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Abstract. This paper studies throughput maximization in networks with dynam-
ically changing congestion. First, we give a new and simple analysis of an existing
model where the bandwidth available to a flow varies multiplicatively over time.
The main contribution however is the introduction of a novel model for dynam-
ics based on concepts of network calculus. This model features a limited form
of amortization: After quiet times where the available bandwidth was roughly
constant, the congestion may change more abruptly. We present a competitive
algorithm for this model and also derive a lower bound.

1 Introduction

The problem of avoiding congestion in the Internet has been studied with zeal for many
years. The TCP congestion control mechanism of todays Internet successfully employs
a window-based scheme to prevent the Internet from being overloaded. Thereby, the
size of the so-called TCP congestion window is an approximation of the available net-
work capacity. When TCP suffers a packet loss, it assumes that the network is congested
and reduces the window’s size. Consequently, the sending rate is cut down, and the In-
ternet hosts collaboratively alleviate the load.

In the past, the transport layer and in particular the congestion problem was first
studied empirically, and later embraced by the queuing theory and control theory com-
munities. In order to analyze and compare protocols theoretically, a traffic model is
needed. Queuing and control theory researchers have refined their early Poisson traffic
models to an astonishing level of detail. However, probabilistic models are intricate to
analyze. Probabilistic models that are simple enough to be analytically tractable might
never model traffic accurately enough, as the nature of network traffic is self-similar
and bursty [18].

In their seminal paper Karp, Koutsoupias, Papadimitriou, and Shenker [10] have
proposed to study congestion control from a worst-case perspective instead. Karp et
al. model congestion control as an online game between a flow and an adversarial net-
work. In particular, the available bandwidth of the network changes over time and the
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flow gets only a limited feedback—namely, whether packets have been lost or not—
about the currently available bandwidth.

In this paper, we follow the algorithmic online approach proposed by Karp et al. [10]
to broaden our understanding of congestion control. We build upon [10] by focusing on
the dynamics of congestion. In particular, we integrate a notion of bursts happening in
a worst-case manner. Although we do not claim that our models accurately represent
what happens in the Internet, we believe that they are interesting and may ignite a further
discussion on future variants of congestion control.

Concretely, after a new analysis of a model by Karp et al., we introduce the burst
model: Instead of considering an adversary which always changes the bandwidth simi-
larly each round, our adversary may accumulate some power in quiet rounds and then
change the congestion more abruptly in later rounds. For this adversary, a lower as well
as an upper bound are derived for the competitive ratio.

The paper is organized as follows. Section 2 reviews related work and also gives a
short overview of the relevant network calculus concepts. After setting the stage in the
model section (Section 3), we study the case of multiplicatively changing congestion
in Section 4. In Section 5 our new model is presented in detail and analyzed. We state
open problems in Section 6 and conclude the paper in Section 7.

2 Related Work

TCP lies at the heart of today’s Internet, and many aspects of TCP are still subject to
active research. For a reference on TCP, we refer the reader to [17]. TCP congestion
control has been studied intensively, both from an empirical and from a theoretical
perspective. Due to space constraints, we are bound to concentrate on the closest related
work only.

In our work, we analyze congestion control from a worst-case perspective using
competitive analysis. Generally, we think that a better algorithmic (worst-case) under-
standing of the transport layer is necessary. Whereas all other layers have received quite
a lot of attention in the past (e.g., cf. [2] for the link layer, and [15] for the network
layer), there has been comparatively little algorithmic networking research about the
transport layer. Some notable exceptions are for instance adversarial queuing theory
[6], the study of the TCP ACK problem [9], or mechanism design [7].

Our model is due to Karp et al. [10] who define several optimization problems related
to congestion control. The authors investigate the issue of regulating the rate of a single
unicast flow when the bandwidth available to it is unknown and changes over time.
In our paper, we extend [10] in two respects: First, we provide a new analysis of a
model where the bandwidth changes multiplicatively; our analysis is simpler and gives
strict competitive bounds. Second, we enhance their model with bursts: Thereby, the
congestion may change more after a time of quiescence.

The work by Karp et al. has already had an interesting follow-up by Arora and
Brinkman [4] who study randomized algorithms for a dynamically changing conges-
tion. In particular, they propose an asymptotically optimal randomized online algo-
rithm against an adversary which may change the congestion by a constant factor in
every round. Unfortunately, they assume a fairly weak oblivious adversary (see also the
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discussion in Section 6): Their algorithm uses randomization only in the first round,
while the sending rate of all other rounds is computed deterministically. The adversary
however is not allowed to be adaptive in these deterministic rounds.

