
Good Programming in Transactional MemoryI

Game Theory Meets Multicore Architecture

Raphael Eidenbenz, Roger Wattenhofer

Computer Engineering and Networks Laboratory (TIK), ETH Zurich, CH-8092 Zürich, Switzerland

Abstract

In a multicore transactional memory (TM) system, concurrent execution threads interact and interfere with each
other through shared memory. The less interference a thread provokes the better for the system. However, as a
programmer is primarily interested in optimizing her individual code’s performance rather than the system’s overall
performance, she does not have a natural incentive to provoke as little interference as possible. Hence, a TM system
must be designed compatible with good programming incentives (GPI), i.e., writing efficient code for the overall
system should coincide with writing code that optimizes an individual thread’s performance. We show that with most
contention managers (CM) proposed in the literature so far, TM systems are not GPI compatible. We provide a generic
framework for CMs that base their decisions on priorities and explain how to modify Timestamp-like CMs so as to
feature GPI compatibility. In general, however, priority-based conflict resolution policies are prone to be exploited
by selfish programmers. In contrast, a simple non-priority-based manager that resolves conflicts at random is GPI
compatible.

Keywords: transactional memory, game theory, multicore architecture, concurrency, contention management,
mechanism design, human factors

1. Introduction

In traditional single core architecture, the performance of a computer program is usually measured in terms of
space and time requirements. In multicore architecture, things are not so simple. Concurrency adds an incredible,
almost unpredictable complexity to today’s computers, as concurrent execution threads interact and interfere with
each other. The paradigm of Transactional Memory (TM), introduced by Lomet [1] in the 1970’s and implemented
by Herlihy and Moss [2] in the 1990’s, has emerged as a promising approach to keep the challenge of writing concur-
rent code manageable. Although today, TM is most-often associated with multithreading, its realm of application is
much broader. It can for instance also be used in inter process communication where multiple threads in one or more
processes exchange data. Or it can be used to manage concurrent access to system resources. Basically, the idea of
TM can be employed to manage any situation where several tasks may concurrently access resources representable
in memory. A TM system provides the possibility for programmers to wrap critical code that performs operations on
shared memory into transactions. The system then guarantees an exclusive code execution such that no other code
being currently processed interferes with the critical operations. To achieve this, TM systems employ a contention
management policy. In optimistic contention management, transactional code is executed right away and modifica-
tions on shared resources take effect immediately. If another thread, however, wants to access the same resource a
mechanism called contention manager (CM) resolves the conflict, i.e., it decides which transaction may continue and
which must wait or abort. In case of an abort, all modifications done so far are undone. The aborted transaction will be

IAn earlier version appeared in the Proceedings of the 20th International Symposium on Algorithms and Computation (ISAAC), Honolulu,
Hawaii, USA, Springer LNCS 5878, pp. 503–513, December 2009.

Email addresses: eidenbenz@tik.ee.ethz.ch (Raphael Eidenbenz), wattenhofer@tik.ee.ethz.ch (Roger Wattenhofer)

Preprint submitted to Theoretical Computer Science September 1, 2010

restarted by the system until it is executed successfully. Thus, in multicore systems, the quality of a program must not
only be judged in terms of space and (contention-free) time requirements, but also in terms of the amount of conflicts
it provokes due to concurrent memory accesses.

Consider the example of a shared ring data structure. Let a ring consist of s nodes and let each node have a counter
field as well as a pointer to the next node in the ring. Suppose a programmer wants to update each node in the ring.
For the sake of simplicity we assume that she wants to increase each node’s counter by one. Given a start node, her
program accesses the current node, updates it and jumps to the next node until it ends up at the start node again. Since
the ring is a shared data structure, node accesses must be wrapped into a transaction. We presume the programming
language offers an atomic keyword for this purpose. The first method in Figure 1 (incRingCounters) is one way

incRingCounters(Node start){

var cur = start;

atomic{
while(cur.next!=start){

c = cur.count;

cur.count = c + 1;

cur = cur.next; }}}

incRingCountersGP(Node start){

var cur = start;

while(cur.next!=start){

atomic{
c = cur.count;

cur.count = c + 1;}
cur = cur.next; }}

Figure 1: Two variants of updating each node in a ring.

of implementing this task. It will have the desired effect. However, wrapping the entire while-loop into one transaction
is not a very good solution, because by doing so, the update method keeps many nodes blocked although the update
on these nodes is already done and the lock1 is not needed anymore. A more desirable solution is to wrap each update
in a separate transaction. This is achieved by a placement of the atomic block as in incRingCountersGP on the
right in Figure 1. When there is no contention, i.e., no other transactions request access to any of the locked ring
nodes, both incRingCounters and incRingCountersGP run equally fast2 (cf. Figure 2). If there are interfering
jobs, however, the affected transactions must compete for the resources whenever a conflict occurs. The defeated
transaction then waits or aborts and hence system performance is lost. In our example, using incRingCounters

instead of incRingCountersGP leads to many unnecessarily blocked resources, and thereby increases the risk of
conflicts with other program parts. In addition, if there is a conflict and the CM decides that the programmer’s
transaction must abort then with incRingCountersGP only one modification needs to be undone, namely the update
to the current node in the ring, whereas with incRingCounters all modifications back to the start node must be rolled
back. In brief, employing incRingCounters causes an avoidable performance loss.

One might think that it is in the programmer’s interest to choose the placement of atomic blocks as beneficial
to the TM system as possible. The reasoning would be that by doing so she does not merely improve the system
performance but the efficiency of her own piece of code as well. Unfortunately, in current TM systems, it is not
necessarily true that if a thread is well designed—meaning that it avoids unnecessary accesses to shared data—it will
also be executed faster. On the contrary, we will show that most CMs proposed so far privilege threads that incorporate
long transactions rather than short ones. This is not a severe problem if there is no competition for the shared resources
among the threads. Although in minor software projects all interfering threads might be programmed by the same
developer, this is not the case in large software projects, where there are typically many developers involved, and code
of different programmers will interfere with each other. Furthermore, we must not assume that all conflicting parties
are primarily interested in keeping the contention low on the shared objects, especially if doing so slows down their
own thread. On the contrary, a developer will push his threads’ performance at the expense of other threads or even at
the expense of the entire system’s performance if the system does not prevent this option.3 In order to avoid this loss

1An optimistic, direct-update TM system “locks” a resource as soon as the transaction reads or writes it and releases it when committing or
aborting. This is not to be confused with an explicit lock by the programmer. In TM, explicit locks are typically not supported.

2if we disregard locking overhead
3There is competition in many projects, especially within the same company. Just think of the next evaluation! If TM is to be employed in other

domains such as inter process communication or managing access to system wide resources (DB, files, system variables), a competitive model is
even more obtrusive.

2

t1

R1
R2
R3

tend
t

Rs

R1
R2
R3

Rs

t2 t3 ts t1 tend
tt2 t3 ts

(a) (b)

Figure 2: Transactional allocation of ring nodes (a) by incRingCounters and (b) by incRingCountersGP.

of efficiency, a multicore system must be designed such that the goal of achieving an optimal system performance is
compatible with an individual programmer’s goal of executing her code as fast as possible. This paper shows that,
unfortunately, most CMs proposed in the literature so far lack such an incentive compatibility. In the remainder, we
explain our model, explore the meaning of good programming in a TM system in Section 3, provide a framework for
priority based CMs and a classification of CMs w.r.t. incentive compatibility in Section 4 and show an example of a
CM not based on priority (Section 5). As a practical proof of our findings, we implemented selfish strategies in the
TM library DSTM2[3] and tested them in several scenarios. The results are presented in Section 6.

2. Model

We use a model of a TM system with optimistic contention management, immediate conflict detection, and direct
update. As we do not want to restrict TM to the domain of multithreading, we will use the notion of jobs instead
of threads to denote a set of transactions belonging together. In inter process communication, e.g., a job is rather a
process than a thread.

