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The Price of Malice: A Game-
Theoretic Framework for Malicious
Behavior in Distributed Systems
Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer

Abstract. In recent years, game theory has provided insights into the behavior of dis-
tributed systems by modeling the players as utility-maximizing agents. In particular,
it has been shown that selfishness causes many systems to perform in a globally sub-
optimal fashion. Such systems are said to have a large price of anarchy. In this article,
we extend this field of research by allowing some players to be malicious rather than
selfish. What, we ask, is the impact of malicious players on the system consisting of
otherwise selfish players? In particular, we introduce the price of malice as a measure
that captures how much the system’s efficiency degrades in the presence of malicious
players, compared to a purely selfish environment. As a specific example, we analyze
the price of malice of a game that models the containment of the spread of viruses.
In this game, each player or node can choose whether to install antivirus software.
Then, a virus starts from a random node and recursively infects all neighboring nodes
that are not inoculated. We establish various results about this game. For instance,
we quantify how much the presence of malicious players can deteriorate or—in case of
highly risk-averse selfish players—improve the social welfare of the distributed system.

1. Introduction

The introduction of microeconomic models and game theory in computer sci-
ence has led to insights into today’s large-scale distributed systems. Many as-
pects of peer-to-peer (p2p) networks or the Internet, which typically connect
different utility-optimizing stakeholders or agents, have been studied from a
game-theoretic point of view over the last several years. However, it is well
known that the noncooperation challenge in distributed systems is not restricted
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to selfishness. Many p2p networks and distributed systems are faced with the
problem of malicious participants or adversaries who try—independently of their
own cost—to degrade the utility of the entire system, to attack correctness of
certain computations, or to cause endless changes that render the system unsta-
ble. In some sense, these malicious adversaries may be seen as acting selfishly,
but with a cost function that is the inverse of the system’s social welfare.

This article introduces a mathematical framework that seeks to combine two
fruitful threads of distributed systems research: game theory and fault-tolerance.
We consider a system of selfish individuals whose only goal is to optimize their
own benefit, and add malicious players who attack the system in order to de-
teriorate its overall performance. We ask, what is the impact of the malicious
players on a selfish system’s efficiency? We exemplify our theory by giving an
analysis of a virus inoculation game.

To study the impact of malicious players on a given system formally, we in-
troduce the price of malice of selfish systems. The price of malice is a ratio
that expresses how much the presence of malicious players deteriorates the so-
cial welfare of a system consisting of selfish players. More technically, the price
of malice is the ratio between the social welfare or performance achieved by a
selfish system containing a number of malicious players and the social welfare
achieved by an entirely selfish society.

It is interesting to compare the price of malice with the notion of the price
of anarchy [Koutsoupias and Papadimitriou 99]. The price of anarchy captures
the maximum degradation of a system due to selfish behavior of its users or
participants. That is, the price of anarchy relates the social welfare generated by
players acting in an egoistic manner to an optimal solution obtained by perfectly
collaborating participants. In comparison, the price of malice’s reference point
is not a socially optimal welfare, but the welfare achieved by an entirely selfish
system.

The price of anarchy and the price of malice are therefore two orthogonal
measures that describe inherent properties of distributed socioeconomic systems.
Specifically, a system may have a small price of anarchy, but a large price of mal-
ice, and vice versa. The fact that a system has a large price of anarchy indicates
that it is necessary to design mechanisms (such as taxes or payment schemes)
that force players to collaborate more effectively. However, it is more difficult to
improve or repair systems having a large price of malice, since malicious players
do not respond to (financial) incentives. Often, the only solution is to defend
the system against malicious intruders, or at least to ensure that the number
of malicious players in the system remains small. By introducing a model that
formally comprises the notions of malicious Nash equilibria, the malicious price
of anarchy, and the price of malice, we are able to analyze what happens in
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selfish systems if the aim of one or more players is to hinder the system in its
operation or to bog down its performance as much as possible.

The price of malice crucially depends on the amount of information the self-
ish players have about the presence and behavior of the malicious players, and
how they respond to this information. In other words, the utility function that
eventually defines the selfish players’ reaction depends on how they subjectively
perceive and judge the threat of malicious players. Hence, the utility of selfish
players is computed using the perceived expected cost rather than the unknown
actual cost. For example, it can be shown that in case of risk-averse players, the
presence of malicious players may actually improve the social welfare. Specif-
ically, there are situations in which—in view of the risk caused by malicious
players—selfish players become more willing to collaborate, thereby improving
the social welfare compared to a system without malicious players. To the best
of our knowledge, this is the first framework that allows for an analytical quan-
tification of this interesting and counterintuitive phenomenon, which we call the
fear factor.1 Potentially, this gives rise to new research questions in many areas
including distributed systems, economics, politics, and sociology.

In this article, we investigate a concrete example in which selfish and malicious
players interact. In this simple game, we consider a network of players (or
equivalently, nodes or peers) such that each player can choose between paying
for inoculation and risking infection by a virus. After the nodes have made their
choices, a virus starts at some random node and propagates recursively to all
neighboring nodes that are not inoculated.

Besides studying the price of malice of this game, we also consider the question
of stability. Particularly, we investigate how many malicious players suffice to
prevent the system from stabilizing.

2. Related Work

Security and robustness of distributed systems against malicious faults are of
prime importance and have been an active field of research for many years. For
example, in [Castro and Liskov 99], a malicious-fault-tolerant distributed file
system has been proposed. Possibility and impossibility results on the mali-
cious consensus problem have been achieved in a variety of models and settings
[Dolev 82, Lamport et al. 82, Shostak et al. 80]. In addition, the distributed
computing community has come up with results and solutions for a wide vari-
ety of other problems with malicious faults. Examples are clock synchronization

1Recently, this phenomenon has also been referred to as the windfall of malice.
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[Welch and Lynch 88], broadcast [Koo 04, Srikant and Toueg 87], and quorum
systems [Malkhi and Reiter 98]. All of the above works assume that nonmalicious
players (or processes) are benevolent and attempt to reach a common goal.

Malicious behavior is also subject to intensive research in cryptography. For in-
stance, there is a large body of work in the area of secure multiparty computation
[Yao 82]. In this context, the two interesting papers [Halpern and Teague 04]
and [Abraham et al. 06] need to be mentioned, which consider self-interested
players, e.g., in secret sharing problems. In the latter, it is shown that Nash
equilibria exist for secret sharing whereby no member of a coalition of size up to
k nodes can do better even if the entire coalition defects, provided that players
prefer to get the secret information than not to get it.

This article strives for combining fault-tolerance research with game theory.
In this respect, our work is related to the notions of fault-tolerant implementa-
tion introduced in [Eliaz 02] and of BAR fault tolerance introduced in [Aiyer et
al. 05] (see also [Li et al. 06, Clement et al. 08]). In [Eliaz 02], implementation
problems are investigated with k faulty players in the population, but neither
their number nor their identity is known. A planner’s objective then is to de-
sign an equilibrium whereby the nonfaulty players act according to his rules. In
[Aiyer et al. 05], the authors describe an asynchronous state machine replication
protocol that tolerates Byzantine, Altruistic, and Rational (BAR) behavior.
Interestingly, they find that the presence of Byzantine players can simplify the
design of protocols if players are risk-averse. In contrast to our work, rather than
evaluating the degradation due to noncooperative behavior, a concrete protocol
for a cooperative backup service is provided.