The idea that an adversary may accumulate power over time has already appeared in
the area of packet routing and is related to the adversarial queuing theory by Borodin
et al. [6]. The problem considered there is as follows: Given a packet switched net-
work and an adversary which continuously injects packets that have to be routed from
a source to a destination node, how much buffer space is needed at the nodes, and what
is the delivery time? In the paper by Aiello et al. [1], the adversary is allowed to inject
any sequence of packets into the network, as long as in any w consecutive rounds, the
total load created by the paths associated with the packets inserted in this time period
is at most wr on any edge, for some w ≥ 1, r ≤ 1. The adversary studied by Andrews
et al. [3] is similar to our adversary. Given two parameters b ≥ 1, r ≤ 1, for any T ≥ 1
consecutive time steps, the adversary may inject as many packets as it wants, as long
as the total load created by the paths associated with these packets is at most Tr + b
on any edge. These two adversary models have been compared by Rosén in [16]. A
contribution of our paper is to introduce a modified version of the adversary in [3] on
the transport layer.

Short Overview of Network Calculus. We now give a short introduction to those
concepts of network calculus which are relevant to our work. Network calculus is a
relatively new technique to analyze deterministic queuing systems found in communi-
cation networks. For a detailed introduction to network calculus, see [14].

In network calculus, there exists the notion of arrival curves which provide determin-
istic limitations to the network traffic sent by sources. Given that the data flows indeed
correspond to these limitations, it is possible to make statements about the deterministic
behavior of the network (maximal delays, maximal queue lengths, etc.).

Arrival curves are defined as follows. Let R be a data flow, and let R(t) be the total
number of bits R has sent until time t. Let α be an increasing function defined for all
times t ≥ 0. We say that R has an arrival curve α if and only if for all s ≤ t:

R(t) − R(s) ≤ α(t − s)

In other words, the total number of bits sent until time t by flow R may never exceed the
bits sent by R until some time s plus α(t−s). In this paper, we look at a so-called leaky
bucket arrival curve defined as α(t) = c1t + c2 for some non-negative constants c1, c2.
Figure 1 visualizes the constraints imposed upon a flow R by such an arrival curve: The
total number of bits sent may increase by c2 at once and with a rate c1 over time, unless
there is a conflict with a constraint from a previous round. Informally, the total number
of bits must always be less or equal the minimum constraint that arises if the curve α is
attached to all points of R(t).

Note that such an arrival curve incorporates a limited form of amortization: If flow
R only sends a few bits for several rounds, the constraints of earlier rounds get weaker
and allow R to send up to c2 bits at once in some later round.
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Fig. 1. Leaky bucket arrival curve: The number of bits sent by flow R may never exceed the
constraints from earlier times (dashed lines), i.e., ∀s ≤ t : R(t) ≤ R(s) + α(t − s)

3 Model

In the Internet, there is no central authority allocating bandwidth to hosts. On the con-
trary, individual hosts are responsible for setting their sending rate.1 In this paper, we
consider the problem of regulating the rate of a unicast flow from one host to another
such that the throughput is maximized. The bandwidth available to the flow thereby fluc-
tuates according to the varying requirements for bandwidth of other competing flows.
A host is not provided direct information about the competing demands for bandwidth
or the Internet topology, but does receive some limited information as to whether the
flow is experiencing packet drops, and must determine its transmission rate solely on
the basis of this information.

We assume that time is divided into infinitely many successive rounds and consider
a worst-case model where in every round t, an adversary ADV selects the available
bandwidth ut. Thereby, ut represents the maximum rate at which a host can transmit
without experiencing packet drops. The host on the other hand runs an algorithm ALG
which decides the sending rate xt of round t, and receives immediate feedback as to
whether packet drops have occurred, i.e., whether xt > ut. ALG can then choose the
rate xt+1.

