
Monitoring Churn in Wireless Networks

Stephan Holzer1, Yvonne Anne Pignolet2, Jasmin Smula1, and Roger
Wattenhofer1

1 Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland
2 IBM Research, Zurich Research Laboratory, Switzerland

Abstract. Wireless networks often experience a significant amount of
churn, the arrival and departure of nodes. In this paper we propose a
distributed algorithm for single-hop networks that detects churn and is
resilient to a worst-case adversary. The nodes of the network are notified
about changes quickly, in asymptotically optimal time up to an additive
logarithmic overhead. We establish a trade-off between saving energy
and minimizing the delay until notification for single- and multi-channel
networks.

1 Introduction

In traditional (wired) distributed systems the group membership problem has
been studied thoroughly (we refer to [6] for a survey). The basic premise of
group membership is to know which other nodes are there, for instance to share
the load of some task. Nowadays Wireless LAN or Bluetooth often replace large
parts of wired networks since one does not have to build an expensive communi-
cation infrastructure first, but can communicate in “ad hoc” mode immediately.
This motivates a revisit of the group membership problem in a wireless context:
Imagine for example a bunch of wireless sensors, distributed in an area to observe
that area. From time to time some of the nodes will fail, maybe because they
run out of energy, maybe because they are maliciously destroyed. On the other
hand, from time to time some more sensors are added. Despite this churn (nodes
joining and leaving), all nodes should be aware of all present nodes, with small
delay only. To account for the self-organizing flavor and the wireless context we
decided to change the name from group membership to self-monitoring in this
paper. We present an efficient algorithm for the self-monitoring problem in an
adversarial setting.

Reducing the frequency of checking for changes, and thus the number of mes-
sages exchanged per time period, prolongs the time interval until every node is
informed about changes. Since energy as well as communication channels are
scarce resources for wireless devices, we evaluate a trade-off between energy and
delay / runtime for single- and multi-channel networks. For single-channel net-
works, our algorithm can be applied to multi-hop networks using [2], which shows
that algorithms designed for single-hop networks can be efficiently emulated on
multi-hop networks.

2 Model

The network consists of a set of wireless nodes, each with a built-in unique ID.
All nodes are within communication range of each other, i.e., every node can
communicate with every other node directly (single-hop). New nodes may join
the network at any time, and nodes can leave or crash without notice. This fluc-
tuation of nodes in the network is called churn. We exclude Byzantine behavior
and assume that as soon as a node crashes, it does not send any messages any-
more. Due to the churn, the number of nodes in the network varies over time. To
simplify the presentation of the algorithms and their analysis, we assume time
to be divided into synchronized time slots. Messages are of bounded size, each
message can only contain the equivalent of a constant number of IDs. We first
assume that the number of properly divided communication channels is rather
large, a requirement we drop later. In each time slot a node v is in one of three
operating states: transmit (v broadcasts on channel k), receive (v monitors
channel k) or sleep (v does not send or receive anything). A transmission is
successful, if exactly one node is transmitting on channel k at a time, and all
nodes monitoring this channel receive the message sent. If more than one node
transmits on channel k at the same time, listening nodes can neither receive any
message due to interference (called a collision) nor do they recognize any com-
munication on the channel (this is known as no collision detection). The energy
dissipation of v is defined to be the sum of the energy for transmission and recep-
tion. Because in current embedded systems transmitting and receiving consumes
several orders of magnitude more energy than sleeping or local computations,
we set the energy consumption for being in state transmit or receive to unity
and neglect the energy used in state sleep or for local computations. The nodes
have sufficient memory and computational power to store an ID table containing
all IDs of currently participating nodes and execute the provided algorithms. nt
denotes the number of entries in the ID table at time t.

At any time, an adversary may select arbitrary nodes to crash, or it may let
new nodes join the network. However, the adversary may not modify or destroy
messages. Since messages have bounded size, nodes can learn at most a constant
number of identifiers per message. As each node can only receive at most one
message per time slot, any algorithm needs at least cmin time units on average
(for some constant cmin) to learn about one crash or join. In other words, if on
average more than rate rmax := c−1

min nodes crash (or join) per time unit, no
algorithm can handle the information (cf. [5] for the maximum tolerable average
message rate in a dynamic broadcast setting). In the following, we will define
an adversary and monitoring algorithm accordingly. Denote by b the number of
crashes/joins that happen in a maximal burst and by b̃ the maximal burst-size
that an algorithm tolerates.

Definition 1 (c-Adversary, (c, b̃)-Adversary). We call an adversary a c-
adversary if it lets nodes join and crash arbitrarily as long as: First, there re-
mains at least one node knowing the ID table in the network at any time. Second,
on average the number of adversarial joins/crashes is at most one node in c time

slots. The adversary has full knowledge of the algorithm and can coordinate crash
and join events with the aim of making the algorithm fail. A (c, b̃)-adversary is
a c-adversary whose churn is bounded by a constant b̃ during every period of c · b̃
time slots.

3 Monitoring Algorithm

The algorithm we propose is asymptotically optimal in the sense that it can
survive in a setting where on average one crash or join occurs in c time units, for a
constant c > cmin. We can tolerate bursty churn (a large number of nodes joining
or leaving during a small time interval). Similarly to an optimal algorithm, we
need time to recover from bursts since the number of newly joining (or crashed)
nodes is bounded according to the message size. The algorithm can also tolerate
churn while trying to recover from previous bursts; again the only limit is the
learning rate of rmax IDs per time unit. Indeed, the adversary may crash all but
one node at the same instant (killing all nodes is a special case, leading to an
initialization problem, which we do not address here). Clearly, learning churn
takes time, depending on the bursts. If there is a burst of β joins or crashes, an
optimal algorithm needs at least β ·cmin time until the corresponding information
at all nodes is up-to-date. Similarly, our algorithm needs time β · c. If bursts
happen while recovering from previous bursts, delays will take longer due to the
constant learning rate. Up to a logarithmic additive term, the learning delay of
the algorithm is asymptotically optimal: the algorithm handles the maximum
average rate of churn any algorithm can tolerate in this communication model.

