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ETH Zürich, Switzerland

wattenhofer@ethz.ch

Abstract
Most wireless systems suffer from the lack of a dedicated

control plane. High-priority control messages have to con-
tend for medium access the same as any other message. Ex-
isting methods providing QoS guarantees in this setting rely
upon opportunistic sending or on scheduling mechanisms,
and as a result incur undesirable tradeoffs in either latency or
impact on regular non-priority traffic.

We present a technique to simultaneously execute multi-
ple protocols of different priorities, without compromising
bandwidth or latency of regular traffic not affected by pri-
ority traffic. Using power control and moderately tight syn-
chronization we exploit the capture effect to give each pro-
tocol almost complete access to the network’s resources as
long as no protocol of higher priority wishes to use them. We
examine which impact the properties of the network graph
and the capabilities of the wireless hardware have on the ef-
fectiveness of our technique.

We suggest an example scenario of a wireless sensor net-
work of fire detectors, with a low-priority protocol collect-
ing statistical data and confirming aliveness, while a high-
priority protocol wishes to report fire alarms to a base sta-
tion as quickly as possible. For this example application we
deploy an implementation based on Contiki on a wireless
testbed of TelosB motes and achieve near optimal latency
and bandwidth for priority traffic while not disturbing low-
priority traffic where it is separated sufficiently in space or
time.
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1 Introduction
While the deployments of wireless networks continue to

grow in number and size year by year, protocol designers are
still struggling to understand how to most efficiently use the
wireless medium. Not only is operational disruption through
environmental noise caused by other networks or microwave
ovens oftentimes unpredictable in urban settings, but due to
the broadcast nature of wireless transmissions, nodes partic-
ipating in a network frequently experience interference with
nearby nodes of the same network.

To tackle this medium access problem given a fixed
frequency spectrum, generally one of two approaches is
used: (1) opportunistic sending (CSMA) or (2) scheduling
(TDMA).

(1) Opportunistic sending works by a first-come-first-
serve philosophy and hopes for a free channel at the time
of traffic emergence, sending immediately, asking questions
later. After sending, an explicit or implicit acknowledg-
ment from the recipient is required to determine whether the
transmission was successful or needs to be repeated. Vari-
ants of opportunistic sending such as clear channel assess-
ment (CCA) and request-to-send/clear-to-send (RTS/CTS)
have been proposed to reduce the number of haphazard col-
lisions, but suffer from hidden or exposed terminal problems
and introduce overhead in terms of packets sent and latency,
which especially in the case of RTS/CTS may quickly grow
very noticeable [26, 21, 15].

(2) The alternative is to employ one or more nodes with
the role of scheduling authorities. These nodes manage
the permissions to send packets in their immediate network
neighborhood. Each node is either allotted a periodically re-
curring time slot for sending, or may need to first explicitly
request a reservation for the channel from its local sched-
uler(s). This approach may completely avoid collisions dur-
ing regular operation but incurs latency and possibly also
bandwidth penalties. While generally opportunistic send-
ing is preferred for its simplicity and flexibility in most sce-
narios, the scheduling approach has also found its way into



widely deployed systems such as Bluetooth [8].
Clearly neither approach is optimal in all scenarios, nor is

every scenario served well by either approach. For example,
consider the case of an emergency signal needing to travel to
a destination node in as little time as possible. Using oppor-
tunistic sending, progress may stall almost indefinitely when
the network is under heavy load, while a scheduling ap-
proach might reserve every second slot for emergency mes-
sages which guarantees arrival in twice the minimum pos-
sible time at the cost of halving the number of slots avail-
able for regular non-emergency traffic. Hybrid MAC layers
such as Z-MAC [22] have been proposed, with the goal of
combining the advantages of CSMA and TDMA. Z-MAC
realizes this by dynamically switching between CSMA and
TDMA based on network load.

Network mechanisms designed to ensure fairness or more
specifically offering guarantees about network performance
are grouped under the term quality of service (QoS). While
QoS research for wireless networks is an area with a wealth
of history, certain aspects of wireless networks are yet to
be fully understood and utilized. Among these is the so-
called capture effect (also known as physical layer capture).
For a long time, protocol designers tried to avoid collisions
whenever possible, working under the assumption that any
collision of wireless packets at a receiving node inevitably
leads to the failure of that node to decode any of the mes-
sages. This loss rate has been shown to have been signif-
icantly overestimated [25, 23]. This is due to the capture
effect, a phenomenon which oftentimes allows the receiver
of a wireless transmission to continue correctly decoding the
transmission, in spite of interference caused by other trans-
missions starting during the original transmission.

We consider a “protocol” to be a self-contained dis-
tributed algorithm using the network to transmit messages,
coping with lost messages and usually avoiding collisions
where possible. In this paper we propose a technique to
“layer” such protocols of different priority levels on top of
each other using the capture effect, effectively enabling a
priority process to use almost all the resources of a network,
while at the same time allowing lower level processes sepa-
rated from the priority traffic in space and/or time to use the
network at no additional overhead. Note that giving unre-
stricted resource access to a protocol necessarily implies that
it may starve all lower-priority protocols. We also propose a
mechanism to only administer a share of the resources to a
protocol, but this unavoidably introduces a latency overhead.

We require a certain degree of clock synchronization
(clock difference below 160µs between any pair of nodes
with distance at most two hops) to be able to make best use
of the capture effect, and impose the notion of time slots on
the network. Hence, we assume that at least one of the lay-
ered protocols contains a component periodically resynchro-
nizing all nodes. Furthermore, we require the wireless hard-
ware to offer transmission power control, which is a common
feature even among older hardware.

The basic idea is to cause the capture effect whenever a
node would receive multiple packets in the same time slot.
This is done by choosing the transmission power of each
node such that it falls into one of multiple pre-computed

bands of reception power at the intended receiving node.
Given these bands are separated well enough, the receiving
node will almost always (in over 98% of cases) be able to
decode the packet in the strongest band without error. This
implicit prioritization lets us avoid the overhead caused by
more explicit measures such as schedules. On the other hand,
there are some inherent disadvantages tied to our technique,
namely the need for time slotting and the predetermination
of transmission powers, removing the ability to intentionally
save energy on short links and to save hops with long links
requiring the highest possible transmission power.