We assume a severe cost model [10] where a host cannot transmit anything in round
t if xt > ut, but can transmit at a rate xt if xt ≤ ut. Formally, the gain of ALG in
round t is defined as follows:

gainALG(xt, ut) :=

{
xt , if xt ≤ ut

0 , otherwise

1 Usually, this is done automatically by TCP. However, by using the User Datagram Protocol
(UDP), selfish programs can try to maximize their own throughput and may have no incentive
to reduce congestion collaboratively. Although it is generally believed that routers are config-
ured to give priority to TCP packets [8]—with the consequence that UDP packets are dropped
first if the Internet gets congested—at least in theory it is possible to design networking soft-
ware from scratch that circumvents this restriction by sending UDP packets which look like
TCP packets.
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An optimal offline algorithm OPT knows the sequence {ut} in advance and achieves
a gain of

gainOPT (xt, ut) = ut

in round t. These gains reflect two major issues: The online algorithm experiences an
opportunity cost if its sending rate is smaller than the available bandwidth (case xt <
ut), and a retransmission overhead if its packets are dropped due to congestion (case
xt > ut).

We are in the realm of competitive analysis [5] and define the (strict) competitive
ratio ρ achieved by ALG as the total amount of data (over all rounds) sent by OPT
divided by the total amount of data sent by ALG (cf. Definition 3.1).

Definition 3.1. [ρ-competitive] We say that an algorithm ALG is (strictly)ρ-competitive
compared to an optimal offline algorithm OPT if for all input sequences I , it holds that

gainOPT (I) ≤ ρ · gainALG(I).

The goal of the online algorithm designer is to minimize ρ. Henceforth, we will assume
that ALG knows the initial bandwidth, i.e., x0 = u0.

Observe that an unrestricted adversary could frustrate every online algorithm by al-
ways selecting ut := xt − ε for some arbitrary small ε > 0. The natural way out
proposed by Karp et al. [10] is to assume that the available bandwidth does not change
too drastically over time. In this paper, we study different ways to restrict the adversary.
In Section 4, we consider the multiplicative model proposed by Karp et al. In Section
5, we extend this model to allow for changes with bursts.

We will call rounds t where the online algorithm successfully transmits its packets
without loss good rounds, and rounds t where xt > ut bad rounds, cf. Definition 3.2.

Definition 3.2 (Good and Bad Rounds). A round t where xt ≤ ut is called good, a
round t where xt > ut is called bad.

We defer the description of the different adversaries to the corresponding sections. How-
ever, we now define the following class of online algorithms.

Definition 3.3 (ALG(G, B)). Let ALG(G, B) be the online algorithm which chooses

xt+1 :=

{
G · xt , if xt ≤ ut

B · xt , otherwise

for some G ≥ 1 and B ≤ 1. That is, the algorithm ALG(G, B) increases the rate by a
factor G after a good round, and decreases it by a factor B after a bad round.

The sending rate xt+1 of an algorithm ALG(G, B) depends solely on the binary feed-
back whether its probing rate xt was larger than the available bandwidth ut in the pre-
vious round or not.
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4 Multiplicative Adversaries

In this section, we look at multiplicative changes of the available bandwidth. We first
consider a model where the adversary can increase the bandwidth at most by a factor
μ ≥ 1 per round and can decrease it arbitrarily (cf. Definition 4.1). Later, we will study
a model where also the reduction is constrained multiplicatively (cf. Definition 4.2).

So let’s look at the adversary ADVmult (cf. Definition 4.1) proposed by Karp et al.

Definition 4.1 (ADVmult). ADVmult may choose the new bandwidth ut+1 in the in-
terval [0, ut · μ], i.e.,

ADVmult : ut+1 ∈ [0, ut · μ],

for some given μ ≥ 1.

First, we restate the lower bound given in [10].

Theorem 4.1. [10] Against ADVmult, no online algorithm can achieve a competitive
ratio smaller than μ.

Proof. Consider the following adversary ADV : In every round t, it chooses

ut :=

{
μ , if xt ≤ 1
1 , otherwise

Thus, whenever an online algorithm ALG sends at a rate larger than one, all its packets
are dropped because of congestion. On the other hand, if ALG transmits at a rate of 1
or less, the rate of OPT is at least a factor μ larger. Moreover, since ADV changes the
available bandwidth at most by a factor of μ per round, it is indeed of type ADVmult.

