
Optimal Distributed
All Pairs Shortest Paths

ETH Zurich – Distributed Computing Group

Stephan Holzer
ETH Zürich

Roger Wattenhofer
ETH Zürich

Distributed network
Graph G of n nodes

2

4

5
1

3

Distributed network
Graph G of n nodes

2

4

5
1

3

Unique
IDs

Distributed network
Graph G of n nodes

2

4

5
1

3
1 Local infor-

mation only

Unique
IDs

Distributed network
Graph G of n nodes

2

4

5
1

3
2

1
3

Local infor-
mation only

Unique
IDs

Distributed network
Graph G of n nodes

2

4

5
1

3
2

1
3

Local infor-
mation only

?

Unique
IDs

Distributed network
Graph G of n nodes

2

4

5
1

3
2

1
3

Local infor-
mation only

?

Unique
IDs

Limited
bandwidth

Distributed network
Graph G of n nodes

2

4

5
1

3

2

1
3

Local infor-
mation only

? Time complexity:
number of

communication rounds

Synchronized

Internal
computations

negligible

Unique
IDs

Limited
bandwidth

Distributed algorithms:
a simple example

Count the nodes!

Count the nodes!

1. Compute
 BFS-Tree

Count the nodes!

1

1

0

2
1

2

1
2

2

2

Runtime: ?

1. Compute
 BFS-Tree

2. Count
 nodes in
 subtrees

Count the nodes!

Runtime: ? Diameter

1. Compute
 BFS-Tree

2. Count
 nodes in
 subtrees

1

1

0

2
1

2

1
2

2

2

Diameter of a network

• Distance between two nodes = Number of hops of shortest path

Diameter of a network

• Distance between two nodes = Number of hops of shortest path

Diameter of a network

• Distance between two nodes = Number of hops of shortest path
• Diameter of network = Maximum distance, between any two nodes

Diameter of a network

• Distance between two nodes = Number of hops of shortest path
• Diameter of network = Maximum distance, between any two nodes

Diameter of
this network?

• Spanning Tree – Broadcasting, Aggregation, etc
• Minimum Spanning Tree – Efficient

broadcasting, etc.
• Shortest path – Routing, etc.
• Steiner tree – Multicasting, etc.
• Many other graph problems.

• Diameter appears frequently in distributed

computing

Fundamental problems

• Spanning Tree – Broadcasting, Aggregation, etc
• Minimum Spanning Tree – Efficient

broadcasting, etc.
• Shortest path – Routing, etc.
• Steiner tree – Multicasting, etc.
• Many other graph problems.

• Diameter appears frequently in distributed

computing
• E.g. local vs. global

Fundamental problems

• Spanning Tree – Broadcasting, Aggregation, etc
• Minimum Spanning Tree – Efficient

broadcasting, etc.
• Shortest path – Routing, etc.
• Steiner tree – Multicasting, etc.
• Many other graph problems.

• Diameter appears frequently in distributed

computing
• E.g. local vs. global

Fundamental problems
1. Formal definition?

Complexity of computing D? .

Known bounds: O(nD) Ω (D)

[before 2012]

≈O(n2) ≈Ω(1)

• Spanning Tree – Broadcasting, Aggregation, etc
• Minimum Spanning Tree – Efficient

broadcasting, etc.
• Shortest path – Routing, etc.
• Steiner tree – Multicasting, etc.
• Many other graph problems.

• Diameter appears frequently in distributed

computing
• E.g. local vs. global

Fundamental problems 1. Formal definition?

Complexity of computing D? .

Known bounds: O(nD) Ω (D)

New bounds: Ω (n)

[before 2012]
≈O(n2) ≈Ω(1)

[FHW 2012]

Even if D = 5

[2012]

• Spanning Tree – Broadcasting, Aggregation, etc
• Minimum Spanning Tree – Efficient

broadcasting, etc.
• Shortest path – Routing, etc.
• Steiner tree – Multicasting, etc.
• Many other graph problems.

• Diameter appears frequently in distributed

computing
• E.g. local vs. global

Fundamental problems

Complexity of computing D? .