We specifically target wireless sensor networks (WSNs),
which typically form networks with a relatively large con-
nectivity graph diameter and favor node quantity over ad-
vanced wireless capabilities. Our technique accommodates
these conditions particularly well. For example, as higher
layer protocols only disturb their immediate neighborhood in
the connectivity graph, more spread out networks are more
likely to benefit.

We tested our technique on an example alarm reporting
protocol. Our implementation is based on Contiki running
on a public testbed of Tmote Sky sensor nodes (also known
as “TelosB”) [20]. We achieve near optimal alarm report-
ing latency and almost no packet loss on the high-priority
layer, while when under load indeed causing comparatively
little disturbance to the underlying low-priority traffic which
we use to ensure node liveness and keep the nodes’ clocks
synchronized.

2 Related Work
Already in 1976, the capture effect in FM receivers was

modeled by Leentvaar et al. [11]. To combat it they proposed
using bandlimiting at the receiver. The capture effect is not
a phenomenon limited to FM transmissions. Ash [1] showed
that it is possible to obtain an equivalent and even stronger
effect in AM receivers.

While the capture effect had at first been considered unde-
sirable, it was soon ascribed inadvertent performance boosts
in common wireless scenarios such as slotted ALOHA [4]
and everyday 802.11 traffic [15, 25]. Soon, a number of en-
vironmental influences like noise, path loss, shadowing and
fading were identified to be contributing to the capture ef-
fect’s potency as a general packet reception enhancer [2, 13].

Other research was conducted on the details of packet
timing, as common transceiver hardware does not facili-
tate switching reception from one packet to another mid-
demodulation. Thus, if a much stronger packet starts during
the reception of a weaker one, both packets are lost (save
for the leading portion of the weaker one). A well-studied
quirk of the capture effect is that it may occur even when the
stronger signal arrives after the weaker one, as long as it still
arrives before the end of the preamble of the weaker signal
[9, 25, 23, 27].

The obvious solution to the “stronger packet arrives too
late” problem is to continuously scan the medium for trans-
mission preambles, even during packet reception. This re-
quires more specialized hardware support, but has neverthe-
less already been thoroughly investigated [9, 25, 17, 10]. To
make best use of the capability to switch to stronger pack-



ets during reception (also known as “message in message”),
Manweiler et al. [17] discuss how careful ordering of trans-
missions enables the parallel utilization of traditionally con-
flicting sender-receiver pairs.

When it comes to low-power wireless networks such as
those comprised of sensor nodes, the meticulous study by
Son et al. [23] provided a solid foundation. While they find
that occurrence of the capture effect can be guaranteed given
a large enough SINR value, they find a significant gray re-
gion of up to 6 dB to exist in practice. Further, they find
the SINR threshold to be heavily dependent on the transmit-
ting hardware and the selected transmission signal strength.
Yuan et al. [27] continue this study and propose a packet
reception model for concurrent transmissions, including the
special case of constructive interference.

Nyandoro et al. [18] consider the scenario of a 802.11 ac-
cess point and several clients split into low-priority and high-
priority clients. They propose using a significantly higher
sending power for the high-priority clients. Due to the cap-
ture effect collisions between packets from high and low-
priority clients will then always be solved in favor of the
high-priority client. Patras et al. [19] go as far as to sug-
gest deliberately fluctuating sending power levels in order to
make the capture effect more likely to occur in case a colli-
sion takes place. They show that in practice this can translate
to throughput gains of up to 25%. As links become more
heterogeneous, though, this effect decreases, and instead an
increase in fairness can be observed.

Lu et al. [16] implement a flooding protocol called Flash,
which ignores collisions between neighboring nodes at the
flooding front, leaving it to the capture effect to let each node
receive a copy of the message sooner or later. They show that
such recklessness can in fact improve latency by as much as
80%.

Various approaches to coordinate simultaneously run-
ning protocols competing for medium access have been sug-
gested. Flury et al. [5] proposed “slotted programming”, di-
viding time into slots and assigning every protocol a fixed
portion of the slots. This framework is implemented in a
fashion transparent to the protocols, effectively making them
independent and modular building blocks for larger systems.
Note that in contrast to the method presented in our paper,
slotted programming incurs a significant penalty on the to-
tal throughput when protocols are unable to make use of the
scheduled slots assigned to them.

The same work also includes a proposal for an alarm
mechanism: Flury et al. [5] suggest alarmed nodes transmit
a specific waveform at maximum power. Other nodes, upon
detecting the waveform, become alarmed and start transmit-
ting the waveform as well, thus spreading the alarm. The
authors find that, even without synchronization between the
nodes, the collision of the signals is not detrimental to the
spread of the alarm. However, extending this scheme to
alarm signals carrying more information than the alarm’s
presence itself appears to be difficult. Additionally, these
alarm signals are undirected and will prevent any regular
traffic in the network.

Cidon et al. [3] propose establishing a control plane for
Wi-Fi networks by inserting high-power “flashes” into regu-

lar packets. These flashes are a waveform of far higher am-
plitude than the rest of the signal and are added to regular
data symbols, effectively erasing those symbols. By exploit-
ing the underlying OFDM encoding, which sends multiple
redundant copies of each data bit either separated in time
or frequency, they are able to insert on the order of 50,000
flashes per second without causing a packet loss rate of more
than 1%. The occurrence and spacing of these flashes may
then be chosen to represent out-of-band data. While this ap-
proach does not require additional frequency bands or time
slots for control messages, its main disadvantage is its re-
liance on specialized hardware.

