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Abstract

Epilepsy is a chronic neurological disorder affecting more than 65 million people
worldwide and manifested by recurrent unprovoked seizures. Modern systems
monitoring electroencephalography (EEG) signals are being currently developed
with the view to detect epileptic seizures in order to alert caregivers and reduce the
impact of seizures on patients’ quality of life. Such systems use machine learning
algorithms that require large amounts of labeled seizure data for training. However,
acquiring EEG signals of seizures is a costly and time-consuming process for
medical experts and patients. In this work, we generate synthetic seizure-like EEG
signals, that can be used to train seizure detection algorithms, alleviating the need
for recorded data. First, we train a Generative Adversarial Network (GAN) with
data from 30 epilepsy patients. Then, we generate synthetic training sets for new,
unseen patients, which overall yield comparable detection performance to real-data
training sets. We demonstrate our results using the datasets from the EPILEPSIAE
Project, one of the world’s largest public databases for seizure detection.

1 Introduction

Epilepsy is the fourth most common chronic neurological disorder worldwide (Hirtz et al., 2007),
affecting over 65 million people. Epilepsy manifests itself by recurrent unprovoked seizures due
to abnormal activity in the brain. The length of the seizures can range from few seconds to several
minutes with a large variety of symptoms, including sensory auras, loss of awareness, automatic
movements and full body convulsions (Blumenfeld, 2012). These symptoms not only degrade the
quality of life of the patients, but they are also associated with a mortality rate 5 times higher among
patients with recurrent seizures (Sperling et al., 1999) than in the corresponding group of the general
population. One third of epilepsy patients suffer from drug-resistant uncontrolled seizures, which time
of occurrence is usually unpredictable. A promising solution to reduce mortality and to improve the
living standard of epilepsy patients is continuous real-time monitoring using wearable technologies
that collect and process EEG signals from the patient and, upon occurrence of seizures, raise alerts to
caregivers or family members(Goverdovsky et al., 2017; Sopic et al., 2018; Debener et al., 2015).

However, a barrier in developing reliable epileptic seizure detection systems is a lack of sufficient
training data. Indeed, modern detection systems are driven by machine-learning-based algorithms
(Alotaiby et al., 2014) that require a considerable amount of recorded seizures in order to reliably
detect future seizures. Collecting and labeling EEG data from epilepsy patients is a costly process
that currently requires in-hospital recording in specialized units. Such recordings are performed in
clinical practice in a minority of patients and over short periods of time, typically a week, enabling to
only record a few seizures per patient. This is a major limitation considering the privacy concerns
that exist around sharing medical data and the current trend towards personalized medicine. As a
consequence, it is necessary to acquire significant amounts of new data for each patient.
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The problem of scarce reliable training data is common in the field of artificial intelligence and it is
particularly severe in the specific case of epilepsy monitoring. The most comprehensive solution to
this problem consists of generating synthetic data that can be used to train the detection algorithms.
However, generating high quality medical data is challenging, and only recently substantial progress
has been made thanks to advances in deep generative models and in particular, Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014). Several studies have used synthetic data in areas such as
medical imaging (Frid-Adar et al., 2018; Shin et al., 2018; Costa et al., 2018) and Intensive Care Unit
(ICU) monitoring (Esteban et al., 2017; Che et al., 2017; Lipton et al., 2016) to augment existing
training sets in order to improve detection accuracy. Although this data augmentation approach has
proved effective, previous attempts to train only with synthetic data have reported such a strong
degradation in performance (Esteban et al., 2017; Shin et al., 2018) that it has not been possible so
far to dispense with real training data. Therefore, the scenario where no real training data can be
accessed and only a purely synthetic training set may be available remains unsolved. This is, however,
a common scenario in several medical applications, including epilepsy, given the difficulties and
privacy concerns associated with collecting and sharing medical data (Price and Cohen, 2019).

The generation of synthetic EEG data has not been extensively studied in the existing literature
and previous work on synthetic EEG generation has not tackled the generation of epileptic seizures
(Hartmann et al., 2018; Aznan et al., 2019; Corley and Huang, 2018). In this work, we present the
use of a GAN to produce high quality synthetic epileptic seizure electroencephalogram (EEG) signals
that can be used to train detection algorithms and achieve state-of-the-art results.

2 Generative model

Our model is a conditional GAN(Mirza and Osindero, 2014) that, given non-seizure (inter-ictal)
EEG samples at the input, generates EEG samples of epileptic seizures (ictal). The rationale behind
our design is that, while epileptic seizures are very costly to record, inter-ictal signals can be easily
recorded. As a result, we condition the network on inter-ictal samples from the target patient in order
to provide additional information to the generator that can be exploited to produce more realistic
seizure samples. In this way, we can use an already existing database to train our GAN and then use
the GAN to generate seizure samples for a new patient.