The environment E is a set of n tuples of a job and the time it enters the system, i.e., E = {(J0, t0), (J1, t1), . . . , (Jn, tn)}.
We assume that there are m ≥ n machines, and each job is executed exclusively on one machine. The execution envi-
ronment of a job Ji is given by E−i = E \ {(Ji, ti)}. Each job Ji consists of a sequence of transactions Ti1,Ti2, . . . ,Ti|Ji |,
where |Ji| is the number of transactions contained in Ji. Transactions may access shared resources R. For the sake of
simplicity, we consider all accesses as exclusive,4 thus, if two transactions both try to access resource R ∈ R at the
same time, or if one has already locked R and the other desires access to R as well they are in conflict. When a conflict
occurs a mechanism decides which transaction gains (or keeps) access of Ri, and has the other competing transaction
wait or abort. Such a mechanism is called contention manager (CM). We assume that once a transaction has accessed
a resource it keeps the exclusive access right until it either commits or aborts. We further assume that the time needed
to detect a conflict, to decide which transaction wins, and the time used to commit or start a transaction are negligible.
We neither restrict the number of jobs running concurrently, nor do we impose any restrictions on the structure and
length of transactions.5 We say a job Ji is running if its first transaction Ti1 has started and the last Ti|Ji | has not
committed yet. Notice that in optimistic contention management, the starting time ti of a job Ji is not influenced by
the CM, since it only reacts once a conflict occurs. We assume that any transaction Ti j contained in job Ji accesses
the same subset of resources Ri j ⊆ R in each of its runs independently of Ji’s starting time ti, and for any resource the
time of its first access after a (re)start of Ti j remains the same in each run.6 This allows a description of a contained
transaction by a 3-tuple Ti j = (Ri j, τi j, di j) where Ri j ⊆ R are the resources accessed by Ti j, τi j : Ri j 7→ R+ is a func-
tion that maps a resource to its relative access time, and di j is the contention-free duration of Ti j, i.e., the time needed
from start to commit provided that Ti j encounters no conflicts. For instance Ti j = ({R1,R4}, {R1 7→ 3,R4 7→ 0}, 4)
describes a transaction that tries to gain immediate access of R4, access of R1 after 3 time units, and commits after 4
time units unless it was aborted before. Note that di j > τi j(R) ∀ R ∈ Ri j. Let di denote the contention free duration of
job Ji, i.e. the time needed from ti to the commit time of Ti|Ji | in an empty execution environment.

4Invisible reads that would allow a concurrent access without conflicts are not considered.
5That is why we do not address the problem of recognizing dead transactions and ignore heuristics included in CMs for this purpose.
6Note that this is a major simplification of a real shared memory system, where datastructures change dynamically. However, as we assume

code developers to consider worst case environments, only the starting time relative to competing jobs, but not the absolute starting time ti is
relevant. All other jobs could just be shifted accordingly. Thus our assumption relaxes to the assumption that resource accesses remain constant
after a restart.

3

If the CM M used in a TM system is deterministic we assume that the state of the system at a certain time
is determined by E and M. If M takes randomized decisions then E and M determine a system state probability
distribution at any given time. Thus, given M and E, the execution of E is thoroughly described. In the following
definitions, we presumeM to be deterministic. Corresponding definitions for randomizedM are straightforward by
incorporating probability distributions, and we omit explicit definitions for randomized CMs. By dM,E we denote the
function that maps jobs and transactions in E to their execution time, i.e., dM,E(Ti j) is the time from the first start
of transaction Ti j to its eventual commit in an execution of E by a TM system managed byM, dM,E(Ji) is the time
the same TM system takes executing job Ji where (Ji, ti) ∈ E, i.e., the time between ti and the commit time of the
last transaction in Ji. The makespan dM,E of an environment E in a system managed by M is the time from mini ti
until maxi{ti + dM,E(Ti)}. Let tM,E denote the function that maps transactions in E to their start time, i.e., tM,E(Ti j)
is the time when Ti j is started in the execution of E by a TM system with CM M. We denote by LM,E(t) the set
of locked resources at time t in a TM system managed by M when executing environment E. Similar to Ri j, we
denote by Ri the set of resources accessed by job Ji, i.e., Ri =

⋃|Ji |

j=1 Ri j. We define the concatenation Ti j‖i j+1 of two

consecutive transactions Ti j and Ti j+1 as Ti j‖i j+1 =
(
Ri j ∪ Ri j+1, τi j‖i j+1, di j + di j+1

)
, where τi j‖i j+1 is the function that

maps a resources R ∈ Ri j ∪ Ri j+1 to τi j(R) if R ∈ Ri j, and to di j + τi j+1(R) otherwise. For a job Ji, and an integer
k ∈ [1, |Ji| − 1] we define Combine(Ji, k) to be the job that results when the two transactions Tik, and Tik+1 contained
in Ji are concatenated to Tik‖ik+1, i.e. Combine(Ji, k) = Ti1, . . . ,Tik−1,Tik‖ik+1,Tik+2, . . . ,Ti|Ji |. In our discussions, we
sometimes compare a job Ji to a similar job J′i . In such comparisions, we add a dash to notations associated with jobs
to indicate the corresponding properties of J′i rather than of Ji. E.g., R′i denotes the resources accessed by J′i .

We assume that the program code of each job is written by a different selfish developer and that there is com-
petition among those developers. Selfish in this context means that the programmer only cares about how fast her
job terminates. A developer is considered rational, i.e., she always acts so as to maximize her expected utility. This
is, the author of job Ji minimizes Ji’s expected execution time. We presume programmers have no information on
the runtime execution environment E−i, and are thus generally uncertain about the performance of their job. As to
deal with this uncertainty, we assume developers act risk-averse in the sense that they expect E−i to be such that Ji’s
execution time is maximal among all possible finite executions, i.e., the expected running time of job Ji in a TM sys-
tem managed byM is d̃M(Ji) = max

{E−i |dM,E−i∪{(Ji ,ti)}(Ji) is finite} d
M,E−i∪{(Ji,ti)}(Ji). Note that with many CMs the “true”

worst case execution time of Ji is infinite even for finite environments E−i. If, however, a risk-averse developer would
expect her job to run forever she could just as well twirl her thumbs instead of writing a piece of code. Hence, the
assumption that a job eventually terminates is an inevitable feature of our programmer model. Furthermore, we say
a job Ji dominates J′i under M if and only if it holds for any E−i that dM,E−i∪{(Ji,ti)}(Ji) ≤ dM,E−i∪{(J′i ,ti)}(Ji) and ∃ E−i

such that dM,E−i∪{(Ji,ti)}(Ji) < dM,E−i∪{(J′i ,ti)}(J′i). When implementing a task, a programmer can typically choose among
a variety of jobs that all implement the desired logic. We assume that out of these available choices the programmer
opts for any non-dominated job Ji that has minimal expected running time d̃M(Ji) = minJ′i d̃M(J′i). We call these
minimal jobs the solution set.7

3. Good Programming Incentives (GPI)

A first step towards incentive compatible transactional memory is to determine what programmer behavior is
desirable for a TM system. For that matter we investigate how a programmer should structure her code, or in particular,
how she should place atomic blocks in order to optimize the overall efficiency of a TM system.

When a job accesses shared data structures it puts a load on the system. The insight gained by studying the
example in the introduction is that the more resources a job locks and the longer it keeps those locks, the more
potential conflicts it provokes. If the program logic does not require these locks the load thereby put on the system is
unnecessary.

Fact 1. Unnecessary locking of resources provokes a potential performance loss in a TM system.

7Note that this solution concept is idealized in the sense that it is probably infeasible for many tasks to find a job with minimal expected running
time. We therefore typically derive statements that preclude certain types of jobs from the solution set rather than statements about what jobs are
in the solution set. For instance, we show in Lemma 8 that jobs that contain artificial delays are not in the solution set given that the contention
manager is priority-based.

4

R1

R2
t

T'11

T21

T21

t

T11

T21

T21

4 98 14

10940

0

(b)

(a)

R1

R2

T21 T22

T22

T12 T22

T22

5

Figure 3: Partitioning example. The picture depicts the optimal allocation of two resources R1 and R2 over time in two situations (a) and (b). In
(a), the programmer of job J1 does not partition T ′11. In (b), she partitions T ′11 into T11 and T12. The makespan is shorter in (b), the individual
execution time of J1, however, is faster in (a).

However, the question remains whether partitioning a transaction into smaller transactions—even if doing so does not
reduce the resource accesses—results in a better system performance. Consider an example where the program logic
of a job J1 requires exclusive access of resource R1 for a period of 8 time units. One strategy for the programmer is
to wrap all operations on R1 into one transaction T ′11 = ({R1}, {R1 7→ 0}, 8). However, let the semantics also allow an
execution of the code in two subsequent transactions T11 and T12 where T11 = T12 = ({R1}, {R1 7→ 0}, 4) without losing
consistency. Figure 3 shows the optimal execution of both strategic variants in an environment E = {(J1, 0), (J2, 0)}
where J2 = T21,T22 and T21 = T22 = ({R2,R1} , {R1 7→ 4 + ε,R2 7→ 0}, 5) where ε ∈ R+ is arbitrarily small, i.e. one
clock cycle. In situation (a), the programmer does not partition T ′11. Both jobs J1 and J2 start at time t = 0, after 4
time units there is a conflict since transaction T21 tries to gain access of resource R1 that is locked by T ′11. To achieve
an optimal allocation the contention managerM aborts T21. T21 is restarted. No more conflicts occur, and a makespan
of dM,E = 14 is achieved. Convince yourself that this is minimal for E. In situation (b), the programmer uses the
partitioned version of J1. Both jobs start at t = 0. T11 commits after 4 time units. In the period (4, 5], T12 and T21
continuously compete for resource R1. The optimal CM lets T21 run to commit. Transactions T12 and T22 both start at
t = 5 + ε, and run to commit without conflicts. This yields a makespan of 10.