Our algorithm is partially randomized. However, randomness is only required
for detecting new nodes since this part cannot be done in a deterministic fashion.
All other parts of the algorithm are deterministic, which might be of interest in
a setting where only updates on crashed nodes are needed and no nodes join the
network.

Main Theorem 1 We construct a monitoring algorithm that tolerates c-adver-
saries with maximum burst size b with logarithmic additive overhead: O(b+log nt)
time slots after an event all nodes have updated the corresponding entries in their
ID tables.

Proof. From a family of fbmas {Ab̃}b̃∈N that tolerate (c/4, b̃)-adversaries we
construct a monitoring algorithm B. Each Ab̃ might fail if the churn is too large
– since we do not know b beforehand, we derive an algorithm B that adapts
to the bursts by searching for a good value for b̃ with a binary doubling search
procedure. It executes algorithms Ab̃i

from the above family with estimated
values b̃i for b, starting with b̃1 := log nt (we do not start with b̃1 = 1 because
the running time of A always exceeds log nt due to the dissemination step). If
algorithm A detects its failure, we know that an algorithm A tolerating (c4 , b̃i)-
adversaries is not sufficient and B doubles the estimated value of b to b̃i+1 :=
2b̃i = 2i log nt.

Let the adversary’s maximal burst be b. After at most log(b/ log nt) + 1
repetitions, the algorithm A succeeds and so does B. The total time needed by
B is at most

log(b
log nt

)+1∑

i=1

c

4
· (b̃i + log nt) <

log(b
log nt

)∑

i=0

2i−1c log nt ≤
cb

log nt
log nt = c · b.

Remark 1 (Adaptivity). After a maximal burst of size b happened, the above
procedure always needs as much time as it needed for the big burst for all later
bursts. The algorithm can be modified to update a network the quicker the
smaller the current burst is by setting the estimate b̃ to b̃1 after every successful
update (proofs would need to be adjusted slightly in a few spots).

From now on, we will use the term “fbma” as an abbreviation for “fixed
burst monitoring algorithm”. Let us now consider the fbma Ab̃, algorithm 1.
In order to work correctly if the bursts are smaller than anticipated and to detect
its failure it requires the following invariant.

Invariant 2 All nodes that have been in the network for Θ(nt) time slots have
the same view of the network, i.e., their ID table always contains the same
entries. Nodes that joined more recently know their position in the ID table.

Algorithm 1 Ab̃ for a fixed b̃ ∈ N

loop forever // nodes have same ID table (Invariant 2)

1: partition nodes into sets of size O(min(b̃, nt));
2: detect crashed nodes in each set on separate channels in parallel;
3: detect joined nodes;
4: disseminate information on crashed and joined nodes to all nodes;
5: stop if burst too large;
6: all nodes update their ID table;

To ensure that
this invariant holds
when starting the
algorithm, we may
assume that at time
0 there is only
a single designated
node active, and
all other nodes still
need to join. This leads to the same sorted ID table at all nodes.

Theorem 3. If invariant 2 holds at the start, then for all b̃ ∈ N, fbma Ab̃
(algorithm 1) tolerates (c, b̃)-adversaries for a constant c. Furthermore each
node detects if the algorithm failed c · (b̃ + log nt) time slots after a stronger
adversary caused a burst larger than 2b̃. The energy consumption and the time
for detection is asymptotically optimal.

Proof. In brief, algorithm 1 repeats a loop consisting of six steps to main-
tain up-to-date information in the ID tables of the nodes. Each step is fully
distributed and does not need a central entity to control its execution. Subse-
quently, we call one execution of the loop of the fbma Ab̃ a round.

Step 1 – partition nodes into sets: Nodes are divided into N ∈ O(1 +
nt/b̃) sets V := {S1, . . . , SN}. Based on the information in their ID table, the
nodes can determine which set they belong to by following a deterministic proce-
dure. Each set appoints nodes as representatives of the set and designates their
replacements in case they crash. Time O(1).

Step 2 – detect crashed nodes in each set on separate channels: Each
set SI ∈ V executes an algorithm to detect its crashed nodes. No communication
between sets takes place. To avoid collisions each set carries out its intra-set
communication on a separate channel. To find out if any of the set members
in SI have crashed, each node sends a “hello” message in a designated time
slot. All other nodes of the set detect who did not send a message and generate
the information to disseminate: a list of so-called update items UI (details in
section 3.2). Time O(min(b̃, nt)).

Step 3 – detect joined nodes: New nodes listen to learn the tolerated
burst size b̃ and when to try joining. They send requests to join to S1 with
probability 1/b̃. In expectation at least one node can join in a constant number
of rounds if the estimate b̃ is in Ω(b). Detected joiners are added to U1 together
with a note that they joined. After O(b̃ + log nt) time slots S1 decides whether
the estimate b̃ needs to be doubled due to too many joiners. Its decision is correct
with high probability (whp), that is with probability greater than 1 − n−γt for
any but fixed constant γ (details in section 3.3). Time O(b̃+ log nt).

