capacity from s to t.

7.2. Consistently Migrating Unsplittable Flows

As it is already NP-hard to decide if the demands of some commodities
can be met (see the above Subsection 7.1), it is also an NP-hard problem to
consistently migrate to a multi-commodity flow meeting these demands.

However, what happens if we know that the desired demands of the com-
modities can be met? I.e., if we are given the current multi-commodity flow
and a multi-commodity flow meeting the desired demands (both unsplittable),
is unsplittably consistently migrating NP-hard as well? As it turns out, the
answer is yes:

Theorem 5. Let N be a network and let F = (F1, . . . , Fk), F ′ = (F ′1, . . . , F
′
k)

be unsplittable multi-commodity flows for the multi-commodity K s.t. dFi ≤ dF ′i ,
1 ≤ i ≤ k. It is NP-hard to decide if there is an unsplittable consistent migration
from F to some unsplittable multi-commodity flow satisfying the demands of F ′.

Note that for multi-commodity flows F ,F ′ with identical demands, the prob-
lem is trivial as zero updates are required to meet the demands of F ′.

We will prove Theorem 5 by reduction from the classic NP-hard problem
PARTITION (also known as number partitioning):

4I.e., with each flow having a possibly distinct source and destination respectively.

22

Definition 12 (PARTITION [17]). Let A be a finite set of k positive real-valued

elements a1, . . . , ak, and set A :=
∑k

i=1 ai. Is it possible to partition A into two
sets A1,A2 s.t. the sums A1 :=

∑
ai∈A1

ai, A2 :=
∑

ai∈A2
ai of their respective

elements are identical, i.e., A1 = A2 = A
2 ?

Theorem 6 ([17]). The PARTITION problem from Definition 12 is NP-hard.

We can now prove Theorem 5:

Proof of Theorem 5. For every instance I of the PARTITION problem we will
construct in polynomial time an instance I ′ of the problem described in Theo-
rem 5 s.t. I is a yes-instance if and only if I ′ is a yes-instance.

Given an instance I of the PARTITION problem, we create a network N =
(G = (V,E), c) as follows: V consists of k sources s1, . . . , sk, two sources sa, sb,
two nodes va, vb, and a destination t, i.e., k + 5 nodes in total. E is composed
of an edge from each s1, . . . , sk to both va and vb with capacity of ai, 1 ≤ i ≤ k
respectively. Furthermore, there are edges from va, vb to t with a capacity of A
each, and edges from sa to va and sb to va, vb with capacities of A/2. In total,
there are 2k + 2 + 1 + 2 = 2k + 5 edges.

The unsplittable multi-commodity flow F composed of the unsplittable flows
F1, . . . , Fk, Fb, Fa is defined as follows: dF1

= a1, . . . , dFk
= ak, with each of

these k flows Fi being routed from its source si via va to t, 1 ≤ i ≤ k. Further-
more, dFb

= A/2, with it being routed from its source sb via vb to t. Lastly,
dFa

= 0.
The unsplittable multi-commodity flow F ′, composed of the unsplittable

flows F ′1, . . . , F
′
k, F

′
b, F

′
a, is defined as follows: dF ′1 = a1, . . . , dF ′k = ak, but with

each of these k flows Fi being routed from their source si via vb to t, 1 ≤ i ≤ k.
Lastly, dFb

= dFa
= A/2, with both being routed via va.

The construction can be performed in polynomial time and is depicted in
Figure 5.

Let us start by assuming that the PARTITION instance I is solvable, i.e.,
it is a yes-instance. Then, we can select the flows corresponding to A1 and
unsplittably consistently migrate them to the path via vb, as their combined
size is exactly A/2. In the next step, we can add an unsplittable flow F ′a of size
A/2 from sa via va to t, showing that I ′ is a yes-instance as well.