To the best of our knowledge, the first paper to study equilibria with a ma-
licious player is [Karakostas and Viglas 07]. The authors consider a routing
application whereby a single malicious player uses his flow through the network
in an effort to cause the maximum possible damage. In order to evaluate the
impact of such malicious behavior, a coordination ratio is introduced that com-
pares the social costs of the worst Wardrop equilibrium to the social costs of the
best minimax saddle point. A different basing point is used, whereby the benev-
olent coordinator cannot influence the malicious player: in the “social optimum”
only the costs of the players that can be coordinated are minimized, while the
malicious player seeks to maximize costs.

There exists other work on game-theoretic systems in which not every partic-
ipating agent acts in a rational or selfish way. In the Stackelberg theory [Rough-
garden 01], for instance, the model consists of a set of selfish players, but a
certain fraction of the entire population is controlled by a global leader. The
leader’s goal is to devise a strategy that induces an optimal or near-optimal
so-called Stackelberg equilibrium.
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There has been a large number of new results since the initial publication of
this work in [Moscibroda et al. 06]. The work [Babaioff et al. 09] analyzes the
so-called windfall of malice (which is related to our fear factor) in the context of
nonatomic congestion games. The players in this work are less risk-averse, and a
different solution concept is employed: while malicious players cannot hide their
actual strategies, they are bound to route a certain amount of traffic that may
lead to a windfall of malice.

The authors conjecture that there is no windfall of malice in their congestion
game model in networks in which the set of paths is a matroid, and also find
that the absence of a windfall of malice is related to the absence of a generalized
Braess’s paradox.

Further results following [Moscibroda et al. 06] include [Roth 08, Diaz et al. 09,
Chakrabarty et al. 09, Gradwohl and Reingold 08, Gabarro et al. 08, Eidenbenz
et al. 07, Lelarge and Bolot 09, Fultz and Grossklags 09, Chen and Kempe 09, Li
et al. 08, Cohen et al. 08, Meier et al. 08]. The recent work [Roth 08] studies the
price of malice in linear congestion games, making weaker assumptions on the
behavior of rational and malicious players, and providing a no-regret analysis.
The authors of [Diaz et al. 09] study where fear in mediation can improve the
outcome, and compare virus inoculation and congestion games. Malicious players
in a load-balancing game have been investigated in [Chakrabarty et al. 09]. The
authors of [Gradwohl and Reingold 08] start with the observation that a Nash
equilibrium does not provide any guarantees for a selfish player in the presence
of irrational participants, but they can prove that large games are naturally
fault-tolerant.

In [Gabarro et al. 08], game theory is used to analyze the effect of a number
of service failures during the execution of a grid orchestration. The authors of
[Eidenbenz et al. 07] investigate a scenario with selfish players that are influenced
by a malicious mechanism designer rather than a benevolent one. It is shown
that sometimes, a malicious mechanism designer can worsen the outcomes at no
cost. In order to cope with the problem of insufficient self-protection against
viruses in distributed systems, [Lelarge and Bolot 09] proposes an insurance as
a powerful incentive mechanism that pushes agents to invest in self-protection.

The reference [Fultz and Grossklags 09] explores economic security incentives
and studies the trade-off between protection and self-insurance. Moreover, note
that there also exists work on auctions with agents that derive utility from the
disutility of others [Brandt et al. 07, Morgan et al. 03]. Both papers derive
symmetric Bayesian Nash equilibria for spiteful agents in first-price and second-
price sealed bid auctions. The authors show that the revenue equivalence be-
tween second-price and first-price auctions breaks down with spiteful agents,
with second-price outperforming first-price. The reference [Chen and Kempe 09]
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studies auctions whose bidders are embedded in a social or economic network.
Bidders who do not win the auction themselves might derive utility from the
auction, namely, when a friend wins; on the other hand, when an enemy or com-
petitor wins, a bidder might derive negative utility. As far as applications are
concerned, at OSDI 2008, the peer-to-peer application FlightPath [Li et al. 08]
was presented, which is robust to selfish and malicious behavior. Finally, there
is an interest in selfish behavior in self-stabilization [Cohen et al. 08], and in the
effects of altruism in addition to selfishness [Hoefer and Skopalik 09, Meier et
al. 08]; in particular, [Meier et al. 08] studies the same game-theoretic framework
as we introduce here, but considers a social setting.

Of course, coordination and collaboration problems involving malicious players
also exist outside game theory. For example, consider the collaborative filtering
problem studied in [Awerbuch et al. 05] (see also [Awerbuch et al. 04]), where
there are malicious players among the n players participating in a reputation
system like eBay. The goal of the honest players is to find a good object, and
they can use a shared billboard to collaborate. The dilemma of an honest player
is how to balance the desire to reduce her cost by taking advantage of the reports
posted by honest peers against the fear of being exploited by adopting reports
posted by malicious players.

Finally, there exist many virus propagation models in the literature. While
traditional epidemiological models characterize infection in terms of birth rate
and death rate of the virus [Bailey 75], more recently, models have been proposed
for all kinds of graphs, including Internet-like power-law graphs [Pastor-Satorras
and Vespiagnani 02]. In particular, our game-theoretic virus propagation model
is based on [Aspnes et al. 05], whose authors model the containment of the
spread of viruses in general graphs. They characterize equilibria in selfish envi-
ronments and also give an approximation algorithm for the centralized, nonselfish
case.

3. Framework

We present our model in two steps. First, we discuss the virus inoculation game
derived from [Aspnes et al. 05]. Subsequently, we introduce our framework of
malicious game theory including the definition of the price of malice.

3.1. Virus Inoculation Game

Similarly to [Aspnes et al. 05], we model the virus inoculation game as a scenario
with n strategic players each of whom corresponds to a node in an undirected
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grid G[r, c] of r rows and c columns.2 Henceforth, we will refer to the upper left
corner of the grid as G[0, 0], i.e., indices start with 0.

Each node i has two choices: either do nothing and risk infection by a virus,
or inoculate itself by installing antivirus software. For a node, installing the
antivirus software has the obvious advantage that it becomes immune against
infection. On the other hand, the process of installing the software entails a cost
in terms of money and/or time. Hence, a strategic player may or may not opt
for inoculation depending on which choice maximizes his own utility.

The nodes’ choices can be summarized by a strategy profile −→a ∈ {0, 1}n,
where ai = 1 signifies that node i installs the antivirus software, and ai = 0 that
it does not install it. We call nodes i with ai = 1 secure, and denote the set
of secure nodes by I−→a . After the nodes have made their choices, the adversary
picks some node uniformly at random as a starting point for infection. Infection
then propagates on the network graph and infects all nonsecure nodes that are
in the same nonsecure connected component as the starting point of infection.
Technically, we associate an attack graph G−→a = G \ I−→a with −→a . It is essentially
the network graph in which all secure nodes and their incident edges are removed.