Step 4 – disseminate information on crashed and joined nodes to
all nodes: Now every set SI has a list UI of update items containing the IDs
of crashed and joined nodes in the set. To distribute this information, each set
becomes a vertex of a balanced binary tree and the representative nodes com-
municate with the representatives of neighboring vertices in the tree according
to a pre-computed schedule. If a representative crashes, there are b̃ replacements
to take over its job. No collisions occur due to the schedule (details in section
3.4). Time O(b̃+ log nt).

Step 5 – stop if burst too large: If the adversary is too strong, information
on some of the sets is missing, or more than b̃ nodes crashed or tried to join. In
this case, all nodes are notified and the execution of the algorithm stops (details
in section 3.5). Time O(b̃+ log nt).

Step 6 – all nodes update their ID table: If the algorithm did not stop,
every node now has the same list U =

⋃N
I=1 UI and can update its ID table.

invariant 2 holds. Time O(1).

Newly arrived nodes do not know the ID table yet and have to learn the IDs
of all present nodes in asymptotically optimal time, described in section 3.5.
However, even with incomplete ID tables they can participate in the algorithm,
see section 3.6.

While steps 1 and 6 are executed locally and hence the time complexity is
constant, steps 2–5 require communication between nodes. The following sections
describe the steps in more detail and examine their time complexity as well as
prove that the invariant 2 at the beginning of the loop holds (as long as b
is bounded by b̃ – else the algorithm will detect that it failed). We focus on
nt ≥ 2b̃ + 2, as in the case nt < 2b̃ + 2 the statements hold due to simple facts
like “there will always remain at least one node in the network”.

3.1 Partition Nodes into Sets (Step 1)

Compute sets: If b̃ ≥ nt/6 − 6, the network forms one large set. If b̃ <
nt/6 − 6, let s := 2b̃ + 2 and partition the nt nodes into N := dnt

s e − 1 sets
S1, . . . , SN . Each set is of size s, except SN which contains between s and
2s − 1 nodes. The nodes are assigned to the sets in a canonical way, based
on their ID’s position in the sorted ID table {id1 < id2 < · · · < idN}. Set
SI is the set SI := {id(I−1)·s+1, . . . , idI·s} for 1 ≤ I ≤ N − 1 and SN =
{id(N−1)·s+1, . . . , idN ·s, . . . , idnt

}. We denote the index of SI by a capital I and
call it the ID of the set. Let us denote the set of all sets {S1, . . . , SN} by V (since
the sets will be the vertices of a communication graph in the dissemination step
4). Note that there is no ambiguity in the mapping of nodes to sets.

Compute representatives: In the subsequent steps, the sets will communi-
cate with each other. To this end, representative senders and receivers are chosen
to act on behalf of the set. Moreover, for each representative, the set appoints
b̃ replacement nodes to monitor the representative and take over if it crashes.
Each set SI designates two sets of nodes Rsender := {id(I−1)·s, . . . , id(I−1)·s+b̃}
and Rreceiver := {id(I−1)·s+b̃+1, . . . , idI·(i−1)+|SI |−1}, each consisting of b̃ + 1
nodes. In each set we appoint the node with smallest ID to be the representa-
tive sender/receiver of SI , denoted by rsenderI , rreceiverI . Its replacements are the
other b̃ nodes in Rreceiver and Rsender. The ith replacement node of a repre-
sentative (which is the node with ith-smallest ID of the corresponding set) will
take over the role of the representative in case the representative as well as the
replacement nodes 1 to i − 1 crashed. After computing SIv

each v can check
easily if it is its set’s representative sender/receiver or the ith replacement by
looking at its position in the sorted ID table. The replacement nodes listen in all
time slots whether their representative is sending or receiving messages in order
to detect its failure and have the same knowledge as the representative. Thus
they are able to take over the representative’s role immediately. To keep things
simple we often write that “SI sends an update item to SJ” instead of “the
representative sender rsenderI of SI sends information on some crashed or new
node to the representative receiver rreceiverJ of SJ”. In some cases the introduced
notation of representatives is used to clarify what exactly the algorithm does.
As no communication is necessary for this step, the time complexity is O(1).

3.2 Detect Crashed Nodes in each Set in Parallel (Step 2)

Let the time slot in which the current round of the algorithm starts be t0. All
nodes that crash in time slot t0 + 1 or later might not necessarily be detected
during this execution of the loop but in the next one, i.e. at most O(b̃+ log nt)
time slots later. Each set SI detects separately, which of its members crashed.
Set SI uses the channel I for communication among its set members to avoid
collisions with other sets.

Each node v is assigned a unique time slot to inform the other set members
of its state (algorithm 2, lines 4–5). In all other time slots, v listens to the
other set members to determine crashed nodes, i.e., when v does not receive a

message in the time slot corresponding to a certain ID (line 6) it assumes that
the node with this ID has crashed and adds it to UI (line 7).

Theorem 4. When repeating algorithm 2 continuously, crashed nodes are
detected at most two rounds (O(b̃) time slots) if b < b̃.

Proof. There are O(b̃) nodes in each set, thus each set can complete the crash
detection in O(b̃) time slots. If there are N channels available, all sets can execute
this algorithm simultaneously. If a node crashes after sending its “I’m here!”
message, its failure is detected the next time algorithm 2 is executed.

Corollary 1. The monitoring algorithm detects crashes in O(b+log nt) if b < b̃.

