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Abstract. In the online Min-cost Perfect Matching with Delays (MPMD) problem, m requests in a metric
space are submitted at different times by an adversary. The goal is to match all requests while (i) minimizing
the sum of the distances between matched pairs as well as (ii) how long each request remained unmatched after
it appeared.

While there exist almost optimal algorithms when the metric space is finite and known a priori, this is not
the case when the metric space is infinite or unknown. In this latter case, the best known algorithm, due to Azar
and Jacob-Fanani, has competitiveness O(m0.59) which is exponentially worse than the best known lower bound
of Ω(logm/ log logm) by Ashlagi et al.

We present a O(log5 m)-competitive algorithm for the MPMD problem. This algorithm is deterministic and
does not need to know the metric space or m in advance. This is an exponential improvement over previous
results and only a polylogarithmic factor away from the lower bound.

1 Introduction We consider an online two-player game like online chess or racing. Players arrive one by
one and must be paired to play games against each other. A well-designed matchmaking system needs to optimize
two conflicting criteria: first, we need to minimize the players’ waiting time to maintain engagement, second, we
need to ensure that players are satisfied with whom they are matched with. This satisfaction might depend on
multiple factors, e.g., the skill difference with their opponent or their geographical distance, which affects game
latency.

This trade-off was first formalized by Emek et al [8] by defining the online Min-cost Perfect Matching with
Delay (MPMD) problem. In this problem we are given a metric space and m requests, which are points in the
metric space arriving at any time. An algorithm must pair all requests in a way that minimizes (i) the sum of the
distances between each pair (space cost) and (ii) how long each request has to wait after arriving before being
matched (time cost).

This problem was first studied in the case where the metric space is finite and known in advance. Most of the
proposed algorithms were randomized and relied on metric tree embeddings [8, 2]. We note that this approach
has many drawbacks. First, the competitive ratio may be arbitrarily large compared to the actual number of
requests. In addition, these algorithms’ guarantees only hold in expectation. In particular, these algorithms fail
against an adaptive adversary.

A way to work around these issues is to no longer assume knowledge about the metric space and focus
on deterministic algorithms. This line of work started with Bienkowski et al [6] who gave an algorithm with
O(mlog 5.5) ≈ O(m2.46) competitiveness. This was later improved to O(m) by Bienkowski et al [5] and to
O(ε−1mlog(1.5+ε)) ≈ O(m0.59) by Azar and Jacob-Fanani [3]. This is so far the best competitiveness for the
general MPMD problem. A lower bound of Ω(logm/ log logm) also exists by Ashlagi et al [1]. This lower bound
is quite strong as it holds even for a randomized algorithm against an oblivious adversary.

1.1 Our contribution In their paper [3], Azar and Jacob-Fanani ask whether there exists an algorithm
with poly-logarithmic competitiveness in the general setting. We answer in the positive by describing a
deterministic algorithm with O(log5 m)-competitiveness for MPMD . This represents an exponential improvement
over previous results and is only a poly-logarithmic factor away from the best known lower bound of
Ω(logm/ log logm).

1.2 Related Work The first algorithm with bounded competitive ratio was given by Emek et al [8] and
focuses on the case where the metric space is known, finite of size n and the adversary is oblivious. In this case,
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they give a randomized O(log2 n+ log∆)-competitive algorithm, where ∆ is the aspect ratio of the metric space.
This was later improved to O(log n) by [2]. These algorithms use the same approach of embedding the metric
space in a tree with logarithmic distortion. Regarding lower bounds, [2] first gave an Ω(

√
log n) lower bound which

was later improved to Ω(log n/ log log n) by Ashlagi et al [1]. These lower bounds hold for a randomized algorithm
against an oblivious adversary. Moreover, because the latter bound uses m = Θ(n) requests, it also implies the
Ω(logm/ log logm) bound described above. When the delay cost is a concave function instead of a linear one,
Azar et al [4] give a randomized O(log n)-competitive algorithm. As a more general approach, Deryckere and
Umboh [7] consider the MPMD-Set problem, where the time cost at a given instant is a function of the unmatched
requests.

To work around the logarithmic lower bound, many papers focus on special cases of online matching with
delay. For example, for two-point metrics, Emek et al [9] give an optimal deterministic 3-competitive algorithm.
When the metric space is a tree with height h, Azar et al [2] provide a deterministic O(h)-competitive algorithm.
If the requests’ arrival times follow a Poisson distribution, Mari et al [13] give an algorithm with constant
competitiveness. For a k-point uniform metric space, Liu et al [12] give a O(k)-competitive algorithm which
supports convex time cost functions.

A closely related problem to the MPMD problem is the online Minimum-cost Bipartite Matching with Delay
problem (MBPMD). In MBPMD, requests additionally carry a sign (positive or negative) and only requests of
opposite sign can be matched. For this problem, Azar et al [2] first gave a randomized O(log n)-competitive
algorithm along with a Ω(log1/3 n) lower bound. This lower bound was later improved to Ω(

√
log n/ log log n)

by Ashlagi et al [1]. Many results for MPMD , such as the O(m)-competitive algorithm by Bienkowski et al [5]
and the algorithm with O(m0.59)-competitiveness by Azar and Jacob-Fanani [3] have a variant with the same
competitiveness for MBPMD. More recently, Kuo [11] gave an algorithm with Õ(

√
m)-competitiveness for MBPMD

on a line.

1.3 Algorithm overview We now give a brief overview of the techniques and ideas used by our algorithm.
In essence, the algorithm partitions the requests which arrived so far into components. Requests inside each
component are matched using a greedy strategy.

Offline approach: Our algorithm can be described as a way to adapt Wattenhofer and Wattenhofer’s
algorithm for offline perfect weighted matching [17] to the online setting. Their algorithm is similar to Boruvska’s
algorithm in that we try to cover vertices with components and do so within at most log n rounds. In each round,
some components are merged together to create bigger components. The main difference is that Boruvska’s
algorithm finds a minimum spanning tree and ends with a single component remaining. Meanwhile the algorithm
by [17] finds a stable matching and terminates when the size of all components remaining is even. Within a
component, they show that requests can be paired efficiently following the order of an Euler tour.

Online approach: For the online setting, we adapt the algorithm by [17] with an overall approach similar
to how Gallager et al adapted the Boruvka algorithm to run in the distributed setting with the GHS algorithm
[10]. More specifically, we consider each component as operating independently. When a component of odd
size encounters another component it can merge with, it waits for a period of time proportional to the distance
between them before merging. We give each component a rank, similar to the disjoint-set data structure, so that
merging only happens in the direction of increasing rank.

Matching inside a component: In the offline setting, finding a perfect matching inside a component can
be done efficiently using an Euler tour. This is not the case in the online setting, as some requests may join
the component late. To work around this issue, we pair requests inside a component using a greedy matching
algorithm. Although this greedy approach is not efficient in the general setting [14], we show that the matching
obtained is a good approximation in this context.

Minimizing waiting trees: If a component CA wants to merge with a component CB , but CB has a lower
rank than CA, then CA must wait for CB ’s rank to increase (or become irrelevant). This relation of CA waiting
for CB can be seen as an oriented waiting edge from CA to CB in a graph. When looking at the set of all these
waiting edges, they form a forest. By a procedure called Waiting tree pruning, we make sure that all trees in this
forest have a logarithmic size at all times. This ensures that the overall waiting time can be amortized.

Regular and special edges: A component always tries to merge with its closest compatible component.
When such a merge occurs, the set of edges added are called regular edges. The idea, based on Lemma 2.3 and
formally proven by Lemma 6.18 is that the total weight of regular edges can be bounded by the cost of the
optimal matching. However, this approach has many shortcomings when used in the online setting: a component
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may incorrectly identify its closest compatible component because some requests arrived late. To address this, we
introduce special edges and merge problematic components using them. The idea, formally proved by Lemma 6.19,
is that the weight of special edges is small relative to the weight of the components they are merging.

2 Preliminaries

2.1 Metric Space We consider a metric space M = (S, g), where g is a distance function on S. In the
MPMD problem, an input I = (ri)i∈[[1;m]] arrives in an online way, where a request ri arrives at time t(ri) ≥ 0
and at position x(ri) ∈ S. The algorithm does not know a priori m, which is guaranteed to be even, or S. It can
only query the distance between the position of requests that have already arrived. We note that we use g instead
of d for the distance, as g will be rarely used while we reserve d for the time-augmented distance defined later.

The algorithm must produce a perfect matching incrementally. For any two requests p and q, they can be
matched together at any time t ≥ max(t(p), t(q)). Given a set of requests (pi, qi, ti)i∈[[1;m/2]] matched by an
algorithm, the cost of the matching is:

m/2∑
i=1

(g(x(pi), x(qi)) + |ti − t(pi)|+ |ti − t(qi)|)

We define the competitiveness of an algorithm as the worst-case ratio of the cost of this algorithm compared
to an optimal algorithm that knows the entire input ahead of time.

Time-augmented metric space:
We can consider adding the time as part of the metric space: Let us define S′ = S × R+ and M′ = (S′, d)

where:

d((p, t1), (q, t2)) = g(p, q) + |t1 − t2|

One can check that M′ also defines a metric space. Moreover, the optimal solution for regular perfect matching
on M′ is closely tied to the optimal online solution for M in the following way, which is formally proven in the
appendix:

Lemma 2.1. Consider an input I = (ri)i∈[[1;m]], let OPT be the cost of the optimal solution for MPMD on I
in M and OPT ′ be the cost of the optimal solution for the offline min-cost perfect matching on I in M′. Then
OPT = OPT ′.

For an edge e = (u, v), with u and v in S′, we call w(e) the weight of the edge and define it as w(e) = d(u, v).
For a set of edges E, we define w(E) as

∑
e∈E w(e).

We consider Vreq the multiset of all time-augmented requests an algorithm receives. We have |Vreq| = m and
remark that the input to a MPMD instance is uniquely defined by Vreq.

We now give a useful lemma regarding the time-augmented space:

Lemma 2.2. Let u ∈ S′ be a request arriving at time t(u). Then for any l > 0, by time t(u) + l, all requests
v such that d(u, v) ≤ l have arrived.

Proof. Let l > 0 and v ∈ S′ be a request such that d(u, v) ≤ l. We have |t(v) − t(u)| ≤ d(u, v) ≤ l. This
implies that the arrival time t(v) satisfies t(v) ≤ t(u) + d(u, v) ≤ t(u) + l.

2.2 Component Decomposition Our work relies extensively on component decomposition, i.e grouping
multiple requests together inside a single component, and merging components together. This approach was
already used successfully for offline weighted matching [16, 17]. Given a set of vertices V , we partition it into
components, such that a component C is defined by:

• V (C): the set of vertices it covers

• T (C): a spanning tree over V (C)

When there is no ambiguity, we may sometimes identify a component with its set of vertices or its spanning tree.
We also define w(C) = w(T (C)), the weight of its spanning tree. For the sake of our algorithm, when vertices are
in a time-augmented space, we also define the following properties and give an informal description of their use:

Copyright © 2026
Copyright for this paper is retained by authors



𝐶1 𝐶2

𝐶4𝐶3

Figure 2.1: Component decomposition of a graph with 9 vertices into 4 components

• rank(C): the rank of the component, which is an indicator of the size of V (C). We want to make sure that
rank(C) ≤ log |V (C)|.

