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ABSTRACT Ship Navigation. Like aircraft, apart from GPS, ships may have

We present a precise and robust GPS spoofing mitigation method,
which is based on a position likelihood distribution. Compared to
existing spoofing mitigation methods, this maximum likelihood
method is less prone to selecting the wrong satellite signals when
(spoofed) duplicates are received. The presented method operates
from GPS signal snapshots as short as one millisecond and detects
all likely receiver positions. Even with spoofing signals stronger
than the authentic satellite signals, the actual receiver position is
still found through iterative dampening of the strongest signals.
The spoofing mitigation capability is evaluated on the de facto stan-
dard TEXBAT spoofing dataset. We reach median position errors
introduced by spoofing below 19 m and keep the maximum error
below 222 m for all TEXBAT scenarios. This is six times more ac-
curate than the best previous work, which only detects spoofing
attacks, but does not mitigate them.
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1 INTRODUCTION
1.1 Motivation

Today, countless applications rely on the Global Positioning System
(GPS). GPS is not only used to get an accurate position, but also to
get an accurate time. As such, GPS receivers are becoming prime
targets for attacks. Wrong information in time or space can have
severe consequences, as we highlight in the following examples.

Aircraft Navigation. Air traffic control is partially transitioning
from radar to GPS. Each aircraft determines its own location using
an on-board GPS receiver. Each aircraft transmits its current GPS
location twice per second, through so-called ADS-B messages. This
system is already mandatory for most airliners in Europe and in
the US [9, 17]. If a wrong location is estimated by the on-board GPS
receiver, for instance due to signal spoofing, this may have fatal
consequences. For instance, wrong routing instructions might be
given due to a wrong reported aircraft location, leading to collisions
with the ground or other aircraft.
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few reference points to localize themselves. Trusting a wrong lo-
cation indication can strand a ship or alter its course. A recent
GPS spoofing incident had several ships placed inland although
they were actually on the Black Sea, showing that spoofing attacks
against ships already happen in the wild [5].

Car/Truck Navigation. Drivers increasingly rely on GPS naviga-
tion alone rather than orienting themselves. Too often, directions
given by car navigation systems are not validated but followed
blindly. This emerging dependence on GPS is dangerous: Even
without spoofers being present, people get stuck in remote places.
This may be due to errors in the given directions or simply because
of typing errors. In some cases, consequences are fatal [32]. At-
tackers can use this combined weakness of GPS and car drivers to
reroute cars and cause traffic chaos, for instance.

Train Control. Emerging train control systems such as the ETCS
may employ GPS localization for each train instead of placing nu-
merous balises along tracks [33]. Wrong location estimates could
wreak havoc: Collisions between trains might not be anticipated
early enough or barriers may not be lowered in time. Also track
switches could be triggered while a train is passing through.

While the examples above are in the domain of location spoofing,
an attacker can also try to change a GPS receiver’s perceived time.

Cellular Network Synchronization. Cellular networks rely on ac-
curate time synchronization for exchanging communication data
packets between ground antennas and mobile handsets in the same
network cell. Also, all neighboring cells of the network need to be
time-synchronized for seamless call handoffs of handsets switch-
ing cells and for coordinating data transmissions in overlapping
coverage areas [1, 22]. Because most cellular ground stations get
their timing information from GPS, a signal-spoofing attacker could
decouple cells from the common network time. Overlapping cells
might then send data at the same time and frequencies, leading to
message collisions and losses [1]. Failing communication networks
can disrupt emergency services, as people in need of help lose the
means of requesting assistance. Also, businesses relying on mobile
phones to coordinate their work with customers, like taxi services
and transport companies, could not carry out their work.

Stock Market Synchronization. Audit rules mandate that financial
markets record trading activities with accurate timestamps [10].
Such timing is often accomplished through GPS receivers on the
roof of those market places [29]. Timestamps help revealing ille-
gal trading activities, which can sometimes be detected by trading
discontinuities, arising for instance when market orders are not
executed immediately. Also, with too coarse timestamps, it is possi-
ble to observe new market orders and then place one’s own orders



“concurrently”, so that the latter might be executed before the for-
mer [28].

Power Grid Synchronization. The operation of power grid assets is
coordinated with GPS-based precision timing. Also, grid operators
use GPS-synchronized observations for disturbance monitoring
and fault localization, to maintain grid stability [13]. For many
nations, a power grid outage is one of the worst threats. Problems
include water pumps that stop working and food and medicine
which cannot be delivered due to failing communication [12].

These threats and weaknesses show that there is the potential for
large damages as a result of forged GPS signals. So what is GPS
spoofing?

1.2 Spoofing

A GPS receiver computing its location incorrectly or even failing
to estimate any location at all can have different causes. Wrong
localization solutions come from (i) a low signal-to-noise ratio
(SNR) of the signal, for instance when inside a building or in urban
canyons, (ii) overlapping reflected signals in multipath scenarios or
(iii) deliberately jammed or (iv) spoofed signals. The first two cases
are challenging, but various ideas help in mitigating their effects:

In case (i), low SNR, it is possible to use a longer recorded signal
in order to increase the total received signal energy. There are some
challenges associated with this, for instance phase changes in the
signal due to data modulation on top of the carrier signal. Also, the
latency of the localization solution increases because the amount
of signal used can be on the order of minutes.

In case (ii), multipath signals can often be discarded by selecting
only the strongest signals and those which are consistent in the
sense that the localization solution fits well with all chosen signals.

In case (iii), an attacker simply jams the frequency band of the
GPS signals with strong random signals, increasing the noise level at
receivers. Jamming is the least sophisticated kind of attack and has a
result equivalent to case (i) above: a low SNR at the receiver. There-
fore, longer signal recordings also help against jamming. Apart
from taking measures against special types of jamming attacks, like
using directional antennas to exclude ground-based jammers, jam-
ming is easily detectable. On the other hand, jamming is basically
impossible to mitigate [35].

Signal spoofing (iv) is the most difficult case. An attacker can
freely choose the signal powers and delays for each satellite indi-
vidually. So, the attacker will be located nearby a GPS receiver, and
simply transmit a competing signal s”. At its current location, the
GPS receiver should receive a combined satellite signal s. However,
at another location and/or time, a combined signal s’ would be
expected. Such spoofed signals can nowadays be generated with
only a few hundred dollars worth of hardware.

If the attacker uses less power than what is received from the
legitimate GPS satellites (that is, “s” < s”), the signal s” essentially
plays the role of interference, lowering the SNR as in case (i). If on
the other hand the attacker uses significantly more power (“s’ > s”),
a GPS receiver may easily notice that an attack is going on, as the
received signal power is unusually high. So, the most interesting
case is if the attacking power is natural, in the order of the regular
satellites (“s” ~ s”).
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These threats are well acknowledged. A recent US government
study concluded that critical infrastructure relies on GPS, but is not
prepared for signal disruptions [16].