3.3 Detect Joined Nodes (Step 3)

[12] M. Kuty lowski and D. Letkiewicz. Computing Average Value in Ad Hoc Networks. Mathematical
Foundations of Computer Science (MFCS2003), 2747:511–520, 2003.

[13] M. Kuty lowski and W. Rutkowski. Adversary Immune Leader Election in Ad Hoc Radio Networks? In
European Symposium on Algorithms ESA, pages 397–408. Citeseer, 2003.

[14] C. Lavault, J.F. Marckert, and V. Ravelomanana. Quasi-optimal energy-efficient leader election algo-
rithms in radio networks. Information and Computation, 205(5):679–693, 2007.

[15] M. Singh and V.K. Prasanna. Optimal energy-balanced algorithm for selection in a single hop sensor
network. In IEEE Workshop on Sensor Network Protocols and Applications (SNPA), 2003.

[16] Mitali Singh and Viktor K. Prasanna. Energy-optimal and energy-balanced sorting in a single-hop
wireless sensor network. In Pervasive Computing and Communications (PERCOM), 2003.

Algorithm 2 Crash Detection
1: compute index iv of v’s ID and Iv of v’s set SIv ;
2: UIv := ∅
3: for k := 0, . . . , |SIv | − 1 do
4: if iv == Iv · |SIv |+ k then
5: send “Im here!” on channel Iv;
6: else if no message received on channel Iv then
7: UIv := UIv ∪ {idIv ·|SIv |+k};

Algorithm 3 Join Algorithm
For new nodes that want to join

1: while attached == false do
2: repeat
3: listen on channel 1;
4: until received message “b̃ bursts”
5: p := 1/b̃;
6: loop
7: send message “hello, id” on channel 1;
8: listen on same channel;
9: if received welcome message then

10: attached := true;
11: else if received “stop joining” then
12: break;

15

Apart from detecting nodes that
have disappeared, the network needs
to be able to integrate new nodes.
algorithm 4 describes the behav-
ior of nodes of the network and al-
gorithm 3 the behavior of nodes
eager to join the network. Let j ≤ b̃
be the number of such joiners. They listen on channel 1 for the representative of
the corresponding set S1 to announce the current number of nodes nt and the
estimated b̃. When they have received such a message, they wait for a time slot
and then try to join by sending a message with their ID with probability p := 1/b̃
on channel 1. If there has not been a collision, the representative sender of the
set S1 replies to the successful joiner with a welcome message. Otherwise each
unsuccessful joiner repeats sending messages with this probability followed by
listening for a reply or a stop message in the next time slot. The representative
sender transmits a stop message after d ·max(log nt, b̃) time slots for some con-
stant d. The probability that a joiner is successful is constant if j < b̃ and hence
the joiners attach to the network in a constant number of rounds in expectation.

Lemma 1. In expectation a node attaches to the network within 4 rounds if
j < b̃.

Proof. Since j < b̃ the probability that a joiner is successful in a certain time
slot is at least 1/b̃(1 − 1/b̃)j−1 ≥ 1

eb̃
. Thus the probability that a joiner is the

only sender at least once during b̃ time slots is greater than 1 − (1 − 1
eb̃

)b̃ >

1 − e−e−1
> 0.3. Hence the expected number of rounds until a node has joined

is less than 4.

The set S1 is able to detect if the current estimate for b̃ is in the correct
order of magnitude by letting the representative sender transmit messages every
second time slot reserved for the joiners until it tried d′ log nt times for some
constant d′ to be defined later. Hence, every second opportunity for new nodes

to join is blocked d′ log nt times. The other nodes in S1 count the number of
times the representative sender of S1 transmits successfully. If this number is
less than a threshold τ = 2d′ log nt · e−2 · (1− 2/b̃), the set decides that b̃ is too
small for the current number of joiners and lets the other sets know about this
in the next step. To this end, all nodes in S1 insert an additional update item
to U1 which has highest priority to be forwarded to all other nodes.

[12] M. Kuty lowski and D. Letkiewicz. Computing Average Value in Ad Hoc Networks. Mathematical
Foundations of Computer Science (MFCS2003), 2747:511–520, 2003.

[13] M. Kuty lowski and W. Rutkowski. Adversary Immune Leader Election in Ad Hoc Radio Networks? In
European Symposium on Algorithms ESA, pages 397–408. Citeseer, 2003.

[14] C. Lavault, J.F. Marckert, and V. Ravelomanana. Quasi-optimal energy-efficient leader election algo-
rithms in radio networks. Information and Computation, 205(5):679–693, 2007.

[15] M. Singh and V.K. Prasanna. Optimal energy-balanced algorithm for selection in a single hop sensor
network. In IEEE Workshop on Sensor Network Protocols and Applications (SNPA), 2003.

[16] Mitali Singh and Viktor K. Prasanna. Energy-optimal and energy-balanced sorting in a single-hop
wireless sensor network. In Pervasive Computing and Communications (PERCOM), 2003.