• nrank(C): nearby rank of the component. This can be set to ⊥ or to a positive integer. When not ⊥, it
indicates that there is a "close by" component to C whose rank is at least nrank(C). For simplicity, ∀p ≥ 1,
we define max(⊥, p) as p.

• repr(C): representative of C. This is a vertex in V (C) which is used to help identify C.

• tmax(C) = maxv∈V (C) t(v): the latest time of arrival of a request in C.

By partitioning V into multiple components, we then define a component decomposition C over V as a set of
components such that V = ·∪C∈CV (C). We also define the weight of the decomposition w(C ) =

∑
C∈C w(C).

When a component has an even number of vertices (|V (C)| is even), we call it an even component. Otherwise
we call it an odd component. We naturally extend the distance d to components (we note that d does not satisfy
the triangle inequality on components):

∀C1, C2 ∈ C , d(C1, C2) = min
v1∈C1,v2∈C2

d(v1, v2)

We now consider a new distance D on components, which we call the compressed distance. D is obtained
by compressing even components to a single point. To be more precise, for any two components CA, CB , and
l ≥ 0, D(CA, CB) = l if and only if there exists k ≥ 1, and components CA = C1, C2, . . . , Ck = CB such
that C2, . . . , Ck−1 are even, l =

∑k−1
i=1 d(Ci, Ci+1) and no such path of lower weight exists. We note that D is

technically not a metric distance (it does not always satisfy the triangle inequality).
One of the main lemmas used for the analysis of our algorithm is the following. We note that it is a rephrasing

of Lemma 2 from [17] and is formally proven in the appendix:

Lemma 2.3. Let C be a component decomposition over V . Let Codd ⊆ C be the set of odd components in C .
Let WOPT be the weight of the optimal min-cost perfect matching over V . Moreover, for all C ∈ Codd, we define:

rC = min
C′∈Codd\{C}

D(C,C ′)

Then: ∑
C∈Codd

rC ≤ 2WOPT

Finally, we give the following somewhat simple but really useful lemma. This lemma follows from the fact
that D is the distance obtained by d from compressing some components to a single point, therefore D never
exceeds d:

Lemma 2.4. Let C1 and C2 be two components in a component decomposition. For any u ∈ C1, v ∈ C2:

D(C1, C2) ≤ d(u, v)
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3 Warmup In this section, we will briefly describe the algorithms and ideas our online procedure is based
on as they appear in the offline setting. We note that the main difficulty in this paper lies in adapting these
algorithms to the online setting and not their offline version.

3.1 Greedy matching We consider the following greedy algorithm for the offline matching:

Algorithm GREEDY

Greedy perfect matching for a metric graph G

1: while there are unmatched vertices do
2: Let u and v be the closest unmatched vertices in G
3: Match u and v
4: end while

Although this algorithm is simple, it is also inefficient. In fact, Reingold and Tarjan [14] showed that there
exist metric graphs where GREEDY returns a matching of weight Θ(nlog 1.5) · OPT where n is the number of
vertices and OPT the weight of the optimal matching, this bound is known to be tight. In their paper, Azar
and Jacob-Fanani [3] use a slightly modified version of GREEDY to design an algorithm for matching with
delay with competitiveness O(ε−1 · nlog(1.5+ε)) ≈ O(n0.59) . Our goal is to obtain a poly-logarithmic competitive
algorithm, hence using an approach based on GREEDY seems like a bad idea. However, we show that the output
of GREEDY can be bounded in an efficient way by the weight of the optimal traveling salesman tour:

Theorem 3.1. Consider a metric graph G. Let M be a matching returned by GREEDY and w(M) its
weight. Let OPTTSP be the optimal weight of the traveling salesman tour for graph G, then:

w(M) ≤ 1

4
(⌈log n⌉+ 1) ·OPTTSP

Proof. Our proof relies on a lemma used to analyze TSP heuristics by Rosenkrantz et al [15]:

Lemma 3.2 (Lemma (1) of [15]). Suppose that for a metric graph G = (V, g) with n nodes, there is a mapping
assigning each node p a number lp such that the following two conditions hold:

• g(p, q) ≥ min(lp, lq) ∀p, q ∈ V with p ̸= q

• lp ≤ 1
2OPTTSP ∀p ∈ V

Then
∑

lp ≤ 1
2 (⌈log n⌉+ 1)OPTTSP

Let p ∈ V , we consider q ∈ V the node matched with p in M . We set lp = lq = g(p, q) the length of the matched
edge. Let us show that this definition satisfies the requirements of Lemma 3.2:

• Let p, q be two distinct nodes in G. Without loss of generality, let us assume that GREEDY matched p
before q (if they got matched together any order is fine). Because right before p was matched, both p and q
were unmatched and the greedy takes the unmatched edge of smallest weight, it means that the edge used
to match p has weight at most g(p, q). Therefore g(p, q) ≥ lp ≥ min(lp, lq).

• Let p ∈ V , we assume p got matched to some q ∈ V , so lp = g(p, q). The TSP consists of two paths between
p and q. Given that we are in a metric graph, we get OPTTSP ≥ 2g(p, q) and therefore lp ≤ 1

2OPTTSP

We can thus apply Lemma 3.2 on (lp): ∑
lp ≤ 1

2
(⌈log n⌉+ 1)OPTTSP

We remark that by the definition of (lp), the weight of every matched edge appears exactly twice (one for each
endpoint) in (lp), therefore

∑
lp = 2w(M). The theorem follows from the last two equations.

The fact that we can bound the cost of the greedy matching in some way by the length of the optimal TSP
tour is a key idea for our overall algorithm. Because we are in a metric graph, the length of this TSP tour can be
bounded by some spanning tree over the vertices of G. After adapting this algorithm to the online setting, the
main challenge that remains is to make sure we only run the greedy on subgraphs such that the sum of spanning
trees covering them can be bounded in some way by the optimal online matching cost.
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3.2 Component based matching The previous bound on the greedy algorithm relies on the fact that
we can give a proper upper bound on the weight of spanning trees covering all requests. We remark that the
approximation algorithm for minimum weighted matching given by Wattenhofer and Wattenhofer [17] has such
property. Given a forest F , the component decomposition based on it is the one where each tree in the forest is
its own component. We give a simplified version of their protocol. By "closest odd component", we mean closest
using the distance D which compresses even components to a single point. We note that removing edges until
there are no cycles is only relevant if there are ties when considering P .

Algorithm OFFLINE_COMPONENT_MATCHING

1: F0 ← ∅
2: for i = 0...⌊log |V |⌋ do
3: Let Ci be the component decomposition based on Fi

4: for each component C ∈ Ci do
5: Match vertices in V (C) until there is at most one unmatched vertex left
6: end for
7: Fi+1 ← Fi

8: for each odd component C ∈ Ci do
9: Let P be a shortest path from C to its closest distinct odd component

10: Fi+1 ← Fi+1 ∪ P
11: end for
12: Remove edges in Fi+1 until it contains no more cycles
13: end for

This algorithm keeps merging odd components between each other until there are only even components left.
The main idea for the analysis is that using Lemma 2.3, one can prove that the weight of the edges added to
the forest in each iteration is at most WOPT . The authors of [17] match vertices using an Euler tour technique.
However, because we can bound the weight of a spanning tree on the vertices, we can instead use our greedy
matching algorithm. One can prove that with this approach, we get a O(log3 |V |)-approximation for the min-cost
perfect weighted matching problem.

The advantage of using the greedy matching instead of an Euler tour, and the approximation algorithm from
[17] instead of the blossom algorithm, is that these algorithms use simple techniques. To be more precise, both of
them only require knowledge of the closest vertex/component of a given vertex/component to produce a matching.
This is something that can potentially be achieved with an online algorithm without too much overhead, compared
to approaches based on alternating paths, which are difficult to adapt online.

The rest of this paper is therefore dedicated to explaining how to adapt these two algorithms to the online
setting to obtain a O(log5 m)-competitive algorithm.

4 Greedy algorithm for online matching Similarly to what Azar and Jacob-Fanini did [3], a natural
idea to adapt this offline greedy algorithm to the online setting would be to wait for d(u, v) units of time after an
edge e = (u, v) appears before matching its endpoints. However, this approach fails because we are not guaranteed
to match the closest pair of unmatched vertices. Instead we show that by slightly modifying the greedy algorithm
and waiting twice that duration: 2d(u, v), we get the desired property.

Algorithm GREEDY_ITERATION(t)

Iteration of an online perfect matching algorithm at time t

1: if G has at least 2 unmatched requests then
2: for each unmatched request u ∈ S′ do
3: Let v be the closest unmatched request to u according to d
4: if t ≥ t(u) + 2 · d(u, v) then
5: Match u and v
6: end if
7: end for
8: end if
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Algorithm GREEDY_ONLINE

Online perfect matching for a metric space

1: At every moment t
2: Run GREEDY_ITERATION(t)

We show that this online greedy algorithm achieves properties similar to the offline version (Theorem 3.1),
but with a worse constant factor. The formal proof uses the same idea as the offline version and is given in the
appendix.

Lemma 4.1. Let CGREEDY be the total cost of the matching achieved by GREEDY_ONLINE and let
OPTTSP be the weight of the optimal TSP tour for d over all requests matched by the algorithm. Then:

CGREEDY ≤ 5

2
(⌈log n⌉+ 1)OPTTSP

We described an online matching algorithm whose cost is bounded, up to a logarithmic factor, to the weight
of a tour on its input. The rest of this paper focuses on building on this foundation to get a O(log5 m)-competitive
algorithm.

5 Algorithm We now give a proper description, along with pseudocode of our main online matching
algorithm. We introduce many notations which, while not useful for the algorithm itself, are necessary for its
analysis. As a brief description of our algorithm, it manages and updates a component decomposition C over the
set of requests which arrived so far. Requests are then merged within components using the greedy algorithm
described previously.

5.1 Overall structure We now describe the overall architecture of our algorithm. For simplicity, our
algorithm is described as running continuously (i.e at all times). But at any given time, excluding new requests
coming, only a finite amount of known events are planned to happen. Therefore, this algorithm can be adapted
to run only at some finite set of points in time.

Algorithm ONLINE_MATCHING

Deterministic algorithm for online matching with delay

1: C ← ∅, ∀r ≥ 0 : Sr ← ∅, Rr ← ∅
2: At every moment t
3: RECEIVE_NEW_REQUESTS(t)
4: repeat
5: COMBINE_COMPONENTS(t)
6: PRUNE_WAITING_TREES(t)
7: until no merge happened
8: RUN_GREEDY(t)

We will provide a summary of each function used in this algorithm:

• RECEIVE_NEW_REQUESTS: the algorithm looks for requests that have just arrived at time t. For
each of these requests, it creates a new component of rank 0 containing this request as a singleton.

• COMBINE_COMPONENTS: also called the combining step, the algorithm looks at each odd component,
then it identifies the closest compatible component to this component. If they are close enough related to
the current time and the rank of the target component is at least as big as the current component’s rank,
then they merge together.

• PRUNE_WAITING_TREES: also called the pruning step, if the closest component to an odd component
is another odd component with lower rank, the former component must wait for the latter’s rank to be big
enough before merging. The pruning step ensures that for each active (non-waiting) component, at most a
logarithmic amount of odd components are waiting on it.
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• RUN_GREEDY: As soon as a component has two unmatched requests, we run the greedy algorithm on
these requests. Due to the previous component decomposition, we are guaranteed that we can bound the
space and time cost when running the greedy algorithm in this setting.

