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Abstract. In a multicore transactional memory (TM) system, concurrent execu-
tion threads interact and interfere with each other through shared memory. The
less interference a program provokes the better for the system. However, as a pro-
grammer is primarily interested in optimizing her individual code’s performance
rather than the system’s overall performance, she does not have a natural incen-
tive to provoke as little interference as possible. Hence, a TM system must be
designed compatible with good programming incentives (GPI), i.e., writing effi-
cient code for the overall system coincides with writing code that optimizes an
individual program’s performance. We show that with most contention managers
(CM) proposed in the literature so far, TM systems are not GPI compatible. We
provide a generic framework for CMs that base their decisions on priorities and
explain how to modify Timestamp-like CMs so as to feature GPI compatibility.
In general, however, priority-based conflict resolution policies are prone to be ex-
ploited by selfish programmers. In contrast, a simple non-priority-based manager
that resolves conflicts at random is GPI compatible.

Key words: transactional memory, game theory, multicore architecture, concur-
rency, contention management, mechanism design, human factors.

1 Introduction

In traditional single core architecture, the performance of a computer program is usually
measured in terms of space and time requirements. In multicore architecture, things are
not so simple. Concurrency adds an incredible, almost unpredictable complexity to to-
day’s computers, as concurrent execution threads interact and interfere with each other.
The paradigm of Transactional Memory (TM), proclaimed and implemented by Herlihy
and Moss [6] in the 1990’s, has emerged as a promising approach to keep the challenge
of writing concurrent code manageable. Although today, TM is most-often associated
with multithreading, its realm of application is much broader. It can for instance also be
used in inter process communication where multiple threads in one or more processes
exchange data. Or it can be used to manage concurrent access to system resources. Ba-
sically, the idea of TM can be employed to manage any situation where several tasks
may concurrently access resources representable in memory. A TM system provides
the possibility for programmers to wrap critical code that performs operations on shared
memory into transactions. The system then guarantees an exclusive code execution such
that no other code being currently processed interferes with the critical operations. To
achieve this, TM systems employ a contention management policy. In optimistic con-
tention management, transactional code is executed right away and modifications on
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incRingCounters(Node start){
var cur = start;
atomic{

while(cur.next!=start){
c = cur.count;
cur.count = c + 1;
cur = cur.next; }}}

incRingCountersGP(Node start){
var cur = start;
while(cur.next!=start){
atomic{
c = cur.count;
cur.count = c + 1;}

cur = cur.next; }}

Fig. 1. Two variants of updating each node in a ring.

shared resources take effect immediately. If another process, however, wants to access
the same resource, a mechanism called contention manager (CM) resolves the conflict,
i.e., it decides which transaction may continue and which must wait or abort. In case
of an abort, all modifications done so far are undone. The aborted transaction will be
restarted by the system until it is executed successfully. Thus, in multicore systems,
the quality of a program must not only be judged in terms of space and (contention-
free) time requirements, but also in terms of the amount of conflicts it provokes due to
concurrent memory accesses.

Consider the example of a shared ring data structure. Let a ring consist of s nodes
and let each node have a counter field as well as a pointer to the next node in the ring.
Suppose a programmer wants to update each node in the ring. For the sake of simplicity
we assume that she wants to increase each node’s counter by one. Given a start node, her
program accesses the current node, updates it and jumps to the next node until it ends up
at the start node again. Since the ring is a shared data structure, node accesses must be
wrapped into a transaction. We presume the programming language offers an atomic
keyword for this purpose. The first method in Figure 1 (incRingCounters) is one
way of implementing this task. It will have the desired effect. However, wrapping the
entire while-loop into one transaction is not a very good solution, because by doing
so, the update method keeps many nodes blocked although the update on these nodes
is already done and the lock1 is not needed anymore. A more desirable solution is to
wrap each update in a separate transaction. This is achieved by a placement of the
atomic block as in incRingCountersGP on the right in Figure 1. When there
is no contention, i.e., no other transactions request access to any of the locked ring
nodes, both incRingCounters and incRingCountersGP run equally fast2 (cf. Fig-
ure 2). If there are interfering jobs, however, the affected transactions must compete
for the resources whenever a conflict occurs. The defeated transaction then waits or
aborts and hence system performance is lost. In our example, using incRingCounters
instead of incRingCountersGP leads to many unnecessarily blocked resources and
thereby increases the risk of conflicts with other program parts. In addition, if there is
a conflict and the CM decides that the programmer’s transaction must abort, then with
incRingCountersGP only one modification needs to be undone, namely the update to
the current node in the ring, whereas with incRingCounters all modifications back
to the start node must be rolled back. In brief, employing incRingCounters causes
an avoidable performance loss.

1 An optimistic, direct-update TM system “locks” a resource as soon as the transaction reads
or writes it and releases it when committing or aborting. This is not to be confused with an
explicit lock by the programmer. In TM, explicit locks are typically not supported.