Algorithm 2 Crash Detection
1: compute index iv of v’s ID and Iv of v’s set SIv ;
2: UIv := ∅
3: for k := 0, . . . , |SIv | − 1 do
4: if iv == Iv · |SIv |+ k then
5: send “Im here!” on channel Iv;
6: else if no message received on channel Iv then
7: UIv := UIv ∪ {idIv ·|SIv |+k};

Algorithm 3 Join Algorithm
For new nodes that want to join

1: while attached == false do
2: repeat
3: listen on channel 1;
4: until received message “b̃ bursts”
5: p := 1/b̃;
6: loop
7: send message “hello, id” on channel 1;
8: listen on same channel;
9: if received welcome message then

10: attached := true;
11: else if received “stop joining” then
12: break;

15

Algorithm 4 Join Detection
For nodes in the network

1: count := 0;
2: for k := 0, . . . , d ·max(log nt, b̃) do
3: if (Iv == 1 and k mod 4 == 0 and

k < d′ log nt and iv == rsenderv) then
4: send message “b̃ bursts”;
5: else if received message from rsenderv then
6: count := count+ 1;
7: else if message from joiner idj received then
8: if iv == rsenderv then
9: send message “welcome”;

10: UIv := UIv ∪ {idj};
11: if count ≥ d′ lognt

2e (1
2 + 1

e) then
12: UIv := UIv ∪ {“b̃ too small”};
13: if iv == rsenderv then
14: send message “stop joining”;

16

Using Chernoff bounds we can
show that this decision is correct
w.h.p. (see the technical report of this
paper [8] for a proof). This procedure
only prolongs the period until nodes
are detected by a constant factor.

Remark 2. As discussed in Section 5,
there exist energy-efficient size ap-
proximation algorithms. However, let-
ting an unknown number of nodes
join cannot be solved with the help
of these algorithms, since they do
not handle node failures and they do
not give high probability results for a
small number of joining nodes.

After joining, the new nodes listen
on channel 1 until the end of the cur-
rent loop. In addition, they (and the
old nodes in the network) have to ex-
ecute the algorithm described in Sec-
tion 3.6 to get to know all the nodes
that are currently in the network.

Remark 3. We could use more sets than S1 to listen to joining nodes. As we only
need to make sure that new nodes can join in a constant number of rounds and
that the error probability is low, we use only the set S1 for simplicity’s sake.

3.4 Disseminate Crash/Join-Information to all Nodes (Step 4)

In the previous sections we discussed how each set SI detects crashed nodes and
accepts new nodes that want to join the network. This information is stored in
a (possibly empty) list UI of update items, where each update item consists of
the ID of the node it refers to and whether the node has crashed or joined the
network. This list UI needs to be distributed to all other sets. To this end, the
representatives of each set communicate with representatives of other sets to
compute the set U =

⋃N
I=1 UI of all changes in the network.

Theorem 5. If b ≤ b̃ (otherwise the algorithm stops in step 5), the update
items are disseminated within time O(b̃+ log nt) with algorithm 5.

Idea: First, the sets are mapped to vertices of a communication graph G (in
our case this will be a tree3). This can be done deterministically within each
node and no messages need to be exchanged. Second, neighboring sets exchange
information repeatedly until the information reaches all sets. See Algorithm 5
for a description in pseudo-code.

Definition 2 (Family of communication graphs). Let C be an infinite fam-
ily of communication graphs CN = (VN , EN) over N vertices which have the
property, that the in-degree and the out-degree of each vertex are bounded by
dN , each. Furthermore we require that each CN can be computed deterministi-
cally only from knowledge of N , as well as a schedule sN of length lN , where
sN : VN × {1, . . . , lN} −→ {1, . . . , N} × {1, . . . , N}, (v, t) 7−→ (κsend, κreceive)
that tells each vertex v ∈ V that it should send in time slot t ∈ {1, . . . , lN} on
channel κsend ∈ {1, . . . , N} and receive on channel κreceive ∈ {1, . . . , N} respec-
tively – in such a way that within lN time slots all neighbors of G are able to
exchange exactly one message containing one update item without collisions.

Definition 3 (Trees). Let C := {CN | N ∈ N} be the family of balanced binary
trees over N nodes. In CN := (VN , EN) we have the vertices VN := {1, . . . , N}
and for each vertex v ∈ VN \{1} there are directed edges (v, bv/2c) and (bv/2c, v)
connecting v to its parent bv/2c.

Lemma 2. A schedule sN of length 4 can be computed deterministically for any
member CN of the above tree family.

Proof. Each node v in odd levels of the tree (that is blog2(v)c is odd) will ex-
change one message (both ways) with child 2v in the first time slot and with
child 2v + 1 in the second time slot – observe that children are in even levels.
Then each node v in even levels of the tree will exchange one message (both
ways) with child 2v in the third time slot and with child 2v + 1 in the fourth
time slot. Every node u will send only on its own channel u to avoid collisions –
receivers will tune to this channel. The complete schedule is given by

sN (v, 1) =

{
(v, 2v) : blog2(v)c is odd
(v, bv/2c) : blog2(v)c is even

sN (v, 2) =

{
(v, 2v + 1) : blog2(v)c is odd
(v, bv/2c) : blog2(v)c is even

sN (v, 3) =

{
(v, 2v) : blog2(v)c is even
(v, bv/2c) : blog2(v)c is odd

sN (v, 4) =

{
(v, 2v + 1) : blog2(v)c is even
(v, bv/2c) : blog2(v)c is odd

If a channel (vertex) on (to) which a node v should send or listen is not in the
range of {1, . . . , N}, then v can be sure that the corresponding node does not
exist and just sleeps in this slot – this will happen for the root and the leaves.
3 We decided to present the algorithm in this slightly more general way such that it

will be easy to replace the family of communication graphs. This is useful to handle
unreliable communication where information being transported from a leaf to the
root is very unlikely. Using expander graphs might help in this case, since they also
have logarithmic diameter and constant degree but are more robust: after a short
time (say f(n)) the information will be copied to 2f(n)/O(1) nodes with not too small
a probability. Compared to the tree, it is more likely that at least one of the many
copies of the information will reach the destination.

