
SoK: Preventing Transaction Reordering Manipulations in
Decentralized Finance

Lioba Heimbach
ETH Zürich
Switzerland

hlioba@ethz.ch

Roger Wattenhofer
ETH Zürich
Switzerland

wattenhofer@ethz.ch

ABSTRACT
User transactions on Ethereum’s peer-to-peer network are at risk of
being attacked. The smart contracts building decentralized finance
(DeFi) have introduced a new transaction ordering dependency to
the Ethereum blockchain. As a result, attackers can profit from
front- and back-running transactions. Multiple approaches to miti-
gate transaction reordering manipulations have surfaced recently.
However, the success of individual approaches in mitigating such
attacks and their impact on the entire blockchain remains largely
unstudied.

In this systematization of knowledge (SoK), we categorize and
analyze state-of-the-art transaction reordering manipulation mit-
igation schemes. Instead of restricting our analysis to a scheme’s
success at preventing transaction reordering attacks, we evaluate
its full impact on the blockchain. Therefore, we are able to provide
a complete picture of the strengths and weaknesses of current miti-
gation schemes. We find that currently no scheme fully meets all
the demands of the blockchain ecosystem. In fact, all approaches
demonstrate unsatisfactory performance in at least one area rele-
vant to the blockchain ecosystem.

KEYWORDS
Ethereum, smart contracts, decentralized finance, fair ordering,
front-running

ACM Reference Format:
Lioba Heimbach and Roger Wattenhofer. 2022. SoK: Preventing Transaction
Reordering Manipulations in Decentralized Finance. In 4th ACM Conference
on Advances in Financial Technologies (AFT ’22), September 19–21, 2022,
Cambridge, MA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3558535.3559784

1 INTRODUCTION
The introduction of Bitcoin [67] sparked a wave in interest in cryp-
tocurrencies and led to rapid development. Most notably Ethereum,
which introduced smart contracts [80] and opened further opportu-
nities for cryptocurrency development. Yet, cryptocurrencies only
offered niche applications. The introduction of decentralized finance
(DeFi) on the Ethereum blockchain introduced a new purpose to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AFT ’22, September 19–21, 2022, Cambridge, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9861-9/22/09. . . $15.00
https://doi.org/10.1145/3558535.3559784

cryptocurrencies. DeFi offers many traditional financial services
without intermediaries, such as banks, brokerages, and stock ex-
changes. Instead of relying on intermediaries, DeFi utilizes smart
contracts running on the blockchain.

The smart contracts behind DeFi are often transaction order de-
pendent, i.e., the outcome of a set of transactions is dependent on
their order. Therefore, DeFi gives rise to transaction reordering
attacks – race condition attacks. Consider the following example of
a transaction reordering attack: you want to buy a cryptocurrency
at a specific price; determined by the current state of the smart
contract. A transaction reordering attack would change the cryp-
tocurrencies price (for the worse) by interacting with the smart
contract before your transaction executes, but after seeing your
transaction.

As simple financial transactions between two parties are not
transaction order dependent, the traditional blockchain design does
not pay much attention to transaction ordering. Instead, miners
have complete control over transaction ordering. Users broadcast
their transactions across the network. When building a block, min-
ers not only choose the transactions included in a block and their or-
der but can also include any additional transactions they wish. The
freedom given to miners in building blocks gives rise to blockchain
extractable value (BEV) which defines the potential revenue from
all kinds of transaction reordering attacks. More specifically, BEV
is a measure of the profit that can be made through including, ex-
cluding, or re-ordering transactions within blocks [44]. We note
that BEV was previously known as miner extractable value (MEV).

Major DeFi applications, such as decentralized exchanges (DEXes)
and lending protocols are susceptible to transaction reordering at-
tacks. The monthly BEV collected on lending platforms and DEXes
repeatedly exceeds $100M [16] and presents an invisible tax to
traders. This invisible tax on traders is further increased by the
increased gas price resulting from BEV opportunities [44]. Many
BEV mitigation schemes are currently under development; they
aim to alleviate traders from financial losses stemming from BEV.
Their effects, however, must not be limited to BEV mitigation. Most
schemes also intrude into other blockchain aspects, such as de-
centralization and goodput (the number of genuine transactions
per block). Despite the beginning adaptation of BEV mitigation
schemes, a full evaluation of their effects on the blockchain is miss-
ing.

In this systematization of knowledge (SoK), we systematically
categorize and evaluate state-of-the-art BEV mitigation schemes. In
particular, we do not restrict our analysis to an approach’s success
in mitigating BEV but extend it to its full impact on the blockchain.
Thereby, we aim to provide a balanced overview of the strengths
and weaknesses of BEV mitigation schemes. Our work finds that
no BEV mitigation scheme can meet all demands of the blockchain

https://doi.org/10.1145/3558535.3559784
https://doi.org/10.1145/3558535.3559784
https://doi.org/10.1145/3558535.3559784

AFT ’22, September 19–21, 2022, Cambridge, MA, USA Lioba Heimbach and Roger Wattenhofer

ecosystem as all schemes exhibit unsatisfactory performance in
at least one area relevant to the blockchain ecosystem. Further
research is, thus, required to avoid transaction reordering attacks
without major negative disruptions to the blockchain ecosystem.

2 RELATEDWORK
Transaction reordering manipulations, in particular front-running,
are not exclusive to blockchains. Front-running has long been preva-
lent in traditional finance. However, due to the non-public nature
of traditional finance, front-running there is generally specula-
tive [27, 35]. Even more so, most forms of front-running are out-
lawed in traditional finance [64, 66]. Still, HFTs firms have gained
worldwide attention for utilizing trading strategies that make use
of what is sometimes considered legalized front-running [51, 73].
While loopholes allowing forms of front-running prevail in tradi-
tional finance, lawmakers mitigate most front-running practices
by outlawing the practice. Front-running can not be prevented
through similar measures in DeFi and, therefore, DeFi requires new
solutions.

Front-running practices on DeFi were first studied by Eskandir
et al. [48]. They combine a scattered body of work surrounding
DeFi front-running. Daiain et al. [44] extend the research on DeFi
transaction reordering manipulation by including all types of trans-
action reordering manipulations and introducing BEV. Note that at
the time, BEV was known as miner extractable value. Further, they
examine price gas auctions (PGA) on the Ethereum blockchain. Qin
et al. [70] follow this line of research and are the first to quantify
the transaction ordering tax – showing that miners are actively
extracting BEV. While these works identify BEV opportunities in
DeFi, we systematize approaches that mitigate BEV.

Baum et al. [32] systematize and discuss front-runningmitigation
in DeFi. The work limits the discussion of the mitigation schemes
to their ability to prevent front-running on DEXes. In contrast, our
work is broader and systematizes BEVmitigation strategies. Further,
we do not only assess a scheme’s ability to prevent front-running
but also consider the scheme’s impact on the entire blockchain
ecosystem.

We also note that Baum et al. [32] place a particular focus on a
more general kind of front-running mitigation in their systematiza-
tion. These more general front-running mitigation approaches do
not focus on transaction reordering itself but develop new DEXes
such that even after a transaction is confirmed, one cannot infer its
size [31, 41, 43, 61]. The goal, however, is mainly to provide confi-
dentiality to users when trading. Confidentiality allows professional
traders to execute their trading strategies unobserved – preventing
others from copying their strategies. While confidentiality could
prevent speculative sandwich attacks, whereby the attacker guesses
the transaction size based on the sender, we are not aware of such
attacks taking place on DEXes. Further, these attacks are not a
direct consequence of blockchain’s public nature, as similar attacks
are known from traditional finance [60]. We focus on prevention
schemes for transaction reordering attacks extracting BEV on DeFi
that do not impede the blockchain’s public nature.

Additionally, we note that protocols distributing the profits from
transaction reordering attacks have recently emerged. Rook [19]
shares a proportion of the BEV collected from trades that execute

through the protocol with the traders. Thus, while the tax placed
on traders as a result of transaction reordering attacks is reduced,
the practice is not irradiated. B.Protocol [4], on the other hand,
pools the liquidity from individuals to work together and collect
profits from liquidations. As these protocols generally target the
distribution of BEV profits as opposed to mitigating BEV, we will
not focus on them in the following.

3 TRANSACTION REORDERING
MANIPULATIONS

We first introduce the basics of the Ethereum blockchain. After-
wards, we provide an overview of the kind of transaction reordering
manipulation used on DEXes and lending protocols to extract BEV.

Most DeFi applications run on the public Ethereum blockchain.
To execute an Ethereum transaction, users first broadcast their
transaction across Ethereum’s peer-to-peer network. Thereby, the
transaction enters the mempool – the public waiting area. Users
indicate the gas fee (Ethereum’s network transaction fee) they are
willing to pay when submitting a transaction. A transaction exe-
cutes once a miner includes it in a block. Note that miners tend to
prioritize transactions with higher gas fees, as they collect part of
the fee.

Due to the public nature of the Ethereum blockchain, any full
Ethereum node can observe transactions in the mempool before
they execute. Therefore, an attacker first sees an incoming trans-
action and then profits by inserting their transaction and manip-
ulating the transaction ordering. We note that there are several
strategies utilized by attackers to manipulate the transaction order-
ing to achieve their desired ordering. While the attacker can set the
gas price to influence the transaction ordering, miners tend to order
transactions according to the gas price, the attacker can also be
the miner themselves or bribe the miner to order the transactions
accordingly.

We outline the three kinds of transaction reordering manipula-
tions (cf. Figure 1) required by the most common BEV opportunities:

Fatal front-running. Fatal front-running (cf. Figure 1b) describes
a transaction reorderingmanipulation bywhich the attacker’s trans-
action 𝑇𝐴 front-runs (executes before) the victims transactions 𝑇𝑉 .
In the process, the attacker’s transaction causes the victim’s trans-
action to fail.