In this article, we consider the following costs: installing antivirus software on
a selfish node entails an inoculation cost of 1 at this node. If a selfish node does
not inoculate and becomes infected, it suffers a loss equal to L. Therefore, the
cost of a selfish node i can be summarized as follows:

costi(−→a ) = ai + (1 − ai) · L · ki

n
,

where ki/n is the probability that node i is infected, conditioned on the event
that it does not install the antivirus software. Thereby, ki is the size of the
connected component containing i in G−→a . Finally, the social cost of a strategy
profile −→a is the sum of all individual costs, i.e., Cost(−→a ) =

∑
j∈S costj(−→a ),

where S denotes the set of all selfish players. When the strategy profile −→a is
clear from the context, we sometimes use abbreviations costi and Cost to denote
individual cost and social cost, respectively.

3.2. Malicious Game Theory

In order to understand the impact of malicious players on the selfish system, we
extend the virus inoculation game with malicious players. Formally, there are
n nodes in the network. Of these n nodes, b are malicious nodes that do not
strive to minimize their own costs. Instead, the goal of these malicious nodes
is to deteriorate the overall system performance as much as possible, i.e., to

2Our results can be generalized to other highly regular, low-dimensional graphs such as the
two-dimensional torus, i.e., a grid that wraps around at the boundaries.

D
ow

nl
oa

de
d 

by
 [

E
T

H
 Z

ur
ic

h]
 a

t 0
1:

56
 0

2 
Ju

ly
 2

01
2 



�

�

“imvol6” — 2010/9/22 — 12:10 — page 132 — #8
�

�

�

�

�

�

132 Internet Mathematics

maximize the resulting social cost of the solution. The remaining s := n − b

nodes are selfish and aim at maximizing their own utility. We denote the set of
malicious and selfish players by B and S, respectively. Then b := |B|, s := |S|,
and n = s + b.

While selfish nodes behave as discussed in Section 3.1, we assume that the
malicious nodes pursue the following strategy: they claim to be inoculated (i.e.,
they proclaim their strategy to be ai = 1), but actually they are not. In order
to emphasize that malicious nodes are only seemingly secure, we denote the set
of really inoculated and secure selfish nodes by Iself−→a . The attack graph resulting
from strategy profile −→a is then G−→a = G−Iself−→a . This is the network graph without
secure, selfish nodes, but including all malicious nodes. We can therefore define
the individual cost incurred at a selfish node i ∈ S as follows.

Definition 3.1. (Actual individual cost.) We define the (actual) individual cost costi(−→a )
of a node i ∈ S as

costi(−→a ) := ai + (1 − ai) · L · ki

n
,

where ki is the size of the connected component of node i in the attack graph G−→a .

Notice that in spite of its being equivalent to the corresponding definition in
Section 3.1, we call this cost actual individual cost. This is to emphasize the
fact that selfish players may not know about the existence of malicious players,
and therefore, they are unable to compute their actual individual cost. Even
if they are aware of the malicious players’ existence, they might not know the
malicious players’ exact locations or strategies. In other words, with the addition
of malicious players, selfish nodes no longer have perfect knowledge about the
network and its nodes’ choices.

In case of imperfect information, a node might deal with its uncertainty in
different ways. For example, a node might be risk-averse and act in a conservative
manner. These observations imply that before the location and strategies of
malicious players are revealed (i.e., before the virus infection occurs), a selfish
player i experiences a perceived individual cost ĉosti(−→a ). This perceived cost
can differ from the actual individual cost costi(−→a ) that a node eventually has
to pay.

Definition 3.2. (Perceived individual cost.) Consider a selfish game with malicious players in
which selfish players have imperfect knowledge about the existence, location, or
strategy of malicious players. In this case, the perceived individual cost ĉosti(−→a )
of a selfish player i captures the cost expected by player i given his knowledge
about the malicious players. This cost depends on the underlying model.
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The strategic decisions of selfish players can be based only on the perceived
cost (not on their actual individual costs), since the actual individual cost can be
computed only once the locations and strategies of malicious players are revealed.
In this article, we will study the following two basic models.

Definition 3.3. (Oblivious model.) In the oblivious model, selfish players are not aware of
the existence of malicious players. That is, selfish players assume that all other
players in the system are selfish as well.

Definition 3.4. (Nonoblivious model.) In the nonoblivious model, selfish players know
about the existence of malicious players. Specifically, we assume that every selfish
player knows b, the number of malicious players in the system, but he does not
know about these players’ exact locations or strategies. Moreover, we assume
that selfish players are highly risk averse in the sense that they aim at minimizing
their maximal individual cost. Let D be the set of possible distributions of
malicious players among all players. A selfish player i experiences a perceived
individual cost of

ĉosti(−→a ) := max
d∈D

{costi(−→a , d)},

where costi(−→a , d) denotes the actual costs of i if the malicious players are dis-
tributed according to d ∈ D.

In the virus inoculation game, and in an oblivious model, the perceived cost
is typically smaller than the actual cost: a node i ∈ S does not take into consid-
eration the malicious nodes that may increase the size of i’s attack component.
In the nonoblivious risk-averse model, on the other hand, a node actually over-
estimates its expected actual cost by considering a worst-case scenario: a selfish
player assumes that the malicious nodes are—from his individual point of view—
distributed in a worst-case fashion among all players. Therefore, the perceived
individual cost may be larger than the actual cost.

Since our goal is to understand the impact of malicious behavior on a system
of selfish players, the cost of malicious players is not included in the social cost. If
it were, it would in general be easy for malicious players to arbitrarily deteriorate
the social welfare of a system by simply increasing their own costs as much as
possible. Moreover, since malicious players are malicious anyway, there is no
particular reason why the overall system should care about these players’ costs.

The total social cost Cost(−→a ) of a strategy is defined as the sum of the (actual)
individual costs of all selfish players. Since each node in the same connected
component of G−→a has the same probability of infection, the li selfish nodes in
the ith attack component face a loss of li · (Lki/n) if the component is infected.
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Definition 3.5. (Social cost.) The social cost is given by the sum of the actual individual
costs of selfish players:

Cost(−→a ) =
∑
j∈S

costj(−→a ) = |Iself−→a | + L

n

l∑
i=1

kili,

where on the right-hand side, the first term is the inoculation cost and the second
term is the infection cost, and where k1, k2, . . . , kl are the sizes of the components
in G−→a , and l1, l2, . . . , ll are the sizes of the same components without counting
the malicious nodes. We refer to the cost due to inoculation as the inoculation
cost Costinoc, and to the cost due to the virus infections as the infection cost
Costinfec.

The social cost of a setting in which all nodes perfectly collaborate, i.e., in
which there are neither selfish nor malicious nodes, is called the social optimum.

Definition 3.6. (Optimal social cost.) The optimal social cost Costopt is the sum of all
the players’ actual individual costs in case of perfect collaboration.

