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Abstract. We study the dynamics of a social network. Each node has to decide locally
which other node it wants to befriend, i.e., to which other node it wants to create a connec-
tion in order to maximize its welfare, which is defined as the sum of the weights of incident
edges. This allows us to model the cooperation between nodes where every node tries to
do as well as possible. With the limitation that each node can only have a constant number
of friends, we show that every local algorithm is arbitrarily worse than a globally optimal
solution. Furthermore, we show that there cannot be a best local algorithm, i.e., for every
local algorithm exists a social network in which the algorithm performs arbitrarily worse
than some other local algorithm. However, one can combine a number of local algorithms in
order to be competitive with the best of them. We also investigate a slightly different valu-
ation variant. Nodes include another node’s friends for their valuation. There are scenarios
in which this does not converge to a stable state, i.e., the nodes switch friends indefinitely.
We also analyze the consequences if ending a friendship permanently damages it.
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1 Introduction

Psychologists claim that you have a limit of how many friends you can handle [8].
Consequently, you should assess your current friends, and drop those that are unsatis-
factory, to make room for new ones! In this paper we study the computational side of
finding friends in social networks. We assume that people can only choose new friends
among their current social environment, i.e., one can only become friends with friends
of friends, or more generally with acquaintances in the `-hop neighborhood of the cur-
rent friendship graph. If people constantly improve on their friendships with this local
strategy, will this eventually lead to a social optimum, or at least an approximate solu-
tion? What is the best strategy to find new friends? Should one just greedily pick the
best available friends? Or should one rather try to be friends with a diverse set of people,
in order to profit from a larger set of possible new friends?

Not so surprisingly, we show that any local friend-finding strategy will only con-
verge to a solution that is arbitrarily worse than a global optimum. More surprisingly
however, there is no best local strategy. No matter what the strategy is, there is always a
possible input scenario where other local strategies are much better. In addition we study
mixing strategies, i.e., we allow everyone to use several strategies to find their friends.
Additionally, we investigate slightly changed valuation models. We show that judging
a friend not on his own, but also by his friends, can lead to unstable states, i.e., nodes
switch friends indefinitely. We also analyze a valuation model in which breaking up a
friendship reduces the valuation of the friendship permanently.

1.1 Related Work

An early ancestor of our work is the stable marriage problem, introduced by Gale and
Shapley [6] in 1962: We are given n nodes, partitioned into two sets commonly denoted
as men and women. Each woman has a strictly ordered preference list over all men and
vice versa. They now want to create a stable matching. A matching is called stable if
there is no pair of man and woman such that, instead of being matched to their current
partner, they would prefer to be matched to each other. The roommate problem [6] is
another related research area, where the nodes are not partitioned into two disjoint sets.
Each node again has a complete, strictly ordered preference list. In this basic setting
there might not be a stable matching. The problem is further investigated in [1, 7], stating
restrictions to allow and find stable matchings. An overview on stable marriage can be
found in e.g., [11] and a more detailed analysis of matchings in bipartite graphs in [20].
Stable marriage has also been studied as an online problem where the preferences of the
men are revealed one at a time [17]. In this setting there are Ω(n2) initially unstable
marriages in the worst case.

Much research has been done in the stable marriage area on preference lists with ties
[9, 16], i.e., when the constraint of strictly ordered preference lists is lifted. In our model
we assume locality of information, i.e., nodes do not know their complete preference list.
Furthermore, we do not require the nodes to have a strict ordering. Finding a maximum
matching for stable marriage with these extensions, ties and incomplete preference lists,
is known to be NP-hard [14, 19]. It can be approximated within a factor of 2 [19]. It
can also be approximated within a factor which depends on the number of ties in the
preference lists [12].
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There have been several approaches to solve stable marriage in a distributed way. In
[10] the nodes can only try to be matched to a fixed set of adjacent nodes.

Generally related to our work are network formation games from the field of eco-
nomics. The nodes create links, as a one shot game or dynamically, to generate welfare
which depends on the created links. This welfare is allocated to the players according
to some specific rules. These games include models of so called market sharing agree-
ments, in which companies can agree not to sell goods on each others markets to increase
their profits [4], and labor markets, where workers get jobs offered and pass the offer to
one of their friends if they are already employed [5]. Another example is the model of
a general buyer and seller market in which a link represents a potential transaction [18].
A survey on this area is in [15].