5.2 Handling new requests As explained above, when receiving a new request, we create a simple
component of rank 0 containing it, then add it to the set of components.

Algorithm RECEIVE_NEW_REQUESTS(t)

Handle arrival of new requests

1: for each new request v do
2: Let C be a new component such that V (C) = {(v, t)}, rank(C) = 0, nrank(C) = ⊥ and repr(C) = (v, t)
3: C ← C ∪ {C}
4: end for

𝐶𝑓𝑟𝑜𝑚

𝐶𝑡𝑜

𝐶𝑡𝑜

Figure 5.1: Merging Cfrom into Cto. The newly added edges (in orange) are given the rank r of the merge

5.3 Merging components Merging components is a subprocedure of the combining and pruning steps.
This procedure is always invoked when a component’s set of vertices or spanning tree is updated. It takes as
input a source Cfrom, a destination Cto and a rank r. We say that Cfrom is merged into Cto. Moreover, there
might also be even components along the path P from Cfrom to Cto which are merged into Cto. P is chosen as
the shortest path from Cfrom to Cto according to the distance D.

Edges newly added to the component decomposition by a merge of rank r are called edges of rank r. The
merging procedure has two variants whose pseudocode is described below:

• A special merge: Edges added by a special merge of rank r are added to the set Sr and are called special
edges. We use special merges in a way that the weight of special edges is minimal compared to the weight
of the components being merged (see Lemma 6.19).

• A regular merge: Edges added by a regular merge of rank r are added to the set Rr and are called regular
edges. We use regular merges in a way that the weight of the edges can be bounded by the optimal matching
cost (see Lemma 6.18). A regular merge performs an additional modification compared to a special one:
given l = D(Cfrom, Cto), it makes sure all components within distance l/(r + 1) have their nearby rank set
to at least r.

Algorithm SPECIAL_MERGE(Cfrom, Cto, r)

Merge component Cfrom into Cto with special edges

1: Let P be the shortest path from Cfrom to Cto
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2: Let D be the set of even components along P (excluding endpoints)
3: Let E be the set of edges in P outside of components
4: V (Cto)← V (Cto) ∪ V (Cfrom) ∪

⋃
C∈D V (C)

5: T (Cto)← T (Cto) ∪ T (Cfrom) ∪ E ∪
⋃

C∈D T (C)
6: Sr ← Sr ∪ E
7: C ← C \ (D ∪ {Cfrom})

Algorithm REGULAR_MERGE(Cfrom, Cto, r)

Merge component Cfrom into Cto with regular edges

1: Let P be the shortest path from Cfrom to Cto

2: Let D be the set of even components along P (excluding endpoints)
3: Let E be the set of edges in P outside of components
4: H ← {C ∈ C , C ̸= Cfrom, D(Cfrom, C) < D(Cfrom, Cto)/(r + 1)}
5: for C ∈ H \D do
6: nrank(C)← max(nrank(C), r)
7: end for
8: V (Cto)← V (Cto) ∪ V (Cfrom) ∪

⋃
C∈D V (C)

9: T (Cto)← T (Cto) ∪ T (Cfrom) ∪ E ∪
⋃

C∈D T (C)
10: Rr ← Rr ∪ E
11: C ← C \ (D ∪ {Cfrom})

We can now describe the combining step. A crucial point for the combining step is the notion of compatible
components. This concept replaces the notion of odd components used by the offline algorithm when looking to
merge components with each other. Let C1 be an odd component. We say that another component C2 ̸= C1 is
compatible with C1 if at least one of the following three conditions is satisfied:

• C2 is odd: we can always try to merge with an odd component

• rank(C2) ≥ rank(C1): C2 used to be odd previously but we missed it because C1 was "late", this can be
seen as a way to catch up on it.

• nrank(C2) > rank(C1): we know there is a component with rank at least nrank(C2) next to C2, we can
merge with C2 then merge with this nearby component at a low cost.

We note that if C2 is not compatible with C1, it implies that it is even and rank(C2) < rank(C1).
During the combining step, we try to merge odd components to their closest compatible component. Let

C1 be an odd component and C2 be its closest compatible component. To simplify the algorithm, if C1 has no
compatible component (it can happen if the number of requests which arrived so far is odd), we define C2 as being
a fake component with distance +∞ from C1. Let l = D(C1, C2), the first step is to wait until time tmax(C1)+2l
to make sure we did not miss any closer component which arrived late. The second step depends on the nature
of C2 and the surroundings of C1:

• If there exists a component C3 ̸= C1 such that C3 is close enough to C1 but tmax(C3) is really high, we
cannot ignore C3 as it might cause us to miss out on better compatible components which did not arrive
yet. So we use a special merge to merge C3 with C1.

• If nrank(C2) > rank(C1), we merge C1 into C2 with a regular merge. Then we call the nearby fixup
procedure which keeps merging C2 with its closest big enough component using special merges until the
resulting component has nearby rank ⊥.

• If rank(C2) ≥ rank(C1), we can immediately merge C1 into C2.

• Otherwise, if none of the cases above apply, it implies that C2 is an odd component and rank(C2) < rank(C1).
We cannot merge C1 into C2 yet as it would break some invariants we rely on for the analysis of our algorithm.
Instead, we say that there is a waiting edge from C1 to C2, which will be considered during the pruning
step and take no further action regarding C1 in the combining step.

Copyright © 2026
Copyright for this paper is retained by authors



Algorithm COMBINE_COMPONENTS(t)

Merge components that are close to each other

1: for each odd component C1 ∈ C do
2: C2 ← argmin{D(C1, C), C ∈ C , C compatible with C1}
3: l← D(C1, C2)
4: if t ≥ tmax(C1) + 2 · l then
5: H ← {C ∈ C , C ̸= C1, D(C1, C) < l/(rank(C1) + 2)}
6: if ∃ C3 ∈ H, tmax(C3) ≥ tmax(C1) + l then
7: SPECIAL_MERGE(C3, C1, rank(C1))
8: else if nrank(C2) > rank(C1) then
9: REGULAR_MERGE(C1, C2, nrank(C2))

10: NEARBY_FIXUP(C2)
11: else if rank(C2) ≥ rank(C1) then
12: if rank(C2) = rank(C1) then
13: rank(C2)← rank(C2) + 1
14: end if
15: REGULAR_MERGE(C1, C2, rank(C2))
16: else
17: Do nothing (C1 → C2 is a waiting edge)
18: end if
19: end if
20: end for

Algorithm NEARBY_FIXUP(C1)

Merge a component to its bigger nearby component while necessary

1: while nrank(C1) ̸= ⊥ do
2: Let C2 be the closest component to C1 with rank at least nrank(C1) or nearby rank at least nrank(C1) + 1
3: SPECIAL_MERGE(C1, C2, max(rank(C2),nrank(C2)))
4: C1 ← C2

5: end while

5.4 Pruning waiting trees We now describe the pruning step. We remark that in the combining step,
for an odd component C1 and its closest compatible one C2, there is one case where we can pass the threshold
time but do nothing. In this case we consider the oriented edge C1 → C2 as a waiting edge. We remark in this
case that C2 is odd and rank(C2) < rank(C1), so waiting edges are only directed towards a component of strictly
lower rank (i.e there are no cycles).

We can consider W as the set of all waiting edges between components. Because there are no cycles and each
component has out-degree at most 1 (each component is waiting on at most one other component), W is a forest.
The pruning step looks at each tree in this forest, If there are two components with the same rank in the same
tree, they are merged together with a regular merge along the tree path and their rank is increased. This ensures
that not too many components are waiting, which could be detrimental to the competitiveness of our algorithm.
An example of tree pruning can be seen with Figure 5.2.

Algorithm PRUNE_WAITING_TREES(t)

Merge nodes inside a waiting tree if possible

1: Let W be the forest of waiting edges
2: for each waiting tree T in W do
3: if there exists C1, C2 ∈ T such that rank(C1) = rank(C2) then
4: r ← rank(C1)
5: let C3 be the LCA of C1 and C2 in T
6: rank(C3)← r + 1
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7: H ← {C ∈ T , rank(C) ≤ rank(C1), C3 is an ancestor of C}
8: for each C ∈ H \ {C3} by non-decreasing rank order do
9: REGULAR_MERGE(C, C3, r + 1)

10: end for
11: end if
12: end for
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Figure 5.2: Tree pruning: Components C1 and C2 have the same rank 4, their least common ancestor is C3. All
components with ancestor C3 and rank at most 4 get merged together and the resulting component has rank 5.
The orange edges inside the new component get added to T (C3) with rank 5.

5.5 Greedy algorithm The last step for our online algorithm is to match requests together. This task is
done by our greedy algorithm described above. We run multiple greedy instances, one for each component, and
a greedy instance is uniquely identified by the representative repr(C) of each component C. When a component
C has two or more unmatched requests not attached to any greedy instance, these requests are added two at a
time to the greedy instance associated with repr(C).

We remark that our greedy algorithm needs to assume that it can see requests as soon as they arrive. This
is not the case here, so we modify the arrival time of the requests as seen by the greedy procedure to be the time
they joined this instance instead of their real arrival time. Due to our design, each greedy instance always has an
even number of requests.

Algorithm RUN_GREEDY(t)

Update the greedy instances with new request then run them

1: for each component C ∈ C do
2: while C has at least two unmatched requests not attached to any greedy instance do
3: Let r1, r2 be two such requests
4: Identify r1 with r′1 = (x(r1), t)
5: Identify r2 with r′2 = (x(r2), t)
6: Attach r′1 and r′2 to the greedy instance on repr(C)
7: end while
8: end for
9: for each greedy instance with at least two unmatched requests do

10: Run GREEDY_ITERATION(t) on the requests in the greedy instance
11: end for

6 Analysis of the algorithm We consider running the algorithm on a fixed input. Let OPT be the
optimal online matching with delay cost (which contains both the time and space cost) an algorithm knowing
in advance this input can achieve. We note that because of Lemma 2.1, OPT is also the minimal weight of an
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offline perfect matching on the time-augmented input. If there is any ambiguity, for t ≥ 0, we denote by Dt the
function D applied on the algorithm’s component decomposition at time t. In this section, we provide a detailed
analysis of the algorithm, this analysis is divided into multiple parts:

• Correctness: We prove the correctness of the algorithm (it is well-defined and produces a perfect matching).

• Algorithm properties: We describe and prove multiple properties and invariants satisfied by our algorithm.
These are then built upon to provide the following results.

• Bounding edge weights: We show that the size of the forest (spanning tree inside each component) generated
by the algorithm can be bounded by OPT , up to a polylog factor.

• Bounding the algorithm’s cost : Using our previous bound on the forest weight, we can use it to get an upper
bound on the time requests spend before joining a greedy invocation and finally bound the total cost of
each greedy invocation.

6.1 Correctness We first remark that our algorithm contains loops. We first show that these will never
cause the algorithm to loop infinitely:

Lemma 6.1. ONLINE_MATCHING never gets stuck in a loop.

Proof. We first remark that each component starts by containing a single request and each merge decreases the
total number of components by at least one. Therefore, because there are in total m requests, there can always be
at most m−1 merges during the whole execution of the algorithm. So the main loop of ONLINE_MATCHING,
which performs an additional iteration every time a merge happens, will never loop infinitely. In a similar way, the
loop of the NEARBY_FIXUP procedure, which contains a special merge in its body, cannot iterate infinitely.
These are the only two loops our algorithm has.