Recall that the Nash equilibrium describes a situation in which no selfish
node has an incentive to unilaterally change its strategy. In the following, we
extend the definition of a Nash equilibrium to incorporate malicious nodes. The
malicious Nash equilibrium (MNE) describes a configuration in which no selfish
player can reduce his perceived cost by changing his strategy, given that the
strategies of all other players are fixed.3

Definition 3.7. (Malicious Nash equilibrium (MNE).) Let −→a [i|x] be the strategy vector that
is identical to −→a except for the ith component ai, which is replaced by x. In a
malicious Nash equilibrium, no selfish player i ∈ S has an incentive to change
his strategy if the strategies of all other (selfish and malicious) players are fixed,
i.e.,

∀i ∈ S : ĉosti(−→a ) ≤ ĉosti(−→a [i|a′
i]),

for every possible strategy a′
i.

While the malicious Nash equilibrium must be defined by the perceived indi-
vidual costs, the resulting social cost is determined by the actual costs. After all,
it is the actual individual costs that players will eventually have to pay. In the

3Notice that we do not define the malicious Nash equilibrium with actual individual costs,
because they are not known to the players.
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following, we will refer to the social cost of the worst malicious Nash equilibrium
of a problem instance I as CostmNe(I, b).

It is well known that selfish and malicious players often interact in a manner
that yields suboptimal solutions. The degree of degradation resulting from selfish
and malicious players compared to the social optimum is captured by the price
of malicious anarchy.

Definition 3.8. (Price of malicious anarchy.) The price of malicious anarchy captures how
much worse a malicious Nash equilibrium can be compared to a collaborative
optimal solution. More formally, in a scenario with b malicious players, the price
of malicious anarchy PoMA(b) is the ratio between the worst-case social cost
of a malicious Nash equilibrium divided by the minimal social cost, i.e., for all
problem instances I,

PoMA(I, b) =
maxmNe CostmNe(I, b)

Costopt(I)
.

Note that in the absence of malicious players, i.e., if the system consists of
selfish players only, the price of malicious anarchy is equivalent to the well-
known price of anarchy (PoA) studied in classical game theory. Specifically,
PoA = PoMA(0).

With these definitions, we are ready to define the price of malice, which de-
scribes the degree of suboptimality resulting from malicious players in an other-
wise selfish system. A high price of malice indicates that an economic system is
particularly vulnerable to malicious attacks. On the other hand, if the price of
malice is low, the system consisting of selfish players is stable enough to tolerate
malicious participants. Clearly, the degree of degradation may depend on the
number of malicious players in the game. Hence, the price of malice is a function
of b.

Definition 3.9. (Price of malice.) The price of malice captures the ratio between
the worst malicious Nash equilibrium with b malicious players and the price of
anarchy in a purely selfish system. Formally, for problem instance I,

PoM(I, b) =
PoMA(I, b)
PoMA(I, 0)

.

As will be discussed in Section 4.4, we may also speak of the inverse of the
price of malice as the game’s fear factor Ψ(b). That is, a game’s fear factor is
given by Ψ(b) := 1/PoM(b).
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4. Virus Game Analysis

In order to derive results for the price of malice in various models, we have
to establish structural properties of Nash equilibria and the social optimum in
the virus inoculation game. We begin with a simple characterization of Nash
equilibria if there are no malicious nodes. The following lemma is derived from
the analogous lemma in [Aspnes et al. 05].

Lemma 4.1. In a pure Nash equilibrium −→a ,

(a) every component in the attack graph G−→a has a size of at most n/L;

(b) inserting any secure node into G−→a yields a component size of at least n/L.

Lemma 4.1 implies that if L ≥ n, all nodes will inoculate in the Nash equilib-
rium. Therefore, for the rest of this article, we assume that L < n.

4.1. Social Optimum

If the inoculation strategies of the individual nodes are planned by a benevolent
centralized coordinator, the welfare of the system is maximized. In the following,
we will derive an asymptotically tight bound on the cost of this social optimum.
Throughout this section, perceived costs equal actual costs because when study-
ing the social optimum, we do not consider malicious players, i.e., b = 0 and
therefore s = n.

Theorem 4.2. The optimal social cost if all players in S act altruistically is Costopt ∈
Θ(s2/3L1/3). More specifically,

1
3
√

π · s2/3L1/3 ≤ Costopt ≤ 4s2/3L1/3.

Proof. We prove the upper and lower bounds in turn.

Lower bound: If all nodes collaborate to achieve the optimal solution, then li =
ki, and hence the social cost is given by

Cost = |I−→a | +
L

n

l∑
i=1

k2
i ,

where |I−→a | is the number of inoculated nodes, and the ki are the sizes of the l

components in the attack graph. This sum is minimized when all ki are of equal
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size, say size K. While each secure node has a cost of 1, every other node has
an expected cost of L · K/n. Hence, setting γ := |I−→a | and because s = n, the
optimal social cost can be bounded as

Costopt ≥ γ + (s − γ)
(

LK

s

)
. (4.1)

A relationship between γ and K follows from a simple geometric argument: if
a component in the attack graph is of size K, the number of inoculated nodes at
the component’s border must be at least 2π

√
K/π = 2

√
πK (circumference of

a disk with area K). Since the total number of such components is at least s−γ
K

and since each inoculated node can be on the border of at most two components,
γ can be expressed as

γ ≥ s − γ

K
· 2
√

πK · 1
2

= (s − γ)
√

π

K
.

By solving this inequality for γ, it follows that γ ≥ s ·√π/K/(1 +
√

π/K). On
the other hand, it can be observed that in the optimal solution, for s > L, no
node is inoculated if all its four neighbors are inoculated. From this, it can be
derived that in an optimal solution, γ ≤ s

2 . Plugging these two bounds into
inequality (4.1), we see that the optimal social cost is at least

Costopt ≥ s ·
√

π/K

1 +
√

π/K
+

LK

2
.

The first term of the above expression is monotonically decreasing in K in the
range 0, . . . , s, whereas the second one is monotonically increasing. Therefore,
taking the minimum of the two terms for a specific K yields a lower bound on
Costopt. In setting

K :=
2
3
√

π ·
( s

L

)2/3

,

the second term yields 1
3

√
π · s2/3L1/3. The first term evaluates to√

3/2 · 4
√

π

1 +
√

3/2 · 4
√

π
s2/3L1/3 >

1
3
√

π · s2/3L1/3.

Consequently, we obtain the following lower bound on the cost of the social
optimum:

Costopt ≥ 1
3
√

π · s2/3L1/3 ∈ Ω(s2/3L1/3).
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n/L

L

2b
√

K

√
K

L

n
L
−b

b+1

n/L

Figure 1. Top left: Upper bound for social optimum. White nodes are insecure;
black nodes are secure. Top right: Malicious Nash equilibrium for G[n/L, L]
for the oblivious model. Insecure malicious nodes are denoted by white trian-
gles. They are located in a way that may yield an attack component of size
(b + 1)n/L + b. Bottom: Example with large social cost for the nonoblivious,
risk-averse model.