So far, the possible matching edges were a fixed set of edges. In [3], the nodes are
partitioned into two sets, workers and firms. There are static connections between some
workers which indicate friendship. The workers are matched using a local variant of
the Gale-Shapley algorithm, but only to firms which are known to their friends. This
introduces a dynamic set of matching partners. If a worker changes his company, this
can change the set of possible matching partners for his friends. The model used by
Martin Hoefer generalizes this [13]. The set of nodes is not partitioned and nodes can
possibly have more than one matching partner. In his paper, Hoefer studies the conver-
gence time of matching edges in a social network, with a limited lookahead `. For ` = 2
this means that the nodes only know the neighbors of their neighbors. In general, nodes
can only create a connection to nodes which are in a distance of at most ` hops. Hoe-
fer’s model distinguishes between social links and matching links. Social links are static
edges which already exist in the initial graph, and keep existing throughout the execution
of the algorithm. Matching links on the other hand are created and possibly removed by
the algorithm. In this paper, we drop this difference, and only use one kind of (dynamic)
edges. If needed, we can easily emulate social (static) links by adding edges with maxi-
mal quality, which will not be removed at any point of the algorithm. Whereas Hoefer’s
focus was primarily on runtime, we primarily investigate the achieved welfare. Since
our model is used to describe cooperation between different players or actual friendship,
we also assume that both partners value a potential relationship identically.

1.2 Our Contributions and Paper Structure

We explain our model and our assumptions in Section 2. We describe local algorithms
in the context of social networks which try to maximize the welfare of the participants.
This means that they try to find good partners for every node, i.e., edges of high quality.
The distributed algorithms executed on every node try selfishly to maximize the sum of
the qualities of incident edges. We prove in Section 3 that there cannot be an optimal,
local algorithm. We do this in two steps. First, in Subsection 3.1, we show that no local
algorithm can compete with a global, optimal algorithm, i.e., any local algorithm will
be arbitrarily worse in certain scenarios. Afterwards, in Subsection 3.2, in the spirit of
[2], we compare local algorithms with other local algorithms. We prove that there is
no best local algorithm, i.e., one which is always at least as good as every other local
algorithm. For every local algorithm there exists a scenario where it is arbitrarily worse
than another local algorithm. This includes randomized algorithms. In Subsection 3.3
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we let the nodes execute several algorithms in parallel. Although every local algorithm
can be arbitrarily worse than a global optimum, we show that the nodes can achieve a
factor 2 approximation in comparison to the best applied strategy.

Furthermore, in Subsection 3.4 we study a slightly modified model, where friends
of potential friends also matter for the valuation. We show that there exist scenarios in
which a simple algorithm no longer achieves a stable state. In Subsection 3.5 we assume
that ending a friendship permanently damages the quality of a friendship. Assuming a
breakup reduces the quality of the friendship by a constant, the runtime of any algorithm
is limited. Another model is that the quality of the friendship is reduced by a constant
factor if the friendship is ended. Under this assumption there are scenarios in which
edges are recreated very often and thus the quality gets reduced significantly.

2 Model

We model a social network with a set V of nodes (human beings), n = |V |. Between any
two nodes u, v ∈ V there is a quality function q(u, v) ∈ [0, 1], representing the quality
of the friendship, a larger value means better quality. We do not consider negative edge
qualities since no node has an incentive to create an edge which reduces its welfare.
The quality is symmetric, i.e., q(u, v) = q(v, u). Without symmetry we can create the
same cycling as in the roommate problem [6] and thus not reach a stable state. Initially,
the nodes are connected by an arbitrary graph G = (V,E), representing the initial
knowledge graph. In other words, if two nodes are neighbors in G, they are initially
friends. Nodes might decide to create new friendships (edges), and friendships can also
be ended. We refrain from changing the friendship graph externally by changing the
quality of an edge during the execution of the algorithm, since we want to analyze local
algorithms. The set of edges E is as such highly dynamic.