While information about the internals of commercial receivers is
scarce, to the best of our knowledge, consumer products currently
have at most simple spoofing mitigation integrated. Sometimes,
commercial receivers may detect inconsistencies in the received
signals and simply cease operation [39]. But it is even possible
to mislead commercial receivers whose output is combined with
other sensors such as an altimeter, a magnetometer and an inertial
measurement unit (accelerometer, gyrometer, compass) [40]. Mili-
tary receivers use symmetrically encrypted GPS signals which are
not available to the public. In this case, the signals are unknown
to attackers in advance. Still, an attacker could replay even those
encrypted signals with a small delay to confuse receivers. Academ-
ically, some anti-spoofing methods have been studied (see next
section for details), but the spatial resolution of those methods is
hundreds of meters, which means that attacks spoofing a close-by
location cannot be detected. Our method achieves median errors
under 19 m on the TEXBAT dataset, which is the de facto reference
dataset for testing GPS anti-spoofing algorithms [37, 46].

1.3 Collective Detection

In this work, we not only detect spoofing attacks, but also mit-
igate them. We present a robust spoofing mitigation algorithm
based on the collective detection maximum likelihood localization
approach [2]. Our method can differentiate closer distances between
correct and spoofed locations than previously known approaches.

A specialty of our method is that it uses only a few milliseconds
worth of raw GPS signals, so-called snapshots, for each location
fix. This enables the offloading of the computation into the cloud,
which allows the combination of knowledge of observed attacks.
Measurements from enough receivers may even permit finding
spoofers’ locations. Cloud offloading also makes our technique suit-
able for energy-constrained sensors. A novel class of low-power
GPS sensors are snapshot receivers [11, 26]. In contrast to classic
GPS receivers, which are “always on”, snapshot receivers capture
only a few millisecond of the satellite signals for each localization.
More details about snapshot receivers follow in Section 3.2. Ex-
isting spoofing mitigation methods require a constant stream of
the GPS signals and track these signals over time. Since snapshot
receivers only have access to extracted signal segments, classic GPS
anti-spoofing techniques are not applicable to snapshot receivers.
To our knowledge, our GPS anti-spoofing work is the first for snap-
shot receivers and can also be used with conventional receivers.
Generally, spoofing mitigation is computationally more demanding
than normal localization, since fake signals have to be detected.
In order to remove spoofed locations, different potential location
solutions need to be compared. Therefore, spoofing mitigation is a
computational challenge on smartphones.

2 RELATED WORK

Three tracks of research are most relevant to our work, maximum
likelihood GPS localization, GPS spoofing mitigation algorithms
and successive signal interference cancellation.
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2.1 Maximum Likelihood Localization

Our work is based on collective detection (CD), which is a maximum
likelihood GPS localization technique. Maximum likelihood GPS
localization was already proposed in 1996 [41], but was computa-
tionally infeasible at that time. CD has first been implemented by
Axelrad et al. in 2011 [2]. Due to search spaces containing millions
or more location hypotheses that have to be searched through,
subsequent work focused on reducing the computational burden
through heuristics [7, 24]. Recently, a branch-and-bound algorithm
has been proposed that finds the optimal solution within some ten
seconds running on a single CPU thread [3]. Our method is an
adaptation of this branch-and-bound algorithm to mitigate GPS
signal spoofing attacks. Another maximum likelihood approach by
Closas et al. models the signal observations as a function of the
receiver state [8]. Due to a high-dimensional and non-linear cost
function, it remains unclear how the optimal receiver location can
efficiently be computed in that framework.

2.2 Spoofing Mitigation

GPS spoofing defenses have intensively been studied. However,
while most research focuses on detecting spoofing attacks, there is a
lack of ideas for spoofing mitigation and recovering from successful
attacks by finding and authenticating the correct signals [36]. Our
work helps in this area, as the technique presented in this paper
inherently mitigates spoofing attacks.

A lot of research focuses on tracking multiple signals per satellite
instead of at most one [6, 37]. This is a useful approach for detecting
spoofing attacks. However, given multiple signals per satellite, it is a
challenge to select the correct signal from each satellite. In addition,
the SPREE receiver implements plausibility checks for less elaborate
attacks such as modified satellite orbit parameters [37]. Another
method for detecting spoofing attacks is hypothesis testing [48].

Whether sophisticated spoofing attacks are practical is subject
to debate [39]. Still, spoofing hardware performing a relatively
challenging seamless satellite-lock takeover attack has already been
built, although it has only been tested in a lab environment [20].
Challenges associated with spoofing are for instance matching the
spoofed and authentic signals’ amplitudes at the receiver, which
might not be in line of sight and moving [38]. Despite that, it is
even practically feasible for a spoofer to erase the authentic signals
with signals at a 180° phase offset [36]. This is one of the strongest
attacks and can only be detected with multiple receiver antennas
or by a moving receiver [36]. Thus, a cooperative victim, like a
convicted criminal with an ankle monitor, could use this technique
to deceive authorities [36, 38]. For signal erasure to be feasible,
the spoofer needs to know the receiver location more accurately
than the GPS L1 wavelength, which is 19 cm. Receivers with only
a single antenna cannot withstand such an erasure attack. Our
method targets single-antenna receivers and we therefore do not
deal with signal erasure. In basically all other types of spoofing
attacks (cf. Section 4), including signal replay and even spoofers
with multiple transmission antennas, the original signals are still
present and our algorithm remains robust.

Due to the limitations of receivers with a single antenna, some re-
search focuses on receivers with multiple antennas or even multiple
receivers combining their information [27]. Coordinated spoofing

attacks with multiple antennas can circumvent some defenses using
multiple receiver antennas like detecting signal timing inconsisten-
cies [42]. Also, size requirements and a high price sensitivity for
consumer GPS receivers make multi-antenna receivers impractical
for many applications. Single-antenna receivers cannot differen-
tiate between spoofing signals sent from one or more locations.
Our algorithm is aimed at those single-antenna receivers and is
therefore indifferent to multi-antenna attackers.

One approach against erasing spoofers with a single transmitting
antenna focuses on moving receivers [4]. Signals are classified into
spoofed and non-spoofed signals by moving the receiver around
and observing the spatial correlation of signals sent from a single
source. The method does not cover stationary applications like
the introductory time synchronization examples and time periods
during which a mobile receiver is not moving.