For the specific scenario of time-critical alarm message
propagation, Li et al. [12] propose incorporating slots al-
located for emergency messages into a regular scheduling
mechanism, but to employ slot stealing to avoid wasting net-
work bandwidth in the absence of emergencies. A short
while after the start of a slot assigned to emergency mes-
sages, if the slot is detected to remain unused, nodes may
steal and use the remainder of the slot to send regular traf-
fic. They further provide a simulation framework tailored to
such wireless alarm systems. In constrast to our work, their
method relies on an explicit scheduling mechanism to desig-
nate recurring slots for emergency messages. This incurs an
overhead in latency and does not scale well to a larger num-
ber of priorities, as the time required to detect slot use grows
and thus further erodes the concept of time slotting.

A different approach, employed to great effect by cellular
networks technologies such as LTE, is to send and receive on
multiple different frequency bands, allowing to use a subset
of them as an independent control plane [6]. In contrast,
we do not consider the use of multiple frequency bands and
restrict ourselves to simple wireless transceivers able to send
and receive on a single band at a time only.

3 The Capture Effect
In this section we will go into detail about the capture ef-

fect and its inner workings, as it is integral to the method we
propose. Furthermore, we will discuss the exact parameters
for its occurrence we measured on the hardware and testbed
we will be using for our example implementation.

The capture effect is a term describing the general phe-
nomenon of wireless receivers being able to decode the
strongest of multiple signals without error, effectively com-
pletely ignoring the weaker signals. Standard wireless hard-
ware is designed to send and receive wireless data strings in
the form of discrete packets, which may be inserted into the
noisy carrier medium at arbitrary points in time. Due to this,
harnessing the capture effect on such hardware is limited to
a certain set of scenarios.

Typically, wireless receivers use specific pre-defined chip
patterns to detect the start of a transmission. These patterns
are called a preambles or syncwords (short for synchroniza-
tion words). They serve multiple purposes: For one, they
allow to, with a high probability, identify a starting trans-
mission amongst the environmental noise and hence avoid
mistaking noise for a transmission even in settings where
transmissions create signals barely stronger than the noise.
Another purpose, whose side-effect is particularly important



Table 1. Listing of the possible outcomes of two packets
arriving at the same receiver simultaneously. ∆ specifies the
time difference tA− tB between the arrival times of the two
packets and di denotes the duration of packet i. τ1 and τ2
denote two thresholds between which the probability of a
correct reception of packet A tapers off.

Packet A (strong) Packet B (weak)
∆ <−dA correct correct
−dA < ∆ < 0 correct not at all
0 < ∆ < τ1 correct not at all
τ1 < ∆ < τ2 tapering chance not at all
τ2 < ∆ < dB not at all partially corrupted
dB < ∆ correct correct

for summoning the capture effect, is the aligning of the re-
ceiving wireless transceiver’s internal clock with the phase
of the signal. This essentially means that once a receiver has
detected a preamble, it can configure itself to easily decode
the following data symbols and stream their values into some
kind of memory.

As a result, upon hearing a preamble, receivers effec-
tively commit to receiving a particular transmission, lock-
ing their clocks to that transmission’s phase and often also
its length (which in many physical layer protocols is trans-
mitted amongst the first few data symbols). This behavior is
especially desirable when bursts of noise frequently occur in
the environment, but partially corrupted packets may still be
valuable, either due to error correcting codes or simply full
data integrity not being a critical requirement.

When two or more signals can be heard at a receiver si-
multaneously, they act as noise to each other, i.e., cause in-
terference for one another. Generally, it is impossible to de-
code the weaker signal(s), unless the hardware is capable of
more advanced techniques, such as decoding and subtracting
the stronger signals first or using a coding scheme such as
CDMA. However, this paper is aimed at scenarios employ-
ing simple sensor nodes and does not rely on such function-
ality. Hence, we will assume that when a stronger transmis-
sion starts during the reception of a weaker transmission, the
weaker transmission is certain to become corrupted.

On the other hand, when the stronger transmission starts
first, it can nearly always be received completely without er-
ror. This is in spite of the fact that a prediction based purely
on the signal powers and the classical SINR model will con-
clude that data corruption would occur for a significant range
of power differences. The locking onto the phase of the sig-
nal effectively diminishes the influence of competing trans-
missions and lowers the SINR threshold required to be met
for correct reception.

Due to the nature of the use of preambles, the require-
ment, that the stronger transmission comes first, is signifi-
cantly eroded: the weaker transmission may come first, as
long as its preamble is not completely received before the
preamble of the stronger transmission begins. This happens
because the stronger preamble destroys the end of the weaker
preamble, hence, the receiver no longer considers the weaker
signal to be a valid packet. Further, in some scenarios the
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Figure 1. Occurrence probability of the capture effect at a re-
ceiver plotted against the time difference between the two in-
coming packets. Sender A’s signal was significantly stronger
averaging at −69 dBm RSS (Received Signal Strength),
compared to Sender B at −82 dBm RSS. 130 samples were
taken per delay value.

window for the stronger transmission to arrive has been re-
ported to extend even into the first 3 bytes of the weaker
transmission [27].

A summary of the outcomes in each possible scenario for
2 packets can be seen in Table 1. Of special interest here are
the constants τ1 and τ2, which dictate the timing thresholds
required for the capture effect to occur. We expect these to
closely match the length of the preamble.

To find the exact values of τ1 and τ2 for our specific hard-
ware and testbed setup, we conduct a few experiments pitting
two senders against each other to try to successfully transmit
a packet to a single receiver. To mimic actual protocol per-
formance as close as possible we only use the hardware’s
innate ability to keep time and synchronize clocks. Hence,
the receiver periodically sends a packet both senders use
to synchronize their local clocks to the receiver’s. The pe-
riod is chosen to keep the clock error strictly below ±0.5µs,
which is close to optimal considering the clocks’ frequency
of 4 MHz. The details of achieving such synchronization
precision are beyond the scope of this paper. In the remain-
ing slots both senders send packets with varying transmit
power levels or delays.