Upper bound: Having established a lower bound on the optimal social cost, we
now explicitly construct a solution that is asymptotically optimal and proves
the tightness of the above lower bound. Given an arbitrary grid G[r, c], we
inoculate the nodes as follows. Let K := (s/L)2/3. We secure all nodes in
the columns G[ ·, i√K] for i ∈ {1, . . . , �c/(

√
K + 1)	} and rows G[i

√
K, · ] for

i ∈ {1, . . . , �r/(
√

K + 1)	}. Consequently, all attack components are of size at
most

√
K × √

K = K as illustrated in Figure 1 (top left). Hence, the total
infection cost is at most

L · (s − |I−→a |)
K

s
< LK = s2/3L1/3.

It remains to bound the inoculation cost. In an ideal setting where the com-
ponents perfectly fit into G[r, c] without leftovers, for each component of size K

in the attack graph there are exactly 2
√

K + 1 inoculated nodes. Let X denote
the number of components. Then X · (K + 2

√
K + 1) = s, and therefore, on

plugging in the definition of K, we obtain X = s/[(s/L)2/3 +2(s/L)1/3+1]. The
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number of inoculated nodes γ is at most

γ ≤ X · (2
√

K + 1) ≤ s(2
√

K + 1)(
s
L

)2/3 + 2
(

s
L

)1/3 + 1

< s1/3L2/3 ·
(

2
( s

L

)1/3

+ 1
)

= 2s2/3L1/3 + s1/3L2/3

≤ 3s2/3L1/3.

Combining the infection and inoculation costs, we can bound the optimal social
cost by

Costopt < s2/3L1/3 + 3s2/3L1/3 = 4s2/3L1/3.

4.2. Price of Anarchy

The price of anarchy compares the social cost of the worst Nash equilibrium
(without malicious nodes) to the minimal social cost. In the upcoming section,
we will first compute CostNe, which is the maximal cost of any Nash equilibrium.
Together with the bound for the social optimum in Section 4.1, the price of
anarchy will follow.

Lemma 4.3. The social cost of the worst Nash equilibrium is CostNe = Θ(s).

Proof. First, we show that CostNe = Ω(s). Consider a grid G[s/L, L] consisting of
an even number L of columns of size s/L. Assume that columns G[ ·, 2i] for i ∈
{0, 1, . . . , L/2−1} consist of insecure nodes only, while all nodes in the remaining
columns are secure. According to Lemma 4.1, this situation constitutes a Nash
equilibrium. Observe that every second column is inoculated, engendering an
inoculation cost of s/2. Moreover, with probability 1/2, the virus starts at
an insecure node, yielding infection cost s/L · L. The social cost is therefore
CostNe = s/2 + 1/2 · s/L · L = s.

It remains to show that O(s) is an upper bound for any Nash equilibrium.
Since at most each of the s = n nodes can be inoculated, the inoculation cost
cannot exceed s. By Lemma 4.1, we also know that the infected component’s
size is at most s/L, entailing a total infection cost of at most s as well. Hence,
CostNe ≤ 2s, and the claim follows.

By Theorem 4.2 and Lemma 4.3, we get the following result.

Theorem 4.4. For the price of anarchy (PoA), we have

1
4
·
( s

L

)1/3

≤ PoA ≤ 6√
π
·
( s

L

)1/3

.
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Proof. As for the upper bound, we have

PoA =
CostNe

Costopt
≤ 2s

1
3

√
π · s2/3L1/3

≤ 6s1/3

√
π · L1/3

,

and as for the lower bound, we have PoA ≥ s/(4 · s2/3L1/3).

4.3. Oblivious Model

We begin our study of the price of malice with the oblivious model in which
players are clueless about the existence of malicious players in the system (cf.
Section 3). As a consequence, it follows that since nodes underestimate the
attack components’ sizes, the nodes’ perceived individual costs are smaller than
the actual individual costs. It turns out that in the presence of malicious nodes,
the social costs increase in the number of malicious nodes.

Lemma 4.5. In the oblivious model, the social cost is at least CostmNe ∈ Ω(s + nb2

L )
for b < L

2 − 1, and CostmNe ∈ Ω(sL) otherwise.

Proof. Consider again a grid G[n/L, L] with n/L rows and L columns, where
every second column consists of secure nodes only. For simplicity, let L be even.
Suppose that in each of the first b secure columns there is one malicious node; see
Figure 1 (top right). In case b ≥ L

2 − 1, every secure column that separates two
insecure columns contains one malicious node. The remaining malicious nodes
can be placed at arbitrary places in the secure columns. Because selfish nodes
are not aware of the existence of malicious nodes in the network, the perceived
cost is ĉosti = 1 for inoculated nodes, and ĉosti = n/L

n · L = 1 for the other
selfish nodes. Hence, the situation constitutes a malicious Nash equilibrium.

For computing the social costs of this malicious Nash equilibrium, we distin-
guish two cases, depending on whether the number of malicious nodes is smaller
than L/2 − 1. For the first case, assume that b ≥ L/2 − 1. Because there
is at least one malicious node in every secure column that separates two inse-
cure columns, all selfish and malicious players form one large attack component.
Consequently, each insecure selfish node i ∈ S is infected with probability 1 and
therefore CostmNe ≥ s · L.

For the second case, assume that b < L/2 − 1. Each of the first secure
columns contains exactly one malicious node. Since L is even, there are s/2 − b

secure nodes, and hence the inoculation cost is s/2 − b. With probability
((b + 1)n/L + b)/n, the infection starts at an insecure or a malicious node of an
attack component of size (b+1)·n/L, yielding a cost of (b+1)·n/L ·L = n(b+1).
Moreover, with probability (s/2− (b+1)n/L)/n, an insecure column of size n/L
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is hit. Thus, for b < L/2 − 1, we get the following lower bound on the social
cost:

CostmNe =
(s

2
− b
)

+
(b+1)n

L + b

n
· n(b + 1) +

s
2 − (b + 1)n

L

n
· n

L
· L

= s +
nb2

L
+

nb

L
+ b2 ∈ Ω

(
s +

nb2

L

)
.

Lemma 4.6. In the oblivious model, the social cost is at most

CostmNe ∈ O

(
min

{
sL, s +

b2n

L

})
.

Proof. Since at most every selfish node can be inoculated, it is clear that Costinoc =
O(s). It remains to study the infection cost. The infection cost of a node in some
component i is L times the probability of this component being hit by the virus,
i.e., L · ki/n. Hence, the total infection cost is given by

Costinfec =
∑

i

li · ki

n
· L =

L

n

∑
i

li · ki,

where ki is the size of the attack components (including malicious nodes), and
li is the number of selfish nodes in this component. In order to bound Costinfec

from above, let Sbyz denote the set of components in the attack graph that
contain at least one malicious node, and let Sbyz be the remaining components.
We can rewrite the equation above as

Costinfec =
L

n
·
[ ∑

i∈Sbyz

li · ki +
∑

i∈Sbyz

li · ki

]
,

that is, we consider the infection cost of components with at least one malicious
node separately from the remaining “malicious player-free” components. In the
following, let

Costbyz
infec :=

L

n

∑
i∈Sbyz

liki, Costbyz
infec :=

L

n

∑
i∈Sbyz

liki.