A node’s welfare (happiness) depends on the quality of its friendships. Formally,
the welfare of a node v is defined as

∑
u∈N(v) q(u, v), where N(v) denotes the set of

neighbors (current friends) of v. Nodes try to maximize their personal welfare by finding
new friends with high quality values.

In reality, one cannot be friends with everybody. However, since our edge qualities
are non-negative, nodes could just accumulate more and more friends, untilG is a clique.
We do not want this effect in our study; as such each node v has a maximum number of
possible friends kv, an individual constant parameter. If a node v already has kv friends,
and fancies a new friend, it must drop an old friend instead.

Nodes cannot choose friends arbitrarily. Instead, they can only choose friends that
are already within their visibility. More formally, we define the constant parameter `
which we call lookahead. A node can only get a friend within ` hops of graph G. For
example, if ` = 2, apart from its friends (neighbors in G) a node can only see its 2-hop
neighbors (friends of friends); new friends can only be found among these 2-hop neigh-
bors. As such we deal with so-called `-local algorithms. A node has all the information
in its `-hop neighborhood. In particular it knows about all the friendships and all the
qualities in the `-hop neighborhood.

Nodes run `-local algorithm in order to optimize their friendship graph. Since friend-
ships are a serious business with lots of potential for conflicts of interest, one needs to
be careful about the issue which node can propose friendships to which other node at
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what time. There are various meaningful models here. Indeed, our proofs are relatively
robust and work in different kinds of algorithmic models.

For the sake of concreteness, we suggest the round-robin model. In this model, all
nodes take turns in a round-robin fashion. Whenever it is the turn of a node v, v can pro-
pose friendship to different nodes in its `-hop neighborhood. The order in which it asks
these nodes is completely up to v; this order is basically the friend-finding algorithm. If
v has already kv friends, it only proposes to nodes whose friendship is more valuable
(edge quality is higher) than that of v’s worst friend, i.e., to better friends. A node u that
is asked by v evaluates the proposed friendship. If u still has room for a new friend, or if
v’s proposed friendship is better than the worst of u’s current friendships, u will accept
the edge (and drop its worst friendship if necessary). In other words, a new edge is only
added to the graph if both nodes u, v adjacent to edge (u, v) want the edge. If a node
gets rejected from a potential new friend, it continues to ask other candidates according
to the ordering.

If a node does not find any better friend, the round-robin model asks the next node
to find a friend. The procedure ends if no new friendships can be discovered, i.e., if a
whole round-robin loop does not change the friendship graph anymore. We call this a
stable state.

Note that the initial friendship graph G constrains the final outcome. If two nodes
are in different components of the initial graphG, then they can never become friends as
they cannot learn about each other. Also, components may partition into smaller com-
ponents during the execution of the algorithm. For the sake of simplicity, we assume
that the initial friendship graph G is connected; however, alternatively, just think of our
analysis to take place in one of the original components.

We can imagine various ways to increase the power of the nodes. In particular, nodes
might have additional, constant size memory. Memory allows nodes to remember special
former partners, e.g., the best ones they dropped, nodes for which the creation of the
corresponding edge had some specific properties, or any other mechanism imaginable.
Nodes stored in the memory can be added to the list of candidates which will be asked
by the algorithm. An algorithm might try to combine several algorithms into one by
executing them in parallel. This can be done by performing one round of each algorithm
alternately and using the memory to remember the states of the other algorithms. Note
that due to the constant memory, only a constant number of algorithms can be combined
in this way.

3 On Welfare

In this section we compare different algorithms. As a measurement we use the welfare
in the stable states. We compare the globally achieved welfares, i.e., the sum of welfare
achieved by all nodes. Algorithm A is said to be arbitrarily worse than algorithm B if
the welfare in the stable state of A is O(n · ε) whereas it is Ω(n) in the stable state of
algorithm B. Note that ε can be arbitrarily small, e.g., as small as any function in n such
as ε = 2−n.

In the model section we have described algorithms which only choose beneficial
partners. Let us justify why we focus on this class of algorithms. We show that tem-
porarily accepting worse friends results only in a constant increase in the lookahead.
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Fig. 1. Two subgraphs G1, G2 which are never in contact with each other because they are separated by a
bridge GB with a diameter of at least `.