Figure 1 shows the results for one sender using a sig-
nificantly larger sending power and, due to links of simi-
lar quality being used, significantly higher received signal
strength. We observe the probability of the receiver cap-
turing the stronger packet to fall to zero roughly over the
interval from τ1 ≈ 150 µs to τ2 ≈ 165 µs. At the bitrate
of 250 kbit/s 160µs corresponds to 10 symbols or 5 bytes,
which matches the length of the preamble plus the imme-
diately following SFD (start of frame delimiter) byte. The
spread τ2−τ1 ≈ 16µs matches the length of one symbol and
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Figure 2. Occurrence probability of the capture effect at
a receiver plotted against the power difference between the
two incoming packets. Sender A’s transmit power was varied
over its whole available range, producing RSSA values from
−89 dBm to −68 dBm, while Sender B’s transmit power
was kept constant, producing RSSB values from −79 dBm to
−76 dBm. 40 samples were taken for each of the available
32 transmit power values, resulting in a total of 1108 com-
parable instances, i.e., instances in which we were able to
measure both senders’ RSS values.

is roughly centered around ∆ = 160µs.
It is worth noting that the study by Yuan et al. [27], also

using TelosB motes, measured the transition window to be
τ1 ≈ 128µs to τ2 ≈ 224µs, resulting in a spread of roughly 6
symbols or 3 bytes. We are not completely certain about the
cause of this discrepancy, but presume the difference in path
quality to play a significant role: we used 3 nodes part of the
testbed, located in different rooms, while they had placed the
nodes in clear line of sight at a distance of 1 meter.

We also measured the effect of signal strength difference
on capture probability. Figure 2 shows our results for the
case of both senders sending simultaneously (|∆|< 1µs), but
one sender varying its transmission power. To determine the
difference in RSS and counteract the fluctuation of the link
qualities over time, we additionally measured each sender’s
RSS value within at most 0.5µs of each sample. We observe
the gap threspower between either of the senders having their
packets captured with a high probability, say PRR > 90%, to
be about 5 to 7 dBm. This roughly matches the values cited
in existing literature, e.g., [23]. It is worth noting, however,
that the gap size threspower likely depends on the environ-
ment, since in most existing models a higher noise floor im-
plies needing a higher signal power to beat the SINR thresh-
old required for successful capture. Further, we find that the
probability of either packet to be received successfully drops
to around 5% when the signal strengths are identical.

In conclusion, we observe that in order to be able to re-
liably call on the capture effect in a slotted setup (see next

section), competing senders should have a clock difference
below 160 µs and a power difference above 5 dBm. This
level of synchronization we can achieve by synchronizing
about once every few minutes.

4 Layering Protocols
4.1 Slot Logic

Traditionally, executing multiple protocols in parallel is
likely to incur a penalty on the utilization of the network re-
sources and/or the performance of the protocols themselves.
For example, if two protocols access the medium alternat-
ingly using time slots, up to half the slots may be wasted,
while one of the protocols is idle and the other has demand
for more than its share of time slots. Further, in this scenario,
information propagation latency is doubled, as no informa-
tion can leave a node sooner than 2 slots after its arrival.
Using more opportunistic approaches, such as when using
CSMA/CA (Carrier Sensing Multiple Access with Collision
Avoidance), the problems mentioned above do not occur:
any number of idle protocols do not influence the network’s
utilization or the performance of the other protocols. How-
ever, when the load on the network becomes too large, un-
fairness and starvation become threats to effective operation.

In this section we will detail our proposed method of par-
allelizing, or layering, k protocols with the aim of combining
the benefits of the approaches mentioned above: no unused
network resources under load, while also offering fairness
and prevention of starvation. Further, our method allows pri-
oritization of protocols, giving higher-priority protocols al-
most complete access to the network’s resources at the cost
of possible starvation of lower-priority protocols in areas of
the network not sufficiently separated from the high-priority
traffic in space or time. Finally, this section will discuss how
network topology and environment influence the number of
layers our method can support.

The core idea is to deliberately provoke the capture ef-
fect at every node whenever it is destined to receive multiple
packets at the same time. To do so, we enforce time slot-
ting and require the clock difference between any two nodes
within a nodes immediate neighborhood to be below τ1 (see
Section 3). By ensuring all potentially competing packets
start within a time interval of length τ1, we obtain that which
packet is to be received in a time slot is solely dependent on
the arriving packets’ signal strengths, but not on their rela-
tive timings. Given a sufficient spread in signal strengths, the
capture effect is almost certain to enable successful reception
of the packet with the strongest signal. We will discuss why
this assumption is a reasonable one to make below.

The next piece of the scheme is to use transmission power
control at each sender to specify the “layer” of each packet.
As nodes may have varying distances and link qualities to
each other, the transmission power cannot simply be derived
from the layer of the packet to be sent, but must consider
the destination node. In effect, for every receiving node a
set of incoming signal strength intervals needs to be chosen,
different enough to be distinguishable by the capture effect,
but similar enough to fit within the range of signal strengths
each of the neighboring nodes can produce. Thus, for every
sending node, for each of its neighbors and for each of the



layers the correct sending power needs to be chosen.

Algorithm 1 Pseudocode for Slot Logic
out← /0

for all protocols Pl with layer l← 1 to k do
Pl .compute slot()
if Pl .outgoing packet 6= /0 then

out← Pl .outgoing packet
Pl .outgoing packet← /0

end if
end for
if out 6= /0 then

Transmit out this slot (using the correct power for out’s
target and layer)

else
Listen this slot
in← incoming packet
if in 6= /0 then

Pin.layer.process packet(in)
end if

end if

Finally, every protocol is uniquely assigned to a layer. We
label the layers 1, . . . ,k, where the protocol of layer k has
the highest priority and the protocol of layer 1 has the low-
est. Every slot, every node executes Algorithm 1: First, it
performs each protocol’s slot computation separately, while
storing the packet the highest layer protocol wants to send
(out) and discarding all others. If any packet was chosen this
way, it is sent at the sending power corresponding to its desti-
nation and protocol layer. If no packet was chosen, the node
listens for the duration of that slot and delivers any received
packet to the correct protocol.