The generator of our model is a U-net (Ronneberger et al., 2015) convolutional autoencoder network
with weighted skip connections where the decoder translates the latent code into an ictal sample. In
order to introduce stochasticity into the model, gaussian noise with mean 0 and standard deviation
1 is concatenated to the latent code. The skip connections multiply the feature maps at each layer
of the encoder with a weight which is learnt during training, and then, the result of that operation is
added to the corresponding feature map of the decoder. The discriminator of our GAN has the same
structure as the encoder of the generator, but it includes an additional fully connected layer at the
output. The loss function of our GAN is based on the Least Squares GAN (LSGAN) (Mao et al.,
2017). Consequently, the minimization objective of the discriminator is given by:

min
θD

LD(θD) = Ex∼p[(D(x; θD)− 1)2] + Ex∼p[(D(G(x); θD))
2], (1)

where the function D corresponds to the discriminator and G to the generator and. The input data x
is sampled from the input data distribution p, and θD are the network parameters of the discriminator.
On the other hand, the loss function of the generator, with network parameters θG, is given by:

min
θG
LG(θG) = Ex∼p[(D(G(x; θG))− 1)2] + λ||G(x; θG)− y||1, (2)

The generator’s loss includes a weighted L1 regularization term that ensures that the generated signal
is similar to the reference output signal y, which makes the training more stable. In Equation 2, λ is
a hyperparameter that we fix to 100 in order to scale both terms of the loss function to a comparable
magnitude, preventing the regularization term from dominating the optimization problem. The first
term of the generator’s loss encourages the generator to produce synthetic samples that are classified
as 1, i.e., real, by the discriminator, which is adversarial with respect to the discriminator’s loss
function. Hence, the competing interests of the generator and the discriminator during training drive
the generator to produce more and more realistic samples.
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(a) 4 seconds of a real EEG ictal sample
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(b) 4 seconds of a synthetic EEG ictal sample

Figure 1: Comparison of a real and a synthetic ictal sample for electrodes T3F7 and T4F8. It is
visible how in both cases the delta-theta rhythm are present in the signals.

3 GAN training

To train our model, we used data from the EPILEPSIAE project database (Ihle et al., 2012), which is
one of the world’s largest public databases for seizure detection. The dataset contains recordings from
30 different epilepsy patients with a total of 277 epileptic seizures that sum to a duration of 21,001
seconds altogether. The EEG data is collected at a sample frequency of 256 Hz and it is divided into
recordings of one hour, each one corresponding to one recording session.

In this work, we target the setup of real-world and stigma-free wearable monitoring devices (Hoppe
et al., 2015) and thus we consider only the electrodes F7T3 and F8T4 in the standard 10–20 sys-
tem(Klem et al., 1999), which can be easily hidden in glasses. We extract samples of four seconds of
duration, since this length is effective to detect epileptic seizures. Given that the data was recorded at
a frequency of 256 Hz, this results in samples of length 2048, i.e., 1024 per electrode. To construct
the training set, we pair each ictal sample to an inter-ictal sample from the same patient. In this
manner, the generator learns to map inter-ictal samples to ictal samples for any given patient. In
order to train the GAN, the leave-one-out strategy is followed: for each target patient, the GAN
is trained using the ictal and inter-ictal data coming from all other patients. The exact number of
training samples depends on the number of seconds of seizure recording available in the database for
all patients except for the left-out patient and, although it varies slightly, it is approximately 20,000
samples. Following this scheme, the GAN is trained independently for each patient and thus, we
obtain one model per patient.

4 Evaluation of Synthetic Data

For each trained model, we generate between 2,000 and 6,000 ictal samples from inter-ictal EEG
signals from the patient that was left out during training. In Figure 1, some of the generated samples
are shown in the time domain. The presence of the well-known delta–theta rhythm, i.e., rhythmic
slow activity with a frequency of oscillation in 0.5–4 or 4–7 hertz, is a clear indication of the correct
generation of the ictal discharge and epileptic seizure segment in the synthetically-generated EEG
signals (Osorio et al., 2016).

In order to evaluate the quality of the generated ictal samples beyond their visual appearance, we
use them to train a state-of-the-art classifier based on the random forest algorithm (Díaz-Uriarte and
De Andres, 2006). The task of the classifier is to determine whether an incoming four-second sample
is an ictal or an inter-ictal sample. Here, we follow the experiments performed in Sopic et al. (2018),
which are tailored to a stigma-free wearable device for epilepsy monitoring.