Lemma 1. If all nodes are allowed to temporarily choose c worse neighbors, the length
of shortest path between two nodes u, v can only decrease by at most a constant factor
of `c.

Proof. Let u, v be two nodes which are not neighbors. If the graph is connected, there
exists a path from u to v via nodes u1, . . . , uk. If each node is only allowed to select one
worse partner, the distance is minimized if every `-th node connects to a node in distance
` bypassing the `− 1 now unnecessary nodes in between. The path now consists of the
nodes u, u`, u2`, . . . , v. Hence, the distance can be reduced by at most a factor of ` in
total, i.e., to at least k

` which is a constant factor reduction since ` is independent of
n. Thus, if we only allow a constant number c of consecutive bad choices, the distance
decreases by a factor of at most `c, which is only a constant. ut

Hence, if nodes are allowed to temporarily choose worse partners, all the proofs still
hold by increasing the distances from ` to `c. Thus, we will not treat this separately but
mention it briefly in the proofs.

3.1 Local vs Global Algorithms

After having introduced the basic idea of local algorithms, let us now analyze how they
perform against a global optimum, i.e., a graph which maximizes the sum of welfare
achieved by all nodes.

Theorem 2. For nodes with a constant lookahead ` and a constant size memory there
exist scenarios for every local algorithm such that its reached welfare is arbitrarily
worse than a global optimum.

Proof. Consider a scenario as depicted in Figure 1. The initial graph consists of three
subgraphs G1, G2 and GB . The two larger subgraphs G1, G2 are connected through a
bridge GB which has a diameter of at least ` and each node v in the bridge has already
kv friends. The valuations are such that for every pair (u, v) ∈ G1×G2 the quality is 1,
for every pair (u, v) ∈ Gi ×Gi with i ∈ {1, 2}, we have q(u, v) = ε. Furthermore, for
every (u, v) ∈ Gi ×GB with i ∈ {1, 2}, q(u, v) = ε/2. Thus, we only need to specify
the valuations within GB . Every node v ∈ GB values other nodes u ∈ GB with 2ε if
the edge exists in the initial friendship graph and 0 otherwise.

Hence, the nodes in the bridge already have their best possible friends and therefore
will not change their friends. These valuations represent an initial friendship graph in
which no node really likes his friends but does not know any better candidates.
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Fig. 2. A track going from left to right. The dashed, gray edges are created by the execution of a local
algorithm, the black edges are given in the initial friendship graph.

But this setting is a stable state, hence no local algorithm will create an edge between
any node from G1 with any node from G2 because of the sheer distance between those
subgraphs. This holds due to Lemma 1 even if the nodes are allowed to choose non-
beneficial partners. Furthermore, the connecting nodes are not appealing for any node
and thus remain isolated. Therefore, the best achievable stable state is O(n · ε). In the
optimal solution the nodes from the sets G1, G2 are connected to each other to achieve
a stable state with value Θ(n− |GB|) = Θ(n). ut

Note that this result relies on the fact that any reasonable, local algorithm is only
willing to create connections to beneficial partners or is only willing to accept a worse
partner a constant number of times. Let us further remark that the initial friendship graph
and any stable state reached by a local algorithm is not necessarily Pareto efficient. This
means that there are scenarios where we can easily improve the welfare of some nodes
without lowering the welfare of other nodes, e.g., by moving one node v from G1 to G2.
Now v can connect to nodes which it valuates higher. This increases v’s welfare (and
the welfare of the nodes which are connected to v) but does not lower the welfare of any
node.

3.2 Local vs Local Algorithms

We now show that there cannot even be a best local algorithm, i.e., an algorithm which
can achieve a stable state whose welfare is at least as good as the welfare of any other
local algorithm. We prove that for every local algorithm there exist scenarios in which it
is arbitrarily worse than another, local algorithm. But first, we need a few more terms.