Known bounds: O(nD) Ω (D)

New bounds: O(n) Ω (n)

[before 2012]
≈O(n2) ≈Ω(1)

[FHW 2012]

Even if D = 5

[here]

3

1. Formal definition?

• Spanning Tree – Broadcasting, Aggregation, etc
• Minimum Spanning Tree – Efficient

broadcasting, etc.
• Shortest path – Routing, etc.
• Steiner tree – Multicasting, etc.
• Many other graph problems.

• Diameter appears frequently in distributed

computing
• E.g. local vs. global

Fundamental problems

Complexity of computing D? .

Known bounds: O(nD) Ω (D)

New bounds: O(n) Ω (n)

[before 2012]
≈O(n2) ≈Ω(1)

[FHW 2012]

Even if D = 5

[here]

3

Independently: [Peleg, Roditty, Tal 2012]

1. Formal definition?

Use APSP to Compute Diameter

Extentions

Extentions

Routing tables

Social networks

Fighting spam

Extentions

Combination with: [Peleg, Roditty, Tal 2012]

Extentions

Combined with [Peleg, Roditty, Tal 2012]

 APSP in O(n)

Compute All Pairs Shortest Paths

0

APSP in O(n)

Compute All Pairs Shortest Paths

0

APSP in O(n)

Knows its distance
to all other nodes

Compute All Pairs Shortest Paths

0

APSP in O(n)

Compute All Pairs Shortest Paths
For each node {
 compute distances to all other nodes;
}

0

 APSP in O(n)

Compute All Pairs Shortest Paths
For each node {
 compute distances to all other nodes;
}
 1

1

0

1

1

 APSP in O(n)

Compute All Pairs Shortest Paths
For each node {
 compute distances to all other nodes;
}
 1

1

0

2
1

2

1
2

2

2

 APSP in O(n)

Compute All Pairs Shortest Paths
For each node {
 compute distances to all other nodes; O(D)
}
 1

1

0

2
1

2

1
2

2

2

 APSP in O(n)

Compute All Pairs Shortest Paths
For each node {
 compute distances to all other nodes; O(D)
}

0

 APSP in O(n)

Compute All Pairs Shortest Paths
For each node {
 compute distances to all other nodes; O(D)
}
 1

1
0

1

1

 APSP in O(n)

Compute All Pairs Shortest Paths
For each node {
 compute distances to all other nodes; O(D)
}
 2

2

2
2

1

1
0

1

1

 APSP in O(n)

Compute All Pairs Shortest Paths
For each node {
 compute distances to all other nodes; O(D)
}

2

2
2

1

1
0

1

1
2

3

 APSP in O(n)

Compute All Pairs Shortest Paths
For each node { O(n)
 compute distances to all other nodes; O(D)
}

2

2
2

1

1
0

1

1
2

3

 APSP in O(n)

Compute All Pairs Shortest Paths
For each node { O(n)
 compute distances to all other nodes; O(D)
} O(nD)

2

2
2

1

1
0

1

1
2

3

 APSP in O(n)

Compute All Pairs Shortest Paths
For each node { O(n)
 compute distances to all other nodes; O(D)
} O(nD)

Limited parallelism:
Only some nodes active.

2

2
2

1

1
0

1

1
2

3

 APSP in O(n)

Compute All Pairs Shortest Paths
For each node { O(n)
 compute distances to all other nodes; O(D)
} O(nD)

Limited parallelism:
Only some nodes active.

Wanted: All nodes
active all the time!

2

2
2

1

1
0

1

1
2

3

 APSP in O(n)

Compute All Pairs Shortest Paths

 APSP in O(n)

r

1. Pick a root-node r
Compute All Pairs Shortest Paths

 APSP in O(n)

r

1. Pick a root-node r
2. T := BFS-Tree(r)

Compute All Pairs Shortest Paths

 APSP in O(n)

r

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T
 in preorder;

Compute All Pairs Shortest Paths

 APSP in O(n)

r

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T
 in preorder;
4. If P visits node v first time{

 wait 1 timeslot;
 start shortest paths(v);
 }

Compute All Pairs Shortest Paths

 APSP in O(n)

r

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T
 in preorder;
4. If P visits node v first time{

 wait 1 timeslot;
 start shortest paths(v);
 }

Compute All Pairs Shortest Paths

 APSP in O(n)

v

u

w

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T
 in preorder;
4. If P visits node v first time{

 wait 1 timeslot;
 start shortest paths(v);
 }

Compute All Pairs Shortest Paths

v

u Starts at t

w

 APSP in O(n)