Thus, in the example of Figure 3, partitioning T ′11 allows to execute J1 and J2 four time units faster. We can show
that partitioning is beneficial to a TM system in that it provides more flexibility to the allocation schedule. To make
this fact clear we consider a TM system that is managed by an optimal offline CMM∗. In contrast to the CMs in a
TM system,M∗ is assumed to know the entire environment, including the jobs that arrive in the future, and can thus
precompute what runtime decisions lead to a minimal makespan. Hence,M∗ always makes the right decision when
resolving a conflict, furthermore, we allow it to postpone the beginning of a transaction Ti j to any optimal time t given
that t ≥ ti and all Tik with k < j have committed.

Theorem 2. A finer transaction granularity speeds up a transactional memory system managed by an optimal CM
M∗, i.e., for any two jobs Ji, J′i where ∃ k ∈ {1, . . . , |Ji| − 1} such that J′i = Combine(Ji, k) it holds that ∀ E−i :
dM

∗,E−i∪{(Ji,ti)} ≤ dM
∗,E−i∪{(J′i ,ti)} and ∃ E−i such that inequality holds.

Proof. First notice that we may assume w.l.o.g. that underM∗ there are no conflicts: Any transaction Ti j will finally
run from start to commit in an optimal execution of an environment E. Let tM,E

i j denote the time when transaction Ti j

is started for its successful run in the execution of E under CMM. If CMM∗∗ manages E optimally then the CMM∗

that works like M∗∗, except it postpones the start of each transaction Ti j until tM
∗∗,E

i j , manages E optimally as well.
Moreover, since a thusM∗ starts any transaction only when it will run until commit the produced allocation schedule
has no conflicts.8

We proceed by showing the existence of a CM B that achieves dB,E−i∪{(Ji,ti)} = dM
∗,E−i∪{(J′i ,ti)} for any given E−i.

For convenience, let E := E−i ∪ {(Ji, ti)}, and E′ := E−i ∪ {(J′i , ti)}. B sets tB,E(Tik) = tM
∗,E′ (T ′ik) where t′ik = Tik‖ik+1

8This reflects the fact that an offline CM is able to “look into the future”, and thus, it can avoid mistakes.

5

and starts Tik+1 immediately after Tik commits, i.e., tB,E(Tik+1) = tB,E(Tik) + dB,E(Tik). At any time t, tB,E(Tik) ≤
t ≤ tB,E(Tik) + dB,E(Tik), Ji accesses the same resources as J′i , i.e., LB,E(t) = LM

∗,E′ (t). Since the time needed for
committing and starting is negligibly small, Tik+1 accesses the same resources as T ′ik at the same time. Furthermore,
when Tik+1 starts it has no resources locked. Hence the resources locked by Tik+1 are always a subset of the resources
accessed by T ′ik, i.e., LB,E(t) ⊆ LM

∗,E′ (t) where tB,E(Tik+1) ≤ t ≤ tB,E(Tik+1) + dB,E(Tik+1). Note that Ti j might have
some resources locked from earlier accesses at time tB,E(Tik+1). As J′i does not provoke a conflict Ji neither does so,
and Tik+1 will commit at the same time as T ′ik. B executes any other transaction Ti j with j < {k, k + 1} just likeM∗,
and the claim about B’s performance follows. SinceM∗ is optimal we have dM

∗,E ≤ dB,E = dM
∗,E′ .

Now we describe an execution environment E−i with the property that dM
∗,E−i∪{(Ji,ti)} < dM

∗,E−i∪{(J′i ,ti)}. Let E−i =

{(Jv, tv)} with Jv = Tv1,Tv2 and tv = ti. Let Tv1 = ({Rv,R}, {Rv 7→ 0,R 7→ tM
∗,{(Ji,0)}(Tik+1)}, tM

∗,{(Ji,0)}(Tik+1) + dik+1),
and Tv2 = ({Rv}, {Rv 7→ 0}, di − tM

∗,{(Ji,0)}(Tik+1)−dik+1 + δ) where Rv < Ri, R is any resource in Rik, and δ is the amount
of time that R is locked in a successful run of Tik+1. M∗ achieves an optimal execution of E−i ∪ {(Ji, ti)} by starting
both jobs Ji and Jv at ti, and delaying the start of Tik+1 by δ after Tik commits. Thus, all transactions run conflict free
to commit yielding a makespan of dM

∗,E−i∪{(Ji,ti)} = ti + di + δ. Note that δ may equal 0, namely if R < Rik+1.
If the developer uses J′i instead of Ji, in order not to provoke a conflict on resource R,M∗ has to either postpone

Tv1 by dik+1, or postpone T ′ik by dik+1 + δ′ where δ′ > 0 is the period of time that R is locked in a successful run of Tik.
The former yields a makespan of

dM
∗,E′ = ti + dv + dik+1 = ti + di + δ + dik+1 > dM

∗,E ,

the latter yields
dM

∗,E′ = ti + dv + δ′ = ti + di + δ + δ′ > dM
∗,E .

For both inequalities we used the fact that dv = di + δ, which holds due to the construction of E−i. �

Theorem 2 proves partitioning to be beneficial to a system with an optimal CM. Of course, this does not hold for all
CMs. As partitioning gives more freedom to the CM, though, it is highly probable that by incentivizing partitioning, a
system achieves a better performance in a selfish environment even with the additional overhead needed for incentive
compatibility.

Our investigations show that both, avoiding unnecessary locks, and partitioning transactions whenever possible,
are behavioral patterns that are beneficial to a TM system. In the following, we define the properties of a CM that
incentivize code developers to adopt this behavior. We say a CM rewards partitioning iff it is rational for a programmer
to always partition a transaction when the program logic allows her to do so, and it punishes unnecessary locking iff
it is rational for a programmer to never lock resources unnecessarily.

Definition 3. A CM M rewards partitioning iff for any two jobs Ji, J′i where ∃ k ∈ {1, . . . , |Ji| − 1} such that J′i =

Combine(Ji, k) it is rational for a programmer to opt for Ji rather than J′i given that both jobs implement the desired
task.

Definition 4. Let Ji, J′i be any two jobs with the property that for any point in time t it holds that LM,{(Ji,0)}(t) ⊆
LM,{(J′i ,0)}(t), and for at least one t it holds that LM,{(Ji,0)}(t) ⊂ LM,{(J′i ,0)}(t). A CMM punishes unnecessary locking iff
for any such pair Ji, J′i , it is rational for a programmer to opt for Ji rather than J′i given that both jobs implement the
desired task.

Definition 5. A CM is good programming incentive (GPI) compatible iff it rewards partitioning and punishes unnec-
essary locking.

Note that by our definitions we achieve that if a job J′i can be further improved in a TM system managed by a GPI
compatible CM, i.e., if it can be further paritioned or shortened in terms of locks, a programmer has an incentive to
choose an improved job Ji. Note that if Ji itself can be further improved then it will not be chosen by the programmer
either, but the improvement to Ji, and so forth. Consequently, GPI compatibility incentivizes programmers to choose
job implementations that cannot be further partitioned, or shortened in terms of locks (without losing consistency).
However, there might still be faster jobs that implement the same task in a way that substantially differs from Ji or
its improvements. For instance, mere GPI compatibility does not indicate whether it is faster to sort a shared list by

6

employing a merge sort, or a bubble sort algorithm. Generally, we cannot expect any CM to be able to tell whether
a job implements the task desired by the programmer, nor whether the algorithm implemented solves a given task
elegantly, nor whether the code makes sense at all. Therefore, in order to be GPI compatible a CM must typically
make all Ji perform better than J′i for any job pairs defined as in Definitions 3 and 4 regardless of the semantics. In
that sense, GPI compatibility describes a monotonicity property, namely that a job Ji that is lighter, or finer grained
than a job J′i is guaranteed to perform at least as well as J′i .

Let us reconsider the example from Figure 3 to illustrate that GPI compatibility is not a naturally given property.
We have seen that partitioning T ′11 into T11 and T12 results in a smaller makespan. But what about the individual
execution time of job J1? In the unpartitioned execution, where J1 only consists of T ′11, J1 terminates at time t = 8.
In the partitioned case, however, J1 terminates at time t = 9. This means that partitioning a transaction speeds up
the overall performance of a concurrent system managed by an optimal CM, but it possibly slows down an individual
job. Thus, from a selfish programmer’s point of view, it is not rational to simply make transactions as fine granular as
possible. In fact, if a finer grained partitioning of transactions might result in a slower execution of a job, why should a
selfish programmer make the effort of finding a transaction granularity as fine as possible? Clearly, selfish developers’
incentives are not naturally aligned with the TM system designer’s goal to maximize the system throughput. One can
expect that from a certain level of selfishness among developers a CM that incentivizes good programming performs
better than the best incentive incompatible CM. In the remainder we are mainly concerned with the question of which
contention management policies fulfill GPI compatibility.