In [10], it is shown that the algorithm ALG(μ,
√

μ√
μ+

√
μ−1 ) yields a competitive ratio of

ρ = (
√

μ +
√

μ − 1)2

against ADVmult. However, [10] uses a different definition for the competitive ratio
which allows for (possibly large) additive constants. By our strict definition (cf. Defini-
tion 3.1), the ratio can be much larger. To see this, assume an adversary which reduces

the available bandwidth in every round by a factor slightly larger than
√

μ+
√

μ−1√
μ . In this

case, ALG(μ,
√

μ√
μ+

√
μ−1 ) is only successful in the first round, and hence gainALG =

u0, while

gainOPT ≈ u0 ·
∞∑

i=0

(
√

μ
√

μ +
√

μ − 1
)i.

Therefore, the (strict) competitive ratio is

ρ =
gainOPT

gainALG
≈

√
μ +

√
μ − 1√

μ − 1
.

For small μ, ρ can get very large (for instance ρ > 100 if μ = 1.0001).
In the following, we give a simple proof that the algorithm ALG(μ, 1/2) has a strict

competitive ratio 4μ. According to Theorem 4.1, this is asymptotically optimal.
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Theorem 4.2. ALG(μ, 1/2) is 4μ-competitive against ADVmult.

Proof. First, we show by induction that in every good round t, ut ≤ 2μxt. For t = 0,
u0 = x0 and the claim holds. For the induction step, consider the round t−1 before the
good round t. There are two possibilities: either round t−1 has been bad (xt−1 > ut−1)
or good (xt−1 ≤ ut−1). If round t − 1 has been bad, we have xt = xt−1/2 and
ut ≤ ut−1μ < xt−1μ = 2μxt, hence ut/xt < 2μ, and the claim holds. If on the other
hand round t − 1 was good, the algorithm increases the bandwidth at least as much
as the adversary. Together with the induction hypothesis, the claim also follows in this
case.

Having studied the gain in good rounds, we now consider bad rounds. We show that
in the bad rounds following a good round t, the adversary can increase its gain at most
by 2μxt. So let t be the good round preceding a sequence of bad rounds, i.e., xt ≤ ut,
xt+1 > ut+1, xt+2 > ut+2, etc. We know that xt+1 = μxt, so—because it is a bad
round—ut+1 must be smaller than μxt. Furthermore, we have xt+2 = xt+1/2 = μxt/2
and hence ut+2 < μxt/2, xt+3 = μxt/4 and hence ut+3 < μxt/8, and so on. By a
geometric series argument, the gain of the adversary in the bad rounds is upper bounded
by 2μxt.

Therefore,

ρ=
gainOPT (good) + gainOPT (bad)

gainALG(good)

<
2μ · gainALG(good) + 2μ · gainALG(good)

gainALG(good)
<4μ.

To conclude this section, we give another kind of proof to show that the algorithm
ALG(μ, 1/μ3) has a good competitive ratio for small μ. For our analysis, we assume a
slightly more restricted adversary ADV∗

mult (cf. Definiton 4.2).

Definition 4.2 (ADV∗
mult). ADV∗

mult chooses the new bandwidth ut+1 from the inter-
val [ut/μ, ut · μ], i.e.,

ADV∗
mult : ut+1 ∈ [ut/μ, ut · μ].

Theorem 4.3. ALG(μ, 1/μ3) is (μ4 + μ)-competitive against ADV∗
mult.

Proof. The fact that ALG reduces its rate by a factor μ3 after a bad round implies
that the next round is always good: Assume, for the sake of contradiction, that round
t + 1 is the first bad round following another bad round t, which—by the induction
hypothesis—follows a good round t − 1. Hence, xt−1 ≤ ut−1. Moreover, observe that
ut+1 ≥ ut/μ ≥ ut−1/μ2, but on the other hand, xt+1 = xt/μ3 = μxt−1/μ3 =
xt−1/μ2. Therefore, xt+1 ≤ ut+1. Contradiction!

We now first analyze the gain of a good round t and show that ut < μ4xt. There are
two cases: Either round t − 1 has also been good, or not. If it has been a good round,
then round t is at least as competitive as round t − 1 because xt = μxt−1. If on the
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other hand round t − 1 has not been good, we have ut−1 < xt−1, xt = xt−1/μ3 and
ut ≤ μut−1. Therefore, xt = xt−1/μ3 > ut−1/μ3 ≥ ut/μ4, and the claim follows.

Next, we study the gains in a bad round t. In this case, it holds that ut < μxt−1:
Since xt−1 ≤ ut−1, xt = μxt−1 and ut < xt, and hence ut < μxt−1.