Proposition 3. A track consists of two disjoint sets, each with j nodes. The nodes of
each set are initially arranged in a line as shown in Figure 2 (connected to each other
with the edges colored in black). The length of the track is j. The dashed, gray edges
have a strictly monotonic increasing quality from left to right. The black edges from the
initial friendship graph have a quality of O(ε). The remaining edges have a quality of 0
and are therefore never used. Every node v of a track has kv ≥ 4. After the initial edge
e is created, any algorithm in our model will create the dashed, gray edges, starting
with e1, one by one from left to right, i.e., in increasing order regarding their quality.
The creation of one dashed, gray edge allows the creation of the next dashed, gray edge
since those nodes are now within ` hops of each other. We call the creation of the edges
exploring a track.



8

Fig. 3. Two tracks T1 and T2 interacting. T1 is blocked by T2 since the shared nodes of both tracks have no
incentive to create the edges of T1 since they are content with the edges of T2.

Proposition 4. A successful track generates a welfare of Ω(n) if the initial edge e is
created. Without this initial edge the track has only a welfare of O(n · ε). A track of
length Ω(n) can have these properties. In such a track we can set the quality of the
edges in the initial friendship graph to O(ε) and the edge quality of the selected edges
connecting those two sets, i.e., the dashed, gray edges in Figure 2 to a constant.

Upon creating the initial edge e on the left, the track can be explored. After every
dashed, gray edge is created, the welfare is Ω(n); without the initial edge the welfare is
generated only by the edges of the initial friendship graph and thus O(n · ε).

Proposition 5. A track T is said to be blocked if, during the exploration, no further edge
is created because at least ` consecutive nodes v have already kv edges which are better
than those of the track T . This stops the exploration since the nodes have no incentive
to continue to explore the track.

Similarly, a track T2 blocks another track T1 if the edges of T2 are part of the reason
why T1 is blocked. An example of this can be seen in Figure 3.

Theorem 6. For nodes with a constant lookahead ` and a constant size memory there
exist scenarios for every deterministic, local algorithm such that its reached welfare is
arbitrarily worse than that of another deterministic, local algorithm.

Proof. Consider two concatenated tracks T1, T2 each of length at least `. On top of each
of the ` nodes of the first track T1 are four nodes in a line, i.e., each node ui is connected
to a different intermediate node v′i which is connected to node vi. This subgraph of the
initial friendship graph is depicted in Figure 4. We define kvi = 2 and kui = 4 for all
nodes ui, vi with i ∈ {1, . . . , `}, i.e., every node ui can create a connection to exactly
one more node whereas vi must sever an edge to create a new edge. Let v′i be vi’s worst
friend. The qualities are such that q(ui, vi) > q(ui, xi) holds. Let the edges from the
initial friendship graph have a quality larger than q(ui, vi) for all i ∈ {1, . . . , `}.

We assume that node vi has two options. It can either create a connection to node
ui or to node wi; all other nodes are valued with 0. If all nodes vi decide to create a
connection with ui, T1 is blocked. Let us explain this in more detail. Since q(ui, vi) >
q(ui, xi) and the quality of every edge of the initial friendship graph is also larger than



9

Fig. 4. A subgraph of size O(1) with outgoing track. Node vi must now decide if it wants to create a
connection to node wi or to node ui. If all the connections to ui are made, the track cannot be explored.
Note that edge e is not part of the initial friendship graph.

q(ui, xi), node ui has no incentive to create the edge (ui, xi) or any other edge. Thus,
the track T1 is not explored and the initial edge e of T2 is not created. But if all nodes vi
choose to create a connection with wi, track T1 and subsequently track T2 are explored.
Note that it is unimportant if the nodes vi may have the option to temporarily revise
their decision by using their constant memory. It only matters whether the track T2 is
explored at some point execution of the algorithm.

Since the nodes can only see the graph and a part of the track, they have to make a
decision with only a subset of the information available. Hence, they have to base their
decision on insufficient information because they cannot know whether the exploration
of the track T2 is necessary in order to create partnerships between most of the nodes.
This can occur if the track T2 turns out to be a successful track. But it might also happen
that this track blocks a successful track and should therefore not be explored. The latter
scenario is shown in Figure 3. In this scenario the chosen track prevents the exploring
of the other track. Since these scenarios are indistinguishable for any algorithm, the
remainder of the graph can be such that its choice is wrong. It is easy to see that there
is another local algorithm which decides correctly for this particular scenario. Limiting
the quality of the edges in the subgraph to O(ε) yields the theorem. ut

We can prove a similar result for algorithms which try to execute a constant number
of different algorithms in parallel to avoid the aforementioned problem. This allows
them to emulate algorithms where one might explore a track whereas another might not.