We also remark that our algorithm makes assumptions about the existence of a component with specific
properties in the NEARBY_FIXUP procedure. The following lemma shows that these assumptions always
hold, so our algorithm is well-defined. Because it requires additional observations about the nearby rank of a
component, we defer its proof to later in the analysis.

Lemma 6.2. The assumptions made in the NEARBY_FIXUP procedure always hold.

We can now give the main result on the correctness, which shows that our algorithm solves the MPMD
problem:

Lemma 6.3. ONLINE_MATCHING produces a perfect matching.

Proof. We first notice that assuming its input contains an even number of requests, the greedy algorithm
produces a perfect matching within a finite amount of time. Let tmax the maximal time of arrival of a request
in the greedy input. Let dmax the maximal distance between two requests in the greedy input. Then at time
tmax + 2dmax, the algorithm would immediately match in pairs any requests not matched yet. Moreover, once
two requests have been matched, they are not considered anymore. Therefore, by time tmax + 2dmax, the greedy
algorithm computes a perfect matching.

Looking at the overall algorithm, we note that it adds two requests to the greedy at a time, this ensures
that the input of any greedy instance will only contain an even amount of requests. Therefore, all requests in
an even component will be part of a greedy instance and odd components will have exactly one request not part
of a greedy instance. It thus suffices to prove that some time after all requests arrive, there will be only even
components remaining to conclude.

As shown in the previous proof, the total number of merges the algorithm can perform is at most m− 1, so
finite. Thus, we can find some time tend after all requests arrived such that the component structure does not
change afterwards. We also consider tlast ≤ tend the last arrival time of a request.

Let us assume that after tend, there is still at least one odd component. We note that the parity of m must be
the same as the number of odd components. Because m is even, there must be an even number of odd components.
Because there is at least one odd component, it means there are at least two such components. Let C1 be the
odd component with minimum rank and let C2 be any other odd component. We note that a component can
only wait on an odd component with strictly lower rank, therefore C1 cannot wait on another component. Let
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l = d(C1, C2), using Lemma 2.4, l ≥ D(C1, C2). Therefore after tend and by time tlast + 2l, we are guaranteed
the algorithm will merge C1 to its nearest compatible component, being C2 or some other component. This is
a contradiction because we assumed no merge happened after tend. Therefore, there are no odd components
remaining after tend and all even components will have a perfect matching done over their requests within a finite
amount of time. This concludes the proof.

6.2 Algorithm Properties We follow with multiple observations that lay the foundation for our analysis
of the algorithm.

Claim 6.4. If a component has rank r, then it contains at least 2r requests.

Proof. The proof is done by induction. When a request arrives, a component of rank 0 is created for it, which
satisfies the property. Subsequently, the rank of a component can only be increased in two ways. The first one
is when two components of rank r merge in the combining step, causing the resulting component to have rank
r + 1. The second one is in the pruning step, which happens when we have two components in one tree with the
same rank r. These get merged together to get a component of rank r + 1. In both cases, a component of rank
r + 1 is formed by a merge containing at least two components of rank r. Hence, the claim follows immediately
by induction.

Corollary 6.5. The maximum rank a component can have is ⌊logm⌋.

We observe that previous work using a component-based approach in the offline setting [16, 17] could bound
the maximum rank by log3(3m/2). This is not the case here as we have to relax the conditions for merging to
handle the online setting.

Claim 6.6. A regular merge from Cfrom into Cto of rank r is only called with r > rank(Cfrom) and Cto being
the closest compatible component to Cfrom.

Proof. We consider the three different cases where a regular merge happens:

• In the combining step, with C1 and C2. By definition C2 is indeed the closest compatible component to C1.
In the first case we have r = nrank(C2) > rank(C1). In the second case, we have r = rank(C2) ≥ rank(C1).
Moreover, in the latter case, if rank(C2) was equal to rank(C1), it gets incremented, therefore r > rank(C1).

• In the pruning step, along edges of the waiting tree. But by definition, for a waiting edge CA → CB to
exist, CB must be the closest compatible component to CA. Moreover, a regular merge is only called with
components from H, which by definition have rank at most rank(C1) while r = rank(C1)+1 which therefore
satisfy the property.

Claim 6.7. Let C be a component such that nrank(C) ̸= ⊥, then C is an even component and nrank(C) >
rank(C)

Proof. We first consider the time a component is given a non-⊥ nearby rank, we can find components Cfrom,
Cto and a rank r such that it happens in the regular merge from Cfrom to Cto at rank r. Using Claim 6.6, Cto

is the closest compatible component to Cfrom. If a component C gets its nearby rank modified by this part of
the algorithm, it implies that it is in H and therefore that D(Cfrom, C) < D(Cfrom, Cto)/(rank(Cfrom) + 2) ≤
D(Cfrom, Cto). By minimality of Cto, it implies that C is not compatible with Cfrom. Therefore, C is an even
component and rank(C) < rank(Cfrom). Using Claim 6.6 again, we get that rank(Cfrom) < r, which proves that
rank(C) < r = nrank(C).

We claim that if any component merges into C, then it immediately merges into a higher rank component.
Indeed, because C is even, no component can merge into it in the pruning step as waiting edges are only between
odd components. Moreover, in the combining, given that C is even, for it to be compatible with C1, either its
nearby rank is at least rank(C1) + 1 or its rank is at least rank(C1) in which case its nearby rank is also at least
rank(C1) + 1. Therefore, the nearby fixup procedure gets called and C gets eventually merged into a component
of rank at least its nearby rank. This proves that as soon as a component is given a non-⊥ nearby rank, it stays
as an even component and its rank never increases.

We can now get similar invariants for special merges compared to Claim 6.6
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Claim 6.8. A special merge from Cfrom into Cto of rank r is only called with r > rank(Cfrom). Moreover,
all even components (excluding endpoints) on the shortest path from Cfrom to Cto have rank strictly less than r.

Proof. Special merges are only used at two locations in our algorithm. The first one is within the combining
step, to merge component C3 into C1. We remark that C3 ∈ H, therefore D(C1, C3) < D(C1, C2). Because
C2 is the closest compatible component to C1, it means that C3 is not compatible with C1, which implies that
rank(C3) < rank(C1) and rank(C1) is the rank used for the special merge, which proves the lemma in this case.
Moreover, all even components on the shortest path from C1 to C3 are also not compatible with C1, therefore
their ranks are also strictly less than rank(C1). The other location is in the nearby fixup procedure, where C1

is merged into C2 with rank r = max(rank(C2), nrank(C2)). We remark that we chose C2 such that its rank or
nearby rank is at least nrank(C1), i.e r ≥ nrank(C1). Using Claim 6.7, r ≥ nrank(C1) > rank(C1), which proves
the first point. Regarding even components on the path from C1 to C2, the fixup procedure did not consider
them, thus their rank must be strictly less than nrank(C1) ≤ r, this satisfies the second point.

Claim 6.9. If a regular or special merge from Cfrom into Cto of rank r is called, with D being the set of
components merged on the shortest path from Cfrom to Cto, then:

r ≥ max(rank(Cfrom), rank(Cto),max
C∈D

rank(C))

Proof. The property r > rank(Cfrom) is a direct consequence of claims 6.6 and 6.8. Moreover, Claim 6.6
proves that components in D are not compatible with Cfrom, so their rank is less than rank(Cfrom). Meanwhile,
Claim 6.8 directly proves that r > maxC∈D rank(C) for special merges. We now prove that r ≥ rank(Cto).

For regular merges, in the combining step, the rank used is either rank(Cto) or nrank(Cto) which using
Claim 6.7 is at least rank(Cto). In the pruning step, the rank used is rank(C1)+1, which is the rank of Cto = C3.
For special merges, the rank used is either rank(Cto) or max(rank(Cto), nrank(Cto)), which satisfies the property.

Claim 6.10. If a regular or special merge from Cfrom into Cto of rank r is called, then within the same
iteration, Cto will be part of a component of rank at least r.

Proof. We consider the different locations in the algorithm where these merges happen. For most of these
cases, this is done with r = rank(Cto) which implies this property. The only exception is in the combining step,
where a regular merge is done with rank nrank(Cto). However, right after, the fixup procedure keeps merging Cto

until it reaches a component of rank at least nrank(Cto), which satisfies this property.

We can now prove the well-behavior of our algorithm:

Lemma 6.11. The assumptions made in the NEARBY_FIXUP procedure always hold.

Proof. We first remark that claims 6.9 and 6.10 show that the rank of a component is only increasing: if at
some time t a component of rank r exists, then at any time t′ ≥ t, we are guaranteed that a component of rank
r′ ≥ r will exist.

We now consider the fixup procedure. We have nrank(C1) ̸= ⊥. C1 was given its nearby rank by a previous
regular merge of rank nrank(C1). Using the previous observation and Claim 6.10, it means there exists a
component C ′ of rank at least nrank(C1). Moreover, using Claim 6.7, we have rank(C1) < nrank(C1), therefore
C1 ̸= C ′. Thus, there always exists at least one other component with rank at least nrank(C1), so the assumptions
made by the fixup procedure hold.

Claim 6.12. Let C be a component of rank r. If any regular or special edge e with an endpoint in V (C) gets
added, its rank r′ will be at least r. Moreover, if r′ > r, then component C will be merged into a component of
rank at least r′ within the same algorithm iteration.

Proof. Because edges are only added inside a merge procedure, this is a direct consequence of claims 6.9
and 6.10.

Corollary 6.13. A component C of rank r only contains edges of rank at most r.

Lemma 6.14. Consider a component C at some time t, if C is odd, then there is a request in V (C) which
has always been part of an odd component until now. If C is even, then there is a request in V (C) for which the
component it was in was always odd as long as its rank was strictly less than rank(C).
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Proof. We first claim that when doing a regular or special merge, one of the two endpoints is an odd
component. Indeed, in the combining step, one of Cfrom or Cto is always C1 which is an odd component.
When doing the nearby fixup procedure, we keep merging C1 which originally was odd to a component C2 until
the nearby rank of C2 is ⊥. Because of Claim 6.7, components with a non-⊥ nearby rank are always even, so we
keep merging an odd component to an even component, which results in an odd component. In the pruning step,
we observe that any component in the waiting tree is odd, so all merges follows this property.

We now prove this lemma by induction on the time of the last merge operation. We consider a component C
at some time t right after its last merge operation. If the component never had a merge, it means it has rank 0,
and is therefore a singleton. The request it contains immediately satisfies the property. Otherwise, assume this
property is satisfied by all components until the previous merge. As stated above, one of the two components
during this merge is an odd component C ′, with rank at most rank(C). Therefore, using the property on C ′, we
can find a request v which always has been inside an odd component up to this point. Whether C is odd or even,
v satisfies the desired property for C.

Lemma 6.15. Let C be a component such that nrank(C) ̸= ⊥ at some time t. Then all edges adjacent to
V (C) added afterwards have rank at least nrank(C).

Proof. We remark that if C gets merged into a component of rank at least nrank(C), then using Claim 6.12,
all edges added after this time will have rank at least nrank(C). Therefore, we only need to consider edges added
before C gets merged into a component with such rank.