Front-running. Front-running (cf. Figure 1c) is a transaction re-
ordering manipulation that has attacker’s transaction 𝑇𝐴 front-run
the victims transactions 𝑇𝑉 . As opposed to fatal front-running, the
attacker ensures that the victim transaction will still execute. Gen-
erally, the conditions for the victim transaction, will however, be
worse.

Back-running. Back-running (cf. Figure 1d) occurs when the
attacker’s transaction 𝑇𝐴 back-runs (executing after) the victims
transactions 𝑇𝑉 .

Note that there is a fourth type of transaction reordering manip-
ulation that is sometimes considered: clogging. When clogging, the
attacker fills up the block(s) until a deadline is reached to prevent
others from executing a trade before the deadline. We, however,

𝑇1 𝑇𝑉 𝑇2 𝑇3

(a) no attack

𝑇1 𝑇𝐴 𝑇𝑉 𝑇2

(b) fatal front-running

𝑇1 𝑇𝐴 𝑇𝑉 𝑇2

(c) front-running

𝑇1 𝑇𝑉 𝑇𝐴 𝑇2

(d) back-running

Figure 1: A visualization of transaction order manipulation
strategies. Figure 1a shows a block with no attack, while
Figures 1b, 1c, and 1d show the various reordering manip-
ulations. We color a transaction that executed successfully
green and a transactions that fail to execute are colored red
and marked with a cross.

view this practice as a specific case of fatal front-running where
the attacker front-runs the victim with multiple transactions.

In addition, to potentially worsening the conditions for the victim
transaction, transaction reordering manipulations also increase
the gas fee paid by the other transactions. Transaction reordering
manipulations compete with other transactions for space in the
block, thereby increasing the gas fee for other transactions. Further,
the associated BEV opportunities are also known to cause PGAs,
whereby multiple attackers compete for a BEV opportunity by
offering higher and higher gas prices. The overbidding, in turn,
increases the gas fee for the network’s other transactions.

We will continue by outlining the general mechanism of DEXes
and lending protocols and the common BEV opportunities they
present. We further note which transaction order manipulations
these attacks require.

3.1 Automated Market Makers
Traditionally, centralized exchanges utilize the limit order book
mechanism to facilitate trades. The limit order book mechanism
matches individual buyers and sellers. Decentralized exchanges
(DEXes), on the other hand, most commonly implement an au-
tomated market maker (AMM) [53]. The four biggest DEXes on the
Ethereum blockchain: Curve [7], Uniswap [24], Sushiswap [23],
and Balancer [3], are all AMMs. More specifically, they function
as constant function market makers (CFMMs) [28]. Similar to their
centralized counterparts, CFMMs allow users to exchange cryp-
tocurrencies with each other. However, instead of utilizing the
limit order book mechanism, CFMMs facilitate automatic algorith-
mic trading of cryptocurrencies. The CFMM only ensures that its
predefined function stays constant. The simplicity of the CFMM
trading mechanism is also the cause of their popularity on the
Ethereum blockchain, as CFMM trades require little space on-chain.
Thus, they utilize less gas and have relatively low transaction fees.
While CFMMs have established themselves, there are transaction
reordering attacks specific to them. To illustrate how transaction
reordering manipulations on CFMMs can generate BEV, we focus
on the most widely adopted subclass of CFMMs: Constant Product
Market Makers (CPMMs) in the following.

tokens 𝑋

to
ke
ns

𝑌

𝑇𝑉

(a) execution of trade𝑇𝑉 without
a sandwich attack

tokens 𝑋

to
ke
ns

𝑌

𝑇𝐹

𝑇𝑉 𝑇𝐵

(b) execution of trade 𝑇𝑉 with a
sandwich attack

Figure 2: Sandwich attack visualisation in a CPMM. Transac-
tion 𝑇𝑉 is the victim’s transaction, and transactions 𝑇𝐹 and
𝑇𝐵 are the attackers front- and back-running transactions
respectively. Notice that the transaction 𝑇𝑉 receives a worse
price in the presence of the sandwich attack.

ACPMM aggregates liquidity for every tradeable cryptocurrency
pair in smart contracts – known as liquidity pools. Anyone can
choose to provide liquidity in such a liquidity pool and, thereby,
become a liquidity provider by depositing the pool’s two assets (at
equal value) in the liquidity pool. The pool’s liquidity then facilitates
trading between the two cryptocurrencies, and liquidity providers
receive a small fee for every trade that utilizes their liquidity. The
exchange rate offered to a transaction is algorithmically determined
and ensures that the product of the amounts of the pool’s reserves
stays constant. Besides the trade size, the pool’s size and the ratio
between the pool’s tokens set the exchange rate. In a CPMM, a
trader wishing to exchange 𝛿𝑥 tokens 𝑋 for tokens 𝑌 in the 𝑋 ⇌ 𝑌

liquidity pool with reserves 𝑥𝑡 tokens 𝑋 and 𝑦𝑡 tokens 𝑌 at time 𝑡 ,
receives

𝛿𝑦 = 𝑦𝑡 −
𝑥𝑡 · 𝑦𝑡

𝑥𝑡 + (1 − 𝑓)𝛿𝑥
=

𝑦𝑡 (1 − 𝑓)𝛿𝑥
𝑥𝑡 + (1 − 𝑓)𝛿𝑥

,

tokens𝑌 [26]. In the previous, 𝑓 is the pool fee charged by the pool’s
liquidity providers. The collected transaction fee is distributed pro-
rata to the liquidity providers. We note that the price per token 𝑌 ,
which is given by

𝑥𝑡 + (1 − 𝑓)𝛿𝑥
𝑦 (1 − 𝑓) ,

increases with the trade input size 𝛿𝑥 . As a result of the convexity
of the price curve, the price per desired token increases with the
trade size.

A CPMM transaction first broadcasts through the peer-to-peer
network and enters the Ethereum mempool. The transaction, how-
ever, only executes upon inclusion in a block by a miner. Thus,
the liquidity pool’s state can change between the submission and

execution time, thereby altering the exchange ratio received by
the trade. Specifically, the pool’s reserves 𝑥𝑡 and 𝑦𝑡 change with
every transaction executing in the meantime. Thus, traders specify
their slippage tolerance – the maximum price movement they are
willing to accept. In case the price movement exceeds the specified
tolerance, trade execution fails. Note that a high slippage tolerance
puts the trader at risk of her transaction executing a worse price,
while a low slippage tolerance puts her at risk of an unnecessary
transaction failure. Nonetheless, the time between a trade’s submis-
sion and execution makes it susceptible to transaction reordering
attacks.

Sandwich attacks are a common transaction reordering attack
on CPMMs [85]. A sandwich attack front-runs (cf. Figure 1c) and
back-runs (cf. Figure 1d) a CPMM transaction. Consider a victim’s
transaction wishing to trade 50 tokens𝑋 for tokens𝑌 in transaction
𝑇𝑉 . The pool fee is 0.3%, and the transaction is submitted at time
𝑡 . The pool reserves at time 𝑡 are 50 tokens 𝑋 and 200 tokens
𝑌 . If the transaction executes without the pool state changing,
the trader receives 99.849 tokens 𝑌 . We visualize the execution of
the transaction along the price curve in Figure 2a. However, an
attacker might observe the transaction in the mempool, waiting
to be included in a block, and determine that it is profitable to
perform a sandwich attack on the victim’s trade. The attacker then
front-runs the victim’s trade with transaction 𝑇𝐹 buying 68.286
tokens 𝑌 to inflate 𝑌 ’s price with 26 tokens 𝑋 in our example
visualized in Figure 2b. The victim transaction 𝑇𝑉 , which also buys
asset 𝑌 , now only receives 52.205 tokens 𝑌 – almost 50% less than
expected – and further inflates 𝑌 ’s price. Finally, the attacker’s
back-running transaction sells the acquired asset𝑌 at a higher price.
The attacker sells 68.286 tokens 𝑌 for 58.017 tokens 𝑋 , leaving the
attacker with 32.017 additional tokens 𝑋 . Thereby the sandwich
attack increases the token’s 𝑌 price for the victim and provides the
attacker with a net profit by taking advantage of the price curve’s
convexity. We note that the preceding example utilized extreme
values to visualize the sandwich attack mechanism. Traders would
generally set the slippage tolerance such that price movements of
almost 50% would lead to automatic trade failures and not allow
for profitable sandwich attacks. Note that sandwich attacks are
performed on individual trades as to push the individual trade to
the maximum acceptable price movement. We further mention
that sandwich attacks can also be similarly performed by liquidity
providers. Liquidity providers front-run the victim’s transaction by
removing their liquidity and back-run it by adding the liquidity and
profiting from the price change. In both cases, the profitability of a
sandwich attack increases with the transaction size and slippage
tolerance.