To conclude the proof, let us assume that the PARTITION instance I is not
solvable, i.e., it is a no-instance. Observe that currently, the edge from va to t
has no free capacity, and the edge from vb to t has a free capacity of exactly
A/2. Unless we can move a subset of the set of flows F1, . . . , Fk of combined size
exactly A/2 to the path via vb, neither the edge from va to t nor the edge from
vb to t will have a free capacity of at least A/2. As the PARTITION instance is
not solvable, this is not possible, meaning neither Fb can be moved consistently
nor Fa can be added to the network, as both their sizes are A/2. Hence, I ′ is a
no-instance as well.

23

(a) Unsplittable multi-commodity flow F (b) Unsplittable multi-commodity flow F ′

Figure 5: The old unsplittable multi-commodity flow F is depicted in Subfigure 5a on the
left, while the new unsplittable multi-commodity flow F ′ is depicted in Subfigure 5b on the
right. In Subfigure 5a, the edge from va to t is used at full capacity. Similarly, in Subfigure
5b both edges from va, vb to t are used at full capacity. In order to consistently migrate to a
multi-commodity flow with the same demands as F ′, flows from F1, . . . , Fk of combined size
exactly A/2 need to migrate to the edge from vb to t. However, this is equivalent to solving
the corresponding PARTITION instance.

8. Augmenting Flows beyond a Single Destination

Besides the case of unsplittable flows as covered in Section 7, there is another
natural extension of our model: Namely, the case of multi-commodity flows with
multiple sources and multiple destinations.

As a simple example shows (cf. Figure 6), applying an augmenting path in
a straightforward way to a network with multiple sources and destinations will
not even necessarily result in a correct multi-commodity flow. The outgoing
flow can end up being re-routed to a wrong destination.

(a) Initial network with just
one flow from s1 to t1.

(b) An augmenting flow is
found from s2 to t2.

(c) The resulting flows are
not feasible in the network!

Figure 6: The existence of an augmenting flow does not guarantee feasible flows for multiple
sources and destinations. E.g., the flow from s1 might end up in t2.

A logical consequence is to admit only augmenting flows which re-route cor-
rectly, i.e., each outgoing flow of a source is still routed to its assigned destina-
tion. However, as Hu noted [22], it is unlikely that the technique of augmenting
paths can be extended to a general multi-commodity setting (cf. Section 1).

24

Nonetheless, what would happen if we could develop an augmenting path ap-
proach that results in correct multi-commodity flows?

Sacrificing polynomial runtime, one could check all possible flows between
source-destination pairs in the residual networks to see if there is an augmenting
flow that respects each flow ending at its correct destination.

However, a more intricate example (cf. Figure 7) shows that, even in this
case, it is not always possible to migrate consistently from the initial flow to the
augmented flow.

(a) There is an augmenting flow from s2 to t2 that results in a proper multi-commodity flow.

(b) The resulting new flow after the augmenting flow from above is applied to the network.

Figure 7: Neither (part of) the red nor the green flow can consistently migrate to any imag-
inable flow in the network: Moving any part of the red flow to the bottom path (or any
part of the green flow to the top path) in Subfigure 7a will violate the consistency condition.
Still, there is an augmenting flow moving both flows to other edges – which also respects the
assignment of the sink-destination pairs, see Subfigure 7b for the resulting network. Hence,
even an augmenting flow resulting in a proper multi-commodity flow does not guarantee a
consistent migration for multiple sources and destinations.

25

9. Concluding Remarks

In this work, we extended the notion of augmenting flows to the setting
of multi-commodity flows for a single logical destination, providing algorithms
to efficiently tackle the problem of consistent migration in Software Defined
Networks. We also showed that augmenting flows can guarantee stronger con-
sistency properties in this setting, and that consistent migration is NP-hard
for unsplittable flows, even if both initial and desired demands are satisfiable.
A natural question arises: Can we generalize the concept of an augmenting
path to the general multi-commodity setting? As it turns out, even if we could
efficiently find augmenting paths respecting the source-destination pairs, they
will break consistency during migration. We thus believe that fundamentally
different techniques are required to apply the method of augmenting flows for
consistent migration updates beyond the anycast setting.