Corollary 2. The family of trees C := {CN | N ∈ N} from definition 3
combined with the schedules sN from lemma 2 is a family of communication
graphs, where the diameter of CN is 2 · dlog nte, the in-degree as well as the
out-degree of each node are bounded by dN = 3 and the length of any schedule
sN is 4.

Algorithm 5 Deterministic Dissemination

Sender:
1: compute schedule sN for
G := CN := ({S1, . . . , SN}︸ ︷︷ ︸

vertices VN

, EN︸︷︷︸
edges

);

2: U ′ := ∅;
3: for t = 1, . . . , diameter(G) + b̃ do
4: for j = 1, . . . , lN do
5: itemsend := minitem∈U\U ′{D}

or “no news” if U empty;
6: send itemsende on channel sN (Iv, j)1;
7: U ′ := U ′ ∪ {itemsend};
8: for j = lN + 1, . . . , lN + dN do
9: receive item itemreceive on channel Iv;

10: U := U ∪ {itemreceive};
11: send U on channel Iv;

Receiver
1: compute schedule sN for
G := CN := ({S1, . . . , SN}︸ ︷︷ ︸

vertices VN

, EN︸︷︷︸
edges

);

2: for t = 1, . . . , diameter(G) + b̃ do
3: for j = 1, . . . , lN do
4: receive itemj on channel sN (Iv, j)2;
5: for j = lN + 1, . . . , lN + dN do
6: send itemj on channel Iv

unless it is “no news”;
7: U := U ∪ {itemj};

17

In the first part of the algo-
rithm, all nodes start with the same
ID table, what we can assume ac-
cording to invariant 2. From the
information nt stored in the ID
table, each set v of the N sets
computes deterministically without
communication (line 1) the commu-
nication graph G := CN as well as
the schedule SN of length lN .

In the second part of the algo-
rithm, O(diameter(G) + b̃) phases,
each of lN + dN time slots, are exe-
cuting. During each phase each ver-
tex is able to send one update item
to each of its (at most) dN out-
neighbors and receive one update
item from each of its (at most) dN
in-neighbors. This communication
takes place by adhering to the pre-
viously computed schedule sN of
length lN . Thus in each phase each
vertex exchanges messages with its
neighbors. The vertices maintain
two lists of update items. In the first list U are the items the set knows of,
while the second list U ′ contains the items it has forwarded already. In the first
of all phases, the first list is set to U := UI , the list of the IDs determined in the
detection step, and the second list U ′ := ∅ is empty (line 3). After the completion
of the second part, U equals U ′ and contains all items. In each phase, set SI
sends the information of the lowest ID in U \U ′ to its (at most) dN out-neighbors
and receives (at most) dN update items from its dN in-neighbors. Depending on
the outcome of each phase, the lists U and U ′ are updated.

First we show that exchanging messages with neighboring vertices is possible
for two representatives in each set within time lN + dN if none of them crashes
(lemma 3). We argue later in lemma 5 that we can tolerate b̃ crashes during
the execution and in section 4 we establish a time/energy/channel trade-off
for fewer channels.

Lemma 3. All sets transmitting update items to their (at most) dN out-neighbors
and receiving (at most) dN update items from their (at most) dN in-neighbors

takes time lN + dN when the number of channels N is equal to the number of
sets and no node crashes.

Proof. We adhere to the schedule sN . As we noted before, all nodes computed
the same graph G and schedule sN such that all global communication activities
are consistent with the local computation of v. This takes lN time. Afterwards
the receiver rreceiverI reports the newly received update items (there are at most
dN , one from each neighbor) to rsenderI on the set’s channel I during time slots
lN +1, . . . , lN +dN of this phase (lines 5–6 of the receiver’s part). rsenderI receives
this information and adjusts U and U ′ accordingly (lines 8–10 of the sender’s
part). All these computations happen in a deterministic way based on the same
information (stored in each node) and yield the same schedule for the whole
graph in each node.

Observe that no set (vertex) crashes completely as the adversary is bounded
to let at most b̃ nodes crash during the execution of the algorithm. Hence there
are b̃ nodes ready to replace the representatives. In lemma 5 we prove that
repeating the procedure from lemma 3 O(diameter(G) + b̃) times will lead to
full knowledge of U . First we prove a weak version of this lemma (lemma 4).
We extend this lemma to hold despite crashes during execution (lemma 5).

Lemma 4. All vertices can learn the set U that contains all update items after
O(diameter(G)+ b̃) ·(lN +dN)) time slots if no nodes crash during the execution
of this algorithm.

Proof. W.l.o.g., let U := {item1, . . . , itemb̃} be a sorted list of update items.
By induction on i we prove that itemi is known to all vertices SI in G after
O((diameter(G) + i) · (lN + dN)) time slots of executing algorithm 5 if no
nodes crash during the execution.

Base case i = 1: Any representative v that receives item1, will always
immediately communicate item1 to its neighbors in the next phase since item1 is
the first item in v’s sorted list U\U ′. Thus item item1 will have been broadcast to
all nodes after diameter(G)+1 phases if no nodes crash during this computation.

Inductive step i → i + 1: Let us assume the induction hypothesis for i.
Item itemi+1 can only be delayed (in line 5 of the sender’s part) by items with
smaller indices. Let itemj be the item with the largest index that delays itemi+1

on any of the shortest paths to any of the vertices in G. Then itemi+1 is known
by all vertices in G one phase after itemj . By the induction hypothesis, this is
after diameter(G) + j + 1 phases. We remember j ≤ i to obtain the induction
hypothesis for i+ 1.