We first consider the case where C gets merged as an even component on the path between Cfrom and Cto

for a regular merge. This implies that C is not compatible with Cfrom, so nrank(C) ≤ rank(Cfrom). Because of
Claim 6.6, the edge rank is strictly more than rank(Cfrom), which satisfies our requirement. If a special merge
is done inside the combining step, then C is not compatible with Cto which using the same argument as before
implies that the edges added have rank at least nrank(C). Because C is even, it cannot be the first endpoint for
a merge in the combining step or any endpoint for a merge in the pruning step because all endpoints are odd
components. Because of Claim 6.7, we have nrank(C) > rank(C), therefore a merge can only happen with C as
Cto, and either right before the nearby fixup procedure, for which the edge rank is at least nrank(C) or inside the
nearby fixup, for which the edge rank is also at least nrank(C). This completes the proof.

6.3 Bounding edge weights For r ∈ [[0, ⌊logm⌋]], we define the following:

Fr =

r⋃
k=1

(Rk ∪ Sk)

Fr is the set of all edges with rank at most r. We note that Corollaries 6.5 and 6.13 implies that the maximum rank
an edge can have is ⌊logm⌋. So we can also define F = F⌊logm⌋ to be the set of all edges added to components.
We start with a first observation:

Lemma 6.16. F is a forest.

Proof. We note that all regular or special edges we add are part of the shortest path (according to D) between
two distinct components. As a consequence, no cycles are introduced when adding regular or special edges.

For i ∈ [[0, ⌊logm⌋]], Fi is a subset of F , so is also a forest. We consider the offline component decomposition
Di where each component C is a connected component in the forest F≤i, with V (C) being the vertices of a tree
in this forest and T (C) its edges. An example of such decomposition is given in Figure 6.1.

We claim that for any component in Di, we can find a time in the execution of the online algorithm where
this exact component existed. Moreover this time can be chosen right before it got merged into a higher-rank
component or at the end of the execution of the algorithm:

Lemma 6.17. Let i ∈ [[0, ⌊logm⌋]] and C ∈ Di, then there is a time t ≥ 0 during the execution of the
algorithm where this exact component, with the same vertices and spanning tree, and rank at most i, existed
during the execution of the algorithm. Moreover, we can choose this time t to be either at the end of the execution
of the online algorithm if the component is never used again, right before this component merges into a higher-rank
component or right before its rank increases.

Proof. This is a direct consequence of Claim 6.12 and Corollary 6.13.
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Figure 6.1: Component decompositions for a given set of requests and edges. Green edges have rank 1 while
orange edges have rank 2.

We can now give an upper bound on the weight of regular edges:

Lemma 6.18. Let i ∈ [[1, ⌊logm⌋]], then:

w(Ri) ≤ 2(i+ 1) ·OPT

Proof. An edge is part of Ri if it was added by a regular merge from some component Cfrom to Cto with
rank i. Let A be the set of all components which were used as Cfrom for a regular merge of rank i. We remark,
using Claim 6.6, that all components in A are odd and have rank strictly less than i. Moreover, after this merge,
they are part of a component of rank at least i, therefore all components in A are disjoint (by which we mean the
set of vertices of each component are disjoint). Furthermore, using Lemma 6.17, every component in A exactly
matches one component in Di−1, i.e A ⊆ Di−1.

For every component C ∈ A, we note rC the compressed distance from C to the closest odd component in
Di−1. Moreover, we note lC the total weight of the edges of rank i added from the regular merge with source C
and rank i. We note because of Claim 6.6 that lC is the compressed distance from C to the closest compatible
component at the time of merging. We have:

w(Ri) =
∑
C∈A

lC

Moreover, using Lemma 2.3, we get: ∑
C∈A

rC ≤ 2OPT

Let C ∈ A, we want to prove that lC ≤ (i + 1) · rC which will conclude the proof. Let H be the set of
components whose compressed distance was strictly less than lC/(i + 1) at the time of merging. Because their
compressed distance is strictly less than lC , it implies they were not compatible with C and therefore are even
and of rank strictly less than rank(C). Moreover, during the regular merge, their nearby rank is set to be at least
i. Finally, by design of the algorithm, we note that the maximum arrival time of any request in H is at most
tmax(C) + lC .

We want to prove that all components within compressed distance lC/(i+1) of C in Di−1 are even, this would
imply that rC , the shortest distance from C to another odd component in Di−1 is at least lC/(i+1) away from C.
Because the algorithm assigns all components in H a nearby rank of at least i, Lemma 6.15 and Corollary 6.13
implies that components in H have exactly matching components in Di−1, which are therefore also even. We
consider the shortest path between C and its closest odd component in Di−1, which has weight rC . Let us consider
the first edge along this path between a component in {C} ∪H and a component outside of {C} ∪H. P starts
from C and ends with an odd component different from C. Given that H contains only even components, P ends
in a component not in {C}∪H, so such an edge e always exists. Let e = (u, v), with u being a request in {C}∪H
and v being a request outside of it. We have two cases:
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• Request v has already arrived when C merged. Let C ′ be the component v belonged to when C merged.
Because v is not a request in H, this means that C ′ /∈ H and by definition of H, at the time of merge,
D(C,C ′) ≥ lC/(i + 1). However, we observe that the prefix of P until v is a path from C to a request in
C ′ which only goes through components in H, which existed at the time of merge and were even. So by
definition, this prefix of P must have weight at least lC/(i+ 1), so w(P ) ≥ lC/(i+ 1).

• Request v arrived after C merged. Let tmerge be the time when C merged. By design of the algorithm, we
know that tmerge ≥ tmax(C) + 2lC . Moreover, using Claim 6.6, rank(C) < i, so all components C ′ ∈ H
verify D(C,C ′) < lC/(rank(C) + 2). As a consequence, the algorithm ensured in the combining step that
all components C ′ ∈ H satisfy tmax(C

′) ≤ tmax(C) + lC . Therefore:

w(e) = d(u, v)

≥ |t(v)− t(u)|
= t(v)− t(u)

≥ tmerge −max(tmax(C), max
C′∈H

tmax(C
′))

≥ tmax(C) + 2lC − (tmax(C) + lC)

≥ lC

Therefore, w(P ) ≥ w(e) ≥ lC ≥ lC/(i+ 1)

In both cases, rC = w(P ) ≥ lC/(i+ 1), therefore lC ≤ (i+ 1) · rC and:

w(Ri) =
∑
C∈A

lC

≤
∑
C∈A

(i+ 1) · rC

= (i+ 1) ·
∑
C∈A

rC

≤ (i+ 1) · 2OPT

We now need to bound the weight of the special edges. As mentioned previously, we designed the algorithm
in a way that special edges have a small cost compared to the existing size of the components. To prove this, we
need re-partition the set of special edges (Si)i∈[[0,⌊logm⌋]] into a new partition (S′

i)i∈[[0,⌊logm⌋]]. Let e be a special
edge, it was added by the special merge procedure. We remark that this procedure is only called at two different
locations by our algorithm. The first one being in the combining step, when merging a components C3 ∈ H into
C1 with edge rank rank(C1). In this case, we add this edge to S′

rank(C1)
, we remark that this edge is also part

of Srank(C1). The second case is during the nearby fixup procedure, merging some component C1 into C2, where
the rank or nearby rank of C2 is at least nrank(C1). In this case we add the edge to S′

nrank(C1)
and we remark

that by design of the algorithm nrank(C1) ≤ max(rank(C2), nrank(C2)) which is the edge rank. We notice that
in both cases, an edge originally in some Si with i ≥ 0 is placed in a set S′

k with k ≤ i.
For i ∈ [[0, ⌊logm⌋]], we now define:

F ′
i =

i⋃
k=1

(Rk ∪ S′
k)

Because of the previous point, we have F ′
⌊logm⌋ = F⌊logm⌋ = F . Moreover, for all i ∈ [[0, ⌊logm⌋]],Fi ⊆ F ′

i .

Lemma 6.19. Let i ∈ [[1, ⌊logm⌋]], then:

w(S′
i) ≤

(
w(F ′

i−1) + w(Ri)
)
/i

Proof. Let i ∈ [[1, ⌊logm⌋]], let A = F ′
i−1 ∪ Ri ⊆ F . We consider a special merge from Cfrom to Cto which

contributes a path P , being a shortest path from Cfrom to Cto, to S′
i. Let D be the set of even components
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merged along P (excluding endpoints). We want to prove two properties: (i) the edges of T (Cfrom) and the
spanning trees of components in D are in A and (ii) w(P ) ≤ (w(Cfrom)+w(D))/i. We cover the two cases where
a special merge can happen.

The first case is during the combining step. Using the algorithm notation, let C1 = Cto be the first
component considered and lC1 be the compressed distance to its nearest compatible component at the time
of the special merge. We have rank(C1) = i, and Cfrom = C3 satisfies D(C1, C3) < lC1/(rank(C1) + 2) and
tmax(C3) ≥ tmax(C1) + lC1

. Because D and C3 are not compatible with C1, this means that their rank is strictly
less than rank(C1) = i, which is the rank used for the special merge. Using Corollary 6.13, this implies that C3

and D are made from edges in Fi−1, so in A because Fi−1 ⊆ F ′
i−1.

We have tmax(C3) ≥ tmax(C1) + lC1 , so there exists a request v ∈ V (C3) such that t(v) ≥ tmax(C1) + lC1 .
We have w(P ) = D(C1, C3) < lC1/(rank(C1) + 2). Given P , a simple path on the components, we now describe
how to get P ′, a simple path on the requests. To do so, we consider the fact that each edge in P starts and ends
at a specific request within its incident component. To link these together, consider two consecutive edges in P :
the request where the first edge ends and the request where the second edge begins belong to a same component
C. We can therefore connect these two requests using the simple path between them in the spanning tree T (C).
We end up with a path P ′ from some u ∈ C1 to v made of two disjoint sets of edges: the first E1 consists of the
edges between requests in different components. We note that w(E1) = w(P ). The second E2 consists of edges
between requests in the same component. By construction, these edges belong to T (C3) or to the spanning tree
of components in D. Moreover, each edge in the spanning tree of a component is only used at most once: P is
a shortest path and does not pass through a component twice. Therefore w(E2) ≤ w(C3) + w(D). Because d
satisfies the triangle inequality and P ′ is a path from u to v, we get:

w(P ′) ≥ d(u, v)

≥ |t(v)− t(u)|
≥ t(v)− t(u)

≥ tmax(C1) + lC1 − tmax(C1)

≥ lC1

≥ w(P ) · (rank(C1) + 2)

= w(P ) · (i+ 2)

We also have:

w(P ′) = w(E1) + w(E2)

≤ w(P ) + (w(C3) + w(D))

From these two inequalities, we get the desired property w(P ) ≤ (w(C3) +w(D))/(i+ 1) ≤ (w(C3) +w(D))/i =
(w(Cfrom) + w(D))/i.

The second case is in the nearby fixup procedure, using the algorithm notation, when merging a component
C1 = Cfrom to its closest component C2 = Cto having a rank of at least nrank(C1), or nearby rank of at least
nrank(C1) + 1. We remark that i = nrank(C1) and that this special merge can happen in the middle of an
iteration, meaning some invariants may not hold. Because components in D are closer to C1 than C2, it implies
that their rank is strictly less than nrank(C1) = i. Given that components in D were not touched by the algorithm
in the current iteration so far, we can use Corollary 6.13, which implies that they are made from edges in Fi−1,
so in A because Fi−1 ⊆ F ′

i−1. We now consider C1. The fixup procedure might have already performed some
special merge before this one. However, we remark that the nearby rank of C1 increases by at least 1 during
each fixup iteration. Therefore, each special merge in previous iterations of the fixup procedure contributed to
S′
k for some k < i, which is in A. Moreover, the regular merge right before the call to the fixup procedure had

rank at most nrank(C1) = i, so the edges added were part of Rk for some k ≤ i, which is also in A. Finally, for
the remaining edges, which were already present before the beginning of the algorithm iteration, we can use our
invariants from Claim 6.7 and Corollary 6.13: given that rank(C1) < nrank(C1) = i, all remaining edges are part
of Fi−1.

We consider the time t′ at which C1 got assigned i as its nearby rank. At time t′, C1 was possibly smaller
and as such, we call C ′

1 the component C1 as it was at time t′, we have C ′
1 ⊆ C1. Getting a non-⊥ nearby rank
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can only happen during a regular merge of some component C ′
from into a component C ′

to at rank i. Let l be the
distance from C ′

from to C ′
to at this time, l = Dt′(C

′
from, C ′

to). Because C ′
1 was given a nearby rank, it means that

Dt′(C
′
from, C ′

1) < l/(i+ 1).
We want to prove that while C ′

1 has not been merged, there is always a component of rank at least nrank(C1)
with distance at most l/(i+1) from C ′

1. This, in particular, implies that D(C1, C2) ≤ l/(i+1). Using Claim 6.6,
we consider the shortest path P from C ′

1 to C ′
from at time t′. We remark that it only passes through components

with distance less than l/(i + 1) from C ′
from, hence all of these components’ nearby rank was set to at least i.

We observe using Lemma 6.15 that after t′, these components along the path are either the same or merged into
a component of rank at least i. Moreover, after t′, C ′

from has itself merged into a component of rank at least
nrank(C1). Therefore, going along P after t′, we always find a component of rank at least i after some even
components. By definition of C2, we get that D(C1, C2) ≤ w(P ) < l/(i+ 1).

We now want to give a lower bound on w(C1). To be more precise, we want to prove that w(C1) ≥
l · (1 − 1/(i + 1)). We remark that in the nearby fixup procedure, C1 is odd. Hence, using Lemma 6.14,
there exists a request v ∈ V (C1) which was always part of an odd component until t. We consider the state of
this request at time t′:

• Request v already arrived by t′ (t(v) < t′). But then, the component v was in at time t′ was an
odd component Cv and as a consequence was compatible with C ′

from. C ′
to being the closest compatible

component at this time, this means that Dt′(C
′
from, Cv) ≥ Dt′(C

′
from, Cto) = l. Because C ′

1 was an even
component at time t′, we get that:

Dt′(C
′
1, Cv) ≥ Dt′(C

′
from, Cv)−Dt′(C

′
from, C ′

1)

≥ l − l/(i+ 1) = l · (1− 1/(i+ 1))

Let u ∈ C ′
1, using Lemma 2.4, we have therefore d(u, v) ≥ D(C ′

1, Cv) ≥ l · (1− 1/(i+ 1)). We remark that
we chose v such that it was in V (C1). As a consequence, both u and v are in V (C1). Because d satisfies the
triangle inequality, the spanning tree T (C1) on V (C1) satisfies w(T (C1)) ≥ d(u, v) ≥ l · (1− 1/(i+ 1)).

• Request v arrived after t′ (t(v) ≥ t′). We note that by design of the algorithm, t′ ≥ tmax(C
′
from) +

2Dt′(C
′
from, Cto) = tmax(C

′
from) + 2l. Moreover, using Claim 6.6, rank(C ′

from) < i, so C ′
1 satisfies

Dt′(C
′
from, C ′

1) < l/(i+1) ≤ l/(rank(C ′
from)+2). As a consequence, the algorithm ensured in the combining

step that tmax(C
′
1) ≤ tmax(C

′
from) + l. Let u ∈ C ′

1, we therefore have:

d(u, v) ≥ |t(v)− t(u)|
≥ t(v)− t(u)

≥ tmax(C
′
from) + 2l − (tmax(C

′
from) + l)

= l

We remark that both u and v are requests in C1 and use the same argument as before: because d satisfies
the triangle inequality, the spanning tree T (C1) verifies:

w(C1) ≥ d(u, v) ≥ l > l · (1− 1/(i+ 1))

From the previous points, we get that:

W (P ) = D(C1, C2)

≤ 1/(i+ 1) · l
≤ 1/(i+ 1) · (1− 1/(i+ 1))−1 · w(C1)

= w(C1)/i

≤ (w(Cfrom) + w(D))/i

We showed that (i) the edges of T (Cfrom) and the spanning trees of components in D are in A and (ii)
w(P ) ≤ (w(Cfrom)+w(D))/i. We remark that the resulting component has at least an edge in S′

i and therefore,
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because of (i), cannot be used again as Cfrom or in D for a new special merge contributing to S′
i. Hence, each edge

in A is used at most once as Cfrom or D for a merge contributing to S′
i. Moreover, using (i), these components

are made only using edges from A. Thus, using (ii), summing over all merges which contribute to S′
i, we get

w(S′
i) ≤ w(A)/i =

(
w(F ′

i−1) + w(Ri)
)
/i.

Theorem 6.20.

w(F) ≤ OPT · (2 + o(1)) log2 m

Proof. We consider Hk =
∑k

i=1 1/k the harmonic series. We prove by induction for i ∈ [[0, ⌊logm⌋]] that:

w(F ′
i) ≤ 2 · (i+ 1) · (i+Hi) ·OPT

Initialization: For i = 0, F ′
0 contains no edge, so w(F ′

0) = 0. We remark that the right term is also 0, so the
property holds.

Induction: Let i ∈ [[1, ⌊logm⌋]], we assume that the property is true for w(F ′
i−1). We remark that

F ′
i = Ri∪S′

i∪F ′
i−1. Using Lemmas 6.18 and 6.19, we get that w(Ri) ≤ 2i·OPT and w(S′

i) ≤
(
w(Ri) + w(F ′

i−1)
)
/i.

Therefore, using the induction hypothesis:

w(F ′
i) ≤ w(Ri) + w(S′

i) + w(F ′
i−1)

≤ (1 + 1/i) · w(Ri) + (1 + 1/i) · w(F ′
i−1)

≤ 2 · (1 + 1/i) · (i+ 1) ·OPT + 2 · (1 + 1/i) · i · (i− 1 +Hi−1) ·OPT

= 2 · (i+ 1) · (1 + 1/i) ·OPT + 2 · (i+ 1) · (i− 1 +Hi−1) ·OPT

= 2 · (i+ 1) · (1 + 1/i+ i− 1 +Hi−1) ·OPT

= 2 · (i+ 1) · (i+Hi) ·OPT

Conclusion: We have:

w(F) = w(F ′
⌊logm⌋) ≤ 2 · (⌊logm⌋+ 1) · (⌊logm⌋+H⌊logm⌋) ·OPT

Using the property of the harmonic series Hk = Θ(log k) = o(k), we get w(F) ≤ OPT · (2 + o(1)) log2 m.

6.4 Bounding the algorithm’s cost In the previous part, we were able to bound the weight of the forest
created by our algorithm. Using this bound, we will show how to establish an upper bound on the time cost
before requests join the greedy procedure, then on the time cost and connection cost inside the greedy part.

Let u be a request. We consider ta(u) = t(u) its time of arrival, tj(u) the time the request joined a greedy
instance and tm(u) the time it got matched with another request. We remark that the total time cost for
this request is |tm(u) − ta(u)|. Let δc(u) = |tj(u) − ta(u)| the time spent waiting before joining a greedy
instance and δg(u) = |tm(u) − tj(u)| the time spent waiting after joining a greedy instance. Finally, we denote
∆c =

∑
u∈Vreq

δc(u) and ∆g =
∑

u∈Vreq
δg(u). We remark that the total time cost of the algorithm is ∆c +∆g.

We will first focus on ∆c, the total time spent by requests before joining a greedy instance.
During the execution of the algorithm, for a given time t, we denote by Codd(t) the set of odd components

present at time t. We give the following result:

Lemma 6.21.

∆c =

∫
t≥0

|Codd(t)|dt

Proof. As soon as a component has two or more requests not in a greedy instance, it makes them join its own
greedy instance two at a time. From this, we conclude that at any given time, even components have no requests
not inside a greedy instance while odd components have exactly one. The lemma follows from this observation.

We can now explain the purpose of our wait tree pruning procedure. We recall that when considering an odd
component C1 in the merging procedure, if its closest compatible component C2 is an odd component of strictly
lower rank and t ≥ tmax(C1) + 2D(C1, C2), then the algorithm does nothing and we add a waiting edge from C1

to C2. We say that C1 is a waiting component, let Cw(t) be the set of waiting components at a given point in
time. Odd components which are not waiting are called active components. We denote Ca(t) the set of active
components. We note that at any time t, Codd(t) = Cw(t) ∪ Ca(t).
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Lemma 6.22. At any time t ≥ 0, |Cw(t)| ≤ logm · |Ca(t)|

Proof. At any time t, in the algorithm we consider W(t) the oriented graph whose vertices are the odd
components Codd(t) and edges are the waiting edges. We call W(t) the waiting forest. Because a waiting edge
goes from one component to another with strictly lower rank, it cannot have cycles. Moreover, each odd component
waits on at most a single component, so has out-degree at most 1 in W(t). From these observations, we conclude
that W(t) is indeed a forest. Moreover, each oriented tree T in W(t) has its edges oriented towards the root,
which has out-degree 0.

We also remark that a component is active if and only if its out-degree in W(t) is 0. Therefore, all trees in
W(t) consist of a single active component being its root, and some waiting components.

We claim that each tree in W(t) has size at most ⌊logm⌋ + 1. The reason is that, using Corollary 6.5, the
maximum component rank is ⌊logm⌋. So if a tree has a greater size, using the pigeonhole principle, we could find
two components in this tree with the same rank, but the tree pruning procedure would immediately merge them
together. Thus, we have:

• A graph where each active and waiting components appear as vertices.

• Each connected component of this graph contains exactly one active component.

• Each connected component of this graph has size at most ⌊logm⌋+ 1

Using these properties together, we get that |Cw(t)| ≤ ⌊logm⌋ · |Ca(t)| ≤ logm · |Ca(t)|

Using the lemma above, we can now focus on active components only. Indeed, any result on active components
would apply to all odd components with an additional logarithmic factor.

Lemma 6.23. ∫
t≥0

|Ca(t)|dt ≤ 8 · logm · w(F)

Proof. We now want to bound the time an odd component stays active. Let r ∈ [[0, ⌊logm⌋]], we consider a
component C(t) of rank r evolving from the time tre(C, r) where it reached rank r to the time tle(C, r) where
either: it merges into a bigger component, its rank increased, or the time the algorithm ends if this component is
even and never gets used again. Using Lemma 6.17, we can find C ′ ∈ Dr such that C(tle(C, r)) = C ′.

We will divide the time C(t) stays active in two and give an upper bound for each of these intervals. We
say that C(t) stabilizes at rank r if no more odd component merges into C(t) while its rank is r. We denote by
tst(C, r) the stabilization time of C(t) at rank r. We have tre(C, r) ≤ tst(C, r) ≤ tle(C, r). We will give an upper
bound on the amount of time a component can stay active before its stabilization time and after it at a given
rank.

Assume r ≥ 1, C ′ is a component in Dr where components are defined as connected components in the forest
Fr. Because Fr−1 ⊆ Fr, we can find a set of components B ⊆ Dr−1 such that V (C ′) = ∪C”∈BV (C”), i.e C ′

is made from components of B merging together. Using Lemma 6.17, we can show that every component C” in
B existed at some time t′, different for each component, right before it merged into C(t′). Let C1, ..., Ck be the
odd components of B. Using Lemma 6.14, we can find some requests v1 ∈ C1, ..., vk ∈ Ck such that each of those
requests was in an odd component until it got merged into C. We will show that C can remain active at most
3w(C ′) units of time between tre(C, r) and tst(C, r).