10. Acknowledgements

We would like to thank the anonymous reviewers of the 17th International
Conference on Distributed Computing and Networking (ICDCN ’16) for their
helpful comments on our preliminary extended abstract [4].

Furthermore, we would like to thank the anonymous reviewers of this journal
article for their helpful comments as well.

Klaus-Tycho Foerster was supported in part by Microsoft Research.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows - theory,
algorithms and applications. Prentice Hall, 1993.

[2] Z. Al-Qudah, S. Lee, M. Rabinovich, O. Spatscheck, and J. E. van der
Merwe. Anycast-aware transport for content delivery networks. In J. Que-
mada, G. León, Y. S. Maarek, and W. Nejdl, editors, Proceedings of the
18th International Conference on World Wide Web, WWW 2009, Madrid,
Spain, April 20-24, 2009, pages 301–310. ACM, 2009.

[3] G. Baier, E. Köhler, and M. Skutella. The k-splittable flow problem. Al-
gorithmica, 42(3-4):231–248, 2005.

[4] S. Brandt, K.-T. Foerster, and R. Wattenhofer. Augmenting anycast net-
work flows. In Proceedings of the 17th International Conference on Dis-
tributed Computing and Networking, ICDCN ’16, pages 24:1–24:10, New
York, NY, USA, 2016. ACM.

[5] S. Brandt, K.-T. Foerster, and R. Wattenhofer. On Consistent Migration of
Flows in SDNs. In 2016 IEEE Conference on Computer Communications,
INFOCOM 2016, San Francisco, California, USA, April 2016. IEEE, 2016.

26

[6] M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, and J. Padhye. Analyz-
ing the performance of an anycast CDN. In K. Cho, K. Fukuda, V. S. Pai,
and N. Spring, editors, Proceedings of the 2015 ACM Internet Measurement
Conference, IMC 2015, Tokyo, Japan, October 28-30, 2015, pages 531–537.
ACM, 2015.

[7] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. Software transactional
networking: concurrent and consistent policy composition. In N. Foster and
R. Sherwood, editors, Proceedings of the Second ACM SIGCOMM Work-
shop on Hot Topics in Software Defined Networking, HotSDN 2013, The
Chinese University of Hong Kong, Hong Kong, China, August 16, 2013,
pages 1–6. ACM, 2013.

[8] M. Casado, N. Foster, and A. Guha. Abstractions for software-defined
networks. Commun. ACM, 57(10):86–95, 2014.

[9] W. Cerroni, F. Callegati, B. Martini, and P. Castoldi. Analytical model for
anycast service provisioning in data center interconnections. In D. Sime-
onidou, editor, 16th International Conference on Optical Network Design
and Modelling, ONDM 2012, Colchester, United Kingdom, April 17-20,
2012, pages 1–6. IEEE, 2012.

[10] D. Cicalese, D. Giordano, A. Finamore, M. Mellia, M. M. Munafò,
D. Rossi, and D. Joumblatt. A first look at anycast CDN traffic. CoRR,
abs/1505.00946, 2015.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms (3. ed.). MIT Press, 2009.

[12] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and
multicommodity flow problems. SIAM J. Comput., 5(4):691–703, 1976.

[13] K.-T. Foerster, R. Mahajan, and R. Wattenhofer. Consistent updates in
software defined networks: On dependencies, loop freedom, and blackholes.
In 2016 IFIP Networking Conference, Networking 2016 and Workshops,
Vienna, Austria, May 17-19, 2016, pages 1–9. IEEE, 2016.

[14] K.-T. Foerster, S. Schmid, and S. Vissicchio. Survey of consistent network
updates. CoRR, arXiv:1609.02305 [cs.NI], 2016.