2 if we disregard locking overhead
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Fig. 2. Transactional allocation of ring nodes (a) by incRingCounters and (b) by
incRingCountersGP.

One might think that it is in the programmer’s interest to choose the placement
of atomic blocks as beneficial to the TM system as possible. The reasoning would be
that by doing so she does not merely improve the system performance but the effi-
ciency of her own piece of code as well. Unfortunately, in current TM systems, it is
not necessarily true that if a thread is well designed—meaning that it avoids unneces-
sary accesses to shared data—it will also be executed faster. On the contrary, we will
show that most CMs proposed so far privilege threads that incorporate long transactions
rather than short ones. This is not a severe problem if there is no competition for the
shared resources among the threads. Although in minor software projects all interfer-
ing threads might be programmed by the same developer, this is not the case in large
software projects, where there are typically many developers involved, and code of dif-
ferent programmers will interfere with each other. Furthermore, we must not assume
that all conflicting parties are primarily interested in keeping the contention low on the
shared objects, especially if doing so slows down their own thread. It is rather real-
istic to assume that in many cases, a developer will push his threads’ performance at
the expense of other threads or even at the expense of the entire system’s performance
if the system does not prevent this option.3 In order to avoid this loss of efficiency, a
multicore system must be designed such that the goal of achieving an optimal system
performance is compatible with an individual programmer’s goal of executing her code
as fast as possible. This paper shows that, unfortunately, most CMs proposed in the
literature so far lack such an incentive compatibility. In the remainder, we explain our
model, explore the meaning of good programming in a TM system in Section 3, provide
a framework for priority based CMs and a classification of CMs w.r.t. incentive com-
patibility in Section 4 and show an example of a CM not based on priority (Section 5).
If a proof is only sketched or missing, you can find the complete proof in Appendix A.
As a practical proof of our findings, we implemented free-riding strategies in the TM
library DSTM2[5] and tested them in several scenarios. These results can be found in
Appendix B.

2 Model

We use a model of a TM system with optimistic contention management, immediate
conflict detection and direct update. As we do not want to restrict TM to the domain

3 There is competition in many projects, especially within the same company. Just think of the
next evaluation! If TM is to be employed in other domains such as inter process communica-
tion or managing access to system wide resources (DB, files, system variables), a competitive
model is even more obtrusive.



4 R. Eidenbenz and R. Wattenhofer

of multithreading, we will use the notion of jobs instead of threads to denote a set of
transactions belonging together. In inter process communication, e.g., a job is rather a
process than a thread. A job Ji consists of a sequence of transactions Ti1, Ti2, . . . , Tik.
If Ji consists of only one transaction, we sometimes write Ti instead of Ti1. Transac-
tions access shared resources Ri. At any point in time, we denote by n the number of
running transactions in the system and by s the number of resources currently accessed.
For the sake of simplicity, we consider all accesses as exclusive,4 thus, if two transac-
tions both try to access resource Ri at the same time or if one has already locked Ri

and the other desires access to Ri as well, they are in conflict. When a conflict occurs,
a mechanism decides which transaction gains (or keeps) access of Ri and has the other
competing transaction wait or abort. Such a mechanism is called contention manager
(CM). We assume that once a transaction has accessed a resource, it keeps the exclusive
access right until it either commits or aborts. We further assume that the time needed to
detect a conflict, to decide which transaction wins and the time used to commit or start a
transaction are negligible. We neither restrict the number of jobs running concurrently,
nor do we impose any restrictions on the structure and length of transactions.5 We say a
job Ji is running if its first transaction Ti1 has started and the last Tik has not committed
yet. Notice that in optimistic contention management, the starting time ti of a job Ji and
therewith the starting time ti1 of Ti1 is not influenced by the CM, since it only reacts
once a conflict occurs. The environment E is a potentially infinite set of tuples of a job
and the time it enters the system, i.e., E = {(J0, t0), (J1, t1), . . .}. We assume that the
state at a time t of a TM system managed by a deterministic CM is determined by the
environment E . The execution environment of a job Ji is then E−i = E \ {(Ji, ti)}.We
further assume that once a job Ji is started at time ti, any contained transaction Tij ac-
cesses the same resources in each of its executions and for any resource, the time of its
first access after a (re)start of Tij remains the same in each execution. Once ti is known,
this allows a description of a contained transaction by a list of all resources accessed
with their relative access time. E.g., Tij = ({(R1, t1), . . . , (Rk, tk)}, dij) means that
transaction Tij accesses R1 after t1 time and so forth until it hopefully commits after
dij time. The contention-free execution time dEij is the time the system needs to exe-
cute Tij if Tij encounters no conflicts. The job execution time dM,E

i is the time Ji’s
execution needs in a system managed byM in environment E , i.e., the period from the
time Ti1 enters the system, ti1, until the time Tik commits. Similarly, dM,E

ij denotes the
execution time of transaction Tij and dM,E is the makespan of all jobs in E , i.e., the
time from mini ti until maxi(ti + dM,E

i ). We denote by M∗ an optimal offline con-
tention manager. We presumeM∗ to know all future transactions. It can thus schedule
all transactions optimally so as to minimize the makespan. We assume that the program
code of each job is written by a different selfish developer and that there is competition
among those developers. Selfish in this context means that the programmer only cares
about how fast her job terminates. A developer is considered rational, i.e., she always
acts so as to maximize her expected utility. This is, she minimizes her job’s expected
execution time. Further, we assume the developers to be risk-averse in the sense that