As a remark we would like to point out that the optimal CMM∗ does not reward partitioning, and hence is not GPI
compatible. This is shown by the example from Figure 3. Note that the optimality ofM∗ refers to the scheduling of
a given transaction set. If we assume developers act selfish then also a system managed byM∗ suffers a performance
loss and a different CM that offers incentives for good programming might be more efficient than M∗. There is,
however, an inherent loss due to the lack of collaboration. In game theory, this loss is called price of anarchy (cf.
[4, 5, 6]).

4. Priority-Based Contention Management

One key observation when analyzing the contention managers proposed in [7, 8, 9, 10] is that most of them
incorporate a mechanism that accumulates some sort of priority for a transaction. In the event of a conflict, the
transaction with higher priority wins against the one with lower priority. Most often, priority is supposed to measure,
in one way or another, the work already done by a transaction. Timestamp[7] and Greedy[10, 9] measure the priority
by the time a transaction is already running. Karma[7] takes the number of accessed objects as priority measure.
Kindergarten[7] gives priority to transactions that already backed off against the competing transaction. The intuition
behind a priority based approach is that aborting old transactions discards more work already done and thus hurts
the system efficiency more than discarding newer transactions. The proposed contention managers base priority on
a transaction’s time in the system, the number of conflicts won, the number of aborts, or the number of resources
accessed. Definition 6 introduces a framework that comprises priority-based CMs. It allows us to classify priority-
based CMs and to make generic statements about GPI compatibility of certain CM classes. See Table 1 for some
examples of how our framework can be used to describe CMs.

Definition 6. A priority-based CMM associates with each job Ji a priority function ~ωi : Ri 7→ R that can change
over time. For resource R ∈ Ri, ~ωi(R) is Ji’s priority on resource R. M resolves conflicts between two transactions
Ti j ∈ Ji and Tqr ∈ Jq over a resource R ∈ Ri ∩ Rq by aborting the transaction with lower priority on R, i.e., if
~ωi(R) ≥ ~ωq(R) then Ti j wins otherwise Ti j is aborted.

In many CMs, the job priorities are not resource specific, i.e., ~ωi(R) = c ∀R ∈ Ri where c ∈ R. In this case we
can replace ~ωi by a scalar priority value ωi ∈ R. We call such a CM scalar-priority-based. In the remainder we
often use ωi instead of ~ωi for the sake of simplicity, even if we are not talking about scalar-priority-based CMs only.
Mostly, for a correct valuation of a job’s competitiveness absolute priority values are not relevant, but the relative
value to other job priorities. A job Ji’s relative priority ω̃i : Ri 7→ R is defined by ω̃i(R) = ~ωi(R) − min j:R∈R j ~ω j(R).
If the CM uses scalar priorities, Ji’s relative priority ω̃i ∈ R is obtained by subtracting min j=1...n ω j from the absolute
priority ωi. Since optimistic CMs feature a reactive nature it is best to consider the priority-building mechanism as

7

Timestamp, Greedy Karma, Polka Eruption Polite

T ωi = ωi + c
C ωi = 0

R ωi = ωi + c
C ωi = 0

R ωi = ωi + c
W against T j ωi = ωi + ω j

C ωi = 0

R ~ωi(R) = 1
A ~ωi(R) = 0 ∀R ∈ Ri

C ~ωi(R) = 0 ∀R ∈ Ri

Table 1: Description of various popular priority-based CMs in terms of the framework introduced in Definition 6. Timestamp, Karma, Eruption,
and Polite were proposed by Scherrer and Scott in [7], as well as Polka in [8]. Greedy was proposed by Gerraoui et al. in [9]. ‘X f ’ indicates
that the described CM reacts to an event X with the modifications f . The value c is typically a small constant increment. Note that only Polite
needs resource specific priorities, the other five CMs use scalar priority values.

event-driven. On each event, the CM may update the priority (functions). We find that the following events may occur
for a transaction Ti j ∈ Ji in a transactional memory system:

T : A time step,
W: Ti j wins a conflict,
A: Ti j loses a conflict and is aborted,
R: Ti j successfully allocates a resource,
C: Ti j commits.

Event T occurs in every time step. We can use T -events to model CMs like Timestamp[7], e.g., to model priorities
that are a function of the transaction’s time in the system. EventW occurs when the contention manager resolved a
conflict in favor of Ti j. EventA occurs when the CM resolved a conflict in favor of one of Ti j’s competitors. Event R
occurs when Ti j gains access of a resource. Note that this event happens regardless of whether resource R was freely
available, or whether Ti j had to win in a conflict against other transactions to lock R. If Ti j wants to acquire a resource
R that is currently locked by another transaction, the contention manager decides which transaction has to abort. If Ti j

has to abort there occurs an A-event for Ti j. If Ti j may continue, there occur both aW as well as an R-event. Event
C occurs when a transaction Ti j commits. Note that the priorities are associated with jobs rather than transactions.
Thus, if a transaction Ti j commits this does not necessarily result in ωi being reset to 0. The following two subtypes
of priority-based CMs capture most contention management policies in the literature.

Definition 7. A priority-based CM is priority-accumulating iff no event decreases a job’s priority and there is at least
one type of event which causes the priority to increase. Iff a CM is priority-accumulating w.r.t. events T ,W, A and
R but it resets Ji’s priority when a transaction Ti j ∈ Ji commits then we call it quasi-priority-accumulating.

As an example, a Timestamp CMMT is modelled as follows. MT uses events of type T and C, i.e., in a time step dt
after Ti j ∈ Ji entered the system, ωi is increased by dω = αdt, α ∈ R+ until C occurs, then it is reset to 0. Ji’s scalar
priority at time t, tMT ,E(Ti j) < t ≤ tMT ,E(Ti j)+dMT ,E(Ti j) is ωi(t) =

∫ t
tMT ,E(Ti j)

αdt = α(t− tMT ,E(Ti j)). If not for the event
of a commit, where a job’s priority is reset, Timestamp would be priority-accumulating since a contained transaction’s
priority always increases and never decreases over time. Thus, Timestamp is quasi-priority-accumulating.

4.1. Waiting Lemma
We argue in this section that delaying the execution of a job is not a rational strategy with priority-based CMs,

i.e., jobs with artificial delays are not in the solution set if programmers use the solution concept defined in Section 2.
Note that a programmer can make a job wait by introducing unnecessary code that does not allocate shared resources.
We consider cases where Ji waits before (re)starting a transaction Ti j as well as cases where Ti j is already running,
has locked some resources and then waits before resuming (cf. Figure 4). For our proof to work, we need to make
two restrictions on the contention manager’s priority modification mechanism:

I. The extent to which ωi is increased (or decreased) on a certain event never depends on ωi’s current value

II. In a period where no events occur except for time steps, all priorities ωi increase by ∆ω ≥ 0.

Restriction I. implies that rules such as “if ωi is larger than 10 add 100”, or “ωi = 2ωi” are prohibited. A rule like
“ωi = ωi + 2” on the other hand is permitted. Intuitively, it seems that a rule that, e.g., doubles the current priority on

8

R
1

R
2

t

Ti1

Ti1

t0

Ti1

Ti2 waits Δ

R
3

Ti2

Ti2

Ti2

ti2 Ti2 waits Δti1

Figure 4: Job Ji = Ti1,Ti2 waits at time t0 for a period of ∆. In this period, Ji keeps locking the already locked resources R1 and R2. After Ti1
commits, the system would let Ti2 start immediately, but the programmer of Ji decided to let Ti2 wait ∆ before it accesses the first resource.

certain types of events does not seem too far-fetched. Nevertheless, we are not aware of any contention manager in
the literature that employs such an update rule. Thus, Restriction I. is probably not a substantial reduction to the CM
design space. Restriction II. basically excludes CMs that decrease priorities on T -events, and CMs in which T -events
do not affect all jobs in the same manner. Again, we do not know of any contention manager that incorporates rules of
this kind. As most proofs that follow Lemma 8 rely on these restrictions, investigating CMs that do not comply with
Restrictions I. and II. might still be an interesting subject for future work.

Lemma 8. It is irrational to add artificial delays to a job, given that the TM system is managed by a priority-based
CMM that is restricted by (I.–II.).