Let t1 = tre(C, r) and t2 = tst(C, r). We consider u = repr(C(t1)) which by design stays the same at any
time and is already part of C(t1). We consider:

l = max
i∈[[1,k]]

d(u, vi)

We claim that after t1 + w(C ′) + 2l and before t2, C(t) cannot be active. To do so, consider some time t such
that t > t1 + w(C ′) + 2l and t < t2, let us show that C(t) is even or waiting. If C(t) is even, we are done, so let
us assume that C(t) is odd. Let l′ be the distance from C(t) to its closest compatible component, we claim that
l′ ≤ l. The reason is that because t < t2, the component did not stabilize yet, so there must exist some Ci such
that Ci did not merge into C(t) yet. Therefore, by definition, at time t, vi is in an odd component C̃ distinct from
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C(t). Because this component is odd, it is compatible with C(t) and using Lemma 2.4, Dt(C(t), C̃) ≤ d(u, vi) ≤ l,
so by minimality l′ ≤ l. Moreover, there must exist some u′ ∈ V (C(t)) such that tmax(C(t)) = t(u′). Because u
and u′ are both in C ′ and d satisfies the triangle inequality, we have:

tmax(C(t))− t(u) = t(u′)− t(u)

≤ d(u′, u)

≤ w(C ′)

Because u = repr(C(t1)), we have t(u) ≤ t1, so w(C ′) ≥ tmax(C(t))− t1. Combining these inequalities, we get:

t > t1 + w(C ′) + 2l

≥ t1 + tmax(C(t))− t1 + 2l′

≥ tmax(C(t)) + 2l′

Because t is after tmax(C(t))+2l′, where l′ is the distance from C(t) to its closest compatible component, and no
merge happened yet, it means that C(t) is waiting. Moreover, we note that l is the distance between u and some
vi and both u and vi are in V (C ′). Because d satisfies the triangle inequality and T (C ′) is a spanning tree over
V (C ′), we get that l ≤ w(C ′). Therefore, between t1 and t2, C(t) can only be active until time min(t2, t1+3w(C ′))
and thus can remain active at most 3w(C ′) units of time. We remark that components with r = 0 are singletons
and therefore, t2 = t1 hence this property holds immediately in this case.

We now consider the time C spends active between tst(C, r) and tle(C, r). Let t1 = tst(C, r) and t2 = tle(C, r).
By our choice of t1, being the stabilization time, only even component will merge with C in this time frame, so
C will keep the same parity, and in particular the same one as C(t2) = C ′. If C ′ is even, C will remain even, so
not active between t1 and t2. We now assume that C ′ is odd.

Because all final components are even, it follows that at time t2, C(t2) will merge into a bigger component or
its rank will increase, so we can focus on this case only. However, it turns out that bounding the time between t1
and t2 for a single component cannot be done efficiently. Instead, we will do so by considering a component and
bounding together the time spent active after stabilization of all lower rank components which merge into it.

We thus consider a new r > 0 and C ∈ Dr. As explained above, we will take a new approach and instead
bound the active time after stabilization of all odd components which merge into C. Because Fi−1 ⊆ Fi, we
can consider the sub-components of C in Dr−1. Let C ′

1, ..., C
′
k be the set of all odd such sub-components. Using

Lemma 6.14, for each C ′
i, we can find a request vi such that vi was always part of an odd component until it

merged into C. We observe at any time before merging into C, the component containing vi was odd and thus
compatible with any other component.

We note that v1, .., vk are requests in the spanning tree T (C), we consider an Euler tour ET from T (C) where
we only keep the vertices in {v1, ..., vk}. Because we are in a metric space, w(ET ) ≤ 2w(T (C)) = 2w(C). We
orient the tour ET in an arbitrary way and for each vi, we consider li to be the distance from vi to its right
neighbor along ET . By construction,

∑k
i=1 li = w(ET ) ≤ 2w(C).

We now consider an odd component C ′
i among these sub-components. Let Ci(t) be the component representing

it during the algorithm execution. Let t1 = tst(Ci, rank(C ′
i)) and t2 = tle(Ci, rank(C ′

i)). We want to give an upper
bound on the time Ci(t) stays active after stabilization and until it merges into C. Because no odd component joins
Ci after t1 and vi is always part of an odd component until it joins Ci, we conclude that vi joined C ′

i before t1, and
t(vi) ≤ t1. With the same argument as before, we get that for all t ≥ t1, tmax(Ci(t)) ≤ t(vi)+w(C ′

i) ≤ t1+w(C ′
i).

We claim that between t1 + w(C ′
i) + 2li and t2, component Ci(t) will always be waiting. We consider some time

t such that t > t1 + w(C ′
i) + 2li and t < t2. Because t is after the stabilization time t1, the parity of C ′

i does not
change so Ci(t) is odd. We note that by definition, li is the distance between vi ∈ Ci(t) and some vj in another
component which is compatible with Ci(t). Therefore, using Lemma 2.4, the compressed distance between Ci(t)
and its closest compatible component l′ is at most li. We remark that t > t1 + w(C ′

i) + 2li ≥ tmax(Ci(t)) + 2l′,
therefore if the component was not waiting, it would have already merged into its closest component, so it is
waiting. Thus after t1, component Ci(t) is active at most w(C ′

i) + 2li units of time.
We now compute the total active time after stabilization of odd components in B. Using the previous part,
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it is at most:
k∑

i=1

(w(C ′
i) + 2li)

We remark that
∑k

i=1 li ≤ 2w(C) and all T (C ′
i) are disjoint and a subset of T (C), so

∑k
i=1 w(C

′
i) ≤ w(C).

Therefore, the total active time for components which merge into C after stabilization is at most 5w(C).
We can finally compute the total active time for all components, which is the sum of the active time before

stabilization and after stabilization for each component at each rank. We also note that w(C) = 0 for a component
of rank 0, as they are singletons:∫

t≥0

|Ca(t)|dt ≤
⌊logm⌋∑
r=0

∑
C∈Dr

3w(C) +

⌊logm⌋∑
r=1

∑
C∈Dr

5w(C)

= 8

⌊logm⌋∑
r=1

∑
C∈Dr

w(C)

= 8

⌊logm⌋∑
r=1

w(Fr)

≤ 8

⌊logm⌋∑
r=1

w(F)

≤ 8 · logm · w(F)

Theorem 6.24.

∆c ≤ (16 + o(1)) log4 m ·OPT

Proof. We use the fact that at any time, Codd(t) = Cw(t) ∪ Ca(t). Therefore, |Codd(t)| ≤ |Cw(t)| + |Ca(t)|.
We have:

∆c =

∫
t≥0

|Codd(t)|dt from Lemma 6.21

≤
∫
t≥0

|Codd(t)|dt

≤
∫
t≥0

(|Cw(t)|+ |Ca(t)|)dt

≤
∫
t≥0

(logm|Ca(t)|+ |Ca(t)|)dt from Lemma 6.22

≤ (1 + o(1)) logm

∫
t≥0

|Ca(t)|dt

≤ (1 + o(1)) logm · 8 · logm · w(F) from Lemma 6.23

≤ (8 + o(1)) log2 m · w(F)

≤ (16 + o(1)) log4 m ·OPT from Theorem 6.20

We can finally tackle the last part of the algorithm which is the greedy approximation. To do so, we need
to approximate the size of a tour over all requests in each greedy invocation to be able to use Lemma 4.1. We
denote by Mg the connection cost of the algorithm. We observe that the total cost of the algorithm is therefore
∆c +∆g +Mg. We also note that all matchings are done within greedy instances.

Theorem 6.25.

∆g +Mg ≤ (80 + o(1)) log5 m ·OPT
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Proof. We define D =
⋃⌊logm⌋

r=0 Dr the multiset of all possible components in our component decompositions.
We consider the greedy invocation associated with a request u ∈ Vreq, we remark that as long as the component
containing u does not merge into another component, its greedy invocation can receive requests from within the
component. Let C be the component with representative u right before it got merged into another component or
at the end of the algorithm if this never happens. Using Lemma 6.17, we note that C corresponds to a component
in Dr for some r ≥ 0. Moreover, a component having a single representative, this component in Dr cannot
correspond to another component with a different representative. Therefore, for each request u ∈ Vreq, we can
find a distinct component C in D such that the greedy instance on u only matches requests in V (C). For a
component C ∈ D, we denote by req(C) the set of requests that are processed by the greedy instance associated
with C. If no request got attached to the greedy instance on C, then req(C) = ∅. We remark that for all C ∈ D,
req(C) ⊆ V (C).

We consider a component C ∈ D and want to bound the cost of the greedy associated with this component.
We note that, by design of the algorithm, requests join the greedy algorithm with a different arrival time compared
to their original arrival time. In particular, the arrival time of a request in the greedy invocation is tj(u) instead
of ta(u). T (C) being a spanning tree over V (C), we can consider an Euler tour EC from the spanning tree T (C)
where we then remove requests which are not in req(C). Therefore, EC is a tour on req(C). Because we are in a
metric space, w(EC) ≤ 2w(C). We now consider w′ and d′ to be the modified edge weight and distance taking
into account the time of joining the greedy algorithm tj(u) instead of the time of arrival ta(u) for a request u. We
observe that by design of our algorithm, each greedy instance uses d′ instead of d for the distance. For an edge
e = (u, v), we have:

w′(e) = d′(u, v)

= d((x(u), tj(u)), (x(v), tj(v)))

≤ d((x(u), tj(u)), (x(u), ta(u))) + d((x(u), ta(u)), (x(v), ta(v))) + d((x(v), ta(v)), (x(v), tj(v)))

= tj(u)− ta(u) + d(u, v) + tj(v)− ta(v)

= δc(u) + δc(v) + d(u, v)

We note that EC is a tour of req(C), so each request in req(C) appears as the endpoint of exactly two edges in
EC , therefore:

w′(EC) ≤ w(EC) + 2
∑

v∈req(C)

δc(v) ≤ 2w(C) + 2
∑

v∈req(C)

δc(v)

Moreover, EC is a valid traveling salesman tour for req(C), therefore the optimal traveling salesman tour for
requests handled by the greedy invocation on C has weight at most 2w(C)+2

∑
v∈req(C) δc(v). We denote by MC

and WC the communication cost and matching cost of the greedy instance in C respectively, we can now apply
Lemma 4.1:

WC +MC ≤ 5

2
(⌈log |req(C)|⌉+ 1)

2w(C) + 2
∑

v∈req(C)

δc(v)


≤ 5(⌈logm⌉+ 1)

w(C) +
∑

v∈req(C)

δc(v)


We note that each request appears only in the greedy instance of exactly a single component, therefore∑

C∈D

∑
v∈req(C)

δc(v) =
∑

v∈Vreq

δc(v). We can now bound the total wait time and communication cost, given that each

request is matched in a single greedy instance:
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∆g +Mg =
∑
C∈D

(WC +MC)

≤
∑
C∈D

5(⌈logm⌉+ 1)

w(C) +
∑

v∈req(C)

δc(v)


= (5 + o(1)) logm

∑
C∈D

w(C) +
∑
C∈D

∑
v∈req(C)

δc(v)


= (5 + o(1)) logm

⌊logm⌋∑
r=1

∑
C∈Dr

w(C) +
∑

v∈Vreq

δc(v)


= (5 + o(1)) logm

⌊logm⌋∑
r=1

w(Fr) + ∆c


≤ (5 + o(1)) logm

⌊logm⌋∑
r=1

w(F) + ∆c


≤ (5 + o(1)) logm · (logm · w(F) + ∆c)

≤ (5 + o(1)) logm · ((2 + o(1)) log3 m ·OPT

+ (16 + o(1)) log4 m ·OPT ) Using Theorems 6.20 and 6.24

= (80 + o(1)) log5 m ·OPT

Theorem 6.26. ONLINE_MATCHING has competitiveness (80 + o(1)) log5 m.