4 Invisible reads that would allow a concurrent access without conflicts are not considered.
5 That is why we do not address the problem of recognizing dead transactions and ignore heuris-

tics included in CMs for this purpose.
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Fig. 3. Partitioning example. The picture depicts the optimal allocation of two resources R1 and
R2 over time in two situations (a) and (b). In (a), the programmer of job J1 does not partition
T1. In (b), she partitions T1 into T11 and T12. The overall execution time is shorter in (b), the
individual execution of J1, however, is faster in (a).

they expect the worst case to happen, however they expect their job Ji to eventually ter-
minate even if under certain environments,M does not terminate Ji. This assumption
is inevitable since with many CMs, there exist (at least theoretically) execution environ-
ments E−i which make Ji run forever. Thus a risk-averse developer could just as well
twirl her thumbs instead of writing a piece of code without this assumption. In Lemma
1, the used notion of rationality will be further adapted in that we argue that delaying a
transaction does not make sense if an arbitrary environment is assumed.

3 Good Programming Incentives (GPI)

Our main goal is to design a multicore TM system that is as efficient as possible. As
we may not assume programmers to write code so as to maximize the overall system
performance but rather to optimize their individual job’s runtime, we must design a
system such that the goal of achieving an optimal system performance is compatible
with an individual programmer’s goal of executing her code as fast as possible. A first
step in this direction is to determine the desired behavior, that is, we have to find the
meaning of good programming in a TM system. We want to find out how a programmer
should structure her code, or in particular, how she should place atomic blocks in order
to optimize the overall efficiency of a TM system.

When a job accesses shared data structures it puts a load on the system. The insight
gained by studying the example in the introduction is that the more resources a job
locks and the longer it keeps those locks, the more potential conflicts it provokes. If the
program logic does not require these locks, an unnecessary load is put on the system.

Fact 1 Unnecessary locking of resources provokes a potential performance loss in a
TM system.

However the question remains whether partitioning a transaction into smaller
transactions—even if this does not reduce the resource accesses—results in a better
system performance. Consider an example where the program logic of a job J1 requires
exclusive access of resource R1 for a period of d1. One strategy for the programmer
is to simply wrap all operations on R1 into one transaction T1 = ({(R1, 0)}, d1).
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However, let the semantics also allow an execution of the code in two subsequent
transactions T11 = ({(R1, 0)}, d11) and T12 = ({(R1, 0)}, d12) without losing con-
sistency and without overhead, i.e., d11 + d12 = d1. Figure 3 shows the execution
of both strategic variants in a system managed by an optimal CM M∗ in an execu-
tion environment E−1 = {(J2, 0)} with only one concurrent job J2. Both jobs J1 and
J2 enter the system at time t = 0. Job J2 consists of transactions T21 and T22 with
T21 = ({(R2, 0), (R1, d21 − δ1)}, d21) and T22 = ({(R2, 0), (R1, δ2)}, d22) Further-
more, let δ1 << d1 and δ2 << d1. In situation (a), the programmer does not partition
T1,M∗ schedules T1 first, at time t = 0, T21 at t = δ1 + δ2 and T22 at t = d1 + δ1.
This optimal schedule of T1, T21 and T22 has a makespan of d1 + δ1 + d22. In situation
(b), the programmer partitions T1 into T11 and T12, an optimal CM schedules T11 and
T21 concurrently at time t = 0, T12 at t = d21 = d11 + δ1 and T22 at t = d11 + 2δ1.
This yields a makespan of d11 + 2δ1 + d22 = d1 + δ1 + d22− δ2. Thus, in the example
of Figure 3, partitioning T1 allows to schedule J1 and J2 by δ2 faster. We can show that
partitioning is beneficial in a system managed byM∗ in general.

Theorem 1 Let Tij1, Tij2 be a valid partition of Tij . Let Ji be a job containing
Tij1, Tij2 and J ′i the same job except it contains Tij instead of Tij1, Tij2. A finer trans-
action granularity speeds up a transactional memory system managed by an optimal
CM M∗, i.e., ∀ E−i, t : dM

∗,E−i∪{(Ji,t)} ≤ dM
∗,E−i∪{(J′i,t)} and ∃ E−i, t such that

inequality holds.