This setup attempts to give each protocol the illusion of
being the only protocol present. This is achieved by proto-
cols experiencing a “packet loss” if a protocol of higher layer
is active at the same time: if a higher layer is overriding the
sending of a lower layer packet, that lower layer packet sim-
ply appears to have been lost in transit; conversely, if a packet
of a higher layer is overriding the reception of a lower layer
packet, that packet’s fate appears indistinguishable from true
packet loss as well. As occasional packet loss is a common
occurrence in almost every environment due to noise bursts
or interference, most wireless algorithms are innately capa-
ble of recovering from a loss of packets. Hence, they are
perfectly suitable to be used as lower layer protocols. The
highest layer protocol experiences no packet loss due to the
presence of other layers (with one exception noted below),
but is still subject to the usual environmental impediments.
If the environment is in fact controlled enough to not suffer
any such packet loss, as might be the case in clinical set-
tings such as perhaps data centers, a protocol relying on a
low packet loss ratio may be used as the highest layer.

We do not consider queuing packets from multiple proto-
cols desiring to send from the same node in the same slot, as
this would tamper with possible protocol-internal slot sched-
ules of protocols whose packets have been delayed. This
would damage the illusion, and require significant changes

to the way protocols for use in the lower layers are designed,
such that common known protocols can no longer easily be
used. Simulating packet loss is hence a cleaner solution,
while the option of allowing layering-aware protocols to im-
mediately know if their packet was dropped, such that they
may queue it for the next slot if desired, is still available.

There is one scenario, however, in which the illusion in-
evitably breaks down. As we are assuming that the wireless
hardware is not capable of receiving while transmitting, a
problem occurs when a node is choosing to send in a slot
due to a protocol of layer i, but would in the same slot re-
ceive a packet on layer j > i. Here the protocol of layer
j will experience packet loss due to a lower layer protocol.
Unfortunately, it is impossible to prevent this scenario from
occurring without also introducing significant overhead to all
other scenarios: if the traffic demand on layer j can occur
spontaneously, for instance, to propagate an alarm event, ev-
ery node’s layer i protocol may be in any state, including
having chosen to send in that particular slot. If one forces
layer i a priori to not send in certain slots, the latency and
bandwidth penalties tied to TDMA are inevitable.

We found that for applications, in which the highest level
protocol aims to achieve the lowest latency possible (such as
the example application discussed in Section 5), a reason-
able workaround is to send every high-priority packet twice
in successive time slots. Note that while this does double
the amount of packets sent, the latency only increases when
the described scenario indeed occurs. Running common al-
gorithms, a node that is sending in slot t is unlikely to send
again in slot t + 1 as there would not have been any input
in slot t to instigate another outgoing transmission. This is
even true if multiple layers wanted to send in slot t, as all
their packets would have been either sent or discarded in slot
t. Hence, a high-priority packet sent in two successive time
slots is bound to arrive in at least one of the two slots.
4.2 Power Choices

The main difficulty now lies in ensuring a good spread in
the signal strengths of all packets received at each node in the
same slot. One assumption we make is that the individual
protocols avoid causing multiple of its packet to collide at
the same node. This is reasonable especially for protocols
following the traditional school of thought, which dictates all
simultaneous packet arrivals to be fatal collisions. Given this
assumption and the fact that every protocol runs on its own
unique layer, all packets arriving at a node in the same slot
belong to different layers and should thus have sufficiently
different signal strengths for the capture effect to be able to
enable reception of the strongest packet.

There exists a tradeoff between the number of available
layers (and thus number of parallelizable protocols) and
the achievable spread of received signal strengths at each
node. The network topology and in particular the homo-
geneity of the network’s link qualities play a large role in
enabling a higher number of layers to be well-separated at
each node. “Well-separatedness” requires the difference in
received signal strength between every pair of layers to ex-
ceed the threshold of threspower (which we found to be at
least 5 dBm on our testbed, see Section 3). We found that in
a perfectly homogeneous setting where every link is either
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Figure 3. Shown are the RSS (received signal strength) values for different output powers for different links at the same
receiver.
(a) Two links of similar quality easily allow 4 layers to be differentiated (horizontal lines). A possible fifth layer could identify
with powers below -88 dBm.
(b) An example of a node with an extremely short distance neighbor (Sender A). No power setting allows a packet from Sender
D to be captured while Sender A is sending as well.
(c) An example of a typical node with no very close neighbors. 2 layers are supported by all links.
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Figure 4. The 32 available output power settings on the
CC2420 wireless transceiver [24]. Note that half the avail-
able values cover only a 7 dBm interval and settings below 3
are not usable.

of high quality (high range of powers usable for success-
ful transmissions) or not of significant power, the number of
available layers becomes maximal. Using our hardware we
found up to 4 or 5 sending powers to be distinguishable at a
receiver, see Figure 3(a). Such a high number of layers (4 or
more) is likely only feasible in settings with a high degree of
control over node positioning and environmental influences.

More commonly, networks contain varying levels of
heterogeneity, with some areas containing only long-
distance/low-quality links, some areas more tightly packed

with low-distance/high-quality links, and many areas being
cases in between. For our hardware, especially these in-
between cases spell trouble due to the granularity of se-
lectable sending powers decreasing sharply as power values
decrease, see Figure 4. As a direct result a bottleneck for the
number of layers forms at nodes with both long-distance and
short-distance links. In the example of Figure 3(b), the low-
quality link of Sender D can only provide receive powers in
the range from -89 to -78 dBm, a range which Sender A can-
not reach even with one power setting. In Figure 3(c), while
no extremely high-quality links are included, the higher-
quality links still offer only a very low power granularity in
the range feasible for lower-quality links.

We find that for our hardware 2 clearly distinguishable
layers are possible in essentially all topologies, but identify
the occurrence of both “long” and “short” links at a single
node as the main bottleneck. Note that the cause for the bot-
tleneck is not present in nodes which have only long or only
short links, as in these cases the links’ power ranges overlap
very well. Essentially, the smaller the upper bound on the
difference between the longest and shortest link at any node
in the network, the higher the number of available layers.