The GPS anti-spoofing work most relevant to this paper is that
based on joint processing of satellite signals and maximum likeli-
hood localization. One method is able to mitigate a limited number
of spoofed signals by the vector tracking of all satellite signals [23].
A similar technique is shown to be relatively robust against jam-
ming and signal replay [34]. Another idea is to combine all satellite
signals in a Bayesian estimation algorithm [25]. Compared to our
snapshot receiver, this technique uses a continuous stream of re-
ceived signals for the sequential parameter estimation. Extensions
of aforesaid maximum likelihood method by Closas [8] for coun-
tering spoofing have also been proposed. One assumes a spoofer
which sends unsynchronized spoofing signals that do not consis-
tently point to a spoofed location [45] and the other tries to solve
the global convergence problem with an initial grid search and
subsequent iterative refinement [47]. Our method can tolerate con-
sistent spoofing signals, even in case the spoofing signal is already
present when the receiver starts.

We could not find any anti-spoofing methods for GPS snapshot
receivers. Since our method yields robust location fixes from signal
snapshots, there is no need for recovery like in classic receivers.
The latter may lock onto spoofed signals without noticing a drift
from the authentic satellite signals over time.

2.3 Successive Interference Cancellation

Our iterative signal dampening technique to deal with spoofing
signals is similar to successive interference cancellation (SIC). SIC
removes the strongest received signals one by one in order to find
weaker signals and has been used with GPS signals before [30, 31].
That work is based on a classic receiver architecture which only
keeps a signal’s timing, amplitude and phase. Our receiver is based
on CD, which directly operates in the localization domain and does
not identify individual signals in an intermediate stage. As it is
impossible to differentiate between authentic and spoofed signals a
priori, we do not remove signals from the received sampled data.
Otherwise, the localization algorithm might lose the information
from authentic signals. Instead, we dampen strong signals in order
to reveal weaker signals. This can reveal localization solutions with
lower CD likelihood.



3 GPS LOCALIZATION

The Global Positioning System (GPS) is a Global Navigation Satellite
System (GNSS) operated by the United States Air Force. It provides
location and time information to receivers anywhere on Earth
where signals from at least four satellites can be received. The GPS
satellites are located in a non-stationary medium Earth orbit and
circle the Earth about twice a day.

GPS satellites transmit multiple signals in different frequency
bands. Some of the signals are encrypted and reserved for military
use. We focus on the signal most commonly used in civilian re-
ceivers, which is located in the L1 frequency band at 1.57542 GHz.
To distinguish the satellites, code division multiple access (CDMA) is
used. The employed Gold codes, one for each satellite, with 1023
bits length, achieve good correlation and cross-correlation proper-
ties [21]. Those signals are also called pseudo-random noise (PRN)
sequences due to their noise-like nature. Sent with a data rate of
1.023 MHz, the codes repeat every millisecond. The satellites fur-
ther transmit navigation data. The navigation data contains satellite
orbit information, called ephemeris, and transmission timestamps,
which allow calculating the exact location of the satellites at the
time of signal transmission. The data is modulo-2 added to the
Gold codes at a rate of 50 bit/s. Hence, each data bit is transmitted
through 20 subsequent Gold codes. The generated signal is sent
with binary phase shift keying (BPSK) on the L1 frequency band.

3.1 Localization

For localization, GPS receivers measure the time of flight of re-
ceived satellite signals. Using an orbit model whose parameters are
received with the navigation messages of the previous step, the
location of the satellites at the time of signal transmission is deter-
mined. Unlike the satellites, the receiver does not carry an atomic
clock and is thus not synchronized with the satellites. Therefore,
the localization problem has four unknowns, namely three spatial
coordinates and the receiver’s time offset from the GPS system time.
The classic way of computing a solution to the localization problem,
a so-called fix, consists of setting up a system of equations from the
measured satellite distances and solving it in a least-squares sense.

Classic GPS receivers consist of three stages, acquisition of the
satellite signals, decoding of the satellite data and finally, calculation
of a location solution based on the received data.

The acquisition finds the visible satellites and detects the code
phase of the Gold codes and the Doppler shifts of the signals. A
strong correlation marks the code phase of the Gold code for a
given satellite. An example can be seen in Figure 1. The code phase
is determined by the time of flight of the signal between the satellite
and the receiver and therefore by their distance. The relative speed
between satellite and receiver introduces a significant Doppler shift
to the carrier frequency. This Doppler shift has to be found during
acquisition to allow decoding of the signal.

Classic receivers use the information gathered during acquisi-
tion and start using a feedback loop to track the satellite signals
to decode the contained navigation message. After a receiver ob-
tains that information from at least four satellites, the receiver can
compute its location.
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3.2 Snapshot Receivers

Assisted GPS (A-GPS) addresses a weakness of the basic GPS system:
Due to a low data rate, limited by the large satellite distance and
therefore weak received signal power, satellite orbit parameters are
only transmitted every 30 seconds. Thus, the latency of a first fix
after turning on a receiver, the so-called time to first fix (TTFF), can
be high. With A-GPS instead, these orbit parameters are fetched
over the Internet, for instance via a cellular network, which reduces
the data transmission time, and thus the TTFF, drastically [44].

While the satellite orbit parameters are usually valid for two
hours, classic receivers also need to receive a current timestamp.
Timestamps are transmitted from satellites every six seconds. Threre-
fore, receiving timestamps still causes a relatively high latency and
high energy consumption in GPS receivers. Snapshot GPS receiver
techniques such as Coarse-Time Navigation (CIN) or collective de-
tection (CD) allow computing the receiver location even if no times-
tamp is received. GPS signals repeat every millisecond and the
signals propagate 300 km during that time. Therefore, only the
remainder of the satellite distances modulo 300 km can be mea-
sured without receiving a timestamp. If the initial estimate of the
receiver’s location and time has an error equivalent to less than
150 km, the measurement’s full-millisecond ambiguity vanishes.
For this purpose, an offset of one second is roughly equivalent to
an error of 1 km since the satellites’ relative speed to an observer
on the Earth surface is about 1 km/s. With such an approximate
initial receiver state, one can estimate the satellite locations and
signal times of flight and the localization can be executed [44]. With
longer code periods, such as Galileo’s 4 ms long signals, the receiver
state estimate’s required accuracy is relaxed proportionately.