[15] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canad.
J. Math, 8:399–404, 1956.

[16] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, Princeton, NJ, USA, 1962.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA, 1990.

27

[18] M. Gharbaoui, B. Martini, and P. Castoldi. Anycast-based optimiza-
tions for inter-data-center interconnections. J. Opt. Commun. Netw.,
4(11):B168–B178, Nov 2012.

[19] A. V. Goldberg, J. D. Oldham, S. A. Plotkin, and C. Stein. An imple-
mentation of a combinatorial approximation algorithm for minimum-cost
multicommodity flow. In R. E. Bixby, E. A. Boyd, and R. Z. Ŕıos-Mercado,
editors, Integer Programming and Combinatorial Optimization, 6th Inter-
national IPCO Conference, Houston, Texas, USA, June 22-24, 1998, Pro-
ceedings, volume 1412 of Lecture Notes in Computer Science, pages 338–
352. Springer, 1998.

[20] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella,
L. E. Li, and M. Thottan. Measuring control plane latency in sdn-enabled
switches. In J. Rexford and A. Vahdat, editors, Proceedings of the 1st ACM
Symposium on SDN Research, SOSR ’15, Santa Clara, California, USA,
June 17-18, 2015, pages 25:1–25:6. ACM, 2015.

[21] C. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer. Achieving high utilization with software-driven WAN. In
D. M. Chiu, J. Wang, P. Barford, and S. Seshan, editors, ACM SIGCOMM
2013 Conference, SIGCOMM’13, Hong Kong, China, August 12-16, 2013,
pages 15–26. ACM, 2013.

[22] T. C. Hu. Multi-commodity network flows. Operations Research, 11(3):344–
360, 1963.

[23] A. Itai. Two-commodity flow. J. ACM, 25(4):596–611, 1978.

[24] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat.
B4: experience with a globally-deployed software defined wan. In D. M.
Chiu, J. Wang, P. Barford, and S. Seshan, editors, ACM SIGCOMM 2013
Conference, SIGCOMM’13, Hong Kong, China, August 12-16, 2013, pages
3–14. ACM, 2013.

[25] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer. Dionysus: Dynamic scheduling of net-
work updates. In F. E. Bustamante, Y. C. Hu, A. Krishnamurthy, and
S. Ratnasamy, editors, ACM SIGCOMM 2014 Conference, SIGCOMM’14,
Chicago, USA, August 17-22, 2014, pages 539–550. ACM, 2014.

[26] L. G. Khachian. A polynomial algorithm in linear programming. Dokl.
Akad. Nauk SSSR, 244:1093–1096, 1979. English translation in Soviet
Math. Dokl. 20, 191-194, 1979.

[27] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. J. Clark.
Kinetic: Verifiable dynamic network control. In 12th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 15, Oakland,
CA, USA, May 4-6, 2015, pages 59–72. USENIX Association, 2015.

28

[28] J. M. Kleinberg. Single-source unsplittable flow. In 37th Annual Symposium
on Foundations of Computer Science, FOCS ’96, Burlington, Vermont,
USA, 14-16 October, 1996, pages 68–77. IEEE Computer Society, 1996.

[29] M. Kuzniar, P. Pereśıni, and D. Kostic. What you need to know about
SDN flow tables. In J. Mirkovic and Y. Liu, editors, Passive and Active
Measurement - 16th International Conference, PAM 2015, New York, NY,
USA, March 19-20, 2015, Proceedings, volume 8995 of Lecture Notes in
Computer Science, pages 347–359. Springer, 2015.

[30] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A. Maltz.
zUpdate: updating data center networks with zero loss. In D. M. Chiu,
J. Wang, P. Barford, and S. Seshan, editors, ACM SIGCOMM 2013 Con-
ference, SIGCOMM’13, Hong Kong, China, August 12-16, 2013, pages
411–422. ACM, 2013.

