
What Can Be Approximated Locally?

Case Study: Dominating Sets in Planar Graphs

Christoph Lenzen
Computer Engineering and

Networks Laboratory
ETH Zurich
Switzerland

lenzen@tik.ee.ethz.ch

Yvonne Anne Oswald
Computer Engineering and

Networks Laboratory
ETH Zurich
Switzerland

oswald@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and

Networks Laboratory
ETH Zurich
Switzerland

wattenhofer@tik.ee.ethz.ch

ABSTRACT
Whether local algorithms can compute constant approximations of
NP-hard problems is of both practical and theoretical interest. So
far, no algorithms achieving this goal are known, as either the ap-
proximation ratio or the running time exceed O(1), or the nodes
are provided with non-trivial additional information. In this pa-
per, we present the first distributed algorithm approximating a min-
imum dominating set on a planar graph within a constant factor
in constant time. Moreover, the nodes do not need any additional
information.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Computations
on discrete structures; G.2.2 [Graph Theory]: Graph algorithms;
C.2.4 [Distributed Systems]

General Terms
Algorithms, Theory

Keywords
approximation, distributed algorithms, local algorithms, dominat-
ing sets, planar graphs

1. INTRODUCTION
Common distributed network protocols require some nodes of

the network to have information about the global state of the net-
work. As networks grow larger and become more dynamic, using
such protocols becomes increasingly difficult. Indeed, nodes only
being aware of their local neighborhood suffices for many prob-
lems. Such distributed algorithms are known as “localized” or “lo-
cal” algorithms.

Whereas many algorithms called “localized” are not wait-free
and prone to experience a butterfly effect due to chains of causality,
the term “local” is often used rigorously: In a k-local algorithm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’08, June 14–16, 2008, Munich, Germany.
Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

nodes are allowed to gather information of their k-hop neighbor-
hood before they make a decision. Such algorithms are very use-
ful when tackling problems in dynamic networks. The topology
of a dynamic network may change over time, thus a solution may
need to be modified. In the worst case, rerunning a non-local al-
gorithm may lead to a solution already rendered useless before the
computation finishes. When facing communication or state mis-
takes thwarting computational progress, correcting errors locally
can lead to self-stabilizing networks.

In the past few years, k-local algorithms have attracted remark-
able interest, stimulated by innovations in ad hoc and sensor net-
works. However, as discussed in the related work section, many
proposed algorithms have a drawback. They allow nodes to gather
information on an extended neighborhood, increasing with a func-
tion f of the number of nodes n; we call this model f(n)-locality.
In this paper we focus on O(1)-local algorithms, where each node
knows its neighbors within a constant radius. Hence we use the
original definition of locality coined in the seminal paper by Naor
and Stockmeyer [21], omitting O(1) in the notation.

Despite the research momentum f(n)-local algorithms have ex-
perienced, little is known about strictly local algorithms. An excep-
tion is the work by Kuhn et al. [15, 17] proving that many classic
graph optimization problems cannot be solved locally on general
graphs. As the graph family to construct the lower bound is exotic,
one might hope that many practically interesting graph classes still
permit local algorithms. However, Linial [19] proved that even in
a ring topology some problems are not solvable locally, hence one
cannot hope to e.g. find a local algorithm for maximal independent
sets in unit disk graphs or a coloring in a planar graph.

Positive results on local algorithms are rare. Naor and Stock-
meyer [21] present non-trivial problems with a local solution, e.g.
the weak 2-coloring problem, a coloring of all nodes with two col-
ors such that each non-isolated node has at least one neighbor col-
ored differently. However, what all their problems have in common
is the fact that a simple broadcast algorithm can solve them.

So is there any hope that a difficult problem can be computed lo-
cally? Or, more specifically, are there NP-hard problems that per-
mit a constant approximation by an algorithm depending on knowl-
edge of the local neighborhood only? Rather surprisingly, this pa-
per answers this question affirmatively. We present a constant-time
constant-approximation local algorithm for the minimum dominat-
ing set problem on planar graphs (shown to be NP-complete in
[10]). To the best of our knowledge, this is presently the hard-
est problem solved by a local algorithm. We hope our result will
help in comprehending the limitations and capabilities of local al-
gorithms, and eventually capture the complexity of distributed al-
gorithms.

2. RELATED WORK
Local algorithms have been studied for more than three decades

[1, 3, 12, 19, 20, 21, 22]. Recently, research on local algorithms
has been thriving again, probably thanks to emerging applications
in ad hoc and sensor networks. In particular, the minimum dom-
inating set (MDS) problem and related problems have caught the
attention of the community, as MDS, connected MDS, or maximal
independent sets (MIS) promise to provide an elegant solution to
many theoretical problems in wireless multi-hop networks. Judg-
ing by the abundance of literature on the MDS problem, it seems to
be key to understanding local algorithms.