Therefore,

ρ=
gainOPT (good) + gainOPT (bad)

gainALG(good)

<
μ4 · gainALG(good) + μ · gainALG(good)

gainALG(good)
= μ4 + μ.

Since ADV∗
mult is a special case of ADVmult, Theorem 4.2 also applies for

ADV∗
mult. Hence, it is possible to run ALG(μ, 1/μ3) against ADV∗

mult if μ is small,
and ALG(μ, 1/2) otherwise, which yields the following corollary.

Corollary 4.4. There is a deterministic online algorithm which is min {μ4 + μ, 4μ}-
competitive against ADV∗

mult.

5 Network Calculus Adversary

5.1 Description of ADVnc

In this section, we introduce the adversary ADVnc which is based on network cal-
culus [14] concepts. We will extend the model introduced in Section 4 by a form of
limited amortization which allows for more drastic bandwidth changes after times of
quiescence.

ADVnc has two parameters: A rate μ ≥ 1 and maximum burst factor B ≥ 1.
In every round, the available bandwidth ut varies according to these parameters in a
multiplicative manner. More precisely, ADVnc can select the new bandwidth ut+1 from
the interval

ADVnc : ut+1 ∈ [
ut

βtμ
, ut · βt · μ],

that is, the available bandwidth can change by a factor of at most βtμ. Thereby, βt is
the burst factor at time t. This burst factor is explained next.

On average, the available bandwidth can change by a factor μ per round. However,
there can be times of only small changes, but then the bandwidth changes by factors
larger than μ in later rounds. This is modeled with the burst factor βt: At the beginning,
βt equals B, i.e., β0 = B. For t > 0, the burst factor βt is computed depending on βt−1
and the actual bandwidth change ct−1 that has happened in round t−1. More precisely,

βt = min{B, βt−1
μ

ct−1
}

where

ct :=

{
ut+1
ut

, if ut+1 > ut

ut

ut+1
, otherwise
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This means that if the available bandwidth has changed by a factor less than μ in round
t, i.e., ct < μ, the burst factor increases by a factor μ/ct, and hence the bandwidth can
change more in the next round—and vice versa if ct > μ.

In other words, the adversary can save adversarial power for forthcoming rounds.
However, this amortization is limited as βt never becomes larger than B for all rounds
t. Also note that ∀t : βt ≥ 1, as ct ≤ μβt by the definition of ADVnc.

5.2 Analysis

At first sight, it seems that ADVnc has roughly the same power as ADV∗
mult: In order

to change the bandwidth with a factor larger than μ, ADVnc must have changed the
bandwidth by a factor less than μ in previous rounds.2 However, as we will see in the
following, an online algorithm cannot exploit these quiet rounds sufficiently, and the
competitive ratio does depend on B.

Theorem 5.1. The competitive ratio is at least Ω
(
μ
√

B/ logB
)

against ADVnc.

Proof. Consider the following adversary ADV . ADV will select ut = 1 whenever the
burst factor βt is not maximal in a round t, i.e., if βt < B. If βt = B, ADV continues
choosing ut = 1 until xt ≤ 1 for the first time. Then, if xt ≤ 1 and βt = B, it selects
ut = μ

√
B but immediately sets the available bandwidth back to ut+1 = 1 in the next

round. Therefore, no online algorithm can ever transmit at a rate larger than 1. Since
ADV must be of type ADVnc, it can do this trick at most every �log B/ log μ	 rounds:
After these two bursts (from 1 to μ

√
B and from μ

√
B back to 1), the burst factor

becomes 1, and it takes �log B/ logμ	 rounds to increase it again to B: μi ≥ B ⇔ i ≥
log B/ logμ.

Let us call the time period between two rounds where ADV raises the bandwidth
from 1 to μ

√
B a phase. In every phase, ALG has a gain of at most

gainALG ≤ 2 + �log B/ log μ	 .

On the other hand, the optimal algorithm’s gain is at least

gainOPT ≥ 1 + �log B/ log μ	 + μ
√

B.

Hence,

ρ=
gainOPT

gainALG
≥ 1 + �log B/ logμ	 + μ

√
B

2 + �log B/ logμ	 ∈ Ω

(
μ

√
B

log B

)
.

Note that the lower bound given in Theorem 5.1 even holds for online algorithms which
get perfect (instead of only binary) feedback about the bandwidth of the previous round.