When faced with the problem of the network supporting
too few well-separated layers, there are several possible so-
lutions. For one, the problem may be addressed directly by
excluding or repositioning such mixed-link nodes or some
of their neighbors. Another alternative is to employ wireless
transceivers offering better suited transmission power control
options. Finally, in some scenarios compromising the quality
of the layer separation a bit by lowering the required signal
strength spread at each receiver may be feasible, especially if
only few or unimportant nodes are affected. Latter may lead
to occasional inadvertent inversion of packet priorities and
true destructive packet collisions, which some applications
may be able to tolerate.
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Figure 5. A part of the FlockLab testbed which we used to
conduct our experiments on. An example of a convergecast
tree with node 8 as the root node is shown. Yellow edges
indicate links not part of the tree. To avoid collisions within
the convergecast layer, no two sibling branches connected by
links may execute simultaneously. Hence, every node, once
it is woken, first queries all its black edge children in parallel,
and then, in a second step, its blue edge children.

If one wishes to have multiple protocols have the same
priority and be entitled to equal share of the medium, it is
not advisable to assign both protocols the same layer of re-
ceive powers. Since packets of the same strength arriving at
a node will not trigger the capture effect but instead lead to
destructive packet collisions, none of the packets would be
decoded correctly. Instead, we recommend having a sepa-
rate layer for each protocol, but rotating through the protocol
assignments for the layers on a slot number basis. I.e., for
two protocols, simply swap their layer assignments every c
slots. We suggest choosing the value of c to be around 50
to 100 to avoid each protocol suffering very frequent packet
loss when both protocols are under load.

5 Example Application
To verify and measure the effectiveness of our method on

real world wireless sensor networks, we chose an example
application highlighting the supposed benefits of our method
and implemented it on the wireless testbed FlockLab [14]
which spans the floor of an office building (see Figure 5).

We consider the scenario of fire detectors covering the
rooms of a building with the goal of reporting the outbreak
of a fire as quickly as possible to a base station, or root node,
which to the network is just a normal node with a special
role. The root node has a wired connection to the building
facilities and can escalate the alarm if it is informed of a fire
by one of its neighbors. In its wireless capability it matches
a regular node and as such it can only hear a local neighbor-
hood of nodes, necessitating the propagation of a fire alarm
over multiple hops.

Additionally, we require the liveness and proper function-
ing of all nodes to be regularly verified so that defunct nodes
may be replaced in a timely manner. We regard these live-
ness tests to be of less urgency than the fire alarms and thus
do not mind fire alarms having priority access to the wire-
less medium. Hence, in our model the liveness tests will be
executed as a protocol in layer 1, while the fire alarm propa-

gation will take place as a protocol on layer 2.
We model each fire detector as a TelosB sensor node ex-

tended with a smoke sensor, though for this experiment we
only simulate a virtual smoke sensor to make alarm gener-
ation easier. The TelosB sensor node is mainly comprised
of a MSP430 16-bit RISC microcontroller and a CC2420
wireless transceiver [24]. The CC2420 supports the IEEE
802.15.4 ZigBee wireless standard [7] and is capable of ei-
ther sending or receiving on a single frequency at a time.
It uses a preamble for detecting the start of packets and of-
fers output power control, but does not provide any more
advanced features such as message in message or decoding
more than one transmission at a time. For all intents and pur-
poses it fulfills the ideal of a “standard” low-power wireless
interface as was referred to in Sections 3 and 4.
5.1 Layer 1

We design the layer 1 protocol as a parallelized con-
vergecast on a tree overlaid onto the network connectivity
graph. Every node knows of its parent and its children in the
tree as well as the adjacency relationships between its child
branches. The root node repeatedly initiates convergecasts
and will, whenever a node is indicated as missing or defunct
by the output of the convergecast, generate an appropriate
alert for that node’s replacement. This layer will also resyn-
chronize a node’s clock whenever it receives a message from
its parent in the tree. This ensures the packet transmission
synchronization requirements for achieving the capture ef-
fect hold over the time of the deployment.

The states each node goes through as it participates in
the convergecast are depicted in Figure 6. The root node
begins a convergecast by waking up itself and skipping to
qwake (since it has no parent). Other nodes start in qsleep and
wait for a request from their parent. After acknowledging
the request (qackrequest ) their parent will send some of its chil-
dren proceed messages (qwake), while the remaining children
only receive acknowledgments and will have to wait at first
(qwait proceed). After “proceeding” a node wakes its children
with a request of its own and then proceeds to qchoose.

Once a node has woken all its children it will start
querying subsets of its children (qsend proceed), such that the
branches of no two chosen children are adjacent in the same
subset. With every proceed message, every addressed child
is assigned a recurring slot during which it may confirm the
query (not pictured) and then later send a response, once it
has gathered all the information from its branch. Once a sub-
set of branches has completed, by each branch either send-
ing a report or not responding for 3 subsequent queries, the
process is repeated for another subset of branches. Finally,
when a node has gathered all the information from its subtree
it will wait for one of its designated response slots and report
to its parent (qrespond).

Anytime a node needs to send messages to multiple of its
children at the same time, it will combine these messages
into one and send it at the highest power any of the links re-
quires for layer 1. While this may strain the layering system
in certain configurations, the effects were negligible in prac-
tice. Hence, we followed through with this approach for its
efficiency and simplicity. An additional benefit is the com-
pliance with the assumption that no node would ever send in
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Figure 6. A high-level overview of the states each nodes
traverses during the parallelized convergecast. Resends and
root specific transitions were omitted for clarity.

two subsequent slots.
Further, every query and every report is explicitly ac-

knowledged. If an acknowledgment is lost, the query or re-
port will be resent after randomized exponentially growing
backoff intervals until an acknowledgment is received or, in
the case of a query, the recipient is pronounced dead after 3
attempts. Once a node is determined to be dead, it will be
ignored for the remainder of the convergecast and the root
node, upon receiving the aggregated node data, can notify
building personnel to manually check on the potentially bro-
ken node. If a node retrying reports is queried for a new
convergecast, it will snap out of its clearly erroneous state
and participate as per usual in the new convergecast.