Corollary 7. For nodes with a constant lookahead ` and a constant size memory there
exist scenarios for every local algorithm, which executes several algorithms in parallel,
such that its reached welfare is arbitrarily worse than that of another local algorithm.

Proof. To deal with the fact that one algorithm might explore the track whereas another
might not, we use a slightly more sophisticated idea. Once again, we use the idea of a
successful track. Let T3 be such a track. We concatenate different subgraphs to prove
the corollary. We can use the subgraphs to ensure that each of the executed algorithms
makes a severe mistake, i.e., has no longer a chance of being optimal. We now construct
the whole graph step by step.



10

Imagine a subgraph with two for the nodes indistinguishable outgoing tracks T1, T2
of length Ω(`). Any algorithm has only four choices available. Either it explores no
track, T1, T2 or both. W.lo.g. half of the nodes explore either T1 (and possibly T2 as
well) or explore no track at all. Apparently, we want that decision to be incorrect. Hence,
the graph is such that T1 blocks the successful track T3. Furthermore, exploring T2 is
necessary in order to explore T3 later on. Thus, the optimal algorithm explores only
track T2. This construction also deals with algorithms which explore both tracks. Hence,
half of the executed algorithms have chosen in a way such that they cannot be optimal
anymore.

Track T2 leads to another subgraph where the process is repeated. This subgraph has
also two, for the algorithm indistinguishable, outgoing tracks. One of the tracks blocks
the successful track T3 whereas the other one leads to the next subgraph. This is repeated
a sufficient number of times. In the last subgraph one of the tracks is the successful track
T3 and the other track once again blocks that track.

By setting the edge qualities in the subgraphs to O(ε), we ensure that the local
algorithm which emulates other algorithms, can only choose edges with quality O(ε)
and thereby limiting its welfare to O(n · ε). Thus, even running several algorithms in
parallel is not sufficient to obtain the best local algorithm. With these edge qualities it
can be arbitrarily worse than another local algorithm. ut

Theorem 8. For nodes with a constant lookahead ` and a constant size memory there
exist scenarios for every randomized, local algorithm such that its reached welfare is
arbitrarily worse than that of another deterministic, local algorithm.

Proof. Imagine a scenario similar as in Theorem 6. Any randomized local algorithm
either chooses to explore the track with probability at least 1

2 or chooses not to explore
the track with probability at least 1

2 . Hence, we can first concatenate b of these structures
with b = Θ(log n) such that the probability that the randomized algorithm chooses
correctly is 2−b, i.e., chooses the correctly with low probability, i.e., with probability
n−α for some constant α, α > 0. Once again, using the same argument as before, there
exists a local algorithm which always chooses deterministically and correctly which
achieves an optimal solution. By choosing the edge values accordingly, we can ensure
that the achieved stable states differ sufficiently. ut

3.3 Executing Local Algorithms in Parallel

We have seen that the welfare in the stable states that different algorithms reach differs
significantly. Although, as seen in Corollary 7, none of them may produce an optimal
solution, we try to salvage as much as possible by selecting a constant number of algo-
rithms and trying to be as close as possible to the best achieved solution. If we execute
several algorithms in parallel, we obtain more than one solution. Due to the fact that the
nodes only have a local view, they cannot know which of their connections is part of the
best achieved solution. With their limited knowledge, the obvious strategy for the nodes
is to simply try to choose the best available connection if still available. This does not
yield the best solution as shown in the easy example depicted in Figure 5. But we get a
factor 2 approximation compared to the welfare achieved by any of the executed algo-
rithms. To be able to pick edges greedily at the end, we need to show an upper bound on
the runtime which allows the nodes to know when any algorithm has terminated.
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Fig. 5. The best solution consists of the edges {u, v} and {w, x} whereas our greedily picked solution
consists of {u, x} and {v, w} and is thus a factor of 2 worse than the best solution.

Lemma 9. The runtime of any local algorithm that only chooses higher quality edges
is O

(
2n

2
)

.