Although we were not able to find an algorithm which yields a tight upper bound, it
can be shown that ALG(μ 3

√
B, 1/2) comes close to the bound of Theorem 5.1.

2 Except for the first rounds of course, where a burst B comes “for free”. However, as mentioned
in Section 3, we consider infinite games only.
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Theorem 5.2. The competitive ratio of ALG(μ 3
√

B, 1/2) is O
(
μ3/2B2/3

)
against

ADVnc.

Proof. We use again the proof technique of Section 4. First, we analyze the missed gain
in bad rounds:

gainOPT (bad)≤
∞∑

i=0

(
1
2

)i

· μ
3
√

B · gainALG(good)

≤2μ
3
√

B · gainALG(good) ∈ O
(
μ

3
√

B
)

· gainALG(good)

Next, the good rounds are tackled. Let t be the last bad round before a good round
t + 1. Hence, xt > ut, xt+1 = xt/2 ≤ ut+1, and xt+2 = μ 3

√
Bxt/2.

There are two cases: Either round t + 2 is also good, or not. If round t + 2 is good,
ut+2 ≤ μ2Bxt. We have

ρ≤ ut+1 + ut+2

xt+1 + xt+2
≤ μB + μ2B

1/2 + μ 3
√

B/2
∈ O

(
μB2/3

)

More good rounds would reduce this ratio, because ALG grows faster than ADV .
If round t + 2 is not good, it holds that xt > ut and xt+2 = μ 3

√
Bxt/2 > ut+2.

Now observe that ut+1 < μ3/2B2/3xt. Assume, for the sake of contradiction, that
ut+1 ≥ μ3/2B2/3xt. Then the burst factor in round t + 1 is at most βt+1 ≤ 3

√
B/

√
μ,

and thus

ut+2 ≥ ut+1

μβt+1
≥

μ3/2B2/3 · √μ
3
√

B · μ
xt = μ

3
√

Bxt > xt+2.

Contradiction. Hence,

ρ≤ ut+1

xt+1
≤ μ3/2B2/3xt

xt/2
∈ O

(
μ3/2B2/3

)
Thus, in conclusion,

ρ=
gainOPT (good) + gainOPT (bad)

gainALG(good)

≤
O

(
μ3/2B2/3

)
· gainALG(good) + O

(
μ 3
√

B
)

· gainALG(good)

gainALG(good)

∈ O
(
μ3/2B2/3

)

6 Open Research Questions

Karp et al. have already pointed out several future research directions, for instance the
study of different cost models. In this paper, we have extended their work by a novel
model for the dynamics of the available bandwidth.
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We believe that our network calculus model opens up many exciting questions. For
example, the lower bound and the upper bound we presented are not tight. It would
be interesting to know if there are asymptotically better online algorithms, or whether
our lower bound is too pessimistic. Another challenge is the design of randomized on-
line algorithms. In fact, Arora and Brinkman [4] have addressed this problem for the
multiplicative adversary ADVmult and presented an algorithm with competitive ratio
O(log μ). By using Yao’s minimax principle [5], it can be shown that this is asymptot-
ically optimal. However, the authors assume a weak oblivious adversary: Their scheme
uses randomization only in the first round, while all later rounds are deterministic. But
the adversary is not allowed to be adaptive even in these deterministic rounds! The case
of a stronger adversary is still an open problem. It is straight-forward to extend the al-
gorithm by Arora and Brinkman for ADVnc: Over-pessimistically, we can assume that
ADVnc changes the bandwidth by a factor B ·μ in every round, which yields a compet-
itive ratio of O(log(Bμ)). However, also here, it would be interesting to study a more
powerful adversary which can be adaptive in deterministic rounds.

Finally, we believe that our network calculus adversary is an interesting model for
dynamics in completely different fields of research.

7 Conclusion

This paper has studied online algorithms which aim at maximizing throughput in the
presence of dynamic bandwidth changes. We have derived an asymptotically optimal
algorithm for a multiplicative model. Moreover, a novel model for the congestion dy-
namics has been presented together with a lower and an upper bound for the competitive
ratio. We hope that our models will give an impetus for future research. Generally, we
believe that a better algorithmic (worst-case) understanding of the transport layer is
necessary. Whereas all other layers have received quite a lot of attention in the past, the
transport layer has always been a step-child of algorithmic networking research.
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