With this insight, snapshot receivers are able to compute their
location from as little as one millisecond of data if the signal qual-
ity is good. However, the influence of noise is often too large to
make localization viable from 1 ms of signal only. Combining sev-
eral milliseconds of signal is more robust [26]. Due to only a few
milliseconds activation to receive enough signal power for a lo-
calization, snapshot receivers use low power. Snapshot receivers
are even suitable for multi-year tracking of battery-powered sen-
sors [11]. In comparison, classic GPS receivers drain a smartphone
battery in a few hours. Thus, it can be expected that snapshot
receivers will be deployed extensively in the future. However, snap-
shot receivers cannot be protected by existing GPS anti-spoofing
methods that track signals over time. Our present work is designed
for signal snapshots, and therefore helps in protecting snapshot
GPS receivers.

3.3 Collective Detection

In recent years, maximum likelihood (ML) localization methods
have been proposed, promising more robust localization. That is,
ML methods are more tolerant to low SNR, multipath effects and
spoofing than the classic least-squares localization methods. Since
the arrival time of a satellite signal cannot always be determined
with certainty, a wrong signal time of flight (ToF) might be esti-
mated. This renders the system of equations unsolvable. The in-
formation from the rest of the satellites could still be enough to
compute the location fix, but eliminating “bad” measurements is not
always easy. ML methods [8] and in particular collective detection
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Figure 1: Acquisition result for a satellite signal with average
SNR. The (single) correlation peak indicates the signal’s re-
ceive time. The length of the correlation vector with 25,000
samples corresponds to 1 ms of signal.

(CD) [2, 3, 7, 24] do not pick an arrival time for each satellite signal,
but rather combine all the available information and take a decision
only at the end of the computation. This uses more computation
power, but is less prone to errors than solving a system of equations
in the least-squares sense like in CTN and classic GPS localization.

Since GPS localization is based on satellite signal ToF measure-
ments, the main challenge is determining the signal arrival times
despite low received signal power. In the methods presented so far,
the arrival times are detected based on the amplitude in the correla-
tion with the corresponding satellite’s PRN sequence. This requires
the presence of a clear peak in the correlation vector. With bad sig-
nal conditions, for instance under a tree, in an urban canyon or even
indoors, there may be several or no such correlation peaks. The
problem is particularly pronounced when only a few milliseconds
of signal are used as in CTN, because the received signal power is
less than with multiple seconds of signal. To mitigate this problem,
CD does not only “accumulate” the captured signal over time, but
also over all available satellites. Combined, the signal energy of
multiple satellites gives a higher chance to detect the signal arrival
times correctly. The gain in the signal-to-noise ratio (SNR) of CD
compared to CTN means that CD is more robust to noise. Therefore,
CD is suited for bad signal conditions such as in spoofing scenarios.

Our method is based on an efficient implementation of CD [3].
A given four-dimensional (location and time) search space is dis-
cretized as a regular grid of solution hypotheses. The expected
distance between satellite and receiver, and thus the expected code
phase of the received signal, is calculated for each grid point. The
satellite signal correlation vectors from the acquisition are aligned
by the expected code phase and a pseudo-likelihood of the point is
calculated. By searching over all possible solutions in the grid, the
algorithm is guaranteed to deliver the most likely location given
the observed signals. A branch-and-bound implementation delivers
the same result with reduced computational effort.

Correlation
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Figure 2: Acquisition result for a satellite signal with good
SNR but two matching signals. The two peaks are 24 samples
apart, which corresponds to a measured distance difference
of 288 m. Two possible interpretations are that the first sig-
nal is the authentic signal and the second is a signal reflec-
tion (multipath) or that one of the signals is spoofed. Only
the relevant part of the acquisition vector is shown. The full
vector is 25,000 samples or 1 ms long,.

4 GPS SIGNAL ATTACKS

The easiest way to prevent a GPS receiver from finding its location
is jamming the GPS frequency band. GPS signals are weak and re-
quire sophisticated processing to be found. Jamming considerably
worsens the signal-to-noise ratio (SNR) of the satellite signal acqui-
sition. CD algorithms achieve a better SNR than classic receivers
and are thus able to tolerate more noise or stronger jamming [2].

A jammed receiver is also less likely to detect spoofing, since
the original signals cannot be found. The receiver tries to acquire
any satellite signals it can find. Thus, the attacker only needs to
send a set of valid GPS satellite signals stronger than the noise floor,
without any synchronization with the authentic signals.

As jamming is detectable by observing the noise floor, in-band
power level and loss of satellite signal lock, a more subtle attack may
be performed. The spoofer can send the set of satellite signals with
adjusted power levels and synchronized to the authentic signals to
successfully spoof the receiver.

Seamless Satellite-Lock Takeover. The most powerful attack is
a seamless satellite-lock takeover. In such an attack, the original
and counterfeit signals are nearly identical with respect to the
satellite code, navigation data, code phase, transmission frequency
and received power. This requires the attacker to know the location
of the spoofed device, so that time of flight and power losses over
distance can be factored in. After matching the spoofed signals
with the authentic ones, the spoofer can send its own signals with
a small power advantage to trick the receiver into tracking those
instead of the authentic signals. When the spoofer tries to draw the
receiver away from the authentic signal, a correlation vector might
look like the one in Figure 2. A classic receiver without spoofing
countermeasures, such as tracking multiple peaks, is unable to
mitigate or detect this attack, as there is no indicative interruption
of the receiver’s signal tracking.

Navigation Data Modification. An attacker basically has two
attack vectors: modifying the signal’s code phase or altering the
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(a) Satellite distances for a given receiver
location hypothesis.

(b) Satellite signals as received (left) and shifted circularly according to the satel-
lite distances d; (right). The aligned peaks on the right show that this is a location

hypothesis with a coherent set of signals and thus with high likelihood. As visi-
ble, there are two peaks for each satellite, meaning that a spoofed set of signals
is likely present in addition to the authentic satellite signals.

Figure 3: Collective detection: The (pseudo-)likelihood of a point is computed by 1) shifting the signal correlation vector for
each satellite according to that point and satellite’s distance and then 2) pointwisely adding all satellites’ vectors and selecting

the maximum value of the result as the likelihood.

navigation data. Misaligning the code phase leads to changes in the
signal arrival time measurements. And by changing the navigation
data, the attacker displaces the perceived satellite locations. Both
methods influence the calculated receiver location. In comparison
to classic receivers, assisted or snapshot GPS receivers like CTN and
CD are not vulnerable to navigation data changes in the satellite
signals as they fetch that information from other sources like the
Internet. An attacker could tamper with such data sources, but
that shall not be our concern in this paper. Rather, we deal with
modified, wireless GPS signals.

5 ALGORITHM DESIGN

Our method is aimed at single-antenna receivers. Therefore, we do
not deal with signal erasure attacks (cf. Section 2.2). Instead, given a
mix of authentic and spoofed signals observed at a receiver, such as

shown in Figures 2 and 3b, our goal is to identify all likely locations.