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T
 in preorder;
4. If P visits node v first time{

 wait 1 timeslot;
 start shortest paths(v);
 }

Compute All Pairs Shortest Paths

Starts at t

v

u

w

 APSP in O(n)

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T
 in preorder;
4. If P visits node v first time{

 wait 1 timeslot;
 start shortest paths(v);
 }

Compute All Pairs Shortest Paths

Starts at t

w

v

u

 APSP in O(n)

Arrives at 𝑡𝑡 + 𝑑𝑑(𝑢𝑢, 𝑣𝑣)

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T
 in preorder;
4. If P visits node v first time{

 wait 1 timeslot;
 start shortest paths(v);
 }

Compute All Pairs Shortest Paths

Starts at t

w

v

u

 APSP in O(n)

Arrives at 𝑡𝑡 + 𝑑𝑑(𝑢𝑢, 𝑣𝑣)

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T
 in preorder;
4. If P visits node v first time{

 wait 1 timeslot;
 start shortest paths(v);
 }

Compute All Pairs Shortest Paths

Starts at t

w

v

u

 APSP in O(n)

Arrives at 𝑡𝑡 + 𝑑𝑑(𝑢𝑢, 𝑣𝑣)

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T
 in preorder;
4. If P visits node v first time{

 wait 1 timeslot;
 start shortest paths(v);
 }

Compute All Pairs Shortest Paths

Starts at t

Arrives at 𝑡𝑡 + 𝑑𝑑(𝑢𝑢, 𝑣𝑣)
Arrives at ≥ 𝑡𝑡 + 𝑑𝑑(𝑢𝑢, 𝑣𝑣)

w

v

u

 APSP in O(n)

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T
 in preorder;
4. If P visits node v first time{

 wait 1 timeslot;
 start shortest paths(v);
 }

Compute All Pairs Shortest Paths

Starts at t

Arrives at 𝑡𝑡 + 𝑑𝑑(𝑢𝑢, 𝑣𝑣)
Arrives at ≥ 𝑡𝑡 + 𝑑𝑑(𝑢𝑢, 𝑣𝑣)

w

v

u

 APSP in O(n)

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T
 in preorder;
4. If P visits node v first time{

 wait 1 timeslot;
 start shortest paths(v);
 }

Compute All Pairs Shortest Paths

Starts at t

Arrives at 𝑡𝑡 + 𝑑𝑑(𝑢𝑢, 𝑣𝑣)
Arrives at ≥ 𝑡𝑡 + 𝑑𝑑(𝑢𝑢, 𝑣𝑣) +1

w

v

u

 APSP in O(n)

Starts at t

Arrives at 𝑡𝑡 + 𝑑𝑑(𝑢𝑢, 𝑣𝑣)
Arrives at ≥ 𝑡𝑡 + 𝑑𝑑(𝑢𝑢, 𝑣𝑣) +1

w

v

u

 APSP in O(n)

v never active for u and w
at the same time!

True for any trippel.
No congestion!

Runtime: O(n +D) = O(n)

1. Pick a root-node r;
2. T := BFS-Tree(r);
3. Pebble P traverses T
 in preorder;
4. If P visits node v first time{

 wait 1 timeslot;
 start shortest paths(v);
 }

Compute All Pairs Shortest Paths

APSP-Application:
Compute Diameter in O(n)

APSP-Application:
Compute Diameter in O(n)

Optimal?

Diameter Lower Bound!

Diameter of Network? Diameter Lower Bound!

Diameter of Network? Diameter Lower Bound!

Diameter of Network? Diameter Lower Bound!

Diameter of Network? Diameter Lower Bound!

Diameter of Network? Diameter Lower Bound!

Diameter of Network? Diameter Lower Bound!

Diameter of Network? Diameter Lower Bound!

Diameter of Network? Diameter Lower Bound!

Diameter of Network? Diameter Lower Bound!

Diameter of Network? Diameter Lower Bound!