Proof. We show the claim by comparing a job J′i that incorporates artificial delays with a wait-free job Ji that results
when omitting all delays in J′i . In particular we prove that the programmers expect a shorter execution time for Ji than
for J′i , i.e. d̃M(Ji) < d̃M(J′i). Let ωi(t) be ωi at time t. Let Ji, or J′i respectively enter the system at time ti. Let E−i be
an execution environment for which dM,E−i∪{(Ji,ti)}(Ji) = d̃M(Ji). We can construct an execution environment E′

−i for
which it holds that d̃M(Ji) < dM,E′

−i∪{(J′i ,ti)}(J′i) ≤ d̃M(J′i) from E−i as follows. Let us assume that J′i incorporates only
one artificial delay in the interval [t0, t0 + ∆]. For any run of J′i , E

′
−i lets all other jobs J j, j , i delay their transactions

as well during the interval [t0, t0 + ∆]. Thus we establish a situation for J′i that is at least as bad at time t0 + ∆ as the
situation at t0. Because of restriction (II.), we have ω̃′j(t0 + ∆) = ω̃′j(t0) ∀ j = 1 . . . n, i.e., the relative priorities are
conserved. Since the conflict-resolving mechanism ofM does not depend on the priorities’ absolute values, but only
on their order, and further, modifications of priorities never depend on the priorities’ absolute values, by resuming all
work at t0 + ∆ and delaying all jobs in E−i with starting time > t0 by ∆, we get that dM,E′

−i∪{(J′i ,ti)}(J′i) = d̃M(Ji) + ∆. If
J′i has more than one artificial delay, we can do the same for each delay interval.

We have proven that if Ji and J′i are either both non-dominated, or both dominated, J′i cannot be in the solution
set. However, if J′i would be non-dominated and Ji dominated we could not make this conclusion, and it would be
unclear which job is to be preferred. Luckily this case cannot occur. We prove this by showing that if Ji is dominated
then J′i must be dominated as well. Let Ĵi be a job that dominates Ji. We construct a job Ĵi

′ from Ĵi that basically
waits whenever J′i waits. Similar arguments as before, namely that relative priorities are preserved, imply that J′i is
dominated by Ĵi

′. This concludes the proof. �

Note that the claim of Lemma 8 is intimately linked to the solution concept stated in the model section. Although
it seems intuitive we can only establish it since we model the programmers to be unaware of any runtime conditions,
and risk-averse in that they assume a “worst-case” execution environment in which their jobs still eventually finish.
In practice, a programmer often has some information about the environment in which her job will be deployed.
Hence it might make sense to presume some structure of E−i. E.g., she could assume that lengths of locks follow a
certain distribution, or that each resource has a given probability of being locked. In such cases waiting might not be
irrational. In the following, we will sometimes argue that a CM is GPI compatible by comparing two jobs Ji and J′i
where both are equal except for J′i either locks a resource unnecessarily, or it does not partition a transaction that is
partitioned in Ji. We will show that in any given execution environment E−i, job Ji

• either perfoms at least as fast as J′i , or

• if it is slower than J′i this is because Ji does not wait at a certain point in the execution.

9

Since we could achieve the same performance as J′i in the latter case by introducing artificial delays to Ji, which we
showed to be irrational, we conclude that a developer prefers Ji even if it does not dominate J′i . All that remains to
show is that there is at least one E−i in which Ji outperforms J′i . We will use analogous reasoning to argue that a CM
is not GPI compatible. In particular we will show that there exists an execution environment E−i in which J′i is faster
than Ji, and in which Ji could not achieve the performance of J′i by introducing delays.

4.2. Quasi-Priority-Accumulating Contention Management
Quasi-priority-accumulating CMs increase a transaction’s priority over time. Again, the intuition behind this ap-

proach is that, on one hand, aborting old transactions discards more work already done, and thus hurts the system
efficiency more than discarding newer transactions, and, on the other hand, any transaction will eventually have a
priority high enough to win against all other competitors. This approach is legitimate. Although the former presup-
poses some structure of E and the latter is not automatically fulfilled, examples of quasi-priority-accumulating CMs
showed to be useful in practice (cf. [8]). However, quasi-priority-accumulating CMs bear harmful potential. They
incentivize programmers to not partition transactions, and in some cases even to lock resources unnecessarily. Con-
sider the case where a job has accumulated high priority on an resource R. It might be advisable for the job to keep
locking R in order to maintain high priority. Although it does not need an exclusive access for the moment, maybe
later on, the high priority will prevent an abort, and thus save time. In fact, we can show that the entire class of
quasi-priority-accumulating CMs is not GPI compatible.

Theorem 9. Quasi-priority-accumulating CMs restricted by (I.–II.) are not GPI compatible.

Proof. Let Ji, J′i , and k be such that J′i = Combine(Ji, k). Let both jobs Ji and J′i enter the system at time ti for
comparison. We show the claim by constructing an environment E−i in which J′i executes faster than Ji and in which
it is impossible to achieve the performance of J′i by introducing delays to Ji. For ease of notation, let E := E−i∪{(Ji, ti)},
and E′ := E−i ∪ {(J′i , ti)}. Furthermore, we denote by ωi(t) the priority ωi at time t. Let E−i be such that T ′ik is not
aborted until commit. Hence, Tik is not aborted until commit at time tM,E(Tik) + dik either. Furthermore, let E−i

be such that there is at least one event that increases ωi in (tM,E(Tik), tM,E(Tik) + dik). Thus ω′i(t
M,E(Tik) + dik) =

ωi(tM,E(Tik) + dik) > ωi(tM,E(Tik)) ≥ 0. When Tik commits, ωi is reset to 0 and ω′i(t
M,E(Tik+1)) > ωi(tM,E(Tik+1)).

Since Tik+1 is started immediately, it will provoke the exact same conflicts as T ′ik at times t ≥ tM,E(Tik+1). Let the
first event on Tik+1 (except for time steps) be a conflict against a transaction Tv < Ji whose priority is lower than the
priority of J′i , but higher than the priority of Ji, i.e., ω′i > ωv > ωi at the time this conflict occurs. Thus, Tik+1 is aborted
and must be restarted, whereas T ′ik wins the conflict and runs to commit. Let all future transactions of J′i run without
conflicts. Thus, we get that dM,E′ (J′i) < dM,E(Ji), i.e., J′i executes faster than Ji. Moreover, as all transactions T ′i j with
j ≥ k run to commit in the first attempt it is impossible to introduce any delay into Tik or Tik+1 without exceeding the
execution time of J′i . �

Theorem 9 reflects the intuition that if committing decreases an advantage in priority then there are cases where it is
rational for a programmer not to commit and start a new transaction, but to continue instead with the same transaction.
Obviously, the opposite case is possible as well, namely that by not committing the developer causes a conflict with
a high priority transaction on a resource, which could have been released if the transaction would have committed
earlier, and thus is aborted. As in our model of a risk-averse programmer she does not suppose any structure on E−i,
she does not know which case is more likely to happen either, and therefore has no preference among the two cases.
She would probably just choose the strategy which is easier to implement. If we assumed, e.g., that a resource R is
locked at time t with probability p by a transaction with priority x where both, p and x follow a certain probability
distribution, then there would be a clear trade-off between executing a long transaction and therewith risking more
conflicts and partitioning a transaction, and thus losing priority.

Note that due to the nature of its proof, Theorem 9 extends easily to the claim that no priority-based CM rewards
partitioning unless it prevents the case where, after a commit of transaction Ti j ∈ Ji, the subsequent transaction
Ti j+1 ∈ Ji starts with a lower priority than Ti j had just before committing. In fact, we can show that all priority-
accumulating CMs proposed by [10, 9, 7, 8] are not GPI compatible. For a detailed description of the mentioned
contention managers, please refer to the original work [10, 9, 7, 8], or to the technical report of this article9. There
you can also find a discussion on the following corollary.

9See www.dcg.ethz.ch/publications/isaac09_EWtik.pdf.

10

Corollary 10. Polite, Greedy, Karma, Eruption, Kindergarten, Timestamp and Polka are not GPI compatible.

4.3. Priority-Accumulating Contention Management
The inherent problem of quasi-priority-accumulating mechanisms is not the fact that they accumulate priority

over time, but the fact that these priorities are reset when a transaction commits. Thus, by comitting early, a job
loses its priority when starting a new transaction. One possibility to overcome this problem is to not reset ωi when
a transaction of Ji commits. With this trick, neither partitioning transactions nor letting resources go whenever they
are not needed anymore resets the accumulated priority. We further need to ensure that a succeeding transaction is
started immediately after its predecessor commits, because otherwise partitioning would result in a longer execution
even in a contention-free environment. We denote this property of a CM as gapless transaction scheduling. Note that
in the assumed model of optimistic contention management, gapless transaction scheduling is naturally given. This is
due to the fact that in optimistic CM resource modifications are visible immediately, and commit operations are very
lightweight, i.e., negligible in our model. Theorems 11 and 12 only hold for CMs that schedule transactions gapless.
As gapless transaction scheduling is part of our optimistic contention management model we do not repeat it in the
statements. However, we need to define the following before stating the theorems. If a CMM only modifies priorities
on a certain event type X, we sayM is based only on X-events.