Pseudocode for our method is given in Algorithm 1. The basic idea
is to run collective detection (CD) localization repeatedly and find
one plausible receiver location in each iteration. Specifically, we
use a fast branch-and-bound CD version (BBCD) [3].

Collective Detection. CD is a good choice for several reasons: 1)
CD has improved noise tolerance compared to classic receivers,
2) CD is not susceptible to navigation data modifications, 3) CD
is suitable for snapshot receivers, and 4) CD computes a location
likelihood distribution which can reveal all likely receiver locations
including the true location, independent of the number of spoofed
and multipath signals. Actually, spoofing and multipath signals
are similar from a receiver’s perspective. Both result in several
observed signals from the same satellite, like shown in Figures 2
and 3b. The difference is that multipath signals’ delay depends on
the environment while spoofing signals can be crafted to yield a
consistent localization solution at the receiver.

In order to detect spoofing and multipath signals, classic GPS
receivers, such as SPREE (cf. Section 2.2), can be modified to track

an arbitrary number of signals per satellite, instead of only one [37].

In a classic receiver, the set of authentic signals—one signal from
each satellite—would have to be correctly identified for a successful

localization. Any selection of signals can be checked for consistency
by verifying that the resulting localization solution’s residual error
is small. Consistent solutions are either the actual receiver location
or a spoofed one. However, already finding sets of signals which
are consistent for one receiver location, is combinatorially difficult:
For n satellites and m transmitted sets of spoofed signals, there
are (m + 1) possibilities for the receiver to select a set of signals.
Only m + 1 of those will result in a consistent localization solution,
namely the actual location and m spoofed locations. Even if running
a least-squares optimization for each signal combination may be
feasible, in practice multipath signals enlarge the search. Therefore,
tracking multiple signals per satellite helps detecting spoofing and
multipath events by raising a warning if multiple signals per satellite
are received, but it is impractical to mitigate spoofing.

CD avoids this signal selection problem by combining all signals
into a location likelihood distribution, as explained in Figure 3. CD
only shows consistent signals, since location hypotheses leading to
few aligned signals accumulate an insignificant likelihood. In the
CD likelihood measure, the plausible receiver locations—given the
observed signals—have high likelihoods. However, finding those
likely locations efficiently is challenging. The basic version of CD
computes a likelihood for all location hypotheses in a given dis-
cretized search region. A 2D example is given in Figure 4. Since
the search is usually performed in four dimensions, space and time,
computing the whole likelihood distribution is impractical. The
branch-and-bound CD version, which we use, improves the com-
putation performance, but only yields the most likely location.

Spoofing Mitigation. Among all location hypotheses, the basic
CD algorithm selects the most likely location. However, as shown
in Figure 4, that may be a spoofed location, so it is necessary to
also consider less likely locations to be sure that the true receiver
location is included in the results. But simply picking all points
with a likelihood above some threshold does not work well. For
close location hypotheses, the satellite distances and thus the shifts
of the signal vectors differ by only a few entries (cf. Fig. 3). For
two reasons, such small shift differences result in only marginally
differing likelihoods: 1) the correlation peaks form triangular shapes
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Algorithm 1 Spoof-Proof Branch-and-Bound Collective Detection

n: number of satellites

I: length of recording in samples

S: n X [-matrix of received satellite signals
SNR,in: minimum solution SNR

1: solutions < ()

2: while true do

3 (location,SNR, strongest_signal_indices) < BBCD(S)
& if SNR < SNRpmin then
5 return solutions
6 end if

7 solutions < (solutions, location)

8 S « dampen(S, strongest_signal_indices)
9: end while

due to usual oversampling of the received signal, and 2) small
timing estimation errors between signals from different satellites
may misalign the correlation vectors by a few entries. Therefore,
locations close to local maxima all have high likelihoods. Thus, a
thresholding approach will yield uselessly many points, clustered
around points with local likelihood maxima. That effect can be
observed in Figure 4. Therefore, we would ideally only pick such
local maxima as potential localization solutions. This could be done
with some clustering technique. Instead, our proposed method finds
local maxima through iterative signal dampening.

5.1 Iterative Algorithm

Rather than computing the whole location likelihood distribution,
branch-and-bound CD finds the most likely location orders of mag-
nitude faster [3]. As discussed above, we want to find all local
likelihood maxima with an SNR above some threshold, since we
assume that the receiver observes the spoofed and authentic signals.
To achieve this, we run the branch and bound algorithm repeatedly.
In each iteration, we extract the next likely location.

Signal Erasure. The most likely location is formed by high peaks
in the individual satellite signal vectors, as shown in Figure 3. In
order to remove the most likely location, one could therefore try
erasing the highest peak for each satellite before proceeding to
the next iteration. However, it need not be the, but only some, of
the highest peaks forming the maximum likelihood. For instance,
for some satellites, the highest peak may result from an authentic
signal, while for other satellites, the highest peak may be from a
spoofed signal. That might be the case when the attacker sends the
spoofed signals with different power levels in order to thwart our
strategy. In such a case, the most likely location may be the result of
a combination of authentic and spoofed signals. If the highest peaks
are removed, then also some authentic signals are removed and the
actual receiver location may not be found in any later algorithm
iteration. In essence, this is the same problem that classic receivers
face: If multiple peaks per satellite are present, it is unclear a priori
which peaks belong together, that is, which peaks yield a consistent
localization solution.

Northing (m)

-20 0 20

Easting (m)

Figure 4: Two-dimensional likelihood distribution com-
puted from a signal snapshot of a spoofing scenario. Higher
values indicate higher likelihood of the point being the re-
ceiver location. The actual receiver location in the middle ()
is invisible while the spoofed location slightly northwest (+)
dominates the likelihood distribution. This means that the
first iteration of our algorithm would find this spoofed loca-
tion. Other points with high likelihood result from a combi-
nation of spoofed and authentic signals.

Signal Dampening. Instead of completely removing the highest
signal peaks for each satellite, we exploit CD’s advantage that we
do not need to take a hard decision whether those peaks are au-
thentic or not. Instead, in every algorithm iteration, we attenuate
each satellite’s strongest peak by some factor. Like this, that peak
has less influence on the next iteration, but it can still aggregate
with signals from other satellites. For instance, if the peak is formed
by an authentic signal, it will still reinforce the likelihood of the
correct location. Also, not completely removing signals prevents
the problem from becoming underdetermined due to too few sig-
nals being available. Generally, signals from at least four satellites
are needed to resolve the location and time of the receiver. (For
simplicity, we just write location in this paper, but actually mean
location and time.) In the end, the peak dampening emulates the
selection of local maxima in the complete likelihood distribution,
as outlined above. By dampening the tallest peaks iteratively, the
highest local maxima vanish eventually, letting other local maxima
stand out and be found subsequently.