[31] J. McClurg, H. Hojjat, P. Cerný, and N. Foster. Efficient synthesis of
network updates. In D. Grove and S. Blackburn, editors, Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, June 15-17, 2015, pages 196–
207. ACM, 2015.

[32] T. Mizrahi and Y. Moses. Time-based updates in software defined net-
works. In N. Foster and R. Sherwood, editors, Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Network-
ing, HotSDN 2013, The Chinese University of Hong Kong, Hong Kong,
China, August 16, 2013, pages 163–164. ACM, 2013.

[33] T. Mizrahi and Y. Moses. On the necessity of time-based updates in SDN.
In R. Sherwood, editor, Open Networking Summit 2014, ONS 2014, Santa
Clara, CA, USA, March 2-4, 2014. USENIX, 2014.

[34] T. Mizrahi, O. Rottenstreich, and Y. Moses. Timeflip: Scheduling network
updates with timestamp-based TCAM ranges. In 2015 IEEE Conference
on Computer Communications, INFOCOM 2015, Kowloon, Hong Kong,
April 26 - May 1, 2015, pages 2551–2559. IEEE, 2015.

[35] A. Noyes, T. Warszawski, P. Cerný, and N. Foster. Toward synthesis of
network updates. In B. Finkbeiner and A. Solar-Lezama, editors, Proceed-
ings Second Workshop on Synthesis, SYNT 2013, Saint Petersburg, Russia,
July 13th and July 14th, 2013., volume 142 of EPTCS, pages 8–23, 2014.

[36] C. Prakash, J. Lee, Y. Turner, J. Kang, A. Akella, S. Banerjee, C. Clark,
Y. Ma, P. Sharma, and Y. Zhang. PGA: using graphs to express and au-
tomatically reconcile network policies. Computer Communication Review,
45(5):29–42, 2015.

[37] M. Prince. A brief primer on anycast. https://blog.cloudflare.com/a-brief-
anycast-primer/, October 2011.

29

[38] M. Prince. Load balancing without load balancers.
https://blog.cloudflare.com/cloudflares-architecture-eliminating-single-
p/, March 2013.

[39] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Ab-
stractions for network update. In L. Eggert, J. Ott, V. N. Padmanabhan,
and G. Varghese, editors, ACM SIGCOMM 2012 Conference, SIGCOMM
’12, Helsinki, Finland - August 13 - 17, 2012, pages 323–334. ACM, 2012.

[40] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent updates for
software-defined networks: change you can believe in! In H. Balakrishnan,
D. Katabi, A. Akella, and I. Stoica, editors, Tenth ACM Workshop on Hot
Topics in Networks (HotNets-X), HOTNETS ’11, Cambridge, MA, USA -
November 14 - 15, 2011, page 7. ACM, 2011.

[41] W. Rothfarb, N. P. Shein, and I. T. Frisch. Common terminal multicom-
modity flow. Operations Research, 16(1):202–205, 1968.

[42] A. Tanenbaum and D. Wetherall. Computer Networks (5th Edition). Pear-
son Prentice Hall, 2010.

[43] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. C. M. Lau. Moving big
data to the cloud: An online cost-minimizing approach. IEEE Journal on
Selected Areas in Communications, 31(12):2710–2721, 2013.

30

	Introduction
	Structure of our Article

	Background and Related Work
	Augmentation & Multi-Commodity Flows
	SDNs & Multi-Commodity Flows
	Comparison with Current Flow Migration Techniques

	Model
	Network Flows
	Consistent Migration

	Augmenting Flows for Multiple Commodities
	Augmenting the Network in Practice with Algorithm 1
	A Stronger Consistency Model
	NP-Hardness of Consistently Migrating Unsplittable Flows
	Hardness of Deciding if Demands can be Satisfied
	Consistently Migrating Unsplittable Flows

	Augmenting Flows beyond a Single Destination
	Concluding Remarks
	Acknowledgements