We have to prove that neither Costbyz
infec nor Costbyz

infec exceeds O(s + b2n
L ).

As we have shown in the proof of Lemma 4.3 in Section 4.2, the total infection
cost of a network consisting only of selfish nodes cannot exceed s. Because
in our case nodes are oblivious about the existence of malicious nodes, attack
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components without malicious nodes behave as they would in an entirely selfish
environment. Therefore, Costbyz

infec ∈ O(s).
It remains to compute the infection cost of those attack components that

include at least one malicious node. Let bi be the number of malicious nodes in
the ith component in Sbyz, and note that

∑
i bi = b. By Lemma 4.1, we know

that in the absence of malicious nodes, the size of an attack component is at
most ki ≤ n/L. Therefore, one malicious node can increase a component by
at most n/L nodes plus itself. From this it follows that the size of an attack
component i is bounded by

ki ≤ (bi + 1) · n

L
+ bi and li ≤ (bi + 1) · n

L
.

Using this relationship between bi and the size of the attack component, we can
bound Costbyz

infec as

Costbyz
infec =

L

n

∑
i∈Sbyz

li · ki

≤ L

n

∑
i∈Sbyz

[
(bi + 1) · n

L
·
(
(bi + 1) · n

L
+ bi

)]
=
∑

i∈Sbyz

[
(bi + 1)2

n

L
+ bi(bi + 1)

]
<
∑

i∈Sbyz

[
(bi + 1)2

(n

L
+ 1
)]

=
(n

L
+ 1
)
·
∑

i∈Sbyz

(bi + 1)2.

Given the constraint that bi ≥ 1 for every bi, and because
∑

i bi = b, the above
convex function assumes its maximum for a single positive bi = b. Consequently,

Costbyz
infec ≤

(n

L
+ 1
)
·
∑

i∈Sbyz

(bi + 1)2 ≤
(n

L
+ 1
)
· (b + 1)2 ∈ O

(
b2n

L

)
.

On the other hand, it is clear that at most every selfish node can be infected, and
hence Costbyz

infec + Costbyz
infec ≤ sL. The proof is concluded by adding the upper

bounds for Costinoc, Costbyz
infec, and Costbyz

infec.

Combining Lemmas 4.5 and 4.6 leads to the following theorem, which captures
the social cost in the virus inoculation game in the presence of b malicious players
among selfish, oblivious nodes.
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Theorem 4.7. The social cost in a malicious Nash equilibrium with b malicious nodes
in the oblivious model is CostmNe ∈ Θ(s + b2n

L ) for b < L
2 − 1, and CostmNe ∈

Θ(sL) otherwise.

Proof. In both cases, the lower bound follows from Lemma 4.5. As for the upper
bound, note that for b < L/2 − 1, and due to L ≤ n = s + b, we see that
b < (s + b)/2 and therefore b < s. Then the term s + b2n/L asymptotically
cannot exceed the term sL, and therefore the claim follows. As for the second
case, note that for b ≥ L

2 − 1, the term sL is asymptotically less than or equal
to s + b2n/L.

Finally, we can derive tight bounds on the price of malicious anarchy and the
price of malice by bringing together the results of Theorems 4.2, 4.4, and 4.7.

Theorem 4.8. In the virus inoculation game with b malicious nodes among selfish
oblivious nodes, the price of malicious anarchy and the price of malice are

PoMA(b) ∈ Θ
(( s

L

)1/3
(

1 +
b2

L
+

b3

sL

))
and

PoM(b) ∈ Θ
(

1 +
b2

L
+

b3

sL

)
for b < L

2 − 1. Otherwise,

PoMA(b) ∈ Θ
(
s1/3L2/3

)
and PoM(b) ∈ Θ (L) .

Proof. Consider the case b < L
2 − 1. For the price of malicious anarchy, we have

PoMA(b) =
CostmNe

Costopt
=

Θ(s + b2(b+s)
L )

Θ(s2/3L1/3)
∈ Θ

(( s

L

)1/3

·
(

1 +
b2

L
+

b3

sL

))
.

From this, the price of malice is computed as follows:

PoM(b) =
PoMA(b)

PoA
∈ Θ

(
1 +

b2

L
+

b3

sL

)
.

The case b ≥ L
2 −1 follows along the same lines by plugging in the corresponding

expressions of Theorem 4.7.
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Our results on the price of malice in the oblivious case support the intuition
that in the absence of knowledge about the existence of malicious players, the
quality of the global solution (i.e., the resulting social cost) deteriorates as the
number of malicious players increases. In the next section, we will show that
the situation may change as soon as selfish players are aware of the existence of
malicious players.

4.4. Nonoblivious Model

Having studied the oblivious model, we now turn our attention to the nonobliv-
ious case, in which selfish players are aware of the existence of malicious play-
ers. If selfish nodes knew about the exact locations of malicious nodes, they
would be able to compute their optimal choice exactly. If selfish nodes know
only the number of malicious nodes in the system, however, the optimal strat-
egy of a player becomes more complex, and the impact on the social cost
more interesting. Specifically, it turns out that in this nonoblivious case, the
“fear factor” may actually encourage players to act less selfishly and cooperate.
Put differently, there may be settings in which the existence of malicious play-
ers helps to improve the global social cost, rendering the price of malice less
than 1.

4.4.1. The Fear Factor. Intuitively, in the presence of malicious players, nodes may
be more willing to pay for inoculation. However, with our framework, we find
the interesting phenomenon that the selfish players’ awareness of the existence
of malicious players may lead to an improvement of the overall system behavior,
i.e., the social welfare.

In the following, we show the existence of such a fear factor, which describes the
gain of the overall social efficiency in a selfish system if selfish players are afraid
of malicious individuals among them. The fear factor is determined by the ratio
between the social cost of the worst malicious Nash equilibrium with b malicious
players and the worst Nash equilibrium in a purely selfish system. Technically,
we can define the fear factor Ψ as the inverse of the price of malice, i.e.,

Ψ(b) :=
1

PoM(b)
.

In other words, the fear factor Ψ quantifies how much the threat of a common
enemy can unite selfish individuals, and to what degree the global social perfor-
mance is improved.

To see that the fear factor can be positive already on a simple topology, con-
sider the following example. We are given a 1-dimensional chain of n nodes,
arranged from left to right and numbered 1, . . . , n, where n is an integer multiple
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of 1 + n/L and 1 + n/(bL). For the fear factor, we have

Ψ(b) =
1

PoM(b)
=

PoA
PoMA(b)

.