Loop Condition. The algorithm iterations terminate when the
likelihood of the computed location sinks into the noise floor of the
likelihood distribution, that is, when the SNR falls below a threshold.
That threshold can be chosen based on the search space’s median
or average likelihood, determined through random sampling.

If the (maximum) number of spoofed signals per satellite is
known, as is the case for the TEXBAT scenarios, the number of
algorithm iterations can also be fixed (or limited).

5.2 Solution Selection

A GPS receiver which receives multiple sets of consistent localiza-
tion signals is unable to choose the authentic location based on
those signals themselves. An exception might be when the spoofed
and authentic signals could be discerned by different signal char-
acteristics, such as the shape or timing of rising and falling signal



edges. GPS receivers are unlikely to detect such characteristics as
the GPS signals can only be detected after correlating with known
satellite signals, which means that those signal characteristics are al-
ready mingled through that processing. Therefore, our method just
outputs all plausible receiver locations. Based on external knowl-
edge, the receiver can then decide which of the found locations must
be correct. For instance, using sensor data from an accelerometer, a
motion model can be matched with sequences of likely locations. Or
only smooth receiver paths can be accepted, based on the receiver’s
maximum de- and acceleration. Further, location hypotheses can
be reconciled with a map, for instance eliminating locations not on
a road. In practice, a combination of external information sources
may be used. For example, restricting the receiver location to a road
still gives an attacker the possibility to reroute the computed posi-
tion at any junction. To mitigate such an attack, 1) an accelerometer
reading can limit the accepted turn rate; 2) a map of known WiFi
or LTE transmitters and expected signal power can help deciding
which street section is correct; or 3) visual clues from a camera or
a user, such as street signs, traffic lights and distinctive buildings
can eliminate location candidates. The visual technique may espe-
cially be useful when an attacker’s fake positions suggest a gradual
slowdown or speedup, but stay on the receiver’s actual track.

6 IMPLEMENTATION

Our implementation follows a branch-and-bound algorithm for
collective detection (CD) [3] with our modifications to find several
likely points in iterations, as described in the previous section. We
implemented the algorithm in CUDA, leveraging the parallelism
of GPUs. The selection of minimal data types further increases the
computation performance and reduces memory usage. For instance,
16-bit indices for the location hypotheses grid enable more cached
hypotheses. To improve the localization accuracy, we account for
the received signals’ atmospheric delays. And we found that more
consistent results can be achieved when scaling the raw input
signals and satellite acquisition vectors to the value range [—1, 1].

6.1 Acquisition

In the acquisition stage, which separates the received signal into the
satellite components, two important parameters are the bin width
for the Doppler shift frequency search and the correlation length. A
bin width of 500 to 667 Hz suffices for most applications [15]. Since
the run time of the acquisition is negligible in our implementation,
we use a fine resolution of 200 Hz. For the correlation, at least one
millisecond is required to fit a whole code period. Longer correla-
tions can significantly increase the SNR. Unfortunately, we cannot
choose an arbitrarily long correlation: Every 20 ms, a navigation bit
flip can happen, which degrades the correlation. To make sure that
at least one millisecond of data without a bit flip is available for
each satellite, CTN receivers capture at least two consecutive mil-
liseconds of signal [26]. In our experiments (cf. Sec. 7), a correlation
length of 3 ms provides the best results. The resulting correlation
vectors are reduced to a single vector with one millisecond length
for each satellite: Point by point, we add 1 ms long vector snippets
within each frequency bin to form one millisecond long vectors.
Then, we combine all frequency bins by selecting the maximum
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value at each vector index. We found that this yields consistent
results with good SNR.

6.2 Signal Dampening

To save recomputing the acquisition in each algorithm iteration, we
do the peak dampening directly in the correlation vectors instead
of in the raw received signal. For each satellite, we reduce the
maximum peak by 60 %. We experimentally determined this value
to work well with the TEXBAT dataset. The triangular peak shapes
resulting from oversampling (see Fig. 2) are reconstructed and
then subtracted from the correlation vectors. When peaks overlap,
similar to Figure 2, only the non-overlapping part of the peak is
dampened. Before using the modified vectors for the next algorithm
iteration, the vectors are normalized to the range [-1, 1] again.

7 EXPERIMENTS

Ideally, anti-spoofing methods would be tested using a receiver
in the real world and an attacking transmitter. But since transmit-
ting GPS signals in the real world may interfere with receivers
outside the experimental setup, this is not a good idea. Indeed, in all
countries that we know of, it is forbidden to transmit GPS signals.
Instead of resorting to a full simulation, we evaluate our method on
the TEXBAT dataset, which is a hybrid consisting of generated at-
tacking signals which are physically added over a wire to legitimate
signals collected in the real world.

TEXBAT. In 2012, Humphreys et al. presented TEXBAT, the first
public dataset of GPS scenarios with spoofing attacks [19]. So
far, it has been the de facto standard for any GPS spoofing re-
search [37, 46]. TEXBAT contains two “clean” signal recordings
without any spoofing and 8 spoofing scenario recordings. The spoof-
ing scenarios are constructed based on the clean recordings. The
first clean recording is in a stationary setting with an antenna placed
on top of an university building. The second clean recording is a dy-
namic recording from an antenna mounted on a car driving across
a city. The spoofing scenarios are produced by replaying one of
the clean datasets and adding counterfeit signals from a signal gen-
erator. Those combined signals are recorded using signal capture
hardware. The counterfeit signals are generated with appropriate
characteristics to be as representative as possible for all currently
known attack techniques. The TEXBAT dataset contains complex
samples with 16-bit quantization, sampled at a rate of 25 MHz [19].
Table 1 gives an overview of the TEXBAT spoofing scenarios. While
in Scenarios 4 and 6 a location error of approximately 600 m to the
north is introduced, all other scenarios introduce a time error of
about 2 ps. Scenarios 5 and 6 are most difficult, as environmental
effects like multipath will vary during the recording. Such effects
could modify authentic signals in a way that they might be mis-
taken for spoofed signals. Also, for those dynamic scenarios, no
ground truth is available, so we evaluate against the track computed
from the clean dataset.