Lemma 5. lemma 4 holds for up to b̃ nodes crashing during the execution.

Proof. If a representative crashes during the dissemination step (either a sender
or a receiver), a replacement node realizes the crash of its representative at
most one phase later since the replacement is listening to all actions of the
representatives and thus detects whether it sent all messages it was supposed
to send. If it did not send a message during a phase it must have crashed and

the next replacement node steps up to be the new representative (in case no
information needs to be sent by a representative in a time slot it does not matter
whether it crashed). This is possible since the replacement nodes have exactly
the same information as the representative and know when the representative
should send what message. For the same reason they are able to know how
many replacements happened before and thus when it is their turn to jump in to
retransmit the necessary message in the next phase after the crash. Since at most
b̃ nodes can crash, there will never be more than b̃ retransmissions necessary. This
can lead to a delay of at most b̃ phases and the statement follows.

Proof (Proof of theorem 5). We combine lemma 4 and lemma 5 as well as
use the fact that in the communication graphs provided by the tree family from
corollary 2, for all values of N ∈ N we have diameter(CN) = O(log nt), dN =
3 and that the schedule-length of sN is lN = 4.

As a consequence, all representatives and replacements of SI know all the update
items available after O(log nt + b̃) time slots. Thus all nodes in any set SI are
aware of all crashed and new nodes at the time when the algorithm started (and
also of some crashes/joins that happened during the algorithm’s execution, but
not necessarily all of those). This proves lemma 3.

3.5 Stop if Burst too Large (Step 5)

In this step, the sets determine whether the algorithm failed due to too large
a burst – that is more than b̃ nodes joined or crashed (within time cb̃). To
distinguish sets that do not have any information to forward from sets of which
all members crashed, we let each set SI send “I’m here!” in its scheduled time
slots without new information to be sent.

Theorem 6. If b > b̃ then O(log nt + b̃) time slots after the dissemination step
all nodes have the same information: Either they have noticed that the burst is
too large and stopped the execution or all have the same information on network
changes.

Proof. Set S1 knows with high probability if too many nodes tried to join and
forwarded this information in the dissemination step. Thus all nodes are aware
of this event at the end of step 4 of the fbma Ab̃ if it occurs: if the decision
of S1 is wrong, the algorithm still works properly, it just takes longer until all
nodes which to join the network are included, however, all nodes receive the
same information.

If one or more sets SI completely crash before or during step 4, its neighbors
immediately know that more than b̃ nodes crashed and the algorithm might fail
(e.g. the communication graph might be disconnected and not all nodes will
have been delivered the same information). The neighbors of SI then broadcast
this information through the communication graph with highest priority. Even if
further sets crash completely and the failure message originated by the neighbors
of SI does not reach all sets, the neighbors of the other crashed sets will start

propagating such a message through the network as well. After O(log nt + b̃)
phases all representatives are informed if one or more sets did not receive all the
information: If no set crashed then after log nt + b̃ phases all sets have all the
update items. If a set crashes before all sets have this information, then log nt+ b̃
phases later all sets are informed of a failure, no matter how many sets crash
now. If a set crashes afterwards, the update information has reached all sets
already and thus all surviving sets can continue with this information.

The last possibility of an adversary to disturb the self-monitoring process
consists in letting more than b̃ nodes crash even though all sets survive. By
extending the dissemination phase by a constant number of time slots, we can
ensure that all sets notice if more than b̃ update items have been disseminated
and conclude that the adversary exceeds the bound of b̃. Therefore, also in
this case a potential failure of the algorithm is known to all nodes after the
dissemination step. Thus, the algorithm guarantees that all sets have the same set
of update items at the end of a successful round if it did not stop the execution.

3.6 Participating Without Complete ID Table

Note that the joiners can already participate in the information-dissemination
algorithm without knowing the complete ID table: When a new node v is de-
tected by the network, the node that is the oldest in the network according to
the timestamp (ties are broken by ID) tells v the smallest ID of a node w in the
network that is larger than v’s ID. This is possible since the oldest node is guar-
anteed to have a complete ID table. Joiner v now assumes to have this position
in the ID table. After the dissemination step has finished, node v determines the
number c< of crashed nodes with IDs smaller than v and subtracts c< from its
assumed position. Then v counts j<, the number of nodes that joined the net-
work with an ID smaller than itself and adds j< to its assumed position. Thus
there is only one node in the network assigned to a position in the ID table after
updating the ID tables based on the information gathered in the dissemination
step. Knowing this position in the ID table allows the joiner to participate in
all the necessary algorithms: partition / crash and join detection / information
dissemination.

In order to allow new nodes to learn the IDs of the nodes that are already
in the network, the existing nodes alternately transmit their IDs and the time
slot when they arrived on channel 1. This process can be interleaved with the
execution of the monitoring algorithm, i.e., odd time slots can be used for the
monitoring algorithm while even time slots are reserved for getting to know all
existing nodes.

4 Energy and Trade-offs

So far, we assumed that there are as many channels available as there are sets.
However, our algorithm can be modified such that it works for networks with
a bounded number of k channels. It can also be adapted to dissipate only a

limited amount of energy e. See the technical report of this paper [8] for a
detailed explanation.

5 Related Work

Many algorithms have been designed for wireless networks under varying as-
sumptions concerning the communication model (reception range, collision de-
tection, transmission failures, etc.). There are many problems that are non-trivial
even in single-hop networks. We focus here on networks where nodes cannot dis-
tinguish collisions from noise (no-collision detection model). The ability to detect
collisions can lead to an exponential speed up, e.g., as shown in [12] for leader
election. Moreover we consider the energy expenditure for transmission and lis-
tening. Basic algorithms for these networks can be used as services or building
blocks for more complex algorithms and applications. Among them are initial-
ization (n nodes without IDs are assigned labels 1, . . . , n) [14], leader election
[13,15], size approximation [3,9], alerting (all nodes are notified if an event hap-
pens at one or more nodes) [11], sorting (n values distributed among n nodes,
the ith value is moved to the ith node) [10,17], selection problems like finding
the minimum, maximum, median value [16] and computing the average value
[13], and do-all (schedule t similar tasks among n nodes with at most f failures)
[4]. Note that in contrast to our work the adversary examined in these papers
cannot let nodes join or crash. Moreover we cannot apply existing size approx-
imation algorithms to estimate the number of newly joined nodes, since they
do not handle node failures and they do not give high probability results for a
small number of joining nodes. Our work can be seen as continuous initializa-
tion with the extension that more information is available. New nodes can join
the network later and are given a label (position in the ID table). After each
round of our self-monitoring algorithm, these labels are updated and in addition
all nodes know which nodes have failed. Moreover, the ID table can be used to
designate a leader and all nodes are aware of the current network size. In [1], a
routing problem is studied in a multi-channel, single-hop, time slotted scenario
and energy is considered as well. The algorithm they propose is not suitable for
our application, since it requires a preprocessing phase of O(n) time slots.

One of the problems underlying the monitoring problem is the dynamic
broadcast problem, where an adversary can continuosly inject packets to be
delivered to all participants of the network, see [5] for (im)possibility results and
algorithms (nodes are assumed not to crash in this model).

The problem we solve can be viewed as a special case of the continuous gossip
problem, introduced in [7] recently: an adversary can inject rumours as well as
crash and restart participating nodes at any time, yet the rumours need to
reach their destination before a deadline. The authors analyze the problem in a
message passing model with unbounded message size and no collisions and devise
an algorithm with a guaranteed per-round message complexity. Our update items
can be viewed as rumours that directly depend on the crashes and restarts and
the deadlines are related to the number of crashes and restarts in a time interval.

References

1. A. Bakshi and V.K. Prasanna. Energy-Efficient Communication in Multi-Channel
Single-Hop Sensor Networks. In Conference on Parallel and Distributed Systems,
page 403. IEEE, 2004.

2. R. Bar-Yehuda, O. Goldreich, and A. Itai. Efficient Emulation of Single-Hop Radio
Network with Collision Detection on Multi-Hop Radio Network with No Collision
Detection. Distributed Computing, 5(2):67–71, 1991.

3. I. Caragiannis, C. Galdi, and C. Kaklamanis. Basic computations in wireless net-
works. Lecture notes in computer science, 3827:533, 2005.

4. B.S. Chlebus, D.R. Kowalski, and A. Lingas. Performing work in broadcast net-
works. Distributed Computing, 18(6):435–451, 2006.

5. B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki. Maximum throughput of multiple
access channels in adversarial environments. Distributed Computing, 22(2):93–116,
2009.

6. G.V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications:
a comprehensive study. ACM Computing Surveys (CSUR), 33(4):427–469, 2001.

7. Dariusz R. Kowalski Chryssis Georgiou, Seth Gilbert. Meeting the deadline: On
the complexity of fault-tolerant continuous gossip. In PODC, 2010.

8. S. Holzer, Y.A. Pignolet, J. Smula, and R. Wattenhofer. Monitor-
ing Churn in Wireless Networks. Technical report, Computer Engi-
neering and Networks Laboratory (TIK), ETH Zurich, Switzerland, 2010.
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-328.pdf.

9. J. Kabarowski, M. Kutylowski, and W. Rutkowski. Adversary immune size ap-
proximation of single-hop radio networks. Lecture Notes in Computer Science,
3959:148, 2006.

10. M. Kik. Merging and Merge-Sort in a Single Hop Radio Network. In 32nd con-
ference on current trends in theory and practice of computer science (SOFSEM),
page 341, 2006.

11. M. Klonowski, M. Kuty lowski, and J. Zatopianski. Energy Efficient Alert in Single-
Hop Networks of Extremely Weak Devices. In ALGOSENSORS, 2009.

12. D.R. Kowalski and A. Pelc. Leader Election in Ad Hoc Radio Networks: A Keen
Ear Helps. In 36th International Colloquium on Automata, Languages and Pro-
gramming, page 533, 2009.

13. M. Kuty lowski and D. Letkiewicz. Computing Average Value in Ad Hoc Networks.
Mathematical Foundations of Computer Science (MFCS2003), 2747:511–520, 2003.

14. M. Kuty lowski and W. Rutkowski. Adversary Immune Leader Election in Ad Hoc
Radio Networks. In European Symposium on Algorithms ESA, pages 397–408.
Citeseer, 2003.

15. C. Lavault, J.F. Marckert, and V. Ravelomanana. Quasi-optimal energy-efficient
leader election algorithms in radio networks. Information and Computation,
205(5):679–693, 2007.

16. M. Singh and V.K. Prasanna. Optimal energy-balanced algorithm for selection in
a single hop sensor network. In IEEE Workshop on Sensor Network Protocols and
Applications (SNPA), 2003.

17. Mitali Singh and Viktor K. Prasanna. Energy-optimal and energy-balanced sorting
in a single-hop wireless sensor network. In Pervasive Computing and Communica-
tions (PERCOM), 2003.