A first stab at the MDS problem was an ingenious MIS algorithm
[1, 12, 20]. However, in a general graph a MIS is not necessarily a
good approximation for the MDS problem. Afterwards there have
been numerous proposals, however, similarly to [1, 12, 20] always
either the running time or the approximation ratio were trivial. The
first distributed MDS algorithm non-trivial in both locality and ap-
proximation is by Jia et al. [13]. They present a O(log n log ∆)-
local algorithm that approximates the MWhether local algorithms
can compute constant approximations of NP-hard problems is of
both practical and theoretical interest. So far, no algorithms achiev-
ing this goal are known, as either the approximation ratio or the
running time exceed O(1), or the nodes are provided with non-
trivial additional information. In this paper, we present the first
distributed algorithm approximating a minimum dominating set on
a planar graph within a constant factor in constant time. More-
over, the nodes do not need any additional information.DS problem
within a factor O(log ∆) of the optimal in expectation, where n is
the number of nodes and ∆ is the largest node degree. Later, Kuhn
et al. proposed the first O(1)-local algorithm with a non-trivial ap-
proximation ratio [18]. This result has been improved [17] to the
currently best result for general graphs: The MDS problem can be
approximated up to a factor of O(∆1/

√
k log ∆) in O(k) time.

Kuhn et al. [15] showed that in general graphs local algorithms
are limited, as even a polylogarithmic approximation of the MDS
problem requires at least Ω(

p
log n/ log log n) time. As the graph

family that is used in the lower bound argument needs an elabo-
rate construction unlikely to ever appear in practice, people started
studying special graph classes. Of particular interest are geometric
graphs, such as unit disk graphs (UDGs), since they represent wire-
less multi-hop networks well. In UDGs, if distance information is
available, one can compute a constant approximation of the MDS
problem in O(log∗ n) time [16], while without distance informa-
tion the best deterministic algorithm needs O(log ∆ log∗ n) time
[14], the best randomized algorithm runs in O(log log n log∗ n)
time [11]1. Interestingly all these UDG algorithms make a detour
and compute a MIS, which in UDGs provides a constant approx-
imation of the MDS problem. With respect to the approximation
quality Czygrinow et al. presented the best currently known algo-
rithm on planar graphs [4]. It yields an asymptotically optimal ap-
proximation ratio of (1 + O

`
log−1 n

´
), but the number of rounds

is in O
`
log log n log∗ n log28.7 n

´
.

Thus all algorithms mentioned so far are either not local in our
strict sense, as their running time is a function of the size of the net-
work, or they do not reach an O(1)-approximation ratio. For sev-
eral special graph classes, e.g. constant-degree graphs or trees, the
MDS problem is trivial, as there are simple constant-approximation
local algorithms. In fact, few local algorithms for nontrivial prob-
lems are known. Naor and Stockmeyer [21] showed that such
problems exist, e.g. weak 2-coloring or a modification of the din-

1We are aware of work in submission to PODC 2008 presenting a
deterministic algorithm with running time O(log∗ n) [23].

ing philosophers problem. However, these problems can be solved
by simple broadcast algorithms on a global basis. More sophisti-
cated strategies are necessary to reach a constant approximation of
a MDS on planar graphs.

Another class of algorithms assumes the nodes to have addi-
tional information. Algorithms for sensor networks, for instance,
often allow nodes to know their position in space. Even with loca-
tion information the MDS problem in unit disk graphs remains NP-
complete [2] yet a folklore single round algorithm will give a con-
stant approximation; for a PTAS in constant time see [24]. Instead
of knowledge on their location, nodes could have other helpful ex-
tra information at their disposal, e.g., the maximum degrees of the
network or the total number of nodes. The power of additional in-
formation was studied from a more general perspective in a series
of papers [8, 7, 9]: In these papers, Fraigniaud et al. examine how
many bits are necessary to allow efficient algorithms for problems
such as coloring, MST, wake up and broadcast. Not suprisingly,
they observe that problems become easier the more information is
available. Pushing the envelope, Floréen et al. recently presented
local algorithms which construct constant approximations for activ-
ity and sleep scheduling problems [5, 6], allowing each node one
additional bit of information. This bit is used to break the symme-
try of the original problem, essentially partitioning it into (easier)
sub-problems. As a matter of fact, from a radical viewpoint, addi-
tional information may push our original question into absurdity:
Even a small number of bits of additional information per node
is enough to compute a constant-time constant-approximation of
any NP-hard problem—simply let the additional information en-
code the (approximate) solution!

3. MODEL AND NOTATION
A distributed system is modeled as a simple undirected graph

where each node represents a processor and edges correspond to
bidirectional communication channels between them. Nodes are
able to distinguish between their communication channels, i.e., they
can designate the intended receiver of a message and they are able
to identify the sender of a message. We use the classic synchronous
message passing model, where in each communication round every
node of the network graph can send a message to each of its direct
neighbors. In principle, those messages can be of arbitrary size;
however, our algorithm will use messages of O(log n) bits. A lo-
cal algorithm may only use a constant number of communication
rounds before each node reaches a decision based on the acquired
information. An algorithm is correct if the combined solution of
all nodes is a valid solution to the given problem, regardless of the
distribution of the identifiers.

Given a graph G = (V, E), a node w ∈ V is a neighbor of some
set A ⊂ V if {a, w} ∈ E for an a ∈ A. For a set of nodes A ⊆ V
we define N+(v) to be the inclusive neighborhood of A, i.e., A
and all its neighbors. By N(A) := N+(A) \ A we denote the
neighbors of A not in A. For subgraphs or minors H of G we define
neighbors correspondingly and write N+

H (A) and NH(A). In cases
where A consists of a single node a, we may omit the braces in
the notation, e.g. N(a) instead of N({a}). For two sets of nodes
A and B of graph H the expression “A covers B in H” means
B ⊆ N+

H (A), where we may omit “in H” when clear from the
context. A dominating set (DS) of G is a set D ⊆ V covering V .
A minimum dominating set (MDS) is a DS of minimum cardinality.

4. ALGORITHM AND ANALYSIS
In this section we present an algorithm computing a constant ap-

proximation of a minimum dominating set on planar graphs in con-

stant time. Basically, the algorithm consists of three phases. In the
first phase all uncovered nodes select a neighbor they consider most
suited for the dominating set, namely the neighbor that dominates
the most uncovered nodes. These chosen nodes then enter the dom-
inating set. In a next step, nodes that have more than a certain num-
ber of neighbors in the dominating set enter this set themselves and
tell their neighbors to leave the dominating set again. In the second
phase these steps are repeated. Subsequently, in the third phase, all
nodes that are still uncovered choose a neighbor again, completing
the final dominating set. For ease of notation we describe the al-
gorithm in more detail in a centralized fashion in Algorithm 1. Let
Mi, i ∈ {2, . . . , 6}, denote the set of nodes chosen in step i by
Algorithm 1. By V4 and V6 we refer to the sets of nodes electing
candidates for joining M in steps 4 and 6 respectively.

Algorithm 1 Local approximation of MDS on planar graphs
Input: k, l ∈ N and a graph G = (V, E)
Output: a dominating set M for G
1: Set M := ∅.
2: For each node v ∈ V add an arbitrary element c2(v) ∈ N+(v)

of maximum degree to M .
3: Set A := {v ∈ V | |M2 ∩ N(v)| ≥ k}. Set M = (M \

N(A)) ∪A.
4: Set V4 := V \N+(M). For each v ∈ V4 add a node c4(v) ∈

N+(v) with |N+(c4(v)) ∩ V4| maximum to M .
5: Set A := {v ∈ V | |M4 ∩N(v)| ≥ l}. Set M = (M \ (M4 ∩

N(A))) ∪A.
6: Set V6 := V \N+(M). For each v ∈ V6 add a node c6(v) ∈

N+(v) with |N+(c6(v)) ∩ V6| maximum to M .
7: Return M .

No intricate analysis is necessary to ascertain that we can imple-
ment Algorithm 1 locally, as each step takes at most two rounds of
communication. Step 6 ensures that a dominating set is returned.
We immediately see the following.

LEMMA 4.1 (CORRECTNESS AND LOCALITY).
Algorithm 1 is correct and local.

We will now show that Algorithm 1 yields a constant approxima-
tion for the MDS problem on planar graphs. We prove our claim by
bounding the number of nodes in M chosen in each step relative to
the number of nodes in an arbitrary MDS D.

We will need the following basic lemma repeatedly:

LEMMA 4.2 (NUMBER OF EDGES IN A PLANAR GRAPH).
In a simple planar graph with n ≥ 3 vertices the number of edges
is at most 3n− 6.

REMARK 4.3.
We will not mention the trivial special case n < 3 in the following.

We begin by bounding the number of nodes chosen in step 2 of the
algorithm that are still in M after the third step.

PROPOSITION 4.4 (BOUND FOR STEP 2).
Set A := M2 \ (N+(M3) ∪D). Then the inequality

|A| ≤ (k − 1)|D| (1)

holds.

PROOF. As D is a dominating set, it particularly covers A. For
(1) to be violated, there must be a node d ∈ D covering at least
k nodes in A, thus at least k nodes of A are in N(d). This yields
a contradiction, because then d would have been chosen in step 3
and N(d) removed from M , so N(d) ∩A must be empty.

We proceed by constructing a subgraph of G capturing the relevant
structures to bound |M3 \ D|. First, we examine the special case
where nodes in D do not cover more than three neighbors of each
node in M3 \D in this subgraph.

PROPOSITION 4.5 (SPECIAL CASE FOR STEP 3).
Consider the following subgraph H = (VH , EH) of G:

• Set VH := M3 ∪D.

• Add (N(M3 \D)∩M2) to VH and all edges from each node
in M3 \D to this set present in E to EH .

• Remove all edges {{m, c2(m)} |m ∈ M3 \D} from EH .

• Insert a minimum subset of edges in E such that D covers
VH .

For each m ∈ M3 \ D fix Dm to be the minimum subset of D
covering NH(m). Let k be at least 11. If for each m no element of
Dm covers more than three elements of NH(m), i.e.,

∀m ∈ M3, dm ∈ Dm |N+
H (dm) ∩NH(m)| ≤ 3, (2)

the inequality

|M3 \D| < 3˚
k−10

3

ˇ |D|

holds.

PROOF. For each v ∈ VH \ (M3 ∪ D) contract the edge to
the unique neighbor in D, identifying the resulting node with the
one in D (removing duplicate edges, as we talk of simple graphs).
After this operation the following holds for the resulting graph Ĥ =
(VĤ , EĤ):

• Ĥ is a minor of G and hence planar.

• M3 \D ⊂ VĤ , as these nodes never participate in a contrac-
tion.

• Each node m ∈ M3 \D shares an edge with each element of
Dm, as each element of Dm must cover at least one neighbor
of m in Ĥ .

This leads to an estimate for the minimum number of edges in H .
The assumption that each element in Dm covers at most three of the
neighbors of m ∈ M3 \D different from c2(m) implies m to have
at least d k−1

3
e edges to D, the −1 stemming from the exclusion of

edges {m, c2(m)}. Counting the number of edges for each node
m ∈ M3 \D yields‰

k − 1

3

ı
|M3 \D| ≤ |EĤ | < 3(|M3 \D|+ |D|),

where we use Lemma 4.2. Since k ≥ 11 we can conclude that

|M3 \D| < 3˚
k−10

3

ˇ |D|.

In Proposition 4.5 we required that no node in D covers more than
three neighbors of a node in M3 \ D in the subgraph H . In the
following proposition we abandon this requirement and establish a
general bound for the number of nodes chosen in step 3.

m є M3\D

VH\D

Dm

≥k

Figure 1: Construction of the subgraph of G used in Proposi-
tion 4.5 and 4.6.

PROPOSITION 4.6 (BOUND FOR STEP 3).
Let k be at least 11. Then for the number of nodes chosen in step 3
not in D the estimate

|M3 \D| <

3 +

3˚
k−10

3

ˇ! |D|

holds.

PROOF. We fix an embedding of G and we construct the same
subgraph H as in Proposition 4.5. Set Ĥ := H . We will iteratively
remove nodes from Ĥ until we can apply Proposition 4.5 to the
remaining subgraph.

If the prerequisite (2) of Proposition 4.5 is violated, there are
nodes m ∈ M3 \D and d ∈ Dm connected by at least four disjoint
paths in Ĥ . At least three of them are of length two and contain an
element of VH \ D. Two of these form a circle C enclosing the
third path. Choose C such that it encloses a minimum area. We
will replace at most 3|D| elements of M3 \D by placeholder nodes
until the requirements of Proposition 4.5 are satisfied. Every time
we remove an element of M3 \ D we will count an element of D
once. Showing that no element of D is counted more than three
times completes the proof.

Case 1: No element of D is enclosed by C.
Remove m from Ĥ and count d once. Replace m by a node v
connected only to NĤ(m)∩ (M3 \D) and an arbitrary element of
NH(m) ∩ D, from now on treating v with respect to Proposition
4.5 as an element of VH \ (M3 ∪ D). Remove all elements of
VH \ (N+

Ĥ
(M3)∪D), i.e., all nodes in M2 \D and all placeholder

nodes no longer connected to elements of M3.
This case cannot occur more than once for a given d. Supposing

the contrary, first observe that the minimum area property of C
prohibits that any node m̂ ∈ M3 \ D inside C can cause d to
be counted again after C has been used. Second, C encloses an
element v ∈ M2 \ {c2(m)}, because otherwise the inner node of
the enclosed path must either be in M3 or replace some node in
M3. But this would imply that there are at least k − 4 nodes in
NH(d) enclosed by C belonging to M3. Repeating this argument
leads to an infinite number of nodes in G. Thus there exists at least
one node v ∈ M2 ∩ VĤ distinct from c2(m) enclosed by C. This
node must have been chosen by a node in step 2. All nodes inside
C are connected to d, hence we must have |NĤ(v)| ≥ |NĤ(d)|.

M3\D

d Dє

≥k­4

Figure 2: Example of a contradictive structure created by two
occurrences of Case 1 in Proposition 4.6 using the same d ∈ D.
We can see that there must be at least one node in M2\{c2(m)}
enclosed in the inner circle, because otherwise the enclosed
node is in M3 \D.

Under the assumption that a certain node d is counted again by
an occurrence of case 1 for a node m̂ ∈ M3 \ D, there must be
another circle Ĉ for the same node d. As d must have four inde-
pendent paths of length at most two in H to the node m̂ ∈ M3 \D
used in the construction the second time this case occurs, d must
have a neighbor outside C v cannot have. Either Ĉ encloses m or
d is enclosed by (C ∪ Ĉ) \ {d}, because otherwise d has too many
neighbors outside C, violating |NĤ(v)| ≥ |NĤ(d)|. The first im-
plies m to be covered by d and the latter needs d to be connected to
an additional node outside C to form the needed paths. Thus both
possibilities lead to the contradiction |NĤ(v)| < |NĤ(d)|.

Case 2: C encloses at least one node of D.
We count the element d̂ enclosed last by the sequence of circles
defined by the sequence of replacements of elements of M3 \ D.
Remove m from VĤ , replace it and remove superfluous nodes VH \
(N+

Ĥ
(M3) ∪D) as we did in Case 1.

Suppose an element d̂ ∈ D is counted by this case more than
twice. Then we have a sequence of three nested circles Ci, i ∈
{1, 2, 3} in H containing different elements mi. These circles con-
tain all the same node d ∈ D, because otherwise the circle follow-
ing the last one containing d would enclose it, and d instead of d̂
would be counted by the subsequent circle. No node of D can lie
between C1 and C3 for the same reason, hence all nodes between
C1 and C3 and are connected to d. The node m2 must lie between
C1 and C3, thus all its k ≥ 11 neighbors lie on or between C1

and C3. By the same argument we used to prove the existence of
a node in M2 \ (M3 ∪ D) in the circle C in Case 1, a node v in
M2 \ (M3∪D) between C1 and C3 with NH(v) ≥ NH(d) exists:
At most seven neighbors may lie on C1 or C3 and only m1 and m3

might be not connected to d. For this node v one of the following
two statements holds: It is either (a) enclosed in a circle of length
four that encloses no further nodes in H or (b) an additional node
from M2 \ (M3∪D) not chosen by m1 or m3 is enclosed between
C1 and C3, because in this case v has d and some element of M3 as

M3\D

 d Dє

≥k­7

Figure 3: Example of a contradictive structure created by three
occurrences of Case 2 in Proposition 4.6. Let the numbering for
nodes of M3 \D be m1, m2, m3 start at the top. Of the at least
k−7 marked neighbors of m2 at least k−9 ≥ 2 are not chosen
by m1 or m3 in step 2.

neighbors, resulting in a smaller circle in H enclosing an element
of M2 \ M3. As the number of nodes in G is finite, eventually
(a) must occur for some node v. We have |NH(v)| ≤ 4, hence v
can not have been chosen in step 2, because all its neighbors are
connected to d which is of higher degree in H . Thus such nested
circles Ci, i ∈ {1, 2, 3} cannot exist and d̂ is counted at most twice
by case 2.

To bound the number of nodes chosen in step 4 which are neither
deselected in step 5 nor in D we can use the same arguments as in
Proposition 4.4.

PROPOSITION 4.7 (BOUND FOR STEP 4).
Set A := M4 \ (N+(M5) ∪D). Then the inequality

|A| ≤ (l − 1)|D|

holds.

PROOF. Analogous to the proof of Proposition 4.4.

Similarly to Proposition 4.5 and 4.6 we construct a subgraph H
to determine an upper bound on the number of nodes selected in
step 5. This time we examine paths of length three and we begin
with the special case where no node d ∈ D covers more than five
exactly characterized nodes of the two-hop neighborhood of each
m ∈ M5.

PROPOSITION 4.8 (SPECIAL CASE FOR STEP 5).
We construct a subgraph H = (VH , EH) of G:

• Set VH := M4.

• For each element m4 ∈ M4 select an arbitrary element a
choosing m4 in step 4. Add a to VH and an edge {m4, a} to
EH . We denote by A the set of all these added nodes.

• Add all nodes m ∈ M5 \D to VH and edges between m and
N(m) ∩M4 to EH .

m є M5\D

 Dm

≥l

M4

Am

Figure 4: Construction of the subgraph H of G examined in
Proposition 4.8 and 4.9. Note that nodes of M4 or Am can also
belong to Dm.

• Add D to VH and a minimum subset of edges in E to EH

ensuring that D covers A in H .

Denote for each node m ∈ M5 \ D the minimum set covering
Am := A ∩ NH(NH(m)) by Dm ⊆ D. Let l be at least 16.
Assume there is no node m ∈ M5 \ D with some node d ∈ Dm

covering more than five nodes in Am, i.e.,

∀m ∈ M5 \D, d ∈ Dm |N+
H (d) ∩Am| ≤ 5. (3)

Then the inequality

|M5 \D| < 3˚
l−15

5

ˇ |D| (4)

holds.

PROOF. The argumentation is the same as in Proposition 4.5.
This time, contracting the paths from elements m ∈ M5 \ D to
Dm leads to at least d l

5
e edges for each m, because we do not

exclude a possible choice of m itself. We have |M5 ∪D| ≤ |M5 \
D| + |D| many nodes in the planar minor of G resulting from the
contractions, proving the assertion by Lemma 4.2.

As in Proposition 4.6 we dispose of the restricting prerequisite
of the special case and establish a constant bound for the number
of nodes chosen in step 5.

PROPOSITION 4.9 (BOUND FOR STEP 5).
For l ≥ 16 we have the estimate

|M5 \D| < (1 +
3˚

l−15
5

ˇ)|D|.

PROOF. Fix an embedding of G. Let H be the same subgraph of
G as in Proposition 4.8 and assume the precondition (3) of Propo-
sition 4.8 to be violated. In this case there exist nodes m ∈ M5 \D
and d ∈ Dm connected by six disjoint paths in H , where all except
possibly one (if d ∈ A or d ∈ M4) have at least one inner node.
There are at least five paths of length three forming two nested cir-
cles C1 and C2 enclosing the innermost path, were C1 and C2 con-
sist of disjoint paths from m to d in H . Without loss of generality
let the area enclosed by the outer circle C1 be minimum.

m є M5\D

 d Dє m

M4\D

A\D

d Dє

≥ 5

Figure 5: Example of the construction used in Proposition 4.9.

Let v be a node in M4 \D. There must be a node d ∈ D distinct
from d inside C2, because otherwise all nodes in N+(v) ∩ V4(v)
except possibly m are neighbors of d as well. But since d covers
the voting nodes of C1, the node selecting v would have preferred
d to v in step 4, yielding a contradiction.

We remove m, all its neighbors not connected to other nodes of
M5 \ D and the nodes choosing them which are not in D from H
and repeat this process, until the prerequisites of Proposition 4.8
are fullfilled. The remaining nodes of M5 \ D in VH are bounded
by (4), hence we must show that we repeat the procedure above at
most |D| times.

In each iteration we count a node d ∈ D enclosed by the cor-
responding C2 that has not been counted before. This is possible:
The area enclosed by C1 was minimum, hence no m ∈ M5 \D ly-
ing inside C1 can participate again in the construction. Thus none
of the nodes enclosed by C1 can be involved again, excluding es-
pecially nodes on or inside C2 different from d or m, which is
removed. Hence we can apply the same argument as above in each
iteration to complete the proof.

In order to determine the number of nodes chosen in step 6, we
need an even more complex construction of a subgraph. Analo-
gously to the propositions above we first establish a bound for a
special case.

PROPOSITION 4.10 (SPECIAL CASE FOR STEP 6).
We construct a subgraph H := (VH , EH) of G in the following
way:

• For each element m ∈ M6 \D add one element a choosing
it in step 6 to VH . The inserted nodes form the set A.

• For each a ∈ A add c4(a) to VH and an edge {a, c4(a)}.
Denote the set of added nodes by c4(A).

• Remove all edges to nodes a ∈ A ∩D.

• Add D to VH .

• Add a minimum subset of E to EH such that D covers A ∪
c4(A).

d є D\M

 Dd

M4\D

A\D

M6\D

Figure 6: A part of the subgraph H studied in Proposition 4.10
and 4.11. Nodes in M6\D may coincide with their counterparts
in M4 \D.

• Remove all nodes a ∈ A with |NH(d)| < l, where d ∈ D is
the unique element covering c4(a) in H .

• Remove all nodes c4(a) ∈ c4(A)\N+
H (A), i.e., the elements

of c4(A) we isolated by removing nodes or edges.

Denote for each d ∈ D \M after step 5 by Dd ⊂ D the minimum
set of nodes covering Md := c4(A) ∩NH(NH(d)).

Define DM := {d ∈ D | d 6∈ M after step 5}. Assume that for
all d ∈ DM there exists no element of Dd covering more than four
elements of Md. I.e.,

∀d ∈ DM d̂ ∈ Dd |N+
H (d̂) ∩Md| ≤ 4. (5)

Then the number of nodes chosen in step 6 can be estimated by

|M6 \D| ≤ (l + 12)|D|.

PROOF. By construction we have |M6 \ D| = |A|. As A ⊂
V6 and c4(A) is already covered by M after step 5, we have A ∩
c4(A) = ∅. Furthermore, we removed at most l|D| many nodes
from A in the construction. For the remaining nodes a ∈ A ∩ VH

we know that c4(a) is covered by an element of Dd that must be in
M after step 5, as all elements of Dd cover at least l elements of
M4. On the other hand, no element d ∈ D covering an element of
A can be in M after step 5.

Hence contracting all paths from all d ∈ D to Dd consisting
of an element a ∈ A ∩ NH(d), its choice c4(a) and the covering
element of Dd yields a minor of G with at most |D| vertices and at
least |M6∩VH |

4
edges. Thus we get

|M6 \D| = |A| ≤ l|D|+ |M6 ∩ VH | ≤ (l + 12)|D|

by the planarity of H as a minor of G and Lemma 4.2.

PROPOSITION 4.11 (BOUND FOR STEP 6).
The number of vertices chosen by the algorithm in step 6 is bounded
by

|M6| ≤ (l + 22)|D|.

d є D\M

 d є Dd

M4\D

A\D

≥ 5

a≥ 5

c6(a)

Figure 7: Substructure of H analyzed in Proposition 4.11. Ob-
serve that nodes of M6 \D can also be in M4 \D.

PROOF. Consider again the subgraph H = (VH , EH) of G con-
structed in Proposition 4.10. Suppose the condition (5) of Propo-
sition 4.10 does not hold. In this case a node d ∈ D not in M
after step 5 and some element d̂ ∈ Dd connected by five dis-
joint paths in H must exist. Each of these paths consists of d,
a neighbor a of d in A, the element a chose in step 4 and d̂, as
D ∩ VH ∩ (c4(A) ∪ A) = ∅ by construction. Fix an embedding
of G (and thus H). Let C1 denote the circle formed by the two
outer paths and C2 the circle enclosing the innermost path formed
by two different paths. Let a ∈ A be the enclosed element on the
innermost path. As c6(a) 6∈ D, it is enclosed by C1. Without loss
of generality let C1 enclose a minimum area. There must be a node
of D different from d and d̂ inside C1. To see this, firstly observe
that d and d̂ are by construction the only elements of D on C1,
where d̂ is already in M after step 5. Node c6(a) covers at least as
many uncovered nodes as d, otherwise a would not have selected
c6(a). Assuming there is no other element of D inside C1 means
any uncovered node inside C1 must be connected to d, so c6(a)
must cover all nodes covered by d in H as well. This is impossible,
as d covers at least two nodes not reachable by c6(a), taking into
account that no node on or in C2 different from d and d̂ can have
edges to the inner nodes of more than three of the five paths.

We remove all five paths from H and count a node of D lying in-
side C1 not counted twice already. The node counted can not cover
any element outside C1. Hence we can repeat this procedure with-
out counting nodes in D more than twice, as the minimum area
property of C1 together with the planarity of H ensures no path
used later lies inside C1. Thus, in the worst case, a node d ∈ D
already counted once can influence the choice c6(a) of the vertex
playing the role of the enclosed a ∈ A in the next group of five
paths enclosing d. Hence, the process must stop after at most 2|D|
iterations, each removing five elements of A from H . An appli-
cation of Proposition 4.10 to the remaining subgraph finishes the
proof.

Having determined the maximum number of nodes that enter the
dominating set in each step, it remains to assemble the results and
finally state the approximation ratio our algorithm achieves.

THEOREM 4.12 (BOUND FOR THE NUMBER OF NODES).
Let k be at least 11 and l be at least 16. Then the number of nodes
chosen by Algorithm 1 is bounded by

|M | <

k +

3˚
k−10

3

ˇ + 2l +
3˚

l−15
5

ˇ + 25

!
|D|. (6)

PROOF. We combine the Propositions 4.4, 4.6, 4.7, 4.9 and 4.11
and we obtain

|M | ≤ |D|+ |M2 \ (N+(M3) ∪D)|
+ |M3 \D|+ |M4 \ (N+(M5) ∪D)|
+ |M5 \D|+ |M6 \D|

<

1 + k − 1 + 3 +

3˚
k−10

3

ˇ
+ l − 1 + 1 +

3˚
l−15

5

ˇ + l + 22

!
|D|

=

k +

3˚
k−10

3

ˇ + 2l +
3˚

l−15
5

ˇ + 25

!
|D|.

By assigning the smallest possible integers to k and l we minimize
the above constant.

COROLLARY 4.13 (OPTIMUM CHOICE OF PARAMETERS).
For the values k = 11 and l = 16 the bound (6) is best, yielding

|M | < 74|D|.

5. CONCLUSIONS
We presented a constant-approximation MDS algorithm for pla-

nar graphs. It is deterministic and fully local, i.e., each node bases
its decisions on information on a neighborhood of constant size,
and no knowledge on any global properties is necessary. Moreover
the size of the messages exchanged during the execution of the al-
gorithm is small and the computations performed by each node do
neither necessitate large space nor much time. To our best knowl-
edge the algorithm is the first of this kind for an NP-hard problem,
showing that such tasks can be solved by strictly local algorithms.

As approximating an MDS on planar graphs is not NP-hard, one
might ask what exactly makes this problem “harder” than e.g. the
weak 2-coloring problem. In contrast to an MDS approximation
problem, the weak 2-coloring problem can be solved by a sim-
ple global algorithm. After an arbitrary node in each component
chooses a color, each of its neighbors may take the other color. It-
erating this process leads to a valid weak 2-coloring of any graph.
Having a closer look, locally computing a weak 2-coloring is ba-
sically a question of breaking symmetric decisions of nodes based
on node identifiers. This can be seen by looking e.g. at a com-
pletely symmetric ring topology. On the contrary, our algorithm
operates only on the structure of a constant neighborhood of the
nodes. Nevertheless, the situation is more intricate for the MDS
approximation problem, as illustrated in Figures 8 and 9. Our algo-
rithm copes with these challenges by exploiting the sparsity as well
as the decomposing properties of circles that planar graphs exhibit.

Though our algorithm follows a quite simple idea, astonishingly
the procedure of deselecting too many elected adjacent nodes has to
be repeated twice. If we stop after step 4, graphs yielding approxi-
mation ratios of Ω(

√
n) can be given. Changing step 4 to electing

level 1

level 2

Figure 8: Why a simple broadcast algorithm cannot compute a
constant MDS approximation. We suppose nodes are traversed
from top to bottom and from left to right. Each node knows its
degree and the decisions of already visited neighbors.

level 1

level 2

Figure 9: In the graphs displayed here and in Figure 8 the situ-
ation looks identical for all level 1 nodes. Thus they must take
identical decisions. Entering the DS is wrong in the graph in
Figure 8. Not entering the DS leads, again due to indistin-
guishability, to all level 2 nodes entering the DS in the graph
displayed. By scaling up node degrees we see that such an algo-
rithm can achieve at best an approximation ratio of Ω(

√
n).

the neighbor of highest degree again leads to the same lower bound
for the approximation ratio. The algorithm will also fail to give
a good approximation quality when applied to sparse graphs. Ba-
sically, Propositions 4.6, 4.9 and 4.11 do not apply, as circles do
not separate nodes in sparse graphs. On the one hand, this poses
the question if MDS approximation on sparse graphs is more diffi-
cult. On the other hand, Propositions 4.5, 4.8 and 4.10 rely on the
sparsity of a planar graph. Hence one might hope that a nontriv-
ial lower bound only holds for non-sparse graphs. Since comput-
ing an MDS is a fundamental problem, this result sheds new light
into the tantalizing question of the possibilities and limitations of
different models in distributed computing. It remains a challeng-
ing task to find out which other graph classes permit local O(1)-
approximation algorithms for the MDS problem without additional
information available to the nodes. This may finally lead to a hi-
erarchy of graph classes and approximation ratios achievable by
strictly local algorithms.

6. ACKNOWLEDGEMENTS
We would like to thank Jukka Suomela for valuable comments.

7. REFERENCES
[1] N. Alon, L. Babai, and A. Itai. A fast and simple randomized

parallel algorithm for the maximal independent set problem.
Journal of Algorithms, 7(4):567–583, 1986.

[2] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk
graphs. Discrete Math., 86(1-3):165–177, 1990.

[3] R. Cole and U. Vishkin. Deterministic Coin Tossing with
Applications to Optimal Parallel List Ranking. Information
and Control, 70(1):32–53, 1986.

[4] A. Czygrinow, M. Hanckowiak, and E. Szymanska.
Distributed Approximation Algorithms for Planar Graphs. In
Proceedings of the 6th Italian Conference on Algorithms and
Complexity (CIAC), 2006.

[5] P. Floréen, P. Kaski, T. Musto, and J. Suomela. Local
Approximation Algorithms for Scheduling Problems in
Sensor Networks. In Proceedings of the 3rd International
Workshop on Algorithmic Aspects of Wireless Sensor
Networks (Algosensors), 2007.

[6] P. Floréen, P. Kaski, and J. Suomela. A distributed
approximation scheme for sleep scheduling in sensor
networks. In Proc. 4th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications
and Networks (SECON, San Diego, CA, USA, June 2007),
pages 152–161, Piscataway, NJ, USA, 2007. IEEE.

[7] P. Fraigniaud, C. Gavoille, D. Ilcinkas, and A. Pelc.
Distributed computing with advice: Information sensitivity
of graph coloring. In 34th International Colloquium on
Automata, Languages and Programming (ICALP), pages
231–242, 2007.

[8] P. Fraigniaud, D. Ilcinkas, and A. Pelc. Oracle size: a new
measure of difficulty for communication tasks. In
Proceedings of the 25th annual ACM symposium on
Principles of distributed computing (PODC), pages
179–187, 2006.

[9] P. Fraigniaud, A. Korman, and E. Lebhar. Local mst
computation with short advice. In Proceedings of the 19th
annual ACM symposium on Parallel algorithms and
architectures (SPAA), pages 154–160, 2007.

[10] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
Freeman, New York, 1979.

[11] B. Gfeller and E. Vicari. A Randomized Distributed
Algorithm for the Maximal Independent Set Problem in
Growth-Bounded Graphs. In Proc. 26th annual ACM
symposium on Principles of distributed computing (PODC),
2007.

[12] A. Israel and A. Itai. A fast and simple randomized parallel
algorithm for maximal matching. Information Processing
Letters, 22(2):77–80, 1986.

[13] L. Jia, R. Rajaraman, and T. Suel. An Efficient Distributed
Algorithm for Constructing Small Dominating Sets.
Distributed Computing, 15(4):193–205, 2002.

[14] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer.
Fast Deterministic Distributed Maximal Independent Set
Computation on Growth-Bounded Graphs. In Proc. 19th
International Symposium on Distributed Computing (DISC),
2005.

[15] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot
Be Computed Locally! In Proc. 23rd annual ACM
symposium on Principles of distributed computing (PODC),
2004.

[16] F. Kuhn, T. Moscibroda, and R. Wattenhofer. On the Locality
of Bounded Growth. In Proc. 24th ACM Symposium on the
Principles of Distributed Computing (PODC), 2005.

[17] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The Price of
Being Near-Sighted. In Proc. 17th ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2006.

[18] F. Kuhn and R. Wattenhofer. Constant-Time Distributed
Dominating Set Approximation. In Proc. 22nd ACM
Symposium on the Principles of Distributed Computing
(PODC), 2003.

[19] N. Linial. Locality in Distributed Graph Algorithms. SIAM
Journal on Computing, 21(1):193–201, 1992.

[20] M. Luby. A Simple Parallel Algorithm for the Maximal
Independent Set Problem. SIAM Journal on Computing,
15(4):1036–1055, 1986.

[21] M. Naor and L. Stockmeyer. What Can Be Computed
Locally? SIAM Journal on Computing, 24(6):1259–1277,
1995.

[22] D. Peleg. Distributed Computing: A Locality-Sensitive
Approach. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

[23] J. Schneider and R. Wattenhofer. A Log-Star Distributed
Maximal Independent Set Algorithm for Growth-Bounded
Graphs. In 27th Annual ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, August 2008.

[24] A. Wiese and E. Kranakis. Local PTAS for Independent Set
and Vertex Cover in Location Aware Unit Disk Graphs. In
Proceedings of the 4th IEEE/ACM International Conference
on Distributed Computing in Sensor Systems (DCOSS), June
2008.