Proof (Sketch). Partitioning transactions only gives more freedom toM∗. To be at least
as fast with Ji as with J ′i ,M∗ could execute Ti2 right after Ti1. In some cases it might
be even faster to schedule an intermediary transaction between Ti1 and Ti1. ut

Note that Theorem 1 proves partitioning to be beneficial to a system with an optimal
CM. Of course, this does not hold for all CMs. As partitioning gives more freedom
to the CM, though, it is highly probable that by incentivizing partitioning, a system
achieves a better performance even with the additional overhead needed for incentive
compatibility.

Let us reconsider the example from Figure 3. We have seen that partitioning T1 into
T11 and T12 results in a smaller makespan. But what about the individual execution time
of job J1? In the unpartitioned execution, where J1 only consists of T1, J1 terminates
at time t = d1. In the partitioned case, however, J1 terminates at time t = d1 + δ1. This
means that partitioning a transaction speeds up the overall performance of a concurrent
system managed by an optimal CM, but it possibly slows down an individual job. Thus,
from a selfish programmer’s point of view, it is not rational to simply make transactions
as fine granular as possible. In fact, if a finer grained partitioning of transactions might
result in a slower execution of a job, why should a selfish programmer make the effort
of finding a transaction granularity as fine as possible?

Avoiding unnecessary locks and partitioning transactions whenever possible is ben-
eficial to a TM system. We say a CM M rewards partitioning of transactions if in a
system managed by M, it is rational for a programmer to always partition a transac-
tion whenever the program logic allows her to do so. Further,M punishes unnecessary
locking if in a system managed by M, it is rational for a programmer to never lock
resources unnecessarily, i.e., she only locks a resource when required by the program
logic. One can expect that, from a certain level of selfishness among developers, a CM
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which incentivizes these two crucial aspects of good programming, performs better than
the best incentive incompatible CM. In the remainder, we are mainly concerned with
the question of which contention management policies fulfill the following property.

Property 1. A CM is good programming incentive (GPI) compatible if it rewards par-
titioning and punishes unnecessary locking.

As a remark, we would like to point out that the optimal CMM∗ does not reward parti-
tioning and hence is not GPI compatible. This is shown by the example from Figure 3.
Note that the optimality ofM∗ refers to the scheduling of a given transaction set. If we
assume developers act selfish then also a system managed byM∗ suffers a performance
loss and a different CM which offers incentives for good programming might be more
efficient thanM∗. There is, however, an inherent loss due to the lack of collaboration.
In game theory, this loss is called price of anarchy (cf. [2, 7]).

4 Priority-Based Contention Management (CM)

One key observation when analyzing the contention managers proposed in [1, 4, 8–10]
is that most of them incorporate a mechanism that accumulates some sort of priority for
a transaction. In the event of a conflict, the transaction with higher priority wins against
the one with lower priority. Most often, priority is supposed to measure, in one way or
another, the work already done by a transaction.6 The intuition behind this approach
is that aborting old transactions discards more work already done and thus hurts the
system efficiency more than discarding newer transactions. The proposed contention
managers base priority on a transaction’s time in the system, the number of conflicts
won, the number of aborts or the number of resources accessed. Definition 1 introduces
a framework that comprises priority-based CMs. It allows us to classify priority-based
CMs and to make generic statements about GPI compatibility of certain CM classes.

Definition 1 A priority-based CM M associates with each job Ji a priority vector
ωi ∈ Rs where ωi[k] is Ji’s priority on resource Rk.M resolves conflicts between two
transactions Tij ∈ Ji and Tjr ∈ Jj over resource Rk by aborting the transaction with
lower priority, i.e., if ωi[k] ≥ ωj [k] then Tij wins otherwise Tij is aborted.

In many CMs, all entries of the vector ωi are equal. In this case, we can also replace
ωi by a scalar priority value ωi ∈ R. We call such a CM scalar-priority-based. In
the remainder we often use ωi instead of ωi, for the sake of simplicity, even if we are
not talking about scalar-priority-based CMs only. Mostly, for a correct valuation of a
job’s competitiveness, absolute priority values are not relevant, but the relative value to
other job priorities. A job Ji’s relative priority vector ω̃i is defined by ω̃i[k] = ωi[k]−
mini=1...n ωi[k], ∀k = 1 . . . s. If the CM uses scalar priorities, Ji’s relative priority ω̃i

is obtained by subtracting mini=1...n ωi from the absolute priority ωi. Since optimistic
CMs feature a reactive nature it is best to consider the priority-building mechanism as
event-driven. We find that the following events may occur for a transaction Tij ∈ Ji in
a transactional memory system:

6 Timestamp and Greedy measure the priority by the time a transaction is already running.
Karma takes the number of accessed objects as priority measure. Kindergarten gives prior-
ity to transactions which already backed off against the competing transaction.
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– A time step (T ),
– Ti wins a conflict (W),
– Ti loses a conflict and is aborted (A),
– Ti successfully allocates a resource Rk (Rk),
– Ti commits (C).