Thus Ψ(b) is at least the cost of some Nash equilibrium divided by the cost of
the worst malicious equilibrium. Consider the Nash equilibrium for which nodes
i · (1 + n/L) are inoculated, for i = 1, . . . , n/(1 + n/L). This equilibrium bears
expected costs n/(1 + n/l) + (n − n/(1 + n/L))/n · n = n. On the other hand,
in the worst malicious equilibrium, the b malicious players form one large attack
component: nodes i · (1 + n/(bL)) for i = 1, . . . , n/(1 + n/(bL)) are inoculated,
where nodes j · (1 + n/(bL)) for i = 1, . . . , b are malicious. This yields a cost of
at most (

n

1 + n
bL

− b

)
+

(b + 1) · ( n
bL + 1) − 1
n

· L · (b + 1) · n

bL

+
n − (b + 1) · ( n

bL + 1)
n

· n

bL
· L

=
(

n

1 + n
bL

− b

)
+
(
(b + 1) ·

( n

bL
+ 1
)
− 1
)
· b + 1

b

+
n − (b + 1)( n

bL + 1)
b

< n,

for, e.g., L = b = 5. Since the cost of the Nash equilibrium is n and the cost of
the worst malicious equilibrium is strictly less than n, this implies Ψ(b) > 1.

The existence of a fear factor has been documented in various economic and so-
cial models. By combining a game-theoretic framework with the classical notion
of malicious players from distributed computing and cryptography, our model
allows for an analytical quantification of a system’s fear factor Ψ from a compu-
tational point of view.

In the virus inoculation game, the fear factor may be both negative and pos-
itive. What is interesting to note, however, is that this fear factor Ψ cannot be
arbitrarily large, regardless of the number of malicious players b in the system.
Instead, as we will show in the next section, the price of malice can never drop
below the constant

√
π

48 , and hence the fear factor is bounded above by Ψ ≤ 48√
π

(cf. Section 4.4.2). That is, the social welfare or efficiency gained due to the fear
factor cannot exceed a factor of Ψ ≤ 48√

π
.

4.4.2. Price of Malice. We now derive bounds on the price of malice. By doing so,
we also derive an upper bound on the fear factor in our game. Observe that in
the nonoblivious case, every selfish node inoculates if b ≥ n

L , implying a social
cost of s. If b < n

L , the resulting social costs are bounded, by the following
lemma.
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Lemma 4.9. For b < n
2L , the social cost in a malicious Nash equilibrium in case of

nonoblivious, risk-averse players with b malicious nodes is at least

CostmNe ≥ s

2
+

bL

4
.

For all values of b, we have CostmNe ≥ s
2 .

Proof. We start with the more interesting case b < n
2L . Consider a grid with

L columns each containing n/L nodes. All nodes in columns 2i + 1 for i =
0, 1, . . . , L

2 − 1 and all nodes in rows j · ((n/L − b)/(b + 1)) for j = 1, 2, . . . , b are
inoculated. That is, as illustrated in Figure 1 (top right), each component of
insecure selfish nodes is of size (n/L − b)/(b + 1).

First, we show that this configuration constitutes a malicious Nash equilibrium
in the risk-averse, nonoblivious case with b malicious nodes. Consider an insecure
node in some column i. If all b secure nodes in this column are malicious, the
size of the resulting attack component is (n/L − b)/(b + 1) · (b + 1) + b = n/L.
Hence i’s perceived infection cost is

ĉosti = L · (n/L − b)/(b + 1) · (b + 1) + b

n
= 1,

which equals the cost of inoculation. Next, consider an inoculated selfish node
i and distinguish two cases. In the first case, i separates two components con-
sisting of insecure selfish players, and a change of i’s strategy would merge two
components of size (n/L− b)/(b + 1) into a single connected component of inse-
cure selfish nodes. Every malicious node can connect another component of size
(n/L− b)/(b+ 1) (and itself) to the component containing i. Therefore, the size
of the resulting attack component can be as large as(

2 ·
n
L − b

b + 1
+ 1
)

+
(

b ·
n
L − b

b + 1
+ b

)
=

b + 2
b + 1

(n

L
− b
)

+ b + 1 >
n

L
+

1
b + 1

.

The perceived cost of i without inoculation is therefore

ĉosti > L ·
n
L + 1

b+1

n
= 1 +

L

n(b + 1)
> 1.

In the second case, we consider a “crossing” node i that is located at the crossing
of a secure row and column. Consider the column to the right (or to the left)
of i. If all inoculated nodes in this column are malicious, the entire column plus
node i becomes one large attack component. Hence, the perceived cost of i is

ĉosti > L ·
n
L + 1

n
> 1.
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In other words, no selfish node has an incentive to change its strategy, and
the situation in Figure 1 (bottom) constitutes a malicious Nash equilibrium. In
the sequel, we bound the social cost of this equilibrium from below under the
assumption that all b malicious nodes are in column 1. Note that our construction
guarantees that this is always possible if b < n

2L .
We start with the sum of the infection costs Cost0infec of insecure nodes in

column 0. The number of insecure selfish nodes in this component is n
L − b.

Hence the expected sum of infection costs is

Cost0infec =
(n

L
− b
)
·

n
L − b + b

n
· L =

n

L
− b.

Let μ be the number of insecure nodes in columns 3, 5, etc. The sum of the
infection costs Costrinfec of the remaining attack components (each being of size
(n/L − b)/(b + 1)) is

Costrinfec = μ ·
n
L − b

n(b + 1)
· L > μ ·

(
1

b + 1
− L

n

)
.

Because the number of insecure nodes in these small attack components is μ =
L−1

2 · ( n
L − b

)
, it follows that

Costrinfec >
L − 1

2
·
(n

L
− b
)
·
(

1
b + 1

− L

n

)
>

1
2(b + 1)

(
n − n

L
− bL + b

)
− L

2
.

Finally, we also need to calculate the total inoculation cost of this topology.
Clearly, all s/2 nodes in even columns are secure. (Recall that column and row
indices start with 0.) Furthermore, b nodes in each odd column (except for
the first column) are also inoculated. Hence, the total inoculation cost Costinoc

becomes

Costinoc =
s

2
+

bL

2
− b =

s

2
+ b

(
L

2
− 1
)

.

Combining the various costs, we see that the social cost of the malicious Nash
equilibrium is

CostmNe(b) ≥ s

2
+ b

(
L

2
− 1
)

+
n

L
− b +

1
2(b + 1)

(
n − n

L
− bL + b

)
− L

2

≥ s

2
+

bL

4
for b ≤ n

2L and b ≥ 3.
Finally, note that if b ≥ n

2L , at least half of the selfish nodes inoculate and
hence CostmNe(b) ≥ s/2.
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With this lower bound on the social cost of a malicious Nash equilibrium, we
can now derive the price of malicious anarchy as well as the price of malice for
the nonoblivious, risk-averse model.

Theorem 4.10. In the nonoblivious, risk-averse model with b malicious nodes, the
price of malicious anarchy is at least

PoMA(b) ≥ 1
8

(( s

L

)1/3

+
b

2

(
L

s

)2/3
)

for b < n
2L . For all b, we have PoMA(b) ≥ 1

8 ( s
L)1/3.