Proof. We use a potential function to prove this. Consider a bitstring of length n2. The
i-th bit represents the edge with the i-th largest quality. There is a 1 at position i if the
corresponding edge with the i largest quality exists in the graph. The bitstring can be
regarded as a counter. Since we only allow beneficial changes, this potential function
increases with every change. This limits the total runtime of any algorithm of this type
to 2n

2
. ut

Note that the nodes cannot know when exactly the execution has terminated because
of their limited view, but only know the rather weak upper bound of 2n

2
. Hence, the

greedily selecting of the edges will be started after 2n
2

rounds. Since at least one edge is
picked every round, this allows the nodes to output a valid solution after O

(
2n

2
+ n2

)
rounds.

Theorem 10. By running several algorithms in parallel and greedily selecting the best
edges at the end, we obtain a factor 2 approximation compared to the best of the executed
algorithms.

Proof. This proof is similar to the proof that any maximal matching is a factor 2 approx-
imation of a maximum matching. Consider the union of edges of all solutions. Whenever
two nodes mutually agree to pick an edge, this edge can either be part of the best solu-
tion in which case the choice is good. Otherwise, our choice might make it impossible
to pick at most two edges from the best solution since both are connected to one of the
vertices. But both must have a lower quality than our choice. Hence, our solution is at
least half as good as the union of all solutions and therefore at least half as good as the
best solution. Continuing this inductively yields the claim. ut

3.4 Valuing Friends of my Friends

In a real social network it might not be sufficient to simply evaluate a friend by himself.
In order to evaluate a friendship, it is sometimes necessary to also consider the friends
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Fig. 6. The edges {a, b}, {c, d} exist. In this setting b prefers to be paired up with c and c would be happier
with that matching. Afterwards a would match with c and thus b with d. In the next round, the cycle would
start anew.

of a friend. Thus, we want to introduce another friendship valuation variant. An edge
continues to represent an existing friendship, but the new edge quality is a weighted,
combined value of the node and its neighbors. More formally this can be expressed
as Q(u, v) := q(u, v) + c

∑
x∈N(v)\{u} q(u, x) where q denotes the quality function

as defined before and c is some constant. In this model every edge quality Q(·, ·) is
directed, i.e., Q(u, v) 6= Q(v, u) is possible.

In this slightly advanced model, there may not be a stable state. This is due to the
asymmetric valuations of the nodes which can be used to create valuations similar as in
the roommate problem in [6].

Theorem 11. If we include the neighbors of a node in the valuation function, there are
scenarios in which a local algorithm does not reach a stable state.

Proof. It is sufficient to consider the nodes a, b, c, d, e and their friends with the follow-
ing valuation for each other: q(a, b) = q(a, c) = q(b, c) > q(a, d) = q(b, d) = q(c, d).
This means the three nodes a, b, c prefer each other over node d. The valuations of node
e are such that it has no incentive to choose another friend. Now we can set the edge
qualities of the friends of each node such that the final edge qualities are Q((a, b)) >
Q((a, c)) > Q((a, d)). Node a prefers the friends of b over those of node c and so on.
Furthermore, we requireQ(b, c) > Q(b, a) > Q(b, d) andQ(c, a) > Q(c, b) > Q(c, d).
The evaluations of node d do not matter. A brief technical remark has to be made. In or-
der to achieve this, the friends of each node have to be content with being paired up with
their respective partners. Furthermore, neither node must be willing to initiate a connec-
tion with any other node than a, b, c or d. For the nodes to be able to know each other
all the time, the fifth node e can be connected to a, b, c, d but without any incentive to
change its connections. This scenario is depicted in Figure 6.

This enables us to create a cycle. No matter which node is matched with node d, it
wants to change to another node which is willing to do so. Hence, no stable state can be
reached. ut

Clearly, neither a statement about the convergence time nor about the globally achieved
welfare is possible in this setting.
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Fig. 7. A counter as presented by Hoefer [13]. Edges which are created from the algorithm in dashed, gray,
the others in black.