Theorem 11. Any priority-accumulating CMM that is based only on time (T -events) punishes unnecessary locking.

Proof. Since the priorities grow monotone over time, and T -events happen for all jobs at the same time, there is an
implicit total order among all jobs in the system. In particular, a job J j always has a higher priority than any job that
entered the system after J j, t j > tk implies ω j > ω10. From a job Ji’s perspective, this order divides the competing
jobs in the system into two sets, Li = {J j | ω j < ωi} and Hi = {J j | ω j > ωi}. By transitivity it follows that a job in Li

cannot influence a job in Hi, neither directly nor indirectly by influencing other jobs in Li. A job in Hi will win any
conflicts against any job in Li anyway. Thus, all jobs in Li are irrelevant for the performance of the jobs in Hi, and
therewith for the execution of Ji either. Let Ji, J′i be two jobs that are completely equal in all transactions except for
one, Tik, or T ′ik respectively, where T ′ik ∈ J′i contains an unnecessary lock. Thus, for any point in time t it holds that
LM,{(Ji\Tik ,0)}(t) = LM,{(J′i \T

′
ik ,0)}(t).

Consider the case where dik = d′ik first. Comparing Tik with T ′ik in an empty environment, there is an interval
(a, b) for which it holds that for any t ∈ (a, b), LM,{(Tik ,0)}(t) = LM,{(T ′ik ,0)}(t) \ {R}. This is, T ′ik locks resource R
unnecessarily in the interval (a, b). Given an execution environment E−i, the unnecessary lock of R either does not
provoke a conflict, or it does. If it provokes no conflicts, or only conflicts with jobs in Li then choosing Ji or J′i results
in the same execution time. If it provokes a conflict against a job in Hi, however, T ′ik is aborted whereas Tik continues.
If all transactions after Tik run conflict free Ji is strictly faster than J′i . Otherwise, let tlast be the time when T ′ik is
restarted for the last time before commit, i.e., T ′ik commits at time tlast + dik. In case J′i executes faster than Ji the
programmer could delay Tik until tlast and thus reach the same execution time as with J′i . This is because the resources
allocated by Tik would always be a subset of the resources allocated by T ′ik in the interval [tlast, tlast + dik]. In order to
do so, however, the programmer would introduce an artificial delay to Ji. AsM is time-based, Lemma 8 applies and
implies that choosing J′i over Ji is irrational.

It remains to show that if dik < d′ik then Tik is still preferable. This case occurs when T ′ik contains an unnecessary
lock that additionally delays all future resource accesses compared to Tik. Let δ = d′ik − dik be the delay. In terms
of resource allocation this means that there is a point in time a such that ∀t ≤ a : LM,{(T ′ik ,0)}(t) = LM,{(Tik ,0)}(t), and
∀t, a < t ≤ a + δ : LM,{(T ′ik ,0)}(t) = LM,{(T ′ik ,0)}(a) ∪ {R}, and ∀t > a + δ : LM,{(T ′ik ,0)}(t) = LM,{(Tik ,δ)}(t). For this
case, the empty environment E−i = ∅ can serve as positive instance where dM,{E−i∪(Ji,ti)}(Ji) < dM,{E−i∪(J′i ,ti)}(J′i). For
an environment E−i in which T ′ik is in none of its runs aborted during the interval (a, a + δ) (relative to the run’s start
time), a programmer could achieve the same performance by introducing a delay of δ to Tik at time a. If E−i is such
that T ′ik is aborted due to the unnecessary lock in (a, a+δ) then Ji achieves the same performance as J′i by delaying Tik

until tlast + δ, where tlast is defined as before. We thus proved that whenever J′i executes faster than Ji, the programmer
could achieve the same execution time by introducing delays to Ji. From Lemma 8 it follows that unnecessary locking
is irrational. �

10IfM always resolves ties consistently, e.g. in favor of the job with lower id then a strict order is guaranteed also if we allow concurrent starting
times.

11

Theorem 12. Any priority-accumulating CMM that is based only on time (T -events) rewards partitioning.

Proof. Let Ji, J′i , and k be such that J′i = Combine(Ji, k). If we compare the strategy of using Ji to the strategy of
using J′i then we can make the following observations. Since Tik starts at the same time as T ′ik, Tik will lock the exact
same resources and thus provoke the same conflicts as T ′ik. Tik+1 locks less or equally many resources as Tik, i.e., at
any time t it holds LM,{(Tik+1,dik+1)}(t) ⊆ LM,{(T ′ik ,0)}(t). Let tc be the time when Tik runs to commit in E−i. Until tc both
Ji and J′i behave exactly the same in any E−i. SinceM schedules transactions gapless, if Tik+1 provokes a conflict at
time t ∈ [tc, tc + dik+1] then T ′ik provokes the same conflict at time t. After tc, Tik+1 is started immediately. Depending
on E−i there are two scenarios: (a) the unfinished run of T ′ik provokes only conflicts with jobs in Li, or no conflicts at
all, and (b) T ′ik provokes a conflict with a job in Hi, where Li and Hi are defined as in the proof of Theorem 11. In
case (a), Ji provokes a subset of the conflicts that J′i provokes. Ji and J′i have the same start time, and thus always
the same priority. Tik+1 wins all conflicts, and runs until commit. Tik+1 and T ′ik commit at the same time. As all
succeeding transactions are equivalent, J′i ’s runtime equals Ji’s runtime. In case (b), T ′ik is aborted and restarted. We
have a positive instance of an environment E−i if the resource because of which T ′ik is aborted is not locked by Tik+1
at the time of the conflict, and all succeeding transactions of Ji run until commit in the first run. Then Ji performs
strictly better than J′i . We also have a positive instance if Tik+1 is aborted at the same time, and runs conflict free
afterwards. This is because Tik has already committed and Ji does not need to redo the work done in Tik. For all other
instances that create scenario (b) the programmer of Ji could achieve the same performance as with J′i by delaying
Tik+1 until tlast + dik, where tlast is the time when T ′ik is started for its final run. Lemma 8 implies that Ji is preferable
to J′i . Partitioning is rewarded. �

By the definition of GPI compatibility, Theorems 11 and 12 immediately imply that priority-accumulating CMs that
are based on time only are GPI compatible.

Corollary 13. Any priority-accumulating CMM that is based only on time (T -events) is GPI compatible.

This promising result for priority-accumulating CMs shows that it is possible to design priority-based contention
managers which are GPI compatible. As an example, by simply not resetting a job Ji’s priority when a contained trans-
action Ti j ∈ Ji commits, we can make a Timestamp contention manager GPI compatible. Nevertheless, contention
managers based on priority are generally dangerous in the sense that they bear a potential for selfish programmers to
cheat, i.e., to find ways of boosting their job’s priority such that their code is executed faster (at the expense of the
overall system performance). E.g., consider a CM like Karma [7], where priority depends on the number of resources
accessed. One way to gain high priority for a job would be to quickly access an unnecessarily large number of objects
and thus become overly competitive. Or if priority is based on the number of aborts, or the number of conflicts, a
very smart programmer might use some dummy jobs that compete with the main job in such a way that they boost its
priority. In fact, we can show that a large class of priority-accumulating contention managers is not GPI compatible.

Theorem 14. A priority-accumulating CMM is not GPI compatible if one of the following holds:

(i) M increases a job’s relative priority onW-events.

(ii) M increases relative priority on R-events.

(iii) M schedules transactions gapless and increases relative priorities on C-events.

(iv) M restarts aborted transactions immediately and increases relative priorities onA-events.

Proof. Throughout the proof, we suppose w.l.o.g. that in a CM M each job Ji has exactly one priority ωi ∈ R
associated to it. Let ωi(t) denote Ji’s priority at time t. For parts (i), (ii) and (iv), let T ′i j be a transaction that locks
resource R ∈ R unnecessarily during the interval [tu − ε, tu + ε). Let Ti j be exactly the same transaction as Ti j except it
does not lock R during [tu − ε, tu + ε). We are going to show the claims by comparing the performance of job Ji when
containing Ti j with its performance when containing T ′i j instead of Ti j.

(i). Let T ′i j provoke an unnecessary conflict on R with another transaction Tk at time tu, and ωi(tu) > ωk(tu). T ′i j
wins the competition for R, and M increases ωi by δ. Furthermore, let T ′i j provoke a conflict on a resource Q ∈ R
with a transaction Tl at time tu + ε, and ωl(tu + ε) < ωi(tu + ε) < ωl(tu + ε) + δ. If Ji would use Ti j instead of T ′i j then
ωl(tu + ε) > ωi(tu + ε) for an ε small enough. Ti j would abort, and, given there are no more conflicts, thus prolongate

12

the execution time of Ji. Since there is no way to introduce delays to Ti j without making its execution take longer
than T ′i j it follows thatM does not punish unnecessary locking.

(ii). Let T ′i j be so that it does not access R at all, or only after the unnecessary lock at tu + ε. Let there be no
conflicting transaction on R during [tu − ε, tu + ε), and let the contribution of having acquired R to the priority increase
be δ. Further assume that at time tu + ε, T ′i j has a conflict with Tl and ωl(tu + ε) < ωi(tu + ε) < ωl(tu + ε)+δ. If Ji would
use Ti j instead of T ′i j then ωl(tu + ε) > ωi(tu + ε), Ti j would abort and prolongate the execution time of Ji. There is no
way delays could make Ti j perform as good as T ′i j. ThusM does not punish unnecessary locking.

(iii). Let J′i consist of the transactions Ti1, Ti2 and Ti3. Let Ji consist of Ti1 and Ti3. Let Ti2 be a simple transaction
which unnecessarily locks R ∈ R for a period of ε, and then commits. Let Ti3 be a transaction which only accesses R.
Assume the following scenario: M executes Ti1 and commits at time t0. Ti2 starts immediately, locks R for a period
of ε and commits. M increases ωi by δ, and immediately starts Ti3. Ti3 runs conflict-free for a time period d and
then provokes a conflict with Tl where ωl(t3) < ωi(t3) < ωl(t3) + δ, t3 = t0 + ε + d. We can further assume that if the
programmer would use Ji instead of J′i then Ti3 would also run from time t0 to t3 provoking the same conflict with Tl.
However, Ji would lack the additional priority δ that was granted J′i for committing Ti2, i.e., for an ε small enough, it
holds that ωl(t3) > ωi(t3). Ti3 would abort and prolongate the execution time of Ji. Since introducing artificial delays
to Ji could not make it perform as fast as J′i it follows thatM does not punish unnecessary locking.

(iv). For simplicity we assume here that the time needed for rolling back an aborted transaction is negligibly
small. The proof extends easily to the general case. Let T ′i j start at tu − ε, and provoke a conflict with Tk at time tu, and
ωi(t) < ωk(t).M aborts T ′i j and increases ωi by δ.M immediately restarts T ′i j. Assume that at time tu +ε, T ′i j provokes
a conflict on with Tl and ωl(tu + ε) < ωi(tu + ε) < ωl(tu + ε) + δ, after tu + ε, T ′i j runs conflict-free until commit. If the
programmer of Ji would use Ti j instead of T ′i j then Ti j would not abort at time tu and ωl(tu + ε) > ωi(tu + ε). Ti j would
thus abort at time tu + ε and prolongate the execution time of Ji. There is no way delays could make Ti j perform as
good as T ′i j. M does not punish unnecessary locking. �

5. Non-Priority Based Contention Management

One example of a CM that is not priority-based is Randomized (cf. [7]). To resolve conflicts, Randomized simply
flips a coin in order to decide which competing transaction to abort. The advantage of this simple approach is that it
bases decisions neither on information about a transaction’s history nor on predictions about the future. This leaves
programmers little possibility to boost their competitiveness.

Theorem 15. Randomized is GPI compatible.

Proof. We compare a Ji with J′i under all possible environments E−i. Let E−i include the CM’s randomized decisions,
i.e., if J′i and Ji provoke a conflict at the same time with the same competing jobs then we compare the execution
times of J′i and Ji for both coin flips seperately. For ease of notation let E := E−i ∪ {(Ji, ti)}, and E′ = E−i ∪ {(J′i , ti)}.

In a first step, we show that Randomized, denoted by M, rewards partitioning. Let Ji, J′i , and k be such that
J′i = Combine(Ji, k). We distinguish three cases of the execution of T ′ik. Case (A): T ′ik runs until commit; Case (B):
T ′ik is aborted before tM,E′ (T ′ik) + dik; Case (C): T ′ik is aborted in the period [tM,E′ (T ′ik) + dik, tM,E′ (T ′ik) + dM,E′ (T ′ik)];
Case (A). Since we assume the time needed for committing is negligible, Ji always locks a subset of the resources
locked by J′i . Thus, Ji provokes a subset of the conflicts provoked by J′i . AsM always decides in favor of J′i , so it
does for Ji. Tik and Tik+1 both run to commit in the first attempt. We have dM,E(Tik) + dM,E(Tik+1) = dM,E′ (T ′ik), and
hence dM,E(Ji) = dM,E′ (J′i). Case (B). Tik has the same conflicts as T ′ik and both are aborted at the same time. They
are both restarted at the same time, and we can recurse the argument until case (A) or (C) occur. Case (C). Tik runs
until commit, Tik+1 is started immediately and is aborted in the same conflict as T ′ik. T ′ik and Tik+1 are restarted. Let ta
be the time when T ′ik, or Tik+1 respectively are aborted. Let t′ik+1 be the time when J′i has successfully completed all
operations corresponding to Tik after the restart. Employing J′i instead of Ji coincides with delaying T ′ik from ta until
t′ik+1. In order to show that Randomized rewards partitioning we can use the same argument from Lemma 8, namely
that starting immediately is the better strategy than waiting, although Randomized is not a priority-accumulating CM.
To show this for Randomized is much easier. An adversary can provoke the same conflicts for a transaction, if it is
started immediately, or if it is delayed for some time ∆. Since in any conflict, the probability of winning is the same,
the expected runtime increases by ∆ when the transaction is delayed.

13

In a second step, we show that M punishes unnecessary locking. Let Ji and J′i be two jobs that are exactly the
same except for one contained transaction Ti j, or T ′i j respectively. Let T ′i j have an unnecessary lock of resource R ∈ R
compared to Ti j, and di j = d′i j. If E−i is such that the unnecessary lock provokes no conflict both jobs achieve the
same execution time. If the unnecessary lock provokes a conflict andM decides in favor of T ′i j then the lock does not
change the course of Ti j’s execution either. IfM, however, decides against T ′i j it is aborted and Ti j continues. T ′i j is
restarted. If Ti j runs until commit, playing Ti j yields a better execution time. Otherwise, let tlast be the time when T ′i j
is restarted for the last time, i.e., T ′i j commits at time tlast + d′i j. Ti j could also be delayed until tlast, and reach a commit
time at least as good as T ′i j. This is since Ji would provoke a subset of the conflicts provoked by J′i . As delaying is
irrational, employing T ′i j instead of Ti j is irrational. It remains to show that if di j < d′i j then Ji is still preferable to J′i .
Let T ′i j be exactly like Ti j except for one unneeded resource access during an interval [tu − ε, tu + ε] which prolongates
d′i j by δ = d′i j − di j. If the execution environment is empty, E−i = ∅, we get that dM,E(Ji) = dM,E′ (J′i) − δ < dM,E′ (J′i).
If E−i is such that the unnecessary lock provokes a conflict in which M decides for Ti j, the same effect would be
achieved by introducing a delay to Ti j in the interval corresponding to [tu − ε, tu + ε]. If T ′i j is aborted, though, and
Ti j runs until commit in the first attempt, choosing Ji yields a better execution time. If Ti j does not run until commit
in its first execution, let tlast be the time when T ′i j is restarted for the last time. By introducing a delay in the interval
corresponding to [tu − ε, tu + ε], and additionally postponing the start of Ti j until tlast the programmer of Ji could
reach a commit time at least as good as T ′i j. This is again because Ti j would provoke a subset of the conflicts that
T ′i j provokes, and sinceM would make the same decisions Ti j would also win all conflicts. As introducing artificial
delays is irrational the claim follows. �

Note that in order for the proof to work, the Randomized CM must schedule consequent transactions gapless. Thus,
Theorem 15 holds for optimistic contention management. If a non-optimistic contention manager would entail a
non-negligible gap between two consecutive transactions, however, then partitioning would not be rewarded. This is
easy to see since in an empty environment, a fine grained job would yield a longer execution time than a version that
combines some contained transactions.

Unfortunately, in terms of practicability, it is not a good solution to employ such a simple Randomized CM,
although it rewards good programming. The probability psuccess that a transaction runs until commit decreases expo-
nentially with the number of conflicts, i.e., psuccess ∼ p|C| where p is the probability of winning an individual conflict
and C the set of conflicts. However, we see great potential for further developement of CMs based on randomization.

6. Simulations

To verify our theoretical insights, we implemented selfish threads in DSTM2 [3], a software transactional memory
system in Java, and let them compete with the threads originally provided by the authors of the included benchmark
under several different contention managers. DSTM2 is an experimental framework that provides some basic CMs,
and allows to implement custom CMs easily.

6.1. Setup

In particular, we added a subclass TestThreadFree to dstm2.benchmark.IntSetBenchmark that uses coarse
transaction granularities, i.e., instead of just updating one resource a selfish thread updates several resources per
transaction at once. See Figure 5 for the code executed by the selfish threads and Figure 6 for the collaborative
threads’ code. The latter is what we call “good code”, as it only performs one action per transaction and thus avoids
unnecessary locking. We added a mechanism to the selfish threads that attempts to build up priority before accessing
the shared resource. To this end, it simply creates a dummy resource and updates it a number of times. When the
system is managed by Timestamp- or Karma-like contention managers this could be an advantage as priority is built
up in a conflict-safe environment and once it accesses the truly shared resources, it has higher priority than most of its
competitors. Hence a selfish programmer can vary two parameters, the transaction granularity γ and the priority π it
tries to build up before actually starting its work.

We tested and compared the performance of selfish threads with collaborative threads in two benchmarks. In
both, there is a total number of 16 threads which start using a shared data structure for 10 seconds before they are
all stopped. In the first benchmark, the threads all work on one shared ordered list data structure, in the second, they

14

while (true) {
thread.doIt(new Callable<void>() {

@Override
public void call()

// access dummy resource <priority> times
Factory<INode> factory = Thread.makeFactory(INode.class);
INode nd = factory.create();
for(int k=0; k < priority; k++){

nd.setValue(k);<

// access shared resource <granularity> times
Random random = new Random(System.currentTimeMillis());
for(int i=0; i < granularity; i++){

intSet.update(random.nextInt(TRANSACTION_RANGE))
}

}
});

}

Figure 5: Selfish thread. The call() method is executed as a transaction by the STM.

while (true) {
value = random.nextInt(TRANSACTION_RANGE);

thread.doIt(new Callable<void>() {

@Override
public void call() {

intSet.update(value);
}

});
}

Figure 6: “Good” thread. The call() method consists of only one update call.

work on a red-black tree data structure. All operations are update operations, i.e., a thread either adds or removes an
element. We ran various configurations of the scenario in both benchmarks managed by the Polite, Karma, Polka,
Timestamp or the Randomized contention manager. The variable parameters were the number of selfish threads (0,
1, 8, 16) among the 16 threads, their transaction granularity γ ∈ {1, 20, 50, 100, 500, 1k, 5k, 10k, 50k, 100k, 500k, 1M}
and the number of initial dummy accesses π ∈ {0, 200, 500, 2000} performed by the selfish threads. The benchmarks
were executed on a machine with 16 cores, namely 4 Quad-Core Opteron 8350 processors running at a speed of 2
GHz. The DSTM2.1 Java library was compiled with Sun’s Java 1.6 HotSpot JVM. To get accurate results every
benchmark was run five times with the same configuration. The presented results are averaged across the five runs.

6.2. Results

The results confirm the theoretical predictions that a selfish programmer can outperform and sometimes almost
entirely deprive the collaborative threads of access to the shared resources if the TM system is managed by the Polite,
Karma, Polka, or the Timestamp CM. With the Randomized manager on the other hand, the collaborative threads
are much better off than the selfish threads (cf. Figure 7). In all of our tests, if the system was managed by Polite
the selfish threads were always better off. Under Karma, they were better off in 92% of all cases, and if they used
granularities γ of at least 20 operations per transaction they always performed better. With Polka, the selfish threads’
success rate was 70% over all runs and 100% for γ ∈ {20, 50, 100}. Of all tests run with the Timestamp manager,
selfish behavior paid off in 92% of the cases and in 100% if the granularity γ was at least 20. Under Randomized,
selfish threads had a larger throughput in only 7% of all cases.

Further, our simulations suggest that the mechanism included to boost priority π before actually accessing the
shared data does not influence the selfish thread’s relative performance significantly. The transaction granularity
however has a huge impact. Figure 8 shows the average throughput of both a selfish and a collaborative thread. In
our experiments, a selfish thread’s throughput was practically always higher than the collaborators’ under the Karma,

15

Figure 7: Plot of all cases simulated under a Karma, a Randomized, a Polka and a Timestamp CM. If a point is above the diagonal line this indicates
that in the corresponding test run, the selfish thread had a larger throuhput than the good thread that only employs transactions of granularity 1. For
Karma, the cases where γ = 1 are omitted.

Polka and the Timestamp manager if it used a granularity of at least twenty update operations per transaction. This
may in part be because a coarser transaction needs less overhead than a transaction with granularity γ = 1, however,
with the Randomized contention manager, we see that even a transaction with a granularity of only twenty updates
is unlikely to succeed. To a larger extent, this higher performance of the selfish threads derives from the fact that—
except for the first update—they have higher priority than the collaborative threads. At first it might be surprising that
the average throughput, i.e., the system efficiency, does not decrease when introducing more selfish programmers.
However, with large granularities, there will usually be one transaction with very high priority. The latter is not
endangered of being aborted by any other transaction, and hence runs to commit untouched. It seems that in our
setting with high contention, one fast selfish thread locking the entire datastructure is still quite efficient. More so,
caching mechanisms probably speed up the system when basically only one thread is working. With the appropriate
level of contention, the effect of degradation in system efficiency would possibly show. Regardless of this inability to
show the system degradation explicitly, it is obviously not desirable for a multi threaded program to basically have
only one thread running. Note also the break in the throughput increase between γ = 1000 and γ = 5000 with the
Polka manager. This is probably caused by the mechanism included in Polka which allows a transaction trying to
access a locked resource to abort the competitor after a certain number of unsuccessful access attempts. This seems
to happen much more often if the selfish programmers use granularities higher than 1000.

16

Figure 8: Average throughput of a selfish and a collaborative thread in the red-black tree benchmark with 15 collaborators and one selfish thread.
The selfish thread does not employ a priority boosting mechanism (π = 0). In addition to the collaborators’ and the selfish thread’s throughput, the
average throughput of all 16 concurrent threads is depicted. Except for Randomized, we added 1 to the actual throughput and used a logarithmic
scale.

7. Conclusion and Future Work

While Transactional Memory constitutes an inalienable convenience to programmers in concurrent environments,
it does not automatically defuse the danger that selfish programmers might exploit a multicore system to their own but
not to the general good. A TM system thus has to be designed strategy-proof such that programmers have an incentive
to write code that maximizes the system performance. Priority-based CMs are prone to be corrupted unless they are
based on time only. CMs not based on priority seem to feature incentive compatibility more naturally. We therefore
conjecture that by combining randomized conflict resolving with a time-based priority mechanism, chances of finding
an efficient, GPI compatible CM are high. Recent work by Schneider et al.[11] can be seen as a successful step in
this direction. Further potential future research includes the analysis of GPI compatibility if the programmer makes
assumptions about the execution environment E−i, or if the system employs a pessimistic CM policy. Does waiting
make sense in these settings? How accurate is the model of selfish, independent programmers, and what is the actual
efficiency loss due to GPI incompatibility in existing systems?

References

[1] D. B. Lomet, Process structuring, synchronization, and recovery using atomic actions, SIGOPS Operating Systems Review 11 (2) (1977)
128–137.

[2] M. Herlihy, J. E. B. Moss, Transactional memory: Architectural support for lock-free data structures, SIGARCH Computer Architecture
News 21 (2) (1993) 289–300.

[3] M. Herlihy, V. Luchangco, M. Moir, A flexible framework for implementing software transactional memory, SIGPLAN Not. 41 (10) (2006)
253–262.

[4] S. Aland, D. Dumrauf, M. Gairing, B. Monien, F. Schoppmann, Exact price of anarchy for polynomial congestion games, in: Proceedings of
the 23rd Annual Symposium on Theoretical Aspects of Computer Science (STACS), 2006, pp. 218–229.

17

[5] G. Christodoulou, E. Koutsoupias, The price of anarchy of finite congestion games, in: Proceedings of the 37th annual ACM symposium on
Theory of computing (STOC), 2005, pp. 67–73.

[6] T. Roughgarden, Selfish Routing and the Price of Anarchy, MIT Press, 2005.
[7] W. N. Scherer III, M. L. Scott, Contention management in dynamic software transactional memory, in: PODC Workshop on Concurrency

and Synchronization in Java Programs (CSJP), 2004.
[8] W. N. Scherer III, M. L. Scott, Advanced contention management for dynamic software transactional memory, in: Proceedings of the 24th

annual ACM symposium on Principles of Distributed Computing (PODC), 2005, pp. 240–248.
[9] R. Guerraoui, M. Herlihy, B. Pochon, Toward a theory of transactional contention managers, in: Proceedings of the 24th annual ACM

symposium on Principles of Distributed Computing (PODC), 2005, pp. 258–264.
[10] H. Attiya, L. Epstein, H. Shachnai, T. Tamir, Transactional contention management as a non-clairvoyant scheduling problem, in: Proceedings

of the 25th annual ACM symposium on Principles of Distributed Computing (PODC), 2006, pp. 308–315.
[11] J. Schneider, R. Wattenhofer, Bounds on contention management algorithms, in: 20th International Symposium on Algorithms and Compu-

tation (ISAAC), 2009, pp. 441–451.

18