We target each patient independently and consider the scenario where the only data available for
training the seizure detection algorithm are real inter-ictal samples and synthetic ictal samples from
the target patient. As a baseline for comparison, we consider the case where real ictal samples from
all other patients and inter-ictal samples from the target patient are available. Therefore, we first build
a target and baseline training sets. The target training set consists of 2,000 synthetic ictal samples and
2,000 real inter-ictal samples from the target patient. The baseline training set of 2,000 samples of
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real seizures randomly selected from all the patients except for the target patient and 2,000 inter-ictal
samples from the target patient. In this way, the synthetic ictal samples are strictly the only aspect
that differs between the target training set and the baseline training set. Then, for each patient, we
construct the test set for the seizure detection task, which contains all the ictal samples of the target
patient without overlap and twice as many inter-ictal samples. These test ictal samples have not been
used during the training of the GAN (the target patient is left out) to ensure there is no information
leakage. We build an unbalanced test set with twice as many inter-ictal as ictal samples in order to
better reproduce the real-world setting where the ictal samples are under-represented in the inference
phase.

Once the data is split in training and test sets, a feature extraction step is performed on the data
following Sopic et al. (2018) and extract 54 features of power and non-linearity per electrode. Then,
both training sets are used to train and evaluate the random forest classifier on the test set. For the
sake of robustness, we repeat these experiments 15 times, splitting and shuffling the data each time.

5 Results

To asses the performance of the training sets in our experiments, we use the the geometric mean
of sensitivity and specificity (Fleming and Wallace, 1986). We report the detailed results of these
experiments for each patient in the Appendix A.

Our results show that training with synthetic samples not only does it not degrade the performance,
but yields a 1.2% improvement overall compared to training only with real samples from a generic
database. On top of that, as detailed in Figure 2, 20 out of 29 patients, i.e., 69%, improve by more
than 1%, while only for four out of 29 patients the performance decreases by more than 1%. An
explanation for the performance improvement when using synthetic data is that, since our GAN
generates ictal samples given inter-ictal samples from the same patient, the model generates synthetic
seizures that retain a number of personal features. These results demonstrate the high quality of the
synthetic ictal data that we generate as well as its utility for the real-world task of seizure detection.
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Figure 2: Performance difference in the classification task between synthetic and real training sets.
The vertical axis represents the number of patients, where larger is better.

6 Conclusion

In this work, we have presented a GAN model that generates synthetic EEG signals of epileptic
seizures. To the best of our knowledge, for the first time in the medical domain, we have generated
synthetic data sets that can train detection algorithms achieving results comparable to training with
real data. Our results underline that, in the most common scenario in which no recordings of epileptic
seizures of a new patient are available, training can be done using exclusively synthetic seizures.
Hence, using an existing database, deep generative models can generate data to train a system to
monitor a new patient. Our work emphasizes that the application in medicine of deep generative
models, such as GANs, can help solving some of the open challenges in the field and help bridging the
gap on the adoption of continuous monitoring systems for patients suffering from chronic disorders.
Further research into unpaired and conditional deep generative models may improve the quality and
performance of synthetic training sets allowing for personalized medicine based on synthetic data.
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A Results

Table 1 contains the per patient results of our experiments. Patient 22 performs extremely poorly for
both the baseline and the synthetic training sets and, therefore, it is not a relevant indicator of the
classification quality. Consequently, it has been removed from the calculation of the total difference
in performance. This total difference is calculated as the difference between the geometric mean of
all patients in the synthetic case and the geometric mean of all patients in the baseline case. These
results pass the Wilcoxon statistical significance test with a p-value of 0.0098 when patient 22 is
already excluded, which indicates that the difference between the results obtained for the baseline
and synthetic training sets is statistically significant.

Patient ID Baseline (%) Synthetic (%) Difference (%)
1 73.49 80.06 +6.57
2 79.36 70.30 -9.06
3 77.59 82.84 +5.25
4 76.34 78.33 +1.99
5 64.86 68.19 +3.33
6 74.10 74.74 +0.64
7 68.11 68.59 +0.48
8 81.41 86.14 +4.73
9 76.74 80.67 +3.93

10 66.84 65.87 -0.97
11 81.03 83.66 +2.63
12 63.00 66.56 +3.56
13 77.20 78.54 +1.34
14 74.32 76.51 +2.19
15 74.25 74.07 -0.18
16 78.11 80.64 +2.53
17 65.27 67.84 +2.57
18 66.20 71.62 +5.42
19 76.95 78.13 +1.18
20 73.42 68.67 -4.75
21 79.18 71.61 -7.57
22 26.88 12.62 -14.26
23 77.05 78.62 +1.57
24 78.28 77.87 -0.41
25 77.02 75.65 -1.37
26 74.36 76.15 +1.79
27 76.00 78.00 +2.0
28 81.97 83.07 +1.10
29 75.73 78.41 +2.68
30 79.80 82.29 +2.49

TOTAL 74.57 75.78 +1.21
Table 1: Geometric mean of sensitivity and specificity per patient of our evaluation.