Proof. The total cost of the algorithm is:

∆c +∆g +Mg ≤ (16 + o(1)) log4 m ·OPT + (80 + o(1)) log5 m ·OPT Using Theorems 6.24 and 6.25

= (80 + o(1)) log5 m ·OPT

Because OPT is the optimal cost an algorithm knowing in advance the arrival of every request achieves,
ONLINE_MATCHING has indeed competitiveness (80 + o(1)) log5 m.

7 Conclusion In this paper, we describe the first algorithm with polylogarithmic competitiveness for the
general online min-cost perfect matching with delays problem, with the only assumption being that the requests lie
in a metric space. This algorithm is an exponential improvement over previous results and is only a polylogarithmic
factor away from the lower bound Ω(logm/ log logm).

Several open problems remain. The primary open problem is to tighten the gap with the lower bound, either
by developing better algorithms or improving the lower bound itself. We observe that the lower bound holds even
for randomized algorithms, while ours is deterministic. As such, one can wonder if randomized algorithms can
offer an improvement for this problem. We also remark that our algorithm is somewhat complex. We believe
that a similar approach could quite likely yield a simpler algorithm and possibly remove one or two logarithmic
factors from the competitive ratio.

Finally, it is natural to ask whether this algorithm can be adapted for the online min-cost bipartite perfect
matching with delays problem. Although previous works typically provided variants for both the general and
bipartite settings, several key parts of our approach, specifically the greedy algorithm and the component
decomposition, do not naturally extend to the bipartite case.

A Missing proofs We provide here all the proofs omitted in the main body of the paper.

Lemma A.1. Consider an input I = (ri)i∈[[1;m]], let OPT be the cost of the optimal solution for MPMD on I
in M and OPT ′ be the cost of the optimal solution for the offline min-cost perfect matching on I in M′. Then
OPT = OPT ′.
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Proof. We consider a solution (pi, qi, ti)i∈[[1;m/2]] to the MPMD problem, for i ≤ m/2, we observe that
ti ≥ max(t(pi), t(qi)), as a consequence:

|ti − t(pi)|+ |ti − t(qi)| ≥ |max(t(pi), t(qi))− t(pi)|+ |max(t(pi), t(qi))− t(qi)|
= |t(pi)− t(qi)|

Therefore:

g(x(pi), x(qi)) + |ti − t(pi)|+ |ti − t(qi)| ≥ g(x(pi), x(qi)) + |t(pi)− t(qi)| = d(pi, qi)

As a consequence:

m/2∑
i=1

g(x(pi), x(qi)) + |ti − t(pi)|+ |ti − t(qi)| ≥
m/2∑
i=1

d(pi, qi)

Conversely, if we consider a solution (pi, qi)i∈[[1;m/2]] to the offline problem, we define ∀i ≤ m/2, ti =
max(t(pi), t(qi)). We observe that with this definition, |ti − t(pi)|+ |ti − t(qi)| = |t(pi)− t(qi)|, thus:

m/2∑
i=1

d(pi, qi) =

m/2∑
i=1

g(x(pi), x(qi)) + |ti − t(pi)|+ |ti − t(qi)|

From the first result, any online solution of cost C yields an offline solution of cost at most C. From the second
result, any offline solution of cost C ′ yields an online solution of cost C ′. Using these two properties together, we
conclude that OPT = OPT ′.

Lemma A.2. Let C be a component decomposition over V . Let Codd ⊆ C be the set of odd components in C .
Let WOPT be the weight of the optimal min-cost perfect matching over V . Moreover, for all C ∈ Codd, we define:

rC = min
C′∈Codd\{C}

D(C,C ′)

Then: ∑
C∈Codd

rC ≤ 2WOPT

Proof. Let MOPT be the min-cost perfect matching of weight WOPT . Let E ⊆ MOPT be the subset of
these edges such that the two endpoints of any edge are in different components. By identifying a vertex to the
component containing it, we can define G′ = (C , E) as an undirected graph on components. We note that this
graph is not simple (there may be multiple edges between two components), but it has no self-loops. We consider a
component C ∈ C , let k be the number of internal edges (edges with both endpoints in V (C)) in MOPT . Because
every vertex is the endpoint of exactly one edge of MOPT , we get that degG′(C) = |V (C)| − 2k. In particular,
the parity of degG′(C) is the same as the parity of |V (C)|. Therefore, a component in G′ has odd degree if and
only if it is an odd component.

Let kodd be the number of odd components in C , which is also the number of vertices with odd degree in
G′. Using the handshaking lemma, kodd is even. We claim that we can find a set of kodd/2 edge-disjoint paths
(Pi)i∈[[1,kodd/2]] such that each path is between two distinct odd vertices in G′ and every odd vertex in G′ appears
exactly once as the endpoint of one of those path.

To do so, we first prove that we can always find a path between two distinct vertices with odd degree in G′.
If we consider v1 a vertex with odd degree, it must have degree at least 1 so we can find an edge e1 = (v1, v2).
If v2 has odd degree, then e1 satisfies the property we look for as a path. Otherwise, we remove e1 from G′, the
degree of v1 then becomes even while the degree of v2 becomes odd. We can repeat this operation now starting
with v2 until we end up on a vertex with odd degree, this gives us the path we are looking for.

When we have such a path, we remove it from G′: the degree of its two endpoints becomes even and the
degree of other vertices does not change. We can repeat this process kodd/2 times and will be left with only
vertices with even degree. From this, we get the set of edge-disjoint paths (Pi)i∈[[1,kodd/2]] described above.
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We consider one such path P = C1 → C2 → . . . → Cl, let w(P ) be the sum of the edges along such a path.
According to our assumptions, C1 and Cl are distinct components. Let s1 < l be the last index C1 appears
along path P and let s2 ∈]]s1, l]] be the index after s1 where an odd component distinct from C1 appears. We
remark that Cs1 → Cs1+1 → . . . → Cs2 is a path between two distinct odd components where parts within
even components are ignored. Thus by definition, the weight of this path is at least D(C1, Cs2). Therefore,
w(P ) ≥ D(C1, Cs2) ≥ rC1 . By symmetry, w(P ) ≥ rC2 .

We remark that the paths (Pi)i∈[[1,kodd/2]] are edge-disjoint, therefore:

∑
i

w(Pi) = w

(⋃
i

Pi

)
≤ w(MOPT )

= WOPT

Moreover, each odd component appears exactly once at the endpoint of a path in (Pi)i and each path has exactly
two endpoints, therefore: ∑

i

2w(Pi) ≥
∑

C∈Codd

rC

Putting the two previous equations together, we get our result:∑
C∈Codd

rC ≤ 2WOPT

Lemma A.3. Let CGREEDY be the total cost of the matching achieved by GREEDY_ONLINE and let
OPTTSP be the weight of the optimal TSP tour for d over all requests matched by the algorithm. Then:

CGREEDY ≤ 5

2
(⌈log n⌉+ 1)OPTTSP

Proof. Let M be the matching output by MGREEDY . We first want to bound the space cost w(M) of the
matching. We will use Lemma 3.2 again. For u ∈ Vreq a request, let v be the request GREEDY_ONLINE
matches it to. We define lu = d(u, v)/2. We show that it satisfies the properties required by the lemma:

• Let p, q be two distinct requests. If the greedy algorithm matched p with q, then lp = lq and d(p, q) =
2lp ≥ min(lp, lq). Otherwise, without loss of generality, let us assume that p got matched before q. We now
consider the algorithm at the time it matched p with some other vertex, there are two cases:

– p was the first request considered (u in the context of the algorithm). Let v be the vertex matched to
it. The algorithm waited past time t(p) + d(p, v) to match it, which using Lemma 2.2 implies that all
requests within a radius d(p, v) from p already arrived. Because it decided to match p with v and not
q which was unmatched, it means that q had not arrived yet or was further away from u than v. In
both cases, d(p, q) ≥ d(p, v), so 2lp = d(p, v) ≤ d(p, q). Hence d(p, q) ≥ 2lp ≥ min(lp, lq).

– p was the second request considered (v in the context of the algorithm). The algorithm therefore
matched p to some other request u at time t. We have t ≥ t(u)+2d(u, p). Because |t(u)−t(p)| ≤ d(u, p),
it implies that t ≥ t(p) + d(u, p). Assume by contradiction that d(p, q) < d(u, p)/2. Then we would
have t > t(p)+2d(p, q), hence the algorithm would have already matched p at time t(p)+2d(p, q) with
q if it were not already matched. But we assumed that p got matched at time t > 2d(p, q), hence the
contradiction. Therefore d(p, q) ≥ d(u, p)/2 = lp ≥ min(lp, lq).

• Let p ∈ Vreq, we assume p got matched to some other request q so lp = d(p, q)/2. The TSP consists of
two paths between p and q. Given that we are in a metric graph, it follows that OPTTSP ≥ 2d(p, q) and
therefore lp ≤ 1

4OPTTSP .
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We can thus use Lemma 3.2: ∑
lp ≤ 1

2
(⌈log n⌉+ 1)OPTTSP

We remark that by the definition of (lp), the weight of every matching edge appears exactly twice (one for each
endpoint) in (lp), therefore

∑
2lp = 2w(M), so the overall connection cost satisfies:

w(M) ≤ 1

2
(⌈log n⌉+ 1)OPTTSP

We now consider the time cost WGREEDY of the algorithm. Let u and v be two requests matched together
by the algorithm at time t. Without loss of generality, let us assume that t(u) ≤ t(v). Let t′ = t(u)+2d(u, v). We
want to prove that t = t′. By design of the algorithm, t ≥ t(u)+2d(u, v) = t′. Moreover, we have t′ ≥ t(u)+d(u, v).
Therefore using Lemma 2.2, both u and v have arrived at time t′. We now consider the state of the algorithm at
time t′. If there were a request w closer to u than v, the algorithm would immediately match u and w together
as we would have t′ > t(u) + 2d(u,w). This contradicts the fact that u and w got matched together. So at time
t′ = t(u) + 2d(u, v), u and v have both arrived and v is the closest request to u, so the algorithm matches them
together at that time, so t = t′.

Thus, the time cost spent by u and v for waiting is t − t(u) + t − t(v) = 4d(u, v) + t(u) − t(v) ≤ 4d(u, v)
because t(u) ≤ t(v). So, the total time cost of the algorithm WGREEDY can be bounded by:

WGREEDY =
∑

(u,v)∈M

4d(u, v)

= 4w(M)

Therefore, the total online cost of the greedy algorithm is at most:

CGREEDY = w(M) +WGREEDY

≤ w(M) + 4 · w(M) = 5 · w(M)

≤ 5

2
(⌈log n⌉+ 1)OPTTSP
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