The following two subtypes of priority-based CMs capture most contention manage-
ment policies in the literature.

Definition 2 A priority-based CM is priority-accumulating iff no event decreases a
job’s priority and there is at least one type of event which causes the priority to in-
crease.

Definition 3 A CM is quasi-priority-accumulating iff it is priority-accumulating w.r.t.
events T ,W , A andR but it resets Ji’s priority when a transaction Tij ∈ Ji commits.

As an example consider a Timestamp CMMT .MT uses only events of type T and C,
i.e., in a time step dt after Tij ∈ Ji entered the system, ωi is increased by dω = αdt,α ∈
R+ until C occurs, then reset to 0. Ji’s scalar priority at time t, tij < t ≤ tij + dMT ,E

ij

is ωi(t) =
∫ t

tij
αdt = α(t− tij). If not for the event of a commit, where a job’s priority

is reset, Timestamp would be priority-accumulating, since a contained transaction’s
priority always increases and never decreases over time. It is, however, a quasi-priority-
accumulating CM.

4.1 Waiting Lemma

We argue in this section that delaying the execution of a job7 is not rational with the
assumption that the execution environment E−i is arbitrary. We consider cases where Ji

waits before (re)starting a transaction Tij as well as cases where Tij is already running,
has locked some resources and then waits before resuming (cf. Figure 4).

This assumption implies that at any point in time, the history of the transactions does
not hold any information about their future. Furthermore, we demand two restrictions
on the contention manager’s priority modification mechanism:

7 A programmer can implement waiting by executing code without allocating shared resources.
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(I.) An increase (or decrease) of ωi never depends on ωi’s current value8 or on any other
job’s priority value.
(II.) In a period where no events occur except for time steps, all priorities ωi increase
by ∆ω ≥ 0. Note that if ∆ω is always 0, the priority is not based on time.

Lemma 1. If E−i is arbitrary, the strategy of waiting is irrational in a system managed
by a priority-based CMM restricted by ( I.–II.).

Proof. Let ωi(t) be ωi at time t. Let σ denote the strategy of not waiting. Let the wait-
free job employed by σ be Ji and let it enter the system at time ti. We show that σ is the
best strategy and therefore waiting is not rational. Let us assume for the sake of contra-
diction that there is a strategy σ′ which is better than σ. Let the job employed by σ′ be
J ′i where J ′i is the same job as Ji except it waits in an interval [t0, t0 +∆]. In particular,
let T ′ij ∈ J ′i be the transaction which waits to be started or resumed in [t0, t0 +∆] and
Tij ∈ Ji its wait-free counterpart. We argue that during the interval [t0, t0 + ∆], an
adversary can establish a situation for T ′ij which is at least as bad at time t0 + ∆ as
the situation at t0. The adversary simply keeps all the locks and does not start any new
transactions or jobs, nor does she access new resources. Because of restriction (II.), we
have ω̃′j(t0 +∆) = ω̃′j(t0) ∀ j = 1 . . . n, i.e., the relative priorities are conserved. Since
the conflict-resolving mechanism ofM does not depend on the priorities’ absolute val-
ues, but only on their order, and further, modifications of priorities never depend on the
priorities’ absolute values, by resuming all work at t0 +∆ and delaying all jobs in E−i

with starting time > t0 by ∆, the adversary achieves an execution time of J ′i which is
∆ larger than Ji’s execution time. Thus σ is better than σ′. Contradiction. ut

Note that the assumption on E−i being arbitrary naturally applies if the programmer has
no information about the environment in which her program will be executed. Indeed, if
the environment would be truly a worst case environment, the execution of job Ji would
take forever. As with this assumption, starting a job would be completely pointless, we
adapt our model of a risk-averse agent in that we let her suppose that a worst case envi-
ronment yields a finite execution time. Although Lemma 1 is not counterintuitive, this
supposition is needed to establish the claim. In practice, the programmer often has some
information about the environment in which her programm will be deployed. Hence it
might make sense to presume some structure of E−i. E.g., she could assume that lengths
of locks follow a certain distribution, or that each resource has a given probability of
being locked. In such cases waiting might not be irrational. In the following, we will
sometimes argue that a CM is (not) GPI compatible by comparing two jobs Ji and J ′i
where both are equal except for J ′i either locks a resource unnecessarily or does not
partition a transaction although this would be semantically possible. We will show that
in the same execution environment E−i, one job either perfoms faster or if it is slower,
this is because it does not wait at a certain point in the execution. Since waiting is irra-
tional, a developer will prefer this job even if it is not guaranteed to perform better in
any environment.

8 E.g., rules such as “ifωi is larger than 10 add 100” or “ωi = 2ωi” are prohibited. “ωi = ωi+2”
is permitted.
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4.2 Quasi-Priority-Accumulating CM

Quasi-priority-accumulating CMs increase a transaction’s priority over time. Again, the
intuition behind this approach is that, on one hand, aborting old transactions discards
more work already done and thus hurts the system efficiency more than discarding
newer transactions and on the other hand, any transaction will eventually have a pri-
ority high enough to win against all other competitors. This approach is legitimate.
Although the former presupposes some structure of E and the latter is not automatically
fulfilled, examples of quasi-priority-accumulating CMs showed to be useful in prac-
tice (cf. [9]). However, quasi-priority-accumulating CMs bear harmful potential. They
incentivize programmers to not partition transactions and in some cases even to lock
resources unnecessarily. Consider the case where a job has accumulated high priority
on an resourceRi. It might be advisable for the job to keep lockingRi in order to main-
tain high priority. Although it does not need an exclusive access for the moment, maybe
later on, the high priority will prevent an abort and thus save time. In fact, we can show
that the entire class of quasi-priority-accumulating CMs is not GPI compatible.

Theorem 2 Quasi-priority-accumulating CMs restricted by ( I.–II.) are not GPI com-
patible.

Proof. Let J ′i be a job containing Tij and Ji the exact same job where Tij is partitioned
into Tij1 and Tij2. We compare the performance of both Ji and J ′i under the same
circumstances, i.e., the same CM M, the same execution environment E−i and they
both enter the system at the same time ti. Let ω′i denote the priority associated with J ′i .
Let t0 be the time when Tij is started in E−i ∪ {(J ′i , ti)}. Thus t0 is also the time when
Ti1 is started in E−i∪{(Ji, ti)}. We prove Theorem 2 for two subtypes of quasi-priority-
accumulating CMs seperately. Case A:M starts Tij2 immediately after Tij1. Assume
that Tij is not aborted until commit. Let t0 +dij1 be the time when Tij1 commits. Since
both jobs are executed in the same environment, Tij1 is not aborted until commit at
time t0 + dij1. Let there be at least one event that increases ωi in (t0, t0 + dij1). Thus
ω′i(t0 + dij1) = ωi(t0 + dij1) > ωi(t0) ≥ 0. When Tij1 commits, ωi is reset to 0 and
ω′i(tij2) > ωi(tij2). Since Tij2 is started immediately, it will provoke the exact same
conflicts as Tij at times t ≥ tij2. Let the first event on Tij2 (except for time steps) be
a conflict against a transaction Tk whose priority is lower than the priority of J ′i , but
higher than the priority of Ji, i.e., ω′i > ωk > ωi at the time this conflict occurs. Thus,
Tij2 is aborted and must be restarted, whereas Tij wins the conflict. Let t2ij2 be the
time when Tij2 is restarted. As the programmer could have achieved the same effect by
letting Tij2 wait from the time of the conflict until t2ij2, Lemma 1 implies thatM does
not reward partitioning. Case B:M does not start Tij2 immediately after Tij1 but waits
δ before starting Tij2. If we assume that E−i is s.t. both Ji and J ′i do not provoke any
conflicts then Ji will be δ slower than J ′i .M does not reward partitioning. ut

Theorem 2 reflects the intuition, that if committing decreases an advantage in priority
then there are cases where it is rational for a programmer not to commit and start a
new transaction but to continue instead with the same transaction. Obviously, the op-
posite case is possible as well, namely that by not committing, the developer causes a
conflict with a high priority transaction on a resource, which could have been freed if
the transaction would have committed earlier, and thus is aborted. As in our model of a
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risk-averse programmer, she does not suppose any structure on E−i, she does not know
which case is more likely to happen either and therefore has no preference among the
two cases. She would probably just choose the strategy which is easier to implement. If
we assumed, e.g., that a resource Ri is locked at time t with probability p by a transac-
tion with priority x where both, p and x follow a certain probability distribution, then
there would be a clear trade-off between executing a long transaction and therewith
risking more conflicts and partitioning a transaction and thus losing priority.

Note that a similar proof can be used to show that no priority-based CM rewards
partitioning unless it prevents the case where, after a commit of transaction Tij ∈ Ji,
the subsequent transaction Ti(j+1) ∈ Ji starts with a lower priority than Tij had just
before committing. In fact, we can show that all priority-accumulating CMs proposed
by [1, 4, 8–10] are not GPI compatible.

Corollary 1 Polite, Greedy, Karma, Eruption, Kindergarten, Timestamp and Polka are
not GPI compatible.

4.3 Priority-Accumulating CM

The inherent problem of quasi-priority-accumulating mechanisms is not the fact that
they accumulate priority over time but the fact that these priorities are reset when a
transaction commits. Thus, by comitting early, a job loses its priority when starting a
new transaction. One possibility to overcome this problem is to not reset ωi when a
transaction of Ji commits. With this trick, neither partitioning transactions nor letting
resources go whenever they are not needed anymore resets the accumulated priority. We
further need to ensure that two subsequent transactions of Ji are scheduled right after
each other, because otherwise partitioning would result in a longer execution even in a
contention-free environment. We denote this property of a CM as gapless transaction
scheduling. If a CMM only modifies priorities on a certain event type X , we sayM is
based only on X -events.

Lemma 2. Any priority-accumulating CM M which schedules transactions gapless
and is based only on time (T -events) is GPI compatible.

Proof. Outline: unnecessary locking is punished since it can cause the transaction to
abort and restart. Thus restarted, the transaction might be lucky and catch a better slot
for execution. However, this is the same as waiting and hence irrational. Partitioning is
rewarded since committing and restarting does not decrease priority. Furthermore, if a
finer-grained job loses in a conflict, it has to redo less work.

Proof : In a first step, we show that unnecessary locking is punished. SinceM bases
priority only on time, unnecessary locking does not increase priority unless it also in-
creases the contention-free runtime. Let T ′ij be a transaction with an unnecessary lock
l, i.e., T ′ij either locks a resource too early or it accesses a resource which it would
not need at all. Let Tij be the same transaction without l and dEij = d′Eij , where d′Eij is
the contention-free runtime of T ′ij in environment E . Lock l either does not provoke a
conflict or it does. In the former case, choosing Tij or T ′ij results in the same execution
time. In the latter, T ′ij aborts and Tij continues. T ′ij is restarted. If Tij runs until com-
mit, playing Tij yields a better execution time. Otherwise, let tlast be the time when
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T ′ij is restarted for the last time before commit, i.e., T ′ij commits at time tlast + dEij .
Tij could also be scheduled at tlast and reach a commit time at least as good as T ′ij .
This is because the resources allocated by Tij would always be a subset of the resources
allocated by T ′ij in the interval [tlast, tlast + dEij ]. To do so, however, the programmer
would delay Tij from the abort until tlast. Thus, employing T ′ij instead of Tij coincides
with delaying Tij and asM is time-based, Lemma 1 applies and implies that locking
is irrational. It remains to show that if dEij < d′Eij then Tij is still preferable. Let T ′ij be
exactly like Tij except for one lock l at time tl which delays T ′ij by ∆. If l does not
provoke a conflict, l has the same effect as waiting in the period of [tl, tl +∆]. WithM
being time-based, Lemma 1 implies that using T ′ij with the additional lock is irrational.
In case l provokes a conflict, if Tij runs until commit, playing Tij yields a better exe-
cution time. Otherwise, let tlast be the time when T ′ij is restarted for the last time. Tij

could also be scheduled at tlast +∆ and reach a commit time at least as good as T ′ij be-
cause Tij would provoke a subset of the conflicts T ′ij provokes and as the priority only
depends on time, Tij would also win all conflicts. Again, unnecessary locking coincides
with waiting from the abort until tlast +∆ and omitting the unnecessary lock coincides
with starting Tij immediately. With Lemma 1 it follows that unnecessary locking is
irrational.

In a second step, we show that partitioning is rewarded. Let Tij be partitionable in
Tij1 and Tij2. Let J ′i be a job with a transaction Tij and Ji the same job except it uses
Tij1 and Tij2 instead of Tij . If we compare the strategy of using Ji to the strategy of us-
ing J ′i then we can make the following observations. Since Tij1 starts at the same time as
Tij , Tij1 will lock the exact same resources and thus provoke the same conflicts as Tij .
Tij2 locks less or equally many resources as Tij at any time t ∈ [tij2, tij + dEij ]. Since
M schedules transactions gapless, if Tij2 provokes a conflict at time t ∈ [tij2, tij +dEij ]
then Tij provokes the same conflict at time t. In the execution of J ′i there are three
possible courses of an attempted execution of transaction Tij ∈ Ji: (a) Tij runs until
commit, (b) Tij is aborted in [tij , tij2] or (c) Tij is aborted in [tij2, tij +dEij ]. Remember
that Tij and Tij1 start at the same time for the first attempt, i.e., tij = tij1. In case (a),
Tij1, Tij2 also run until commit because Ji provokes a subset of the conflicts that J ′i
provokes. Since all those conflicts occur at the same time and the priority depends only
on time,M also resolves the conflict in favor of Ji. Therefore, dM,E

ij1 + dM,E
ij2 = dM,E

i

and J ′i’s runtime equals Ji’s runtime. In case (b), Tij1 is aborted as well and restarts
Tij1 at the same time as Tij is restarted and the proof applies recursively. In case (c), if
Tij is aborted because of a conflict before Tij2 aborts or commits, Tij2 could have used
an unnecessary lock in order to provoke the same conflict. However, this is irrational,
sinceM punishes unnecessary locks. Therefore, choosing J ′i instead of Ji is irrational
as well. Partitioning is rewarded. ut