5.2 Layer 2
The fire alarm propagation is implemented in layer 2,

i.e., a layer with a higher priority than the convergecasts de-
scribed above. When an alarm event occurs it is propagated
along a tree towards the root, a tree similar or even identi-
cal to the one used by layer 1. We simulate smoke alarm
events occurring randomly and independently with a chance
of 1% each slot. In a first test series, we trigger the event
at one random node only (SA). In a separate test series we
trigger multiple alarm events (MA) at different nodes simul-
taneously or with a few slots delay as might happen in the
case of the outbreak of a real fire.

Multiple simultaneous alarms introduce an additional dif-
ficulty to the layer 2 protocol. As mentioned in Section 4.1,
even the protocol with highest priority needs to deal with
packet loss due to addressed nodes possibly not listening as
they might be sending out a packet of their own on layer 1.
The solution mentioned previously, to repeat all packets of
the highest layer once in the subsequent slot, is not sufficient
here due to the possible presence of multiple alarms, which

in our setting all need to have the same priority (as we only
have 2 layers available) and are hence expected to possibly
collide destructively. Thus, we additionally implemented im-
plicit and explicit acknowledgments for alarm propagation.
When a node receives an alarm packet from a descendant in
the tree, it forwards it in both of the next two slots and then
listens. If it hears an ancestor in the tree propagate the alarm,
it takes this as an implicit acknowledgment and calms down,
i.e., no longer spreads the alarm. If it does not hear the alarm
propagated, it repeats it another two times after a random
exponentially growing backoff period, and listens again. A
node which hears the same alarm again (after it had already
propagated it) does not propagate it again. If the sender was a
direct descendant, it sends back an explicit acknowledgment.

We also considered solving the collision of multiple
alarms by tracking the received signal strength indicator
(RSSI) when no packet is being received in a slot. We ex-
pected to see a signal strength similar to or stronger than that
of a layer 2 packet, which would indicate that an alarm had
occurred for certain, even if the exact data of the alarm was
unavailable. This would allow us to pass on the existence of
an alarm without incurring a latency penalty from the alarm
collision. Unfortunately, experiments showed the RSSI to
not be reliable enough of a measure for the presence of layer
2 packets, producing an unacceptably high rate of either false
positives or false negatives.

5.3 Discovery
To determine the trees to be used by layers 1 and 2 as

well as the different reception power levels for each layer at
each node, we initially perform a “discovery” phase. The
goal of this phase is to record the quality of each link in the
network, compute the trees with the smallest possible height
and then inform each node of its parent, its children and all
the parameters required for operation as listed above.

While in our experiments we needed to perform this phase
only a single time, in practice it would likely be desirable to
repeat this phase every so often to deal with changes in the
wireless environment, as, for instance, may easily be caused
by the closing of doors or the increasing of a room’s air tem-
perature or humidity. Such repeated runs may for the most
part be executed solely in layer 1 without impacting the oper-
ationally critical alarm propagation on layer 2, the potential
exception being tests of links at higher sending powers. In
our experience some links’ qualities can drastically change
every few seconds, while others are stable for days. Reason-
ably, one would not perform a complete discovery as often
as every few seconds or minutes, but rather on the order of
hours while testing known fluctuating links more frequently.

6 Test Results
We compare the performance of our method to a tradi-

tional approach, which does not incorporate the capture ef-
fect but for comparability’s sake adheres to the time slotting.
It will, however, still execute both of the protocols (converge-
cast and alarm propagation) and is aware of their relative
priorities. Hence, it will prefer forwarding alarm packets
over sending convergecast related packets, but will use the
same transmission power for all packets. Additionally, we
compare the latency of the alarms as well as the durations



Table 2. Experiment A: Percentages of successful alarms
and convergecasts.

Alarms Convergecasts
Traditional (SA) 78% 98%
Layering (SA) 100% 88%
Traditional (MA) 59% 98%
Layering (MA) 79% 88%
Traditional (MA w/ acks) 100% 75%
Layering (MA w/ acks) 100% 88%

Table 3. Experiment B: Percentages of successful alarms
and convergecasts.

Alarms Convergecasts
Traditional (SA) 79% 98%
Layering (SA) 98% 87%
Traditional (MA) 50% 97%
Layering (MA) 65% 53%
Traditional (MA w/ acks) 82% 66%
Layering (MA w/ acks) 98% 50%

of the convergecasts to the best physically possible values.
Since these values usually are not obtainable without a dose
of luck with regards to low-reliability long-range links, we
do not expect these values to consistently be met.

In the first test series we consider the described algorithm
without alarm acknowledgments (and thus without resends)
in the scenario of single alarms (SA) only. We do, how-
ever, still repeat every alarm propagation packet in the sub-
sequent slot to avoid losing it to a layer 1 packet being sent
at the destination node. For the second and third test series
we tested the algorithm with and without acknowledgements
in the scenario of multiple alarms (MA). We present the re-
sults for two representative experiment runs with different
topologies. Experiment A used 11 nodes and executed 462
convergecasts and 231 alarms. Experiment B used 14 nodes
and focused on an increased alarm density by doubling the
probability for an alarm to occur in each slot to 2%, execut-
ing 311 convergecasts and 528 alarms. For both experiments,
the convergecasts and alarms were divided evenly among the
3 test series and 2 approaches. The experiments took approx-
imately 50 minutes each.