Further, CPMMs may present cyclic arbitrage opportunities cre-
ated by temporary price inaccuracies across liquidity pools [79].
These arbitrage opportunities allow users to execute a cyclic trade
with a net profit. For example, consider a CPMMwith the following
three liquidity pools between assets 𝑋 , 𝑌 and 𝑍 : 𝑋 ⇌ 𝑌 , 𝑋 ⇌ 𝑍

and 𝑌 ⇌ 𝑍 (cf. Figure 3). When the price across pools is unsynced,
if it is possible for a trader to trade tokens 𝑋 for tokens 𝑌 in pool
𝑋 ⇌ 𝑌 at the price 𝑃𝑋→𝑌 , then exchange tokens 𝑌 for tokens 𝑍
in pool 𝑌 ⇌ 𝑍 at the price 𝑃𝑌→𝑍 and finally tokens 𝑍 for tokens
𝑋 in pool 𝑋 ⇌ 𝑍 at the price 𝑃𝑍→𝑋 for a net profit. Note that the
preceeding prices are the prices recevied by the trader and thus

X

YZ
𝑃𝑌→𝑍

𝑃𝑍→𝑋 𝑃𝑋→𝑌

Figure 3: Cyclic trade execution between tokens 𝑋 , 𝑌 and 𝑍 .
A trade is indicated by an arrow between two tokens and the
received price is noted on the edges.

include the pool’s transaction fee. The transaction is profitable,
when

𝑃𝑋→𝑌 · 𝑃𝑌→𝑍 · 𝑃𝑍→𝑋 ≥ 1,

and allows the trader to extract more tokens 𝑋 from the last trade
then initially enterted into the first trade. When a user finds such
an opportunity and submits a corresponding transaction to the
mempool, anyone listening to the mempool can subsequently see
this arbitrage opportunity. Through fatal front-running (cf. Fig-
ure 1b), an attacker can steal such an arbitrage opportunity. A
similar transaction reordering attack has the attacker back-running
(cf. Figure 1d) the CPMM transaction that creates a market imbal-
ance, thereby giving rise to an arbitrage opportunity. The attacker’s
back-running transaction then collects the arbitrage.

3.2 Lending Protocols
Lending protocols offer cryptocurrency loans in a trustless manner.
Similar to DEXes, they are susceptible to transaction reordering
attacks. In the following, we outline their general mechanism. Any
user can participate as a lender by providing cryptocurrency assets
to the protocol’s smart contracts. For this service, lenders receive
interest from the protocol’s borrowers. Borrowers, on the other
hand, must deposit collateral to take out a cryptocurrency loan and
are charged periodically in the form of an interest rate. To allow for
trustless loans and simultaneously protect the lender, the maximum
loan value must be inferior to the borrower’s collateral value. In this
case, the loan is considered over-collateralized. If the value of the
collateral drops below a pre-specified threshold, the protocol makes
the loan available for liquidation [69]. Note that lending protocols
utilize price oracles [49, 62] to determine the relative value of the
collateral to the loan. Thus, the lending protocol only updates the
relative value whenever the oracle updates.

Two liquidation mechanisms dominate: (1) auction liquidation
and (2) fixed spread liquidation. MakerDAO [14], the first platform
to enable lending on the blockchain, utilizes auction liquidation.
Once a loan becomes available for liquidation, interested liquidators
can provide their bids to receive the loan’s collateral. When the auc-
tion ends, the liquidator with the highest bid wins and receives the
collateral. Aave [1], Compound [5], and dXdY [8], the largest lend-
ing protocols besides MarkerDAO, utilize fixed spread liquidations.
Fixed spread liquidations make liquidated loans available imme-
diately at a pre-determined discount. Liquidators assess whether

liquidating the loan is profitable. The first liquidator engaging with
a (profitable) liquidation opportunity then receives the collateral
and claims the discount. When discussing BEV opportunities, we
will focus on fixed spread liquidations.

There are two common transaction reordering attacks on lend-
ing platforms utilizing fixed spread liquidations. In the first attack,
the attacker observes an upcoming oracle update that will make a
loan available for liquidation and back-runs (cf. Figure 1d) the cor-
responding transaction. The attacker wants to place its transaction
immediately after the oracle update transaction to be first to claim
the discount. Additionally, an attacker might observe a liquidator
attempting a profitable liquidation in the mempool and perform a
fatal front-running transaction (cf. Figure 1b) to steal the associated
profit.

4 FAIR TRANSACTION ORDERINGS AND
MEASURES FOR MITIGATION STRATEGIES

We start by noting that in terms of transaction reordering attack
mitigation, a transaction order is considered fair when it is not
possible for any party to include or exclude transactions after seeing
their contents. Further, it should not be possible for any party to
insert their own transaction before any transaction whose contents
it already been observed.

In the following, we introduce seven measures with which we
will assess approaches that mitigate transaction reordering manip-
ulations and thereby enforce fair orderings and mitigate BEV:

Decentralization. Decentralization measures the approach’s im-
pact on the blockchain’s decentralization.We consider the Ethereum
blockchain design, with miners building the blocks, as the bench-
mark and only assess whether and how significantly the approach
decreases the level of decentralization.

Security. Security measures how susceptible the approach is to
attacks, i.e., how easily attackers bypass the BEV protection.

Scope. Scope measures how wide-reaching the approach is, i.e.,
to what degree it prevents the varying BEV opportunities.

Jostling. Jostling measures the competition between traders for
block inclusion (at a preferential position). Jostling can arise from
the approach limiting the transactions (per application) included
in the block or (when possible) from traders over-bidding each
other in a PGA. Both scenarios would lead traders to compete for
a (preferential) spot in the block. Here, the Ethereum blockchain
design serves as the benchmark for the middleground.

Goodput. Goodput measures whether the approach impacts the
number of genuine transactions processed by the application or
blockchain per time unit. We consider a transaction genuine when
it is not part of an attack or an additional transaction required by
the user to protect against an attack. As with decentralization, we
consider the Ethereum blockchain design as the benchmark and
assess to what degree the approach lessens the application’s or
blockchain’s goodput.

Delay. Delay measures the time between a trade submission and
its execution. Here, the Ethereum blockchain design also serves as
the benchmark.

scope

security

decentralization

cost

delay

goodput

jostling

Figure 4: Optimized trade execution assessment. The ap-
proach’s performance in each category is visualized in the
spyder web. The spyder web’s inner level represents the low-
est score – 1 – and the web’s outer layer corresponds to the
highest score – 3.

Cost. Cost measures the additional cost the approach places di-
rectly on traders for executing their transaction. The additional
costs could either be the additional gas cost stemming from transac-
tions requiring more space on-chain or separate fees paid to those
in charge of ordering the transactions.

Rather than focusing solely on whether an approach successfully
mitigates BEV, we aim to reflect its full impact on the blockchain
with our measures. In the following, we will categorize BEV miti-
gation approaches and assess them in each measure with a score
between 1 and 3. The lowest score – 1 – indicates that the approach
performs poorly in a given measure. Satisfactory performance is
indicated by the middle score – 2. Finally, an approach that displays
excellent performance a category is awarded the highest score – 3.

5 MITIGATING TRANSACTION REORDERING
MANIPULATIONS

We categorize state-of-the-art mitigation approaches (operational
projects, informal ideas, and academic works) for transaction re-
ordering manipulations in the following. To summarize each ap-
proach category, we assess it with our previously introduced mea-
sures allowing us to point out both its weaknesses and strengths.

5.1 Optimized Trade Execution
We commence our analysis with the simplest and easiest to adopt
BEV mitigation schemes. This category of schemes performs an
application-specific transaction optimizations to mitigate specific
attacks.

Zhou et al. [84] propose A2MM, an application that collects
the created arbitrage opportunity directly. More specifically, the
proposed scheme automatically checks whether a user’s CPMM
transaction would create an arbitrage opportunity, i.e., cause a mar-
ket imbalance. For example, a relatively large trade might create a
market imbalance causing a cyclic arbitrage opportunity. If so, the
application proposed by Zhou et al. automatically collects the arbi-
trage within the same transaction and thereby does not leave any
BEV behind. Note that the trader receives the collected arbitrage.
Focusing on reducing sandwich attacks, Züst [86] checks whether
a user transaction is vulnerable to a sandwich attack. In case a
profitable sandwich attack exists, generally the case for a relatively
large transaction, the transaction is split into smaller unattackable
transactions. Thereby, the scheme avoids sandwich attacks. In a
similar line of work, Heimbach and Wattenhofer [52] propose an
algorithm that sets a CPMM transaction’s slippage tolerance. The
mechanism allows users to avoid both sandwich attacks and trans-
action failures from natural price movements. Thereby the scheme
comes at a low cost for the user.

We assess the impact of optimized trade execution schemes on
the blockchain in Figure 4. The approach does not impact the sys-
tem’s decentralization and does not increase transaction costs. Note
that [84] can submit additional transactions to collect arbitrage.
However, the collected arbitrage should exceed the additional fees.
The same holds for [86]. Here, the additional transaction fees needed
when splitting a transaction into multiple transactions must not
top the user’s cost associated with the potential sandwich attack.
Decentralization is not impacted as the user simply changes the pa-
rameters relevant to their transactions to avoid attacks, and schemes
do not impact how transactions are ordered. Further, the schemes
leave the blockchain’s goodput unchanged. We do not foresee a
significant increase in unnatural transactions, and we expect fewer
BEV collecting transactions. The additional transactions to collect
the arbitrage in [84] for instance, would otherwise be executed by
arbitrageurs. Additional transactions stemming from splitting large
trades in [86] avoid two sandwich attack transactions taking up
space on the blockchain, and we predict that very few trades will
not be split more than three trades. Finally, the slippage setting
algorithm presented in [52] reduces both sandwich attacks and
transaction failures.

We foresee the potential for these schemes to increase jostling
among similar transactions. The optimized user transactions are
slightly less flexible than previously to protect users against BEV.
Thus, the likelihood of two ordinary CPMM transactions that utilize
the same protection mechanism competing for successful execution
in the block is slightly elevated due to their increased complexity.
On a similar note, we only expect a slight transaction delay in-
crease. While transactions split by the mechanism suggested in
[86] might execute over several blocks, creating a small delay, the
reduced flexibility of the optimized transactions, in general, might
lead to infrequent transaction failures causing a related delay. The
approach’s security against BEV mitigation has loopholes stem-
ming from the blockchain’s unknown state at execution time. For
example, transactions deemed unattackable might become attack-
able due to a sudden drop in the gas fee. While such scenarios might
occur in rare cases, most transactions will be successfully protected
from the targeted attack.

We conclude by noting that the most significant downfall of
optimized trade execution schemes is their limited scope. The ap-
proach’s scope is limited to particular attacks on specific appli-
cations. While optimized trade execution schemes cannot tackle
general transaction reordering manipulations, they are well-suited
to act as temporary solutions that users can apply themselves until a
universal scheme preventing transaction reordering manipulations
is implemented for their protection.

5.2 Professional Market Makers
There are suggestions that go a step further than optimized trade
execution by redesigning DEXes. Instead of utilizing an AMM these
approaches introduce professional market makers. Their DEX re-
design must automatically enforce fair orderings of DEX transac-
tions on the blockchain. In the following, we discuss those that do
not interfere with the blockchain’s public nature.

Ciampi et al. [42] introduce FairMM, which utilizes a monop-
olistic profit-seeking market maker to ensure a fair ordering. In
the protocol, buyer 𝐵𝑖 first creates a smart contract 𝑆𝑖 and locks
capital (token 𝑋) in the contract. Then she sends a trading request
to buy token 𝑌 to the single market maker (seller). The buyer sends
the request off-chain, and the seller replies off-chain by proposing
an exchange rate. Once the seller replies, the transaction order is
locked and can no longer be hampered with. If the buyer agrees
with the proposed exchange rate, she sends a certificate to the seller
off-chain to buy𝑦 tokens𝑌 . This certificate can be used by the seller
to withdraw the corresponding (according to the agreed-upon ex-
change rate) 𝑥 tokens 𝑋 from the smart contract 𝑆𝑖 . Thereby, 𝑆𝑖
ensures that the sellers have send 𝑦 tokens 𝑌 to the buyer 𝐵𝑖 . Thus,
FairMM does not function as an AMM but utilizes a single market
maker. Hashflow [13] is a DEX that takes a similar approach to re-
design DEXes. Instead of introducing a monopolistic market maker,
Hashflow invites professional market makers to manage liquidity
pools and operates in the request-for-quote (RFQ) model. In the RFQ
model, users request a quote for their transaction off-chain from a
professional market maker. The market maker replies by sending
the user a signature-based quote off-chain. This quote allows the
user to execute the trade at the offered price by broadcasting the
transaction across the Ethereum network. As the price is agreed
upon by the market maker and the buyer, the transaction will ex-
ecute at this price. Further, Hashflow integrates a router that will
execute your order on Uniswap instead if the price is better.

In Figure 5 we provide an assessment of the professional market
maker approach. The approach demonstrates average performance
in most areas. As the approach focuses on DEXes, in particular,
the scope is limited to transaction reordering manipulations on
DEXes. We also anticipate the related and additional transactions
to decrease goodput slightly. Small delay increases are very likely,
as traders potentially first have to lock capital in a smart contract,
then go through three rounds of communication and finally wait
for the trade to execute on-chain when using FairMM. When using
Hashflow, on the other hand, we only expect small delay increases
stemming from off-chain communication in the RFQ model.

We further do not expect a significant increase in cost. FairMM
has buyers lock capital in the smart contract in a first transaction,
and a second on-chain transaction is required for the funds to be

SoK: Preventing Transaction Reordering Manipulations in Decentralized Finance AFT ’22, September 19–21, 2022, Cambridge, MA, USA

scope

security

decentralization

cost

delay

goodput

jostling

Figure 5: Professional market makers assessment. The ap-
proach’s performance in each category is visualized in the
spyder web. The spyder web’s inner level represents the low-
est score – 1 – and the web’s outer layer corresponds to the
highest score – 3.

exchanged. Note that the buyer can lock capital in the smart con-
tract for several transactions. We, however, do expect that buyers
will only lock capital in the smart contract for a small number of
orders at once. In reality, many buyers will not be able to foresee all
their future trades or might not have the available capital to lock
for a large set of future trades. Hashflow, on the other hand, is more
gas-efficient than Uniswap and, thus, might potentially decrease
costs. In terms of jostling, we foresee excellent performance. Other
traders do not observe the off-chain communication, and the order-
ing is set after the initial round of communication in both designs.
Thus, we do not anticipate increased competition for a preferential
position in a block. Decentralization, however, is impacted by hav-
ing professional market makers. The professional market makers,
at least to some extent, can control the ordering – by choosing the
order in which they reply to buyers’ requests initially. Note that
Hashflow allows for everyone to become a market maker, but one
either requires significant capital or reputation (to receive capital
from other users) in reality. Thus, market making is in the hands of
professionals on Hashflow.

Security is the approach’s biggest downfall. On Hashflow, a trans-
action cannot be front-run once the trader has received a quote
from the professional market maker when using Hashflow. How-
ever, with knowledge of the user’s trade, the professional market
maker could reply to their own front-running transaction before
they reply to the user’s transaction. Further, the professional mar-
ket maker could front-run the trader’s transaction on a central-
ized exchange, for instance. For FairMM, the approach’s security
largely relies on assuming rational behavior and is justified with
associated economic models. We, however, expect that a byzantine

market maker can attack the protocol. The market maker not only
knows what, i.e., the specific cryptocurrencies, the trader wants to
trade before the ordering is set but can also observe how much the
trader has locked in the smart contract. We note here that then the
blockchain’s public nature allows the market maker to predict the
user’s trade size. Thus, there appears to be significant potential for
attacks from the single market maker to attack. We further, which
is disregarded in our assessment in Figure 5, question the feasibility
of the protocol, as the market maker cannot quote a price without
knowing the trade size. FairMM expects that the market maker
quotes a price without knowing the transaction’s size. The price
received in a trade execution in markets utilizing the limit order
book mechanism or in CPMMs decreases with the trade size due
to the market’s limited depth. The effects of the limited market
depth are, thus, disregarded by FairMM. Thus, we do not think of
professional market makers as a flawless solution to transaction
reordering attacks on the blockchain.

5.3 Trusted Third Party Ordering
We observe the adoption of transaction reordering manipulation
mitigation schemes utilizing trusted third parties occurring at the
quickest pace. Similar to the previous approach, transactions are
no longer broadcasted through Ethereum’s peer-to-peer network.
Instead, users send their transactions to the trusted third party
tasked with ordering transactions, unlike in the previous approach
where the party is responsible for market making.

Services such as flashbots [11], Eden [9], and OpenMEV [18] are
already widely adopted on the Ethereum blockchain and rely on
a trusted third party to order transactions. Users can send their
transactions to these services without previously broadcasting them
across the peer-to-peer network. Ordered transaction bundles from
flashbots, Eden, and OpenMEV are send directly to miners for
block inclusion. Thus, users rely on several trusted third parties,
the service, and the miner to order their transactions. While users
have to actively seek out these services for front-running protec-
tion on most DEXes, some DEXes have integrated the services
directly. While SushiSwap [23] allows users to send their transac-
tions through Eden in their API, mistX [17] is a DEX that integrates
flashbots for all transactions.

There is also talk of the adaption of a similar private ordering
approach in ETH 2.0 [38], whereby users no longer broadcast trans-
actions to the mempool but instead directly send their transactions
to a block proposer. The block proposer then submits an ordered
transaction bundle to the block’s miner/validator. Transactions or-
dered by a trusted third party (block proposer) do not enter the
public mempool before their execution, and, therefore, they cannot
be front-run if the trusted third party is honest. Gnosis Protocol [12],
otherwise known as CowSwap [6], is a price discovery mechanism
for DEXes that functions similarly. In the Gnosis Protocol, users
send their transactions directly to solvers. Solvers are given a similar
role as block proposers. In particular, it is their job to provide set-
tlement solutions for a batch of transactions. Note that batches are
of limited size, and a uniform clearing price must be enforced, i.e.,
all orders receive assets priced equally against each other. Multiple
solvers compete with each other to provide the best batch and are
rewarded when they find the best one. As all transactions within a

scope

security

decentralization

cost

delay

goodput

jostling

Figure 6: Trusted third party ordering assessment. The ap-
proach’s performance in each category is visualized in the
spyder web. The spyder web’s inner level represents the low-
est score – 1 – and the web’s outer layer corresponds to the
highest score – 3.

batch execute at the same price, there can be no sandwich attacks
within a batch.

Bentov et al. [33] introduce Tesseract: a real-time exchange that
relies on trusted hardware to resit front-running. Tesseract operates
through a trusted execution environment (TEE) [68, 81] in which code
is neither observed nor can it be tampered with. The trusted hard-
ware orders transactions according to their arrival times. Tesseract
requires trust, as it relies on a trusted third party: the hardware
manufacturer. In a similar line of work, Stathakopoulou et al. [76]
present Fairy to bring fairness to ordering. Fairy implements a fair
ordering by relying on a TEE.

Protocols utilitzing TEE are already deployed across DeFi. Au-
tomata [2] utilizes a TEE to implement a conveyor service that
determines the order of incoming transactions and thereby cre-
ates a front-running free zone. XATA [25] is a DEX that relies
on Automata’s conveyor service and only accepts transactions in
the conveyor’s pre-defined order. Similarly, SecretSwap [21] relies
on Secret Network [20], which processes transactions privately
in a TEE, to implement a front-running resistant DEX. Trades on
SecretSwap execute secretly. Thus, SecretSwap also preserves a
transaction’s privacy after its execution, at least to an extent. As
the liquidity pool’s state is public, one can infer an individual trades
size, especially when the volume is small.

In Figure 6, we assess trusted third party ordering as a BEV
mitigation scheme. Trusted third party ordering exhibits a very
asymmetric performance across our seven measures. The approach
excels in four of our seven measures: delay, goodput, jostling, and
scope. For one, the transaction fee should not increase, as the trans-
action does not require more space on-chain. There is no reason

to believe that ordering by a trusted third party increases delay.
Transactions simply wait with the trusted third party until they can
be included in a block. Otherwise, they would wait in the mempool
for block inclusion. The approach further is not expected to im-
pact goodput negatively, as the trusted third party sometimes even
ensures that transactions doomed for failure are never included
in the block [9, 11, 18], and further fewer transactions are visible
for attacks. Jostling is also expected to be very low due to the ap-
proach’s private nature. The strain PGAs, caused by arbitrageurs
competing for a BEV opportunity, place on the network’s gas price
is reduced. We also note that the approach’s scope is broad as it
has the potential to mitigate all kinds of transaction reordering
manipulations related to BEV. In terms of costs, we anticipate a
mediocre performance. At the moment, trusted third parties gener-
ally charge little to nothing for their ordering service, but we expect
these costs to increase. Further, setup costs for trusted hardware
might be significant.

The remaining measures, decentralization, and security, are
where private ordering falls short. Ordering responsibility is placed
in the hands of a trusted third party, not only making ordering cen-
tralized but also relying solely on the honest behavior of the trusted
third party for security. A byzantine trusted third party could, there-
fore, easily manipulate transaction orderings. To summarize, the
approach relies on centralized ordering. Thereby gaining signifi-
cant performance benefits similar to those observed in centralized
exchanges, but is in stark contradiction to the blockchain’s trustless
nature.

5.4 eUTXO Model
Imagine a transaction that only executes on the state that it sees at
the time of submission. Such a transaction can not be front-run as
the attacker cannot manipulate the state to their advantage without
inducing the transaction’s automatic failure. Utilizing the eUTXO
model to mitigate transaction reordering manipulations builds on
this idea.

Lanningham [58] presented a translation of the Uniswap model
to Cardano’s [45] extended UTXO (eUTXO) model [40] in the Sun-
daeSwap [22] whitepaper. As the name suggests, the eUTXO model
is an extension of Bitcoin’s unspent transaction output (UTXO)
model, whereby a user’s coins are not accumulated in their account
but instead stored in individual UTXOs linked to their account.
Each transaction takes UTXOs as inputs, destroys them in the pro-
cess, and outputs a new set of UTXOs. The translation presented
from the Uniswap model to Cardano in [58] stores a liquidity pool’s
liquidity in an eUTXO, thus, simulating a smart contract with an
eUTXO. When submitting a DEX transaction, users need to interact
with the specific liquidity pool’s eUTXO. Each time a user inter-
acts with the pool’s eUTXO, a new eUTXO is created in its place
while the old one is destroyed. Thus, only a single interaction with
the pool per block is possible. The limited transaction throughput
stems from the fact that users must reference the pool’s eUTXO
in their transaction, which is no longer valid as soon as a single
transaction is executed. This straightforward adaption of Uniswap’s
AMM design would therefore prevent front-running – mitigating
BEV – as no user transaction can be forced to execute on a new
state. A similar implementation of a DEX on the Ethereum chain

scope

security

decentralization

cost

delay

goodput

jostling

Figure 7: eUTXO model assesment. The approach’s perfor-
mance in each category is visualized in the spyder web. The
spyder web’s inner level represents the lowest score – 1 – and
the web’s outer layer corresponds to the highest score – 3.

could also set the slippage tolerance of all transactions to zero or
by only letting one transaction interact with the smart contract per
block.

In our assessment (cf. Figure 7), we find that the approach does
not reduce the blockchain’s decentralization and is very secure, as
there is no possibility to be front-run and forced to execute with an
unwanted state. Similarly, the transaction fee should not increase as
each transaction does not require more space on-chain. Concerning
the scope of the approach, it prevents front-running BEV but does
not prevent fatal front-running and potentially back-running. Thus,
the scope is not significantly more general than that of the individ-
ual optimized trade execution approaches presented in Section 5.1.
The main problem of utilizing the eUTXO model to prevent BEV is
easily identified. The approach’s goodput is extremely limited, as it
only allows for a single transaction per block in a liquidity pool. This
bottleneck also leads to significant jostling, with all transactions
in a liquidity pool competing for the same spot for block inclusion.
Naturally, the delay is also impacted, especially in liquidity pools
between more popular cryptocurrencies.

Thus, regardless of the successful BEV mitigation, such a DEX
would not be equipped to handle the goodput demands placed on
it, and this explains why SundaeSwap alerted its design before it
ever launched [15].

5.5 Algorithmic Committee Ordering
Several protocols relying on a committee to algorithmically order
transactions fairly have surfaced recently. The general idea of the
approach is for a committee to observe incoming transactions and
to agree on a fair ordering through consensus. The main challenge
presented to these protocols is that, as the Condorcet paradox [50]

shows, even when all committee members are honest, they can not
agree on a fair ordering [56]. Consider a committee composed of
three members and a set of three transactions: 𝑇1, 𝑇2, and 𝑇3. The
transactions arrive at each committee member in the following
orders:

• committee member one: 𝑇1, 𝑇2, 𝑇3,
• committee member two: 𝑇2, 𝑇3, 𝑇1,
• committee member three: 𝑇3, 𝑇1, 𝑇2.

Thus, a majority of the committee members observe transaction
𝑇1 before transaction 𝑇2, transaction 𝑇2 before transaction 𝑇3, and
finally transaction 𝑇3 before transaction 𝑇1. Therefore, it is impos-
sible for a committee to agree on a fair ordering, resulting in the
schemes generally introducing a weakened fairness definition. We
note that while this field of research is not limited to fair orderings
that mitigate BEV [59, 75], we will solely focus on those protocols
applicable to BEV mitigation.

Baird [30] introduces Hashgraph consensus that relies on a gos-
sip protocol. Committee members gossip about gossip of their re-
ceived transaction orders and utilize virtual voting to agree on a fair
order such that no small group of attackers can unfairly influence
the order of transactions. Virtual voting allows Hashgraph to re-
duce the system’s complexity. However, as fairness is only vaguely
defined in Hashgraph and therefore some questions regarding the
fairness guarantees of the approach remain. Kurswae [57] presents
a group of protocols that utilize Byzantine consensus to ensure
relative order fairness, whereby an ordering is fair if transaction
𝑇 that was seen by all honest nodes before transaction 𝑇 ′ then
transaction 𝑇 executes before transaction 𝑇 ′. A similar fairness no-
tion is achieved through the Byzantine ordered consensus by Zhang
et al. [82]. The fairness notion is strengthened in a recent line of
work by Kelkar et al. [54–56] that achieve 𝛾-block-order-fairness. If
a 𝛾 fraction of nodes receive transaction 𝑇 before transaction 𝑇 ′

then transaction 𝑇 executes before transaction 𝑇 ′. While [56] and
[55] utilize Byzantine consensus, the committee is permissionless
in [54]. Cachin et al. [39] even further strengthen the fairness no-
tion by achieving 𝛾-block-order-fairness via Byzantine consensus.
In the previous, 𝛾 denote the fraction of correct nodes that receive
transaction 𝑇 before transaction 𝑇 ′.

Algorithmic committee ordering protocols are reaching ever-
increasing levels of fairness when assessing them by the order in
which nodes receive transactions. However, this notion of fairness
disregards the potential for attackers to have better network con-
nections. The attacker can listen to incoming transactions in the
network and (fatally) front-run these transactions by having better
connections, i.e., the attacker’s transaction reaches the majority of
the honest nodes before the victim’s transaction even though the
attacker only acted upon seeing the victim transaction. Such races
take place in traditional finance [44]. Back-running, while generally
less severe on its own, remains easily possible. Thereby the protocol,
even if all committee nodes were honest, would not mitigate all
transaction reordering manipulations – letting the approach only
achieve a medium score in terms of its scope (cf. Figure 8). The
protocols generally rely on a two-thirds majority of honest nodes.
We consider this assumption to be too strong in the crypto space,
where players are generally rational, becoming ever more appar-
ent given the levels of BEV extraction [70, 78, 83]. Therefore, the

scope

security

decentralization

cost

delay

goodput

jostling

Figure 8: Algorithmic committee ordering assessment. The
approach’s performance in each category is visualized in
the spyder web. The spyder web’s inner level represents the
lowest score – 1 – and the web’s outer layer corresponds to
the highest score – 3.

required trust and the remaining (fatal) front-running possibilities
outlined previously lead us to conclude that the system is not secure
against attacks. Algorithmic committee ordering reduces the sys-
tem decentralization. In the majority of protocols, a permissioned
committee is in charge of the ordering, while in the permissionless
case [54] the nodes’ incentives are unclear. Thus, the ordering is
generally placed in the hands of a few – increasing the blockchain’s
centralization.

We, further, expect transactions to become slightly more expen-
sive as we expect blockchain implementations to provide financial
incentives to the committee. Note that implementing such an order-
ing on top of the blockchainmight require additional space on-chain
– increasing transaction fees. While we foresee some jostling, given
the potential for (fatal) front-running, we don’t expect higher levels
than in the current setting. Finally, we expect that implementations
of the algorithmic committee ordering approach should match at
least the current goodput levels. We do not obverse a reason for
the approach to infer any significant delay in the system. The time
taken by committee members to order transactions is unlikely to
exceed the time needed to build blocks.

Algorithmic committee ordering presents a middle ground be-
tween a trusted third party and a decentralized ordering. However,
the possibility of better network connections owned by the attacker
and the assumptions regarding the committee’s honesty limit the
potential of the algorithmic committee ordering.

5.6 On-Chain Commit & Reveal
On-chain commit & reveal as opposed to its off-chain counterpart,
which we will present in the proceeding Section (cf. Section 5.7), has

the committee order transactions on-chain – as suggested by the
name. The approaches generally consist of two phases. In the first
phase, users commit to their transactions, and then in the second
phase, the users themselves or the chain automatically reveal the
transaction in a later block.

Tatabitovska et al. [77] propose a Uniswap specific commit &
reveal scheme utilizing hash commitments – an adjustment of Lib-
Submarine’s commitment which Breidenbach et al. [37] introduce.
LibSubmarine commitments hide the pool’s address by hashing
it. The commit transaction is recorded on-chain and ordered for
later execution. A second reveal transaction is then send after a
minimum number of blocks. The actual Uniswap trade executes
upon block inclusion of the reveal transaction. The authors either
have the users themselves reveal their commitment or let Uniswap
implement a queue that handles the reveal. We only consider the
implementation where the users themselves are in charge of the
reveal phase, as the approach would otherwise fall under trusted
third party ordering (cf. Section 5.3).

Instead of using hash commitment, Doweck and Eyal [47] make
use of time-locke puzzle commitments [72]. They introduce Multi-
Party Timed Commitments (MPTC) to formalize the problem of
implementing commitments with a probabilistic delay and propose
the Time Capsule protocol to solve the problem. In their scheme, 𝑛
users jointly build a random public key. They each send a random
nonce to the coordinator, who aggregates the nonce in aMerkle tree.
The tree’s root then serves as the random seed for the public key,
and users send their transaction, encrypted with the public key by
using El-gamal encryption, to the coordinator. The coordinator then
attempts to decrypt the message, which succeeds after a predictable
time and reveals the messages.

We find that on-chain commit & reveal does not impact decen-
tralization negatively (cf. Figure 9). While the scheme presented by
Doweck and Eyal utilizes a coordinator, even an adversarial coor-
dinator cannot gain a significant advantage in solving the puzzle.
Further, the approach tackles all transaction reordering manipula-
tions, except for the adversarial committee member placing their
own transaction first. As transaction contents are hidden, we expect
jostling to be minimal. We further note that transactions which are
unaware of each other are less likely to compete for the same spot
in a block. On a similar note, we can only observe small security
loopholes, such as an attacker choosing not to reveal its transaction
in the scheme presented by Tatabitovska et al. [77].

The commit and reveal transactions are included on-chain. Thus,
significant additional space is required on-chain – increasing the
transaction fee. We, therefore, can only give the scheme a low
score in our cost measure. The other major downfall is the delay
between the transaction submission and execution. The approach
adds a delay of a few block times between the commit transaction
and the reveal transaction to the current delay. Especially when
cryptocurrency prices are volatile, this additional delay can be
detrimental to a protocol. For example, the price of Ether in US$
changed by more than 2% on 24 January 2022 at 8:47 (UTC±0) [10].
Thus, a DEX relying on on-chain commit & reveal cannot reflect
market prices accuracy, and market inefficiencies [63], which create
cyclic arbitrage opportunities [34], are to be expected. We also note
that the state of DEX, relying on on-chain commit & reveal for
ordering, is unknown to the user at the time of submission.

scope

security

decentralization

cost

delay

goodput

jostling

Figure 9: On-chain commit & reveal assessment. The ap-
proach’s performance in each category is visualized in the
spyder web. The spyder web’s inner level represents the low-
est score – 1 – and the web’s outer layer corresponds to the
highest score – 3.

To conclude, we expect to see an increase in transaction failures
due to price movements. Increased transaction failures would re-
duce the DEXes goodput. While on-chain commit & reveal might
find a use case outside of DEXes and lending protocols, we do not
see it meeting the delay and cost expectation placed on DEXes.

5.7 Off-Chain Commit & Reveal
Similar to on-chain commit & reveal schemes, off-chain commit
& reveal schemes consist of a first round of traders committing to
their transactions and a second round where the transactions are
revealed. However, unlike their on-chain counterpart, the commit-
ment does not take place on-chain but is instead handled off-chain
by a committee.

Reiter and Birman [71], Miller et al. [65] and Asyag et al. [29] in-
troduce encrypted Byzantine consensus protocols relying on thresh-
old signatures [36, 46, 74]. In an (𝑙, 𝑛) threshold signature scheme, a
single public key is used to encrypt messages, and 𝑙 out of 𝑛 commit-
tee member signatures combine to decrypt the message. While the
protocols introduced by Reiter and Birman, as well as Miller et al.,
are not aimed at preventing transaction reordering manipulations,
the schemes can be utilized to achieve fair transaction orderings.
The protocols have users encrypt their transactions with the public
key, and then the committee orders encrypted transactions. A two-
thirds majority of the committee is assumed to be honest. Upon
agreeing on the final ordering, the committee members decrypt
the messages together using their threshold signatures. Asyag et
al. implement a similar ordering protocol and also make use of an
additional randomness beacon to select the leader for the Byzantine
consensus.

scope

security

decentralization

cost

delay

goodput

jostling

Figure 10: Off-chain commit & reveal assessment. The ap-
proach’s performance in each category is visualized in the
spyder web. The spyder web’s inner level represents the low-
est score – 1 – and the web’s outer layer corresponds to the
highest score – 3.

Similar to its on-chain counterpart (cf. Section 5.6), off-chain
commit & reveal excels in terms of scope and jostling (cf. Figure 10).
All transaction reordering manipulation attacks, except for the at-
tacker placing its own transaction first, are tackled. Additionally, as
the transaction contents are not public before the ordering is fixed,
we expect jostling to be reduced. In terms of cost, we predict trans-
actions to become more expensive. As with algorithmic committee
ordering (cf. Section 5.5), we do not foresee the approach impacting
delay or goodput negatively. The committee is not expected to take
longer to order a set of transactions than the time the Ethereum net-
work requires to create a new block. Goodput is foreseen to stay at
current levels: users do not have to submit additional transactions,
and we expect the number of adversary transactions to decrease.
We again expect blockchain implementations to introduce financial
incentives for the committee members. Off-chain commit & reveal
blockchain implementations might require extra space on-chain,
e.g., for the committee member signatures. Thus, we predict an
increase in transaction fees. With ordering in the hands of a per-
missioned committee, the approach reduces the decentralization of
ordering. This lack of decentralization and the committee’s ability
to perform arbitrary transaction reordering manipulations when
colluding with each other is the reason for the approach’s poor
performance in terms of security.

With the exception of decentralization and security, off-chain
commit & reveal appears to generally combine the benefits of algo-
rithmic committee ordering (cf. Section 5.5) and on-chain commit
& reveal (cf. Section 5.6). The approach’s weaknesses – decentral-
ization and security – are those most at odds with the blockchain’s
most fundamental principles.

AFT ’22, September 19–21, 2022, Cambridge, MA, USA Lioba Heimbach and Roger Wattenhofer

sco
pe

sec
uri
ty

dec
ent
ral
iza
tio
n

cos
t

del
ay

goo
dp
ut

jos
tlin

g

off-chain commit &
reveal

on-chain commit &
reveal

algorithmic commit-
tee ordering

eUTXO model

trusted third party
ordering

professional market
makers

optimized trade exe-
cution

Figure 11: Comparison of transaction reordering attacks mit-
igation approaches. Green indicates excellent performance
in an area, yellow mediocre performance, and red unsatisfac-
tory performance. Observe that while all approaches exhibit
unsatisfactory performance in at least one measure, at least
one approach excels in every measure.

6 DISCUSSION
We conclude that, currently, no approach meets all the demands
placed on a scheme to prevent transaction reordering manipulation
attacks on a fully decentralized blockchain (cf. Figure 11). More
precisely, each approach displays poor performance in at least one
of our seven measures. Instead of solely analyzing a protocol’s
overall or average performance across our measures, we also want
to focus on the distinct impacts of an approach demonstrating poor
performance in a particular measure in the following. While we
consider all measures essential to judge a transaction reordering
prevention scheme, we do not necessarily attribute them the same
importance.

Approaches that solely display poor performance in terms of
scope, such as optimized trade execution (cf. Section 5.1), might
act well as temporary fixes. Optimized trade execution displays
satisfactory performance in all other categories (cf. Figure 11) and is
therefore, well-equipped to function as a temporary fix – at least in
those areas that individual schemes tackle. It is, however, apparent
that optimized trade execution will not cease transaction reordering
manipulations, and new attack possibilities not addressed by the
schemes are likely to arise over time. With its limited scope, it
cannot tackle the broad and ever-changing landscape of BEV on
the blockchain and can only be viewed as a temporary fix.

On the other hand, approaches with unsatisfactory goodput or
delay exhibit high and unacceptable performance losses for DeFi
applications. Only evident by the original design of SundaeSwap,
utilizing the eUTXO model (cf. Section 5.4), never being imple-
mented. Such an implementation would have led to both inadmissi-
ble delays and goodput levels. Similarly, we expect schemes with

satisfactory goodput levels but unsatisfactory delays will be ill-
equipped to meet the demands placed on DeFi. Therefore, we don’t
expect a widespread adaptation of on-chain committee ordering
(cf. Section 5.6). If DeFi wants to become a real alternative to its
centralized counterpart, it simply cannot accept these performance
losses.

The remaining four approaches all exhibit unsatisfactory per-
formance in terms of security (cf. Figure 11). Together with decen-
tralization, poor performance in this measure is most at odds with
the fundamental design principles of the blockchain. We further
note an approach’s security can never exceed its level of decentral-
ization. Attacks from those in charge of ordering become easier as
decentralization decreases and thereby decreases security. While
algorithmic committee ordering (cf. Section 5.5), off-chain commit
& reveal (cf. Section 5.7) and the utilization of professional market
makers (cf. Section 5.2), maintain at least some decentralization,
this does not translate to increased security. A byzantine committee
can easily perform transaction reordering manipulation to extract
BEV in the two approaches that rely on a committee: algorithmic
committee ordering and off-chain commit & reveal. Utilizing pro-
fessional market makers (cf. Section 5.2), on the other hand, only
excels in terms of cost and jostling. Otherwise, it is subordinate to
off-chain commit & reveal. We further note that while off-chain
commit & reveal’s benefit is that the transaction contents only be-
come visible upon ordering, which we expect to lead to less jostling,
the protocol does not hinder a byzantine committee from decoding
the message before ordering them. We currently see the greatest
promise in off-chain commit & reveal to tackle BEV with a broad
scope, but have concerns regarding its security.

Finally, the scheme that displays the highest level of centraliza-
tion and therefore does not fare well in terms of security, trusted
third party ordering (cf. Section 5.3), is seeing the highest levels
of adoption. Trusted third party ordering not only tackles all re-
ordering attacks but also borrows excellent performance benefits
in terms of scope, goodput, delay, and jostling from traditional
exchanges. However, this comes at the expense of security and
decentralization. We also want to mention that trusted third party
approaches, if not utilized by all transactions, can be used and are
currently used to perform transaction reordering attacks [16]. Still,
we observe it being implemented at the fastest pace.

Given this development, the question of whether centralized
ordering has a place in DeFi should be raised sooner rather than
later. Not only does it conflict with the idea of a fully decentralized
blockchain, but the blockchain also does not protect users in case a
trusted third party misbehaves. In traditional finance, transactions
are also ordered by a trusted third party, typically an exchange,
for example. However, users have the added regulatory protec-
tion restricting the exchange from manipulating the ordering in
traditional finance.

Even though none of the current approaches to tackle transaction
reordering manipulations can fulfill all the demands placed on them
by the blockchain’s ecosystem, it is very promising that, at the same
time, multiple approaches that excel in any of our measures exist.
We are, therefore, hopeful that a suitable approach will emerge in
the future. Such a novel approach to prevent transaction reordering
manipulations, thus, can and should leverage these existing ideas
and learn from them in the areas where they excel.

SoK: Preventing Transaction Reordering Manipulations in Decentralized Finance AFT ’22, September 19–21, 2022, Cambridge, MA, USA

7 CONCLUSION
The successful and efficient mitigation of transaction reordering
manipulations on blockchains remains a challenge. While many
approaches to tackle the problem are surfacing, there is currently
no approach that can meet all requirements a fully decentralized
blockchain places on a mitigation scheme. Thus, we hope for the
search for a scheme preventing transaction reordering manipula-
tions on the blockchain to continue. Especially, as we currently
observe a widespread adoption of trusted third party orderings that
conflict with the most fundamental idea of a fully decentralized
blockchain, we hope that a suitable alternative to protect users
against BEV will emerge. The direction of this research has the
potential forever impact the future of blockchains.

Further, an approach that successfully prevents transaction re-
ordering attacks on DeFi without impacting the remaining ecosys-
tem negatively would outperform the current state of front-running
mitigation in traditional finance. Not only would it remove all trust
requirements, but preventing front-running practices from occur-
ring is better than hoping that such practices are identified and
prosecuted once they occurred.

REFERENCES
[1] 2022. Aave. https://aave.com/.
[2] 2022. Automata Network. https://www.ata.network/.
[3] 2022. Balancer. https://balancer.fi/.
[4] 2022. B.Protocol. https://www.bprotocol.org/.
[5] 2022. Compound. https://compound.finance.
[6] 2022. CowSwap. https://cowswap.exchange/.
[7] 2022. Curve. https://curve.fi/.
[8] 2022. dxdy. https://dydx.exchange/.
[9] 2022. Eden. https://www.edennetwork.io/.
[10] 2022. ETH/USDT. https://www.binance.com/en/trade/ETH_USDT.
[11] 2022. flashbots. https://docs.flashbots.net/.
[12] 2022. Gnosis Protocol. https://gnosis.io/.
[13] 2022. Hashflow. https://www.hashflow.com/.
[14] 2022. MakerDAO. https://makerdao.com.
[15] 2022. Meet Your SundaeSwap Scoopers! https://sundaeswap.finance/posts/meet-

your-sundaeswap-scoopers.
[16] 2022. MEV Over Time. https://explore.flashbots.net.
[17] 2022. mistX. https://mistx.io/.
[18] 2022. OpenMEV. https://openmev.xyz/.
[19] 2022. Rook. https://app.rook.fi/trade.
[20] 2022. Secret Network. https://scrt.network/.
[21] 2022. SecretSwap. https://secretswap.net/.
[22] 2022. SundaeSwap. https://sundaeswap.finance/.
[23] 2022. Sushiswap. https://sushi.com/.
[24] 2022. Uniswap. https://uniswap.org/.
[25] 2022. XATA. https://www.xata.fi/.
[26] Hayden Adams, Noah Zinsmeister, and Dan Robinson. 2020. Uniswap v2 Core.

(2020).
[27] James J. Angel, Lawrence E. Harris, and Chester S. Spatt. 2011. Eq-

uity Trading in the 21st Century. The Quarterly Journal of Fi-
nance 01, 01 (2011), 1–53. https://doi.org/10.1142/S2010139211000067
arXiv:https://doi.org/10.1142/S2010139211000067

[28] Guillermo Angeris and Tarun Chitra. 2020. Improved Price Oracles: Constant
Function Market Makers. arXiv preprint arXiv:2003.10001 (2020).

[29] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich,
Ronen Tamari, and David Yakira. 2018. A Fair Consensus Protocol for Transaction
Ordering. In 2018 IEEE 26th International Conference on Network Protocols (ICNP).
55–65. https://doi.org/10.1109/ICNP.2018.00016

[30] Leemon Baird. 2016. The swirlds hashgraph consensus algorithm: Fair, fast,
byzantine fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep
(2016).

[31] Carsten Baum, Bernardo David, and Tore Kasper Frederiksen. 2021. P2DEX:
privacy-preserving decentralized cryptocurrency exchange. In International Con-
ference on Applied Cryptography and Network Security. Springer, 163–194.

[32] Carsten Baum, James Hsin yu Chiang, Bernardo David, Tore Kasper Frederiksen,
and Lorenzo Gentile. 2021. SoK: Mitigation of Front-running in Decentralized
Finance. Cryptology ePrint Archive, Report 2021/1628. https://ia.cr/2021/1628.

[33] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari Juels.
2019. Tesseract: Real-Time Cryptocurrency Exchange Using Trusted Hardware. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (London, United Kingdom) (CCS ’19). Association for ComputingMachin-
ery, New York, NY, USA, 1521–1538. https://doi.org/10.1145/3319535.3363221

[34] Jan Arvid Berg, Robin Fritsch, Lioba Heimbach, and Roger Wattenhofer. 2022.
An Empirical Study of Market Inefficiencies in Uniswap and SushiSwap. In The
2nd Workshop on Decentralized Finance (DeFi), Grenada.

[35] Dan Bernhardt and Bart Taub. 2008. Front-running dynamics. Journal of Economic
Theory 138, 1 (2008), 288–296. https://doi.org/10.1016/j.jet.2007.05.005

[36] George Robert Blakley. 1979. Safeguarding cryptographic keys. In Managing
Requirements Knowledge, International Workshop on. IEEE Computer Society,
313–313.

[37] Lorenz Breidenbach, Phil Daian, Florian Tramèr, and Ari Juels. 2018. Enter the
hydra: Towards principled bug bounties and exploit-resistant smart contracts. In
27th {USENIX} Security Symposium ({USENIX} Security 18). 1335–1352.

[38] Vitalik Buterin. 2021. Proposer/block builder separation-friendly fee market
designs. https://ethresear.ch/t/proposer-block-builder-separation-friendly-fee-
market-designs/9725.

[39] Christian Cachin, Jovana Mićić, and Nathalie Steinhauer. 2021. Quick Order
Fairness. arXiv preprint arXiv:2112.06615 (2021).

[40] Manuel MT Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melko-
nian, Michael Peyton Jones, and Philip Wadler. 2020. The extended UTXO model.
In International Conference on Financial Cryptography and Data Security. Springer,
525–539.

[41] Shumo Chu, Yu Xia, and Zhenfei Zhang. 2021. Manta: a Plug and Play Private
DeFi Stack. (2021).

[42] Michele Ciampi, Muhammad Ishaq, Malik Magdon-Ismail, Rafail Ostrovsky, and
Vassilis Zikas. 2021. FairMM: A Fast and Frontrunning-Resistant Crypto Market-
Maker. Technical Report. Cryptology ePrint Archive, Report 2021/609.(2021).
https://eprint. iacr. org

[43] Mariana Botelho da Gama, John Cartlidge, Antigoni Polychroniadou, Nigel P
Smart, and Younes Talibi Alaoui. 2021. Kicking-the-Bucket: Fast Privacy-
Preserving Trading Using Buckets. Cryptology ePrint Archive (2021).

[44] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. 2020. Flash boys 2.0: Frontrunning in decen-
tralized exchanges, miner extractable value, and consensus instability. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 910–927.

[45] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. 2018.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 66–98.

[46] Yvo Desmedt and Yair Frankel. 1989. Threshold cryptosystems. In Conference on
the Theory and Application of Cryptology. Springer, 307–315.

[47] Yael Doweck and Ittay Eyal. 2020. Multi-party timed commitments. arXiv preprint
arXiv:2005.04883 (2020).

[48] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. 2020. SoK: Trans-
parent Dishonesty: Front-Running Attacks on Blockchain. In Financial Cryp-
tography and Data Security, Andrea Bracciali, Jeremy Clark, Federico Pintore,
Peter B. Rønne, and Massimiliano Sala (Eds.). Springer International Publishing,
Cham, 170–189.

[49] Shayan Eskandari, Mehdi Salehi, Wanyun Catherine Gu, and Jeremy Clark. 2021.
SoK: Oracles from the Ground Truth to Market Manipulation. arXiv preprint
arXiv:2106.00667 (2021).

[50] William V Gehrlein. 1983. Condorcet’s paradox. Theory and Decision 15, 2 (1983),
161–197.

[51] Larry Harris. 2013. What to Do about High-Frequency Trading. Finan-
cial Analysts Journal 69, 2 (2013), 6–9. https://doi.org/10.2469/faj.v69.n2.6
arXiv:https://doi.org/10.2469/faj.v69.n2.6

[52] Lioba Heimbach and Roger Wattenhofer. 2022. Eliminating Sandwich Attacks
with the Help of Game Theory. In 2022 ACM Asia Conference on Computer and
Communications Security (ASIA CCS), Nagasaki, Japan.

[53] Eyal Hertzog, Guy Benartzi, and Galia Benartzi. 2017. Bancor protocol. (2017).
[54] Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. 2021. Order-Fair Consensus

in the Permissionless Setting. IACR Cryptol. ePrint Arch. 2021 (2021), 139.
[55] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. 2021.

Themis: Fast, Strong Order-Fairness in Byzantine Consensus. Cryptology ePrint
Archive, Report 2021/1465. https://ia.cr/2021/1465.

[56] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-fairness
for byzantine consensus. In Annual International Cryptology Conference. Springer,
451–480.

[57] Klaus Kursawe. 2020. Wendy, the good little fairness widget: Achieving order
fairness for blockchains. In Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies. 25–36.

[58] Pi Lanningham. 2021. SundaeSwap Fundamentals.
[59] Kfir Lev-Ari, Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. 2019.

Fairledger: A fair blockchain protocol for financial institutions. arXiv preprint
arXiv:1906.03819 (2019).

https://aave.com/
https://www.ata.network/
https://balancer.fi/
https://www.bprotocol.org/
https://compound.finance
https://cowswap.exchange/
https://curve.fi/
https://dydx.exchange/
https://www.edennetwork.io/
https://www.binance.com/en/trade/ETH_USDT
https://docs.flashbots.net/
https://gnosis.io/
https://www.hashflow.com/
https://makerdao.com
https://sundaeswap.finance/posts/meet-your-sundaeswap-scoopers
https://sundaeswap.finance/posts/meet-your-sundaeswap-scoopers
https://explore.flashbots.net
https://mistx.io/
https://openmev.xyz/
https://app.rook.fi/trade
https://scrt.network/
https://secretswap.net/
https://sundaeswap.finance/
https://sushi.com/
https://uniswap.org/
https://www.xata.fi/
https://doi.org/10.1142/S2010139211000067
https://arxiv.org/abs/https://doi.org/10.1142/S2010139211000067
https://doi.org/10.1109/ICNP.2018.00016
https://ia.cr/2021/1628
https://doi.org/10.1145/3319535.3363221
https://doi.org/10.1016/j.jet.2007.05.005
https://ethresear.ch/t/proposer-block-builder-separation-friendly-fee-market-designs/9725
https://ethresear.ch/t/proposer-block-builder-separation-friendly-fee-market-designs/9725
https://doi.org/10.2469/faj.v69.n2.6
https://arxiv.org/abs/https://doi.org/10.2469/faj.v69.n2.6
https://ia.cr/2021/1465

AFT ’22, September 19–21, 2022, Cambridge, MA, USA Lioba Heimbach and Roger Wattenhofer

[60] Michael Lewis. 2014. Flash boys: a Wall Street revolt. WW Norton & Company.
[61] Yunqi Li, Sylvain Bellemare, Mikerah Quintyne-Collins, and Andrew Miller. 2021.

HoneyBadgerSwap: Making MPC as a Sidechain. https://medium.com/initc3org/
honeybadgerswap-making-mpc-as-a-sidechain-364bebdb10a5. (2021).

[62] Bowen Liu, Pawel Szalachowski, and Jianying Zhou. 2021. A first look into defi
oracles. In 2021 IEEE International Conference on Decentralized Applications and
Infrastructures (DAPPS). IEEE, 39–48.

[63] Burton G Malkiel. 1989. Is the stock market efficient? Science 243, 4896 (1989),
1313–1318.

[64] Jerry W. Markham. 1988-1989. Front-Running - Insider Trading under the Com-
modity Exchange Act. Catholic University Law Review 38 (1988-1989), 69.

[65] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The
Honey Badger of BFT Protocols (CCS ’16). Association for Computing Machinery,
New York, NY, USA, 31–42.

[66] Imad Moosa. 2015. The regulation of high-frequency trading: A pragmatic view.
Journal of Banking Regulation 16, 1 (2015), 72–88.

[67] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review (2008), 21260.

[68] Rafael Pass, Elaine Shi, and Florian Tramer. 2017. Formal abstractions for attested
execution secure processors. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 260–289.

[69] Kaihua Qin, Liyi Zhou, Pablo Gamito, Philipp Jovanovic, and Arthur Gervais.
2021. An Empirical Study of DeFi Liquidations: Incentives, Risks, and Instabilities.
arXiv preprint arXiv:2106.06389 (2021).

[70] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2021. Quantifying Blockchain Ex-
tractable Value: How dark is the forest? arXiv preprint arXiv:2101.05511 (2021).

[71] Michael K Reiter and Kenneth P Birman. 1994. How to securely replicate services.
ACM Transactions on Programming Languages and Systems (TOPLAS) 16, 3 (1994),
986–1009.

[72] Ronald L Rivest, Adi Shamir, and David A Wagner. 1996. Time-lock puzzles and
timed-release crypto. (1996).

[73] Gregory Scopino. 2014-2015. The (Questionable) Legality of High-Speed Pinging
and Front Running in the Futures Market. Connecticut Law Review 47 (2014-2015),
607.

[74] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[75] Yaakov Sokolik and Ori Rottenstreich. 2020. Age-aware Fairness in Blockchain
Transaction Ordering. In 2020 IEEE/ACM 28th International Symposium on Quality
of Service (IWQoS). 1–9. https://doi.org/10.1109/IWQoS49365.2020.9212952

[76] Chrysoula Stathakopoulou, Signe Rüsch, Marcus Brandenburger, and Marko
Vukolić. 2021. Adding Fairness to Order: Preventing Front-Running Attacks
in BFT Protocols using TEEs. In 2021 40th International Symposium on Reliable
Distributed Systems (SRDS). IEEE, 34–45.

[77] Ana Tatabitovska, Oğuzhan Ersoy, and Zekiraya Erkin. 2021. Mitigation of
Transaction Manipulation Attacks in UniSwap. (2021).

[78] Christof Ferreira Torres, Ramiro Camino, and Radu State. 2021. Frontrunner
Jones and the Raiders of the Dark Forest: An Empirical Study of Frontrunning
on the Ethereum Blockchain. arXiv preprint arXiv:2102.03347 (2021).

[79] Ye Wang, Yan Chen, Haotian Wu, Liyi Zhou, Shuiguang Deng, and Roger Watten-
hofer. 2022. Cyclic Arbitrage in Decentralized Exchanges. In The Web Conference
2022 (WWW), Lyon, France.

[80] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[81] Fengwei Zhang and Hongwei Zhang. 2016. SoK: A study of using hardware-
assisted isolated execution environments for security. In Proceedings of the
Hardware and Architectural Support for Security and Privacy 2016. 1–8.

[82] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. 2020.
Byzantine ordered consensus without Byzantine oligarchy. In 14th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 20). 633–
649.

[83] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur Gervais.
2021. On the Just-In-Time Discovery of Profit-Generating Transactions in DeFi
Protocols. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE.

[84] Liyi Zhou, Kaihua Qin, and Arthur Gervais. 2021. A2MM: Mitigating Fron-
trunning, Transaction Reordering and Consensus Instability in Decentralized
Exchanges. arXiv preprint arXiv:2106.07371 (2021).

[85] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais.
2021. High-frequency trading on decentralized on-chain exchanges. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 428–445.

[86] Patrick Züst. 2021. Analyzing and Preventing Sandwich Attacks in Ethereum.
https://pub.tik.ee.ethz.ch/students/2021-FS/BA-2021-07.pdf.

https://medium.com/initc3org/honeybadgerswap-making-mpc-as-a-sidechain-364bebdb10a5
https://medium.com/initc3org/honeybadgerswap-making-mpc-as-a-sidechain-364bebdb10a5
https://doi.org/10.1109/IWQoS49365.2020.9212952
https://pub.tik.ee.ethz.ch/students/2021-FS/BA-2021-07.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Transaction Reordering Manipulations
	3.1 Automated Market Makers
	3.2 Lending Protocols

	4 Fair Transaction Orderings and Measures for Mitigation Strategies
	5 Mitigating Transaction Reordering Manipulations
	5.1 Optimized Trade Execution
	5.2 Professional Market Makers
	5.3 Trusted Third Party Ordering
	5.4 eUTXO Model
	5.5 Algorithmic Committee Ordering
	5.6 On-Chain Commit & Reveal
	5.7 Off-Chain Commit & Reveal

	6 Discussion
	7 Conclusion
	References