𝑛𝑛2 information

Diameter of Network? Diameter Lower Bound!

𝑛𝑛2 information

n log n bandwidth

≈𝛀𝛀(n)

Extentions

Extentions

Diameter of Network? Diameter Lower Bound!

Diameter of Network? Diameter Lower Bound!

S-Shortest Path in O(|S| + D)

(x,1+ε)-Approximating Diameter

S-Shortest Path in O(|S| + D)

Shortest paths between S x V

(x,1+ε)-Approximating Diameter

S-Shortest Path in O(|S| + D)

(x,1+ε)-Approximating Diameter

S-Shortest Path in O(|S| + D)

S:= Minimum
O(D/ε)-Domingating Set

(x,1+ε)-Approximating Diameter

[Kutten, Peleg 1998]

S-Shortest Path in O(|S| + D)

S:= Minimum
O(D/ε)-Domingating Set

Runtime: O(n/D + D)

(x,1+ε)-Approximating Diameter

[Kutten, Peleg 1998]

S-Shortest Path in O(|S| + D)

S:= Minimum
O(D/ε)-Domingating Set

Runtime: O(n/D + D)

Maximal Error: D/ε vs. D

(x,1+ε)-Approximating Diameter

[Kutten, Peleg 1998]

S-Shortest Path in O(|S| + D)

S:= Minimum
O(D/ε)-Domingating Set

Runtime: O(n/D + D)

Maximal Error: D/ε vs. D

(x,1+ε)-Approximating Diameter

[Kutten, Peleg 1998]

Extentions

[Peleg, Roditty, Tal 2012]:
(x, 3/2)-approximate diameter O(𝑛𝑛𝑛𝑛)

Extentions

[Peleg, Roditty, Tal 2012]:
(x, 3/2)-approximate diameter O(𝑛𝑛𝑛𝑛)

Summary

Diameter Ө(n) APSP O(n)

r

v

u

w

APSP Ω(n)

S-Shortest Paths O(|S| + D)

Thanks!

	Foliennummer 1
	Distributed network �Graph G of n nodes
	Distributed network �Graph G of n nodes
	Distributed network �Graph G of n nodes
	Distributed network �Graph G of n nodes
	Distributed network �Graph G of n nodes
	Distributed network �Graph G of n nodes
	Distributed network �Graph G of n nodes
	Distributed algorithms:�a simple example
	Count the nodes!
	Count the nodes!
	Count the nodes!
	Count the nodes!
	Diameter of a network
	Diameter of a network
	Diameter of a network
	Diameter of a network
	Fundamental problems
	Fundamental problems
	Fundamental problems
	Fundamental problems
	Fundamental problems
	Fundamental problems
	Extentions
	Extentions
	Extentions
	Extentions
	 APSP in O(n)
	APSP in O(n)
	APSP in O(n)
	APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	 APSP in O(n)
	APSP-Application:�Compute Diameter in O(n)
	APSP-Application:�Compute Diameter in O(n)
	Foliennummer 61
	Foliennummer 62
	Foliennummer 63
	Foliennummer 64
	Foliennummer 65
	Foliennummer 66
	Foliennummer 67
	Foliennummer 68
	Foliennummer 69
	Foliennummer 70
	Foliennummer 71
	Foliennummer 72
	Extentions
	Extentions
	Foliennummer 75
	Foliennummer 76
	Foliennummer 77
	S-Shortest Path in O(|S| + D)��Shortest paths between S x V���
	S-Shortest Path in O(|S| + D)�����
	S-Shortest Path in O(|S| + D)��S:= Minimum 					 �O(D/ε)-Domingating Set��
	S-Shortest Path in O(|S| + D)��S:= Minimum 					 �O(D/ε)-Domingating Set��Runtime: 			O(n/D + D)
	S-Shortest Path in O(|S| + D)��S:= Minimum 					 �O(D/ε)-Domingating Set��Runtime: 			O(n/D + D) �Maximal Error: D/ε vs. D �
	S-Shortest Path in O(|S| + D)��S:= Minimum 					 �O(D/ε)-Domingating Set��Runtime: 			O(n/D + D) �Maximal Error: D/ε vs. D �
	Extentions
	Extentions
	Summary
	Thanks! ��

