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Abstract

We prove that for every ordered matching H on t vertices, if an ordered n-
vertex graph G is ε-far from being H-free, then G contains poly(ε)nt copies of H.
This proves a special case of a conjecture of Tomon and the first author. We also
generalize this statement to uniform hypergraphs.

Mathematics Subject Classifications: 05C35

1 Introduction

The graph removal lemma is a fundamental result in extremal graph theory, stating that
for every fixed graph H and ε > 0, if an n-vertex graph G is ε-far from being H-free, in
the sense that εn2 edges must be deleted in order to turn G into an H-free graph, then
G contains at least δn|V (H)| copies of H, where δ = δ(H, ε) > 0. This was proved in a
seminal work of Ruzsa and Szemerédi [18]. The removal lemma was subsequently general-
ized to many other combinatorial structures, notably induced subgraphs [4], hypergraphs
[16, 17, 20] and ordered graphs [3]. Removal lemmas are also closely related to graph
property testing in the dense graph model, where they correspond to testing algorithms
with constant query complexity, see the book [15].

A drawback of the known proofs of the removal lemma (and its many generalizations)
is that all such proofs rely on Szemerédi’s regularity lemma [19] or a generalization thereof.
This results in weak quantitative bounds; for example, for the graph removal lemma stated
above, the best known bound [9] is that 1/δ 6 tower(O(log (1/ε))), where tower(x) is a
tower of x exponents. This situation has led to research on the problem of characterizing
the cases where the removal lemma has polynomial bounds, namely, where δ depends
polynomially on ε. By now there are many works of this type [1, 2, 5, 6, 7, 11, 10, 12, 13,
14].

Here we focus on ordered graphs. An ordered graph is a graph with a linear ordering
on its vertices. A copy of an ordered graph H in an ordered graph G is an injection
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ϕ : V (H) → V (G) which preserves the vertex order and satisfies that ϕ(x)ϕ(y) ∈ E(G)
for every xy ∈ E(H).

In an important work [3], Alon, Ben-Eliezer and Fischer proved an ordered analogue of
the graph removal lemma. They further asked to study cases where the ordered removal
lemma has polynomial bounds. Addressing this question, Tomon and the first author
[14] characterized the ordered graphs H for which the induced H-removal lemma has
polynomial bounds. They also studied the non-induced case, and conjectured that the
(non-induced) H-removal lemma has polynomial bounds if and only if the ordered core1

of H is an (ordered) forest. As observed in [14], to prove this conjecture it suffices to
show that the H-removal lemma has polynomial bounds for every ordered forest H. Here
we make progress on this conjecture by proving it for every ordered matching H. We
also generalize this to s-uniform hypergraphs, s > 3. An (ordered) n-vertex s-uniform
hypergraph G is said to be ε-far from being H-free if one has to delete at least εns edges
to turn G into an H-free hypergraph. Our main result is as follows.

Theorem 1. For every t > s > 2, there exists C = C(t) such that the following holds.
Let ε > 0, let H be an ordered s-uniform matching on t vertices, and let G be an ordered
s-uniform hypergraph on n vertices. If G is ε-far from being H-free, then G contains at
least (ε/C)Cnt copies of H.

Proving removal-type statements for ordered structures tends to be considerably more
difficult than for their unordered counterparts. For example, the proof of the ordered
removal lemma in [3] is substantially more involved than the original proof of the removal
lemma in [18]. The key difficulty is to find copies of H which respect the vertex order. To
deal with this difficulty, our proof uses a novel argument of considering nested partitions
of the vertex-set (with each partition refining the previous one) and “cleaning” the graph
with respect to each of these levels.

2 Proof of Theorem 1

Assume G is as in the statement of the theorem, with vertex set [n]. For two subsets
A,B ⊆ [n], we write A < B to mean that a < b for all a ∈ A, b ∈ B, i.e., all elements of
A are smaller than all elements of B. We begin by partitioning2 [n] into k := 1

ε
intervals

I1 < · · · < Ik of length εn each, and delete all edges with at least two vertices inside one
of these intervals. Let G0 ⊆ G be the resulting hypergraph. This step deletes less than

1

ε

(
εn

2

)
·
(
n− 2

s− 2

)
<
ε

2
ns

1The ordered core of H is defined as follows. Recall that a graph homomorphism from a graph G to a
graph G′ is a map ϕ : V (G) → V (G′) such that ϕ(x)ϕ(y) ∈ E(G′) for every xy ∈ E(G). For ordered
graphs G,G′, an ordered homomorphism from G to G′ is a graph homomorphism which also preserves
the vertex order. The ordered core of G is defined as the smallest (in terms of number of vertices)
subgraph of G such that there is an homomorphism from G to G′. One can show that the ordered core
is unique up to ordered isomorphism.

2Here and throughout the proof, for the sake of simplicity, we omit floor and ceiling signs by assuming
that n is divisible by an appropriate (polynomial) function of ε.
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edges, so G0 is still ε
2
-far from being H-free.

Set γ := ε
4t

(recall that t = |V (H)|). For each 1 6 ` 6 k, we define t nested partitions
of I` as follows. Set J`,1 = {I`}. For j = 2, . . . , t and for each J ∈ J`,j−1, split J into
intervals of length γ|J | and add these intervals to J`,j. Note that for each 1 6 j 6 t, J`,j
forms a partition of I` into intervals of size γj−1|I`|. Put J` :=

⋃t
j=1 J`,j. For each v ∈ I`

and 1 6 j 6 t, it will be convenient to denote by Jj(v) the interval in J`,j containing v,
so that

v ∈ Jt(v) ⊆ Jt−1(v) ⊆ · · · ⊆ J1(v) = I`.

Set β := 2γ = ε
2t

. We now perform a sequence of k cleaning steps and define k cor-
responding hypergraphs G0 ⊇ G1 ⊇ · · · ⊇ Gk, where G` is the hypergraph obtained
after the `th cleaning step (1 6 ` 6 k). At step ` we clean with respect to the in-
terval I`, as follows: For every choice of s − 1 vertices v1 < v2 < · · · < vs−1 outside
of I`, and for every interval J ∈ J`, let L`(v1, v2, . . . , vs−1, J) denote the leftmost β|J |
vertices w ∈ J such that {v1, . . . , vs−1, w} ∈ E(G`−1), if there are at least β|J | such ver-
tices, and else let L`(v1, v2, . . . vs−1, J) be the set of all such vertices w. Delete all edges
{v1, . . . , vs−1, w} ∈ E(G`−1) with w ∈ L`(v1, v2, . . . , vs−1, J). The resulting hypergraph
is G`. By definition, for every given (s − 1)-tuple v1, v2, . . . , vs−1 and for every interval
J ∈ J`, this operation deletes at most β|J | edges of the form {v1, . . . , vs−1, w} with w ∈ J .
Since the intervals in J`,j form a partition of I` (for every 1 6 j 6 t), we delete at most
β|I`| edges when considering these intervals. Summing over 1 6 j 6 t, this gives a to-
tal of at most tβ|I`| edge deletions for each of the less than ns−1 choices of v1, . . . , vs−1.
Therefore, e(G`−1)− e(G`) < tβns−1|I`|. Summing over ` = 1, . . . , k, we get that

e(G0)− e(Gk) <
k∑
`=1

tβns−1|I`| = tβns =
ε

2
ns,

using our choice of β. As G0 is ε
2
-far from being H-free, Gk must contain a copy of H.

We will use this fact later on. The key property guaranteed by the cleaning procedure is
the following.

Lemma 2. Let 1 6 ` 6 k and 1 6 m 6 t, let w1 < · · · < wm be vertices in I`, and let
vi,j ∈ [n]\I`, where 1 6 i 6 m and 1 6 j 6 s−1, such that {vi,1, vi,2, . . . vi,s−1, wi} ∈ E(G`)

for every i = 1, . . . ,m. Then there are at least
(
ε
4t

)m(t+1)
nm different m-tuples of vertices

w′1 < · · · < w′m in I`, such that {vi,1, vi,2, . . . , vi,s−1, w′i} ∈ E(G`−1) for every i = 1, . . . ,m.

Note that by Lemma 2, if there is a copy H` of H in G` having m vertices in I`, then

in G`−1 there are at least
(
ε
4t

)m(t+1)
nm copies of H which agree with H` on the vertices

outside of I`.

Proof of Lemma 2. Define sets L1, . . . , Lm ⊆ I` as follows:

Li := L`(vi,1, vi,2, . . . , vi,s−1, Ji(wi)) \ Ji+1(wi)

for 1 6 i < m, and
Lm := L`(vm,1, vm,2, . . . , vm,s−1, Jm(wm)).
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For every 1 6 i 6 m and w′i ∈ Li, it holds that {vi,1, vi,2, . . . vi,s−1, w′i} ∈ E(G`−1), by the
definition of L`(vi,1, vi,2, . . . , vi,s−1, Ji(wi)).

Claim 3. L1 < · · · < Lm.

Proof. Fix any 1 6 i < m, and let us show that Li < Li+1. We begin by proving that
Li < wi, namely, that all vertices of Li are to the left of wi. Indeed, first note that
Li ⊆ L`(vi,1, vi,2, . . . , vi,s−1, Ji(wi)). Recall that L`(vi,1, vi,2, . . . , vi,s−1, Ji(wi)) is a set of
leftmost vertices w ∈ Ji(wi) satisfying {vi,1, vi,2, . . . vi,s−1, w} ∈ E(G`−1), and the edges
{vi,1, vi,2, . . . vi,s−1, w} for w ∈ L`(vi,1, vi,2, . . . , vi,s−1, Ji(wi)) are deleted when obtaining
G` from G`−1, while the edge {vi,1, vi,2, . . . , vi,s−1, wi} is still present in G`. This shows
that L`(vi,1, vi,2, . . . , vi,s−1, Ji(wi)) is to the left of wi, implying that Li < wi.

Next, note that Li is disjoint from Ji+1(wi) by definition. It follows that Li < Ji+1(wi);
indeed, for each w ∈ Li, we have Ji+1(w) 6 Ji+1(wi) as w < wi, and also Ji+1(w) 6=
Ji+1(wi) because w /∈ Ji+1(wi), hence w < Ji+1(wi). We conclude that Li < Ji+1(wi) 6
Ji+1(wi+1), using that wi < wi+1. As Li+1 ⊆ Ji+1(wi+1), we get that Li < Li+1, as
required.

Claim 4. |Li| >
(
ε
4t

)t+1
n for all 1 6 i 6 m.

Proof. Recall that for every w ∈ I`, we have

|Jt(w)| = γ|Jt−1(w)| = · · · = γt−1|J1(w)| = γt−1|I`| = γt−1εn >
( ε

4t

)t
n.

Now, observe that |L`(vi,1, vi,2, . . . , vi,s−1, Ji(wi))| > β|Ji(wi)|, because otherwise we would
have deleted all edges of the form {vi,1, vi,2, . . . , vi,s−1, w} with w ∈ Ji(wi) when obtaining
G` from G`−1, but the edge {vi,1, vi,2, . . . , vi,s−1, wi} is still present in G`. Using that
|Ji+1(wi)| = γ|Ji(wi)| = β

2
|Ji(wi)|, we get by the definition of Li that

|Li| > |L`(vi,1, vi,2, . . . , vi,s−1, Ji(wi))| − |Ji+1(wi)| >
β

2
|Ji(wi)| >

( ε
4t

)t+1

n.

We now complete the proof of Lemma 2. As we saw above, for every 1 6 i 6 m and
w′i ∈ Li, it holds that {vi,1, vi,2, . . . vi,s−1, w′i} ∈ E(G`−1). Thus, the lemma follows from
Claims 3 and 4.

Recall that Gk contains a copy of H; denote it Hk. We can now use this initial copy
and Lemma 2 to construct the required number of distinct H-copies in G0. This will be
done in the following lemma. For 1 6 ` 6 k, let m` be the number of vertices of Hk in

the interval I`. For convenience, put δ :=
(
ε
4t

)t+1
.

Lemma 5. For every ` = k, . . . , 0, there are at least (δn)m`+1+···+mk copies of H in G`

which have mi vertices in Ii for every 1 6 i 6 k, and have the same vertices as Hk in
I1 ∪ · · · ∪ I`.
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Proof. The proof is by reverse induction on `. The base case ` = k holds trivially,
because Hk is a copy of H in Gk satisfying the required properties, and (δn)0 = 1. For
the induction step, let 0 < ` 6 k. By the induction hypothesis, there is a collection H` of
at least (δn)m`+1+···+mk copies of H in G` which have mi vertices in Ii for every 1 6 i 6 k,
and have the same vertices as Hk in I1∪ · · ·∪ I`. If m` = 0 then there is nothing to prove,
so suppose that m` > 1. Fix any H` ∈ H`. Note that every edge of H` touching I` has
exactly one vertex in I`, because every edge of G0 has at most one vertex in each of the
intervals I1, . . . , Ik (by the definition of G0). Namely, every edge e ∈ E(H`) with e∩I` 6= ∅
is of the form {v1, . . . , vs−1, w} with w ∈ I` and v1, . . . , vs−1 ∈ [n]\ I`. Let w1 < · · · < wm`

be the vertices of H` in I`. For each 1 6 i 6 m`, let vi,1, . . . , vi,s−1 ∈ [n] \ I` such that
{vi,1, . . . , vi,s−1, wi} ∈ E(H`). By Lemma 2, we can replace w1, . . . , wm`

in (δn)m` ways to
obtain copies of H in G`−1. Doing this for different H`, H

′
` ∈ H` gives different copies of

H, because H`, H
′
` differ on vertices outside I` (as they both agree with Hk on I`), and

we do not change the vertices of H`, H
′
` which are outside I`. Thus, doing the above for

each H` ∈ H` gives the required (δn)m`|H`| > (δn)m`+···+mk copies of H in G`−1. This
completes the induction step.

For ` = 0, Lemma 5 gives

(δn)m1+···+mk = (δn)t =
( ε

4t

)t(t+1)

nt

copies of H in G0 (and so in G), as required. This proves the theorem.

3 Concluding remarks

We proved that ordered matchings admit a polynomial removal lemma. It would be
interesting to extend this result to other families of ordered forests, such as ordered paths.

Our proof of Theorem 1 shows that one can take C(t) = O(t2). It would be interesting
to improve this to C(t) = O(t). For fixed s and growing t, this would be tight, as shown
by the following proposition:

Proposition 6. Let H be an ordered s-uniform hypergraph with t vertices and m edges,
let ε > 0 be small enough, and let n > n0(ε). Then there exists an n-vertex s-uniform
ordered hypergraph G which is ε-far from being H-free but contains only O(ntεm) copies
of H.

If H is an ordered matching then e(H) = t
s
, so the proposition implies that C(t) > t

s
.

We give a proof sketch of the proposition.

Proof sketch of Proposition 6. Take G ∼ Hs(n, ε) to be the random (binomial) ordered
s-uniform hypergraph; namely, each of the

(
n
s

)
potential edges is included in G with

probability ε, independently. The expected number of copies of H in G is Θ(ntεm),
because there are Θ(nt) potential copies, and each appears with probability εm. Similarly,
a given edge of G appears in expectation in O(nt−sεm−1) copies of H. Using Azuma’s
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inequality (see e.g. [8, Chapter 7]), one can show that w.h.p. every edge appears in
O(nt−sεm−1) copies of H, and the total number of copies of H is Θ(ntεm). Thus, one

has to delete Ω
(

ntεm

nt−sεm−1

)
= Ω(εns) edges to destroy all copies of H, meaning that G is

Ω(ε)-far from being H-free.

References

[1] N. Alon. Testing subgraphs in large graphs. Random Structures & Algorithms, 21(3-
4):359–370, 2002.

[2] N. Alon and O. Ben-Eliezer. Efficient removal lemmas for matrices. Order, 37(1):83–
101, 2020.

[3] N. Alon, O. Ben-Eliezer, and E. Fischer. Testing hereditary properties of ordered
graphs and matrices. In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 848–858. IEEE, 2017.

[4] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs.
Combinatorica, 20(4):451–476, 2000.

[5] N. Alon, E. Fischer, and I. Newman. Efficient testing of bipartite graphs for forbidden
induced subgraphs. SIAM Journal on Computing, 37(3):959–976, 2007.

[6] N. Alon and A. Shapira. Testing subgraphs in directed graphs. In Proceedings of the
thirty-fifth annual ACM symposium on Theory of computing, pages 700–709, 2003.

[7] N. Alon and A. Shapira. A characterization of easily testable induced subgraphs.
Combinatorics, Probability and Computing, 15(6):791–805, 2006.

[8] N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley & Sons, 2016.

[9] J. Fox. A new proof of the graph removal lemma. Annals of Mathematics, pages
561–579, 2011.

[10] L. Gishboliner and A. Shapira. Efficient removal without efficient regularity. Com-
binatorica, 39(3):639–658, 2019. Also in Proc of ITCS 2018, 1-15.

[11] L. Gishboliner and A. Shapira. Removal lemmas with polynomial bounds. Inter-
national Math Research Notices (IMRN), pages 14409–14444, 2021. Also in Proc of
STOC 2017, 510-522.

[12] L. Gishboliner and A. Shapira. Hypergraph removal with polynomial bounds.
arXiv:2202.07567, 2022.

[13] L. Gishboliner and I. Tomon. On 3-graphs with no four vertices spanning exactly
two edges. Bulletin of the London Mathematical Society, 54:2117–2134, 2022.

[14] L. Gishboliner and I. Tomon. Polynomial removal lemmas for ordered graphs. Com-
binatorial Theory, 2, 2022.

[15] O. Goldreich. Contemplations on testing graph properties. In Studies in Complexity
and Cryptography. Miscellanea on the Interplay between Randomness and Computa-
tion, pages 547–554. Springer, 2011.

the electronic journal of combinatorics 31(4) (2024), #P4.33 6

https://arxiv.org/abs/2202.07567
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