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Distributed algorithms: 
a simple example 
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Independently: [Peleg, Roditty, Tal 2012] 
 

1. Formal definition? 

Use APSP to Compute Diameter 
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Routing tables 

Social networks 

Fighting spam 
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Summary 

Diameter Ө(n) APSP O(n) 
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APSP Ω(n) 

 
 

S-Shortest Paths O(|S| + D) 
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