For our experiments, we extract snapshots from the TEXBAT
scenarios. For every second of a recording, five windows of 9 ms
length are extracted and the localization results are averaged over
those five windows. So, each localization uses a total of 45 ms
of signal data. Average, median, and maximum errors as well as
the variance of the location estimates, compared to the respective
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Table 1: TEXBAT Spoofing Scenarios

time-push location-push
stationary | Scenarios 1,2,3,7,8 Scenario 4
moving Scenario 5 Scenario 6

clean scenarios, are summarized in Table 2. As the TEXBAT dataset
contains at most one set of authentic satellite signals and at most
one set of spoofed signals, we show the results of two algorithm
iterations. The first iteration is equivalent to a run of the basic
branch-and-bound CD algorithm. The second iteration uses the
modified signals with the dampened high-power signal components.
So, since at most two sets of signals are present, either our first or
second algorithm iteration should find the correct receiver location.
Which iteration that is, depends on the relative signal power of the
authentic versus the spoofed signals. The first iteration finds the
location pertaining to the stronger set of signals.

Attacks on classic GPS receivers usually require higher received
signal power of the spoofed signals versus the authentic signals.
Otherwise, the receivers will likely not switch from tracking the
authentic signals to tracking the spoofed signals. Therefore, with
our algorithm, we would expect that the first iteration finds the
spoofed location and the second iteration finds the true receiver
location. However, it does not matter which iteration performs
better. For some datasets, e.g. Scenario 4, the first iteration is more
accurate, that is, it finds the correct receiver location, while for
other Scenarios, e.g. Scenario 6, the second iteration finds the cor-
rect receiver location. First, note that the interpretation of the two
signals — authentic and spoofed — present in each dataset could be
exchanged, in which case the results of the two iterations would be
swapped. In the TEXBAT scenarios, the power differences between
the authentic and spoofed signals are fixed. So, for each scenario,
the correct and spoofed locations are always found in the same
algorithm iteration. However, in practice, an attacker could vary the
transmit power of the spoofed signals, such that for some location
computations, the correct location is found in the first iteration
and for other location computations, the correct location is found
in the second iteration. Also, the received power of the authentic
and spoofed signals can vary for each location computation due to
obstacles blocking the line of sight (LOS) path between the receiver
and some satellites or the attacker. Especially, since the attacker
may be located on the ground, its signals may inadvertently be
blocked by terrain or buildings. Another option for the spoofed
signals resulting in a lower likelihood in CD than the authentic
signals, despite being received with more power, is that the attacker
does not model atmospheric delays accurately and thus the spoofed
signals arrive with inconsistent delays at the receiver. In essence, a
receiver has to decide for each location computation, which of the
found positions in all iterations is the correct one. In Section 5.2,
we discuss how to identify correct locations using GPS-external
data.

7.1 TEXBAT Time-Push Scenarios

Scenario 1 contains a switch attack in which the original signals
are switched for counterfeit signals. In that scenario, while it might
be possible to detect whether spoofing is happening or not by

Table 2: Median, average and maximum errors and variance
of our localizations computed with two algorithm iterations
on each TEXBAT scenario. Units are in meters and for the
variance in m?. Location-push scenarios are marked in bold.

Sce- Iteration 1 Iteration 2

nario || med | avg | max | var med | avg | max | var

1 4 5 32 14 10 13 182 165

2 3 3 9 3 3 4 25 12

3 5 8 78 104 19 51 552 | 5135

4 9 23 214 | 911 155 | 190 | 572 | 28443
5 7 21 348 | 1659 7 14 156 | 548

6 405 | 385 | 559 | 21142 || 19 34 222 | 1315
7 3 4 10 4 15 46 438 | 5138

8 5 45 30 19 63 630 | 10596

analyzing the raw data, it is impossible to recover the original
signals as they are not present once the spoofing starts. Scenarios 2
and 5 contain overpowered attacks in which the adversary adds the
spoofing signals with a 10 dB power advantage over the authentic
signals. Such an attack could be detected by a sudden in-band power
increase. In Scenarios 3, 7 and 8, the spoofer attempts to match the
authentic signals’ power [18]. In those matched-power attacks, the
adversary signals only have a 1.3 dB power advantage.

The time-push scenarios from the TEXBAT dataset are of limited
use for testing our algorithm. Compared to the classic least-squares
GPS localization method, the CD algorithm is less sensitive to time
shifts. In the least-squares approach, a satellite’s distance is mea-
sured through the arrival time of a message transmit timestamp
encoded in the satellite signal. A timing error is therefore linked to
a distance error by the signal speed, which is the speed of light. In
CD, the message timestamps are ignored. Rather, satellite distances
at a given time are computed from the known satellite orbit data.
The relative speed of a satellite to an observer on Earth is less than
1 m/ms [43]. Thus, our algorithm is neither substantially affected
by nor does it detect the induced time errors of up to 2 ps. Still,
time errors result in a slight shift of the satellites’ signal peaks,
misaligning them in the CD algorithm (cf. Fig. 3b). Thus, the re-
ceiver location’s likelihood and the localization’s signal-to-noise
ratio (SNR) are lowered. Therefore, with time errors, we can expect
a higher localization variance than with a clean signal.

Table 2 shows that our algorithm produces stable results and
finds the correct location with high accuracy. The average and me-
dian errors for the static time-push scenarios (Sc. 1,2,3,7,8) stay be-
low 7.6 m for the locations from all first algorithm iterations, which
is even better than the results achieved with the original branch-
and-bound algorithm for benign scenarios [3]. The difference could
be due to a more sensitive receiver being used to produce the TEX-
BAT dataset. The second iteration of our algorithm produces worse
results, with the maximum error increasing significantly. This is
expected: The authentic and spoofed signals are separated by up to
2 ps and thus point to locations only a few millimeters apart (see
above). With the dampening of the stronger signals, the weaker sig-
nals with a lower SNR remain for the second iteration. Interestingly,
in Scenario 5 the second iteration’s result is better. One possible
explanation for this is the influence of environmental effects, such
as multipath from nearby cars.
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Figure 5: Results for the TEXBAT Scenario 4. Static matched-power location-push scenario with 0.4 dB spoofing power ad-
vantage. At 200 to 300 s, the takeover attack has a negative impact on the accuracy. Afterwards, the first iteration finds the
authentic location with little error. In this scenario, the second iteration tracks the spoofed location as the spoofer only has a

temporary power advantage.
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Figure 6: Results for the TEXBAT Scenario 6. Dynamic matched-power location-push scenario comparable to Scenario 4 but with
0.8 dB spoofing power advantage and based on the dynamic dataset. Iteration 1 tracks the spoofed location while iteration 2
tracks the authentic location. The high error at 99 seconds is likely a data artifact from the TEXBAT dataset and vanishes with
other correlation lengths. This erroneous localization leads to the straight dashed line in the right-hand plot.