Regarding the patients for whom the performance degrades most significantly, i.e., Patients 2 and
21, their seizures are dominated by repetitive spiking. This pattern is relatively rare and is not well
represented in the dataset (only 10.5% of the seizures). Therefore, our GAN model does not capture
this behavior with as much precision as it does capture other patterns such as theta or delta rhythms.
In fact, Patient 22 also suffers from seizures with repetitive spiking and our experiments show that
even the state-of-the-art techniques fail in detection of such seizures. Finally, Patient 20 has only 4
seizures in this dataset, which is the lowest number of seizures in the entire dataset and hinders robust
evaluation of our model.
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B GAN architectural details

The architecture of our GAN is modeled after the SEGAN from (Pascual et al., 2017). Our generator
is a U-net (Ronneberger et al., 2015) convolutional autoencoder with weighted skip connections in
all the layers except for the input and the latent code layers. The weights of the skip connections are
learnt during training. The input to the generator are samples of length 2048 points (4 seconds of
signal from 2 electrodes recorded at a frequency of 256 Hz). The encoder consists of eight blocks
that alternate a convolutional layer with a max pooling layer with 2x2 filters and stride 2. The feature
maps extracted at each block of the encoder yield the following shapes: 2048x1, 1024x64, 512x64,
256x128, 128x128, 64x256, 32x256, 16x512, 8x1024; where 2048x1 is the shape of the input and
8x1024 that of the latent encoding. Gaussian noise with mean 0 and standard deviation 1 and shape
8x1024 is concatenated to the latent code in order to introduce stochasticity into the model. The
decoder is symmetric to the encoder, but it uses deconvolutions and dilations. Thus, the shapes of
the feature maps at the decoder are 16x1024, 16x512, 32x256, 64x256, 128x128, 256x128, 512x64,
1024x64, 2048x1; where 2048x1 is the final output of the generator. The skip connections multiply
the feature maps output at each layer of the encoder with the learned weights and adds it to the feature
map of the same shape at the decoder. The activation used is the leakyReLu function (Maas et al.,
2013), except for the last block of the decoder, where we use the hyperbolic tangent function. All
convolutions and deconvolutions are unbiased and spectral normalization (Miyato et al., 2018) is
applied before each block.

The architecture of the discriminator has the same shape as the encoder of the generator, but it
includes an additional fully connected layer at the output. In this way, the discriminator outputs a
single value between 1 and 0, where 1 represents the real class and 0 the synthetic class. On top of
that, in the discriminator we apply virtual batch normalization (Salimans et al., 2016), as well as
spectral normalization.

To train the model we use the Adam (Kingma and Ba, 2014) optimizer with 0 and 0.9 for the values of
β1 and β2, respectively, and learning rates 0.0001 for the generator and 0.0004 for the discriminator.
The size of the minibatches of data employed during training is 100 samples. All the hyperparameters
employed are summarized in Table 2.

Parameter Value
β1 0
β2 0.9

G learning rate 0.0001
D learning rate 0.0004

λ 100
Mini-batch size 100

Table 2: Model hyperparameters.

C Evaluation details

.

In the feature extraction stage we follow Sopic et al. (2018) and extract 54 features of power and
non-linearity per electrode, i.e., a total of 108 features. To calculate the non-linear features, the signal
is decomposed using the discrete wavelet transform down to level seven. The nonlinear features
extracted are: sixth and seventh level sample entropy (Richman and Moorman, 2000) for k = 0.2
and k = 0.35; third, fourth, fifth, sixth and seventh level permutation entropy (Bandt and Pompe,
2002) for n = 3, n = 5 and n = 7; third, fourth, fifth, sixth and seventh level, as well as raw signal,
Shannon, Renyi and Tsallis entropies. The power features are: total power, total and relative band
power in the bands delta [0.5,4] Hz, theta [4,8] Hz, alpha [8,12] Hz, beta [13,30] Hz, gamma [30,45]
Hz as well as in the bands [0,0.1] Hz, [0.1,0.5] Hz, [12,13] Hz.
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