Proof. Lemma 4.9 gives us a lower bound on the social cost of a malicious Nash
equilibrium in the nonoblivious, risk-averse model with b malicious nodes. On
the other hand, we have seen in Lemma 4.2 that the optimal social cost is at
most 4s2/3L1/3. Hence

PoMA(b) ≥
s
2 + bL

4

4s2/3L1/3
=

1
8

(
s1/3

L1/3
+

bL2/3

2s2/3

)
.

The second lower bound follows analogously.

Theorem 4.11. In the nonoblivious, risk-averse model with b malicious nodes, the
price of malice is

PoM(b) ≥
√

π

48

(
1 +

bL

2s

)
for b < n

2L . For all b, we have PoM(b) ≥
√

π
48 .

Proof. In order to derive the price of malice, we can apply our bound from Theorem
4.10 and the upper bound on the price of anarchy established in Theorem 4.4.
Specifically,

PoM(b) =
PoMA(b)

PoA
≥

1
8

((
s
L

)1/3 + b
2

(
L
s

)2/3
)

6s1/3√
π·L1/3

.

The theorem then follows from arithmetic simplifications. Again, the second
lower bound follows in an analogous way.

As mentioned in Section 4.4.1, the above bound also implies that the fear factor
cannot be arbitrarily large. Instead, Theorem 4.11 shows that the fear factor is
bounded above by a constant, specifically Ψ ≤ 48/

√
π.
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5. Stability Considerations

In the previous section, we studied the degradation of the social welfare in a
selfish system caused by malicious players. However, besides trying to reduce
the optimality of certain outcomes of games, malicious players might also attack
the stability of a system. In this section, we therefore continue our studies by
capturing the amount of instability that can be caused by malicious players in
an otherwise selfish system. Particularly, we are interested in the question, how
many malicious players suffice in order to keep the system from stabilizing?

In the following, we generalize the model of Section 4 to arbitrary network
graphs. We assume that the malicious players aim at destabilizing the system
by repeatedly announcing that they have changed from the insecure to the secure
state and back in a worst-case fashion. Thereby, we consider an oblivious model
whereby selfish nodes are not aware of the stability attack. We use the following
definitions.

Definition 5.1. (b-Stable/b-unstable.) We call a game b-stable if b malicious players
cannot prevent the system from reaching a Nash equilibrium. Similarly, a game is
called b-unstable if b malicious players are sufficient to prevent a Nash equilibrium
from ever being reached in the presence of oblivious selfish players.

For the virus inoculation game, the following stability properties can be shown.

Theorem 5.2.

(i) Generally, the virus inoculation game is not 1-stable.

(ii) For certain restricted classes of network graphs, the virus inoculation game
is 1-stable.

(iii) The virus inoculation game is always 2-unstable.

Proof. Claim (i): This claim already holds in simple graphs. Assume that n/L

is an integer and that L > 1, and consider a one-dimensional chain of nodes
{0, 1, . . . , n − 1}. Let the nodes i · n/L be secure, for i ∈ {0, 1, . . . , L − 1}. By
Lemma 4.1, this situation constitutes a Nash equilibrium.

Now assume that node n/L is malicious, and that it changes to the insecure
state. Then all other nodes j ∈ {1, 2, 3, . . . , n/L−1, n/L+1, . . . , 2n/L−1} have
an incentive to inoculate. However, once such a node j has become secure, node
n/L can return to the secure state, yielding components of size smaller than
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n/L. Consequently, j is bound to become insecure again. These changes can be
repeated forever.

Claim (ii): Interestingly, there are robust graphs in which no single node can
destabilize the system. To see this, consider a complete graph, in which each
node is connected to all other nodes. From Lemma 4.1, it follows that in this
network, all Nash equilibria have just a single attack component. Let C denote
the set of nodes of this component, and let C := V \C be the set of the remaining
(secure) nodes. Also by Lemma 4.1, we have that in any Nash equilibrium, the
size of C is either n/L or n/L − 1.

Moreover, observe that independently of which node is malicious and of how
the malicious node acts, a situation will eventually be reached with the two
components as described above. However, the system having converged to such
a state, there exist only four possibilities: the malicious node belongs either to
the node set C or to the node set C, and either |C| = n/L or |C| = n/L− 1. It is
run of the mill to verify that in all cases, a malicious node can enforce at most
one additional change.

Claim (iii): We use the fact that in the virus inoculation game, a pure Nash
equilibrium always exists, and that in the absence of malicious nodes, selfish
nodes stabilize quickly [Aspnes et al. 05]. Assume that the malicious nodes
first act like selfish nodes until such a classic Nash equilibrium is reached. Now
consider an arbitrary secure node u1 ∈ V , and assume that it is malicious. If u1

becomes insecure, then according to Lemma 4.1, an attack component C emerges
that consists of n/L or more nodes. If |C| > n/L, at least one node v in C has
an incentive to change to a secure state. Let C′ be the component of v when
u1 is secure, but not v. Assume that after v has changed, u1 becomes secure
again. There are two possibilities. If |C′| < n/L, v will return to the insecure
state, and the changes can be repeated forever with only one malicious node. If
|C′| = n/L, a second malicious (previously insecure) node u2 in C′ can force v to
become insecure again.

Finally, if |C| = n/L, nodes are indifferent between becoming secure or not.
Of course, however, another malicious node on the edge of C can cause endless
changes also in this case.

6. Conclusion

This article has initiated the study of distributed systems consisting of both self-
ish and malicious players. Using our models, we have derived bounds on the price
of malice in oblivious and nonoblivious systems. Moreover, we have quantified
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and bounded above the fear factor, which is the gain in system efficiency aris-
ing from the increased willingness of selfish individuals to cooperate caused by
malicious players.

Several questions are left for future research. For example: What is the price
of malice in a virus inoculation game on other topologies, e.g., on a hypercu-
bic Pastry network? And what is the price of malice of other games, e.g., of a
caching game [Chun et al. 04]? It seems that in certain selfish routing games in
which a single node can attract a large amount of traffic by announcing short dis-
tances to all other nodes, the result is a larger price of malice than in congestion
games, for example. Another direction for future work is to study the impact
of knowledge on the resulting fear factor in nonoblivious models. Specifically,
one could assume that players are aware not only of the existence of malicious
players, but also of their approximate whereabouts or their statistical distribu-
tion. Intuitively, such additional knowledge should decrease the selfish players’
incentives for collaboration and thus lower the fear factor.

Our game-theoretic framework can be applied to potentially many economic
and social systems. For instance, recently, the framework developed in this
article has also been used in the context of social networks to study the effect
of selfish players that exhibit “altruistic” behavior toward their friends [Meier et
al. 08]: the paper shows that while friendship is always beneficial compared to
a purely selfish setting, there are situations in which stronger social ties yield a
lower social welfare.

Acknowledgments. A preliminary version of this work has been published as “When Selfish
Meets Evil: Byzantine Players in a Virus Inoculation Game” at the 25th ACM Annual
Symposium on Principles of Distributed Computing (PODC) [Moscibroda et al. 06].
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