Tables 2 and 3 list the portions of alarms and converge-
casts which were successful in each setting. An alarm is
successful if it did not get lost, i.e., reached the root node
eventually. A convergecast is successful if it completed cor-
rectly and collected data from every single node. The ten-
dency of the layered approach to promote alarms over con-
vergecasts even more than the traditional approach is clearly
visible: while our layering approach generally suffers from
fewer successful convergecasts, it beats the successful alarm
ratio of the traditional approach, reaching an almost certain
alarm delivery. The difficulty of dealing with multiple alarms
without acknowledgements is also apparent, as alarms in-
evitably get lost. Of special note is the fact that while the
traditional approach reaches the same 100% alarm successes
as us using acknowledgements in experiment A, it suffers a
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Figure 7. Experiment A: Distributions of alarm delay.
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Figure 8. Experiment B: Distributions of alarm delay.

larger convergecast success penalty.
Figures 7 and 8 show the CDF (cumulative distribution

function) for the alarm delay. The delay of an alarm is de-
fined as the number of slots it takes to reach the root node
minus the physical minimum number of slots required to tra-
verse the multi-hop path from its origin to the root. This
allows for a comparison between alarms originating at differ-
ent nodes. We observe our approach beating the traditional
one in each category, not least because it suffers fewer lost
alarms, with the exception MA with acknowledgements in
experiment A. For single alarms we achieve an alarm delay
of 2 slots or less in 85% resp. 94% of cases, which is ex-
cellent considering the optimal reference alarm delay taking
unreliable long-distance links into account. As was to be ex-
pected, overall the maximum delay experienced without ac-
knowledgements is around 4 slots, while acknowledgements
allows alarm reporting to be drawn out considerably.
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Figure 9. Experiment A: Distributions of convergecast de-
lay.

Figures 9 and 10 shows a similar CDF for convergecast
delays, defined as a convergecast’s duration minus the min-
imum amount of slots our algorithm requires for the con-
vergecast even if not a single packet was lost. The consid-
erably worse performance of our approach here is due to it
causing the layer 1 algorithm increased packet loss in order
to support layer 2. Also of note is the general increase in
delay for both approaches as more layer 2 traffic is intro-
duced, both by adding acknowledgements and resends and
by increasing the amount of alarms.

7 Conclusion and Future Work
We present a method to execute multiple protocols in

parallel, giving each protocol the illusion of being the only
one and having complete access to the network’s resources.
When a higher-priority protocol uses network resources,
such as the ability of a node to send or receive a packet in
a specific slot, lower-priority protocols experience this as
packet loss, as sending priority or the capture effect drop
lower-priority packets.

Further, in theory our method causes no overhead in terms
of time slot use and latency. To confirm this, we imple-
mented an example application with 2 protocols of different
priorities and measured their performance. The results show
very few packet losses and essentially optimal latency for
the higher-priority protocol, while it causes additional losses
to the lower-priority protocol compared to a traditional ap-
proach. In the scenario that both approaches can avoid loss
of high-priority packets, our method does so while incurring
less overhead to the lower-priority protocol.

Our technique does come with some downsides, most
notably the removal of the individual protocols’ ability to
employ some options directly related to the physical layer.
These options include power control, knowledge about cor-
rupted packets, the use of the capture effect and the ability
to not use time slotting. For many algorithms these features
may be non-critical or even completely irrelevant. For oth-
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Figure 10. Experiment B: Distributions of convergecast de-
lay.

ers it may make this technique unsuitable or require signifi-
cant changes. Further, the connectivity graph is likely to lose
some edges on one or more layers whose target reception
power ranges cannot be met by the respective senders’ trans-
mission power ranges. This especially affects the availability
of long-range links on the lower-priority layers.

Our technique proves to be flexible concerning hardware
and existing protocols, allowing it to be deployed without
much additional overhead beyond implementing the discov-
ery phase and basic slot logic. We have shown simple low-
power hardware such as TelosB to be sufficient and pointed
out how our technique is capable of masking the existance of
competing protocols, allowing many protocols to simply be
“dropped in” on one of the layers, possibly even on-the-fly.
Some protocols may greatly benefit from being aware of the
other protocols, for instance, by knowing when their packet
was dropped already at the sender, or by even directly com-
municating with the higher layer protocols on the same node.
We believe this work to nevertheless be a useful first step in
the direction of exploring such multi-layer protocols.

Incidentally, our technique is also a feasible fairness
provider in many situations. While in its basic implementa-
tion it will in fact allow any protocol to completely starve all
protocols with a lower priority, as discussed in Section 4.2,
by periodically reassigning the layers to different protocols,
each protocol can be assigned an arbitrary share of the net-
work resources when averaged over longer periods of time.
However, our approach is likely not suitable for applications
with a need for temporally more fine-grained QoS. This is
under the assumption that under load each protocol is able
to work more efficiently if it is the top active layer for its
critical region for longer consecutive time intervals than for
many smaller ones, separated by spurs of time with possibly
100% packet loss.

Power consumption was not examined as part of our tests.
We believe this issue to be almost orthogonal to the prob-



lems discussed here, as duty cycling and rate of packets sent
are barely affected by the proposed method. If nodes are
unable to maintain synchronization through a sleep phase,
care needs to be taken that they are resynchronized before
attempting to send a packet intended to evoke the capture ef-
fect. On TelosB hardware, however, staying below the syn-
chronization error threshold of 160µs for longer periods of
time is very easy due to its 32 kHz crystal oscillator (with a
tick length of about 31 µs) being able to power-efficiently
and accurately keep time even when the CPU is in sleep
mode. While operation on higher-priority layers does require
larger transmission powers, for many applications the pro-
posed method may remain a desirable choice, especially if
high-priority messages are more of an exception than a rule
(as in our fire alarm example).

Promising future work includes applying this method to
wireless hardware with a finer power control granularity, es-
pecially at the low power end. We expect such hardware
to make it significantly easier to support a larger number of
layers while having a clear separation of layers. In general,
it is also worth investigating the capture effect parameters
for a layering setup on other hardware, as hardware more
amenable to exhibiting the capture effect may loosen the re-
quirements on synchronization or layer separation.

If the lack of absolute network resource control for higher
layers proves to be an issue (i.e., if lower layers are prevent-
ing reception of high layer packets by sending lower layer
packets), various solutions may be worth exploring. For
example, one could depart a little from strict slotting and
have higher layers send their packets a few dozen symbol
durations earlier, as to allow prevention of lower layer send-
ing. Alternatively, a mechanism by which higher layers com-
pletely reserve some nodes for a period of time is imaginable
and may be very effective depending on the application.
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