7.2 TEXBAT Location-Push Scenarios

As CD algorithms such as ours are indifferent to small time off-
sets, the location-push scenarios are more interesting. Only two
TEXBAT scenarios contain location spoofing. Scenario 4 contains a
matched-power attack with a spoofing power advantage of 0.4 dB
and frequency locking of the spoofed to the authentic signals. Sce-
nario 6 is similar, but based on the dynamic dataset.

For the first 180 s of the static datasets and first 100 s of the dy-
namic datasets, no spoofing signals are present. This allows classic
receivers to start tracking the authentic signals. With these benign
signals, our location estimates are accurate (see Figures 5a and 6).
When the spoofer gradually starts introducing the location error,
the satellite signal peaks get broader, which increases location error
and variance. This happens approximately in between 180 s and
280 s for Scenario 4 (Fig. 5) and in between 150 s and 250 s for Sce-
nario 6 (Fig. 6). Once the spoofed and true locations differ enough
for the counterfeit and authentic satellite signals to become visible

individually, the location estimates start to diverge. One algorithm
iteration finds the spoofed location while the other iteration recov-
ers the true location. Due to the reduced SNR, the true location is
not recovered perfectly, but the error remains small.

Table 2 lists the error statistics for both location estimates com-
pared to the clean recordings. A maximum location error of 222.4 m
and a median error of 18.8 m are not exceeded. This assumes that
the receiver selects the localization solutions from the correct it-
erations (cf. Sec. 5.2). SPREE, the best anti-spoofing work that we
are aware of, can only detect spoofing attacks, but may not find the
actual receiver location and has a maximum location offset evading
detection greater than 1.5 km [37].

It can be observed that the results from our algorithm’s first
iteration are far better for Scenario 4. But a spoofer with constant
power advantage should lead to worse results for the first iteration
compared to the second, since the spoofed location is found first.
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Figure 19 of [19] shows indeed that the spoofer has a power ad-
vantage only for roughly the first 60 s of its attack lasting about
240 s. A classic receiver whose tracking loops have already been
acquired by the spoofer would continue tracking the spoofed sig-
nals whereas our algorithm falls back to the stronger, authentic
signals. Scenario 6 does not lead to such behavior as the spoofer
has a continuous power advantage.

7.3 Correlation Length

For the presented results, a correlation length of 3 ms length is
used. Figure 7 shows the average, median and maximum error of
Scenario 6 for different correlation lengths. The best results are
achieved with a correlation length of 3 ms. Foucras et al. present
that 5 ms should be the ideal trade-off between long correlation
length for high SNR and low probability of bit flips [14]. In our
case, the accuracy is similar with 3 and 5 ms. One reason for the
good performance of 3 vs. 5 ms might be that longer correlation
lengths increase the absolute SNR advantage of the spoofed signals,
because those are slightly stronger than the authentic signals. This
could worsen the results for the authentic location found in the
second iteration of our algorithm.

7.4 Computation Time

Currently, the algorithm is optimized for robustness rather than
speed. However, depending on the required update rate it is pos-
sible to use the algorithm in real-time applications. The compu-
tation speed is mainly dependent on the size of the search grid,
the number of visible satellites in the signal, the sampling rate of
the recording and its SNR. The SNR influences the efficiency of
the branch-and-bound technique, as a higher SNR allows earlier
detection of uninteresting search regions, allowing discarding more
location hypotheses without evaluating them.

Currently, two limitations impact the performance directly. Com-
puting the likelihood of each point is bounded by memory speed.
This means that doubling the sampling frequency, and thus the
amount of data, also doubles the computation time. Currently, at
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Figure 7: Average, median and maximum error for different
correlation lengths in Scenario 6. The algorithm shows best
results with 3 ms correlation length. Good results are also
achieved with 4 and 5 ms correlation length. Note that the
maximum error is shown at a different scale.

least half of the computation time is used for computing the likeli-
hoods. The second performance limitation is the calculation of grid
points and code phases. This accounts for about one third of the
computation time. Experiments with pre-calculated satellite orbits
show that this could be reduced significantly. Sorting and filtering
the points consumes the remaining computation time. Calculating
the satellite acquisition results is negligible.

A tracking feature, which feeds back the previous location es-
timate, allows the receiver to reduce the search space. But due to
branch and bound, the computation time is reduced by only 30 %
in the tested scenarios, although the search space is two magni-
tudes smaller. In our setup, which primarily runs our algorithm
implementation on an NVIDIA GTX 1080 graphics card, tracking
allows us to perform an algorithm iteration in about 1.0 s. As we
run two iterations, the computation time per localization is 2.0 s.
We calculated 2349 localization for the static scenarios and 2090
localizations for the dynamic scenarios, taking roughly 80 min and
70 min, respectively. Such a two-second delay should be acceptable
for real-time applications like car, ship and pedestrian navigation.
Even for aircraft navigation and routing, this might suffice, as long
as the aircraft do not change their course, such that short-time
location extrapolations are possible. For fast maneuvers, a higher
location update frequency may be required. Code optimizations
and more powerful computing hardware should allow covering
such scenarios, too. However, note that the signal correlation vec-
tors with mainly random entries and one or a few sharp peaks (cf.
Figures 1 and 2) lead to a non-convex CD likelihood distribution
which is not amenable to classic, fast optimization algorithms.

8 CONCLUSION

GPS spoofing is a broad topic and many methods have been pro-
posed to detect and mitigate spoofing. Most research focuses on
the detection of spoofing attacks. Methods for spoofing mitigation
are often specialized or only work for certain scenarios.

Our implementation and evaluation shows that with some mod-
ifications, the robustness of collective detection can be exploited
to mitigate spoofing attacks. We show that multiple locations, in-
cluding the actual one, can be recovered from scenarios in which
several signals are present. Experiments based on the TEXBAT
dataset show that a wide variety of attacks can be mitigated. In the
TEXBAT scenarios, an attacker can introduce a maximum error of
222 m and a median error under 19 m. This is less than a sixth of
the maximum unnoticed location offset reported for SPREE, that
only detects spoofing attacks [37]. Compared to SPREE, which is the
most accurate spoofing detection method known to us, our method
also mitigates attacks by finding the correct receiver location. Fur-
ther, our method is based on CD, a completely different approach
from classic GPS receivers, and as such has even more potential.

Since our method does not track signals, but works with signal
snapshots, our spoofing mitigation method is suitable for snapshot
receivers, which are a new class of low-power GPS receivers [11, 26].
To date, no snapshot receiver method with anti-spoofing capabilities
has been presented. Our method is also compatible with classic
receivers by splitting the data stream into windows with a duration
of a few milliseconds. Thus, our spoofing mitigation method can be
used with any GPS receiver and does not require special hardware.
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