3.5 Breaking Up a Friendship is Expensive

In a real social network, breaking up friendships is hardly without consequences to that
friendship. To model this we assume that the edge quality decreases every time the
corresponding edge is removed. There are two natural choices to reduce the quality of
an edge: Either reduce it by a constant term, or by a constant factor.

Let us first analyze some immediate consequences of this to the runtime of any local
algorithm. In [13] it has been proven that a simple greedy algorithm which does memory
has a runtime of Ω

(
2Θ(n)

)
. We obtain a dramatically smaller runtime if the quality of

the edge gets reduced by a constant.

Theorem 12. If the edge quality q(e) gets reduced by a constant term every time the
edge e is removed, the runtime of any local algorithm is O

(
n2
)
.

Proof. Every edge can only be created and severedO(1) times before the nodes have no
incentive to create that edge because its quality is 0. Hence, after O

(
n2
)

any algorithm
must terminate. ut

Before we describe the effects of reducing the edge qualities by a constant factor,
let us describe an initial friendship graph. It is the same used in [13] to prove the lower
bound for the simple algorithm. We will show that the result still holds if the edge quality
is decreased and consider the consequences for the welfare.

Imagine the nodes arranged as show in Figure 7. The edge qualities are such that
q(e1) < q(e2) < q(e3) < q(e4) < q(e5) holds. The whole graph is constructed by
concatenating these blocks. We assume that the edge qualities are constant. For every
node v its value kv is such that it can create one additional friendship. For simplicity’s
sake, we now assume that the lookahead ` is limited to 2. We analyze a greedy local
algorithm which always chooses the best available option.

Let us describe what happens in this scenario. At the beginning edge e1 can be cre-
ated which enables the partnership e2. While creating e3, this edge will also be severed.
Thus, the creation of edge e1 is again possible. Since the edge e2 cannot be created, the
simple algorithm creates e4, thereby severing e1 the second time. Finally, the partnership
e5 is formed. Note that edge e1 was created twice in order to create e5.
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Lemma 13. The greedy algorithm without memory has a runtime of Ω
(
2Θ(n)

)
.

Proof. The inequalities stated above still hold even if we decrease the quality by a con-
stant factor every time we remove the corresponding edge. We can concatenate b of those
structures with b = Θ(n). Since e1 must be created twice in order to create e5 once and
e5 in turn must be created twice in order to enable the partnership e9, the concatenation
of these blocks requires e1 to be created Ω(2b) times and thus the lemma follows. ut

Theorem 14. If the edge quality q(e) gets reduced by a constant factor every time the
edge e is removed, there is scenario such that the combined quality of the edges created
by the greedy algorithm can be upper bounded by a constant. But in the same scenario,
using memory enables an algorithm to create edges with a combined quality of Θ(n).

Proof. As explained above, every edge gets recreated often, i.e., in the i-th building
block b − i times. Let 1/x be the factor by which each edge quality gets reduced upon
removing. The total welfare of the edges created in the i-th block is at most c · 2b−i.
Summing up over all blocks yields a total welfare of

c ·
b∑
i=1

1/xb−i = c ·
(

x

x− 1
− x1−b

x− 1

)
= O(1).

Imagine an algorithm where the nodes simply remember every friend they ever had
(which is a constant in this scenario). This means that after the first creation of e5, it is
no longer necessary to sever and recreate e1. Thus, every edge gets only removed and
recreated a constant number of times. This allows the total welfare to be Θ(n). ut

Note that we can adapt this proof for ` > 2 by using a slightly more advanced way
to construct the graph but keeping the basic idea. We concatenate blocks in which one
edge needs to be created twice in order to create another edge.

4 Conclusion & Outlook

We showed that any local algorithm for finding better friends that has constant memory
and constant lookahead is arbitrarily worse than the global optimum. We also compared
local algorithms to each other: For every local algorithm there exists a scenario in which
it performs arbitrarily worse than another local algorithm.

This was shown for some specific initial friendship graphs. An interesting open prob-
lem is how to characterize graph classes where a best local algorithm exists. Are there
also some general graph classes where the welfare of a local algorithm is only a constant
factor worse than the global optimum? Another open question is whether our results can
be generalized. Which problems cannot be solved well by a local algorithm; neither in
comparison to other local algorithms nor compared to the optimal solution?
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