Lemma 2 shows that it is possible to design priority-based contention managers which
are GPI compatible. As an example, by simply not resetting a job Ji’s priority when a
contained transaction Tij ∈ Ji commits, we can make a Timestamp contention man-
ager GPI compatible. Nevertheless, contention managers based on priority are generally
dangerous in the sense that they bear a potential for selfish programmers to cheat, i.e.,
to find ways of boosting their program’s priority such that their program is executed
faster. This typically harms the overall system performance. E.g., consider a CM like
Karma [8], where priority depends on the number of resources accessed. One way to
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gain high priority for a job would be to quickly access an unnecessarily large number
of objects and thus become overly competitive. Or if priority is based on the number
of aborts or the number of conflicts, a very smart programmer might use some dummy
jobs which compete with the main job in such a way that they boost its priority. In fact,
we can show that a large class of priority-accumulating CMs is not GPI compatible.

Theorem 3 A priority-accumulating CMM is not GPI compatible if one of the follow-
ing holds:

(i) M increases a job’s relative priority onW-events (winning a conflict).
(ii) M increases relative priority onR-events (having exclusive access of a resource).

(iii) M schedules transactions gapless and increases relative priorities on C-events
(committing).

(iv) M restarts aborted transactions immediately and increases relative priorities on
A-events (aborting).

Proof. Throughout the proof, we suppose w.l.o.g. that in a CM M each job Ji has
exactly one priority ωi ∈ R associated to it. Let ωi(t) denote Ji’s priority at time t.
For parts (i), (ii) and (iv), let Tij be a transaction which locks resource R1 at time tu
unnecessarily and let T ′ij be exactly the same transaction as Tij except it does not lock
R1 at time tu.

(i). Let us assume Tij provokes an unnecessary conflict on R1 with another trans-
action Tk at time tu and ωi(tu) > ωk(tu), i.e., Tij wins the competition for R1 andM
increases ωi by δ. Let us further assume that at time tu + ε, Tij provokes a conflict on
a resource R2 with a transaction Tl and ωl(tu + ε) < ωi(tu + ε) < ωl(tu + ε) + δ. If
Ji would use T ′ij instead of Tij then ωl(tu + ε) > ωi(tu + ε) for an ε small enough.
T ′ij would abort and prolongate the execution time of Ji. Thus M does not punish
unnecessary locking.

(ii). Suppose there is no conflicting transaction on R1 during [tu− ε, tu + ε) and the
contribution of having exclusive access of R1 to the priority increase in this period is δ.
Further assume that at time tu + ε, Tij has a conflict with Tl and ωl(tu + ε) < ωi(tu +
ε) < ωl(tu + ε) + δ. If Ji would use T ′ij instead of Tij then ωl(tu + ε) > ωi(tu + ε),
T ′ij would abort and prolongate the execution time of Ji. Thus M does not punish
unnecessary locking.

(iii). Let Ji consist of the transactions Ti1, Ti2 and Ti3. Let J ′i consist of Ti1 and
Ti3. Let Ti2 be a simple transaction which unnecessarily locks R1 for a period of ε and
then commits. Let Ti3 be a transaction which only accesses R1. Assume the following
scenario:M executes Ti1 and commits at time t0. Ti2 starts immediately, locks R1 for
a period of ε and commits.M increases ωi by δ and immediately starts Ti3. Ti3 runs
conflict-free for a time period d and then provokes a conflict with Tl where ωl(t3) <
ωi(t3) < ωl(t3) + δ, t3 = t0 + ε + d. We can further assume that if the programmer
would use J ′i instead of Ji then Ti3 would also run from time t0 to t3 provoking the same
conflict with Tl. However, J ′i would lack the additional priority δ which was received
by Ji for committing Ti2, i.e., for an ε small enough, it holds that ωl(t3) > ωi(t3).
Ti3 would abort and prolongate the execution time of J ′i . Thus M does not punish
unnecessary locking.

(iv). In a first step, we show (iv) under the assumptionA that the time drb needed for
rolling back is negligibly small. Suppose Tij starts at tu−ε and provokes a conflict with
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Tk at time tu and ωi(t) < ωk(t).M aborts Tij and increases ωi by δ.M immediately
restarts Tij . Assume that at time tu + ε, Tij provokes a conflict on with Tl and ωl(tu +
ε) < ωi(tu + ε) < ωl(tu + ε) + δ, after tu + ε, Ti runs conflict-free until commit. If
Ji would use T ′ij instead of Tij then T ′ij would not abort at time tu and ωl(tu + ε) >
ωi(tu + ε). T ′ij would thus abort at time tu + ε and prolongate the execution time of Ji.
M does not punish unnecessary locking.

In a second step, we omit assumption A and assume for the sake of contradiction,
that there is a GPI compatible CMM which increases ωi by δ on the event of an abort
of Tij ∈ Ji.M has to ensure that the increase in priority δ due to an abort of T ′ij does
not exceed the priority increase on T ′ij’s unnecessary lock-free counterpart, Tij , during
the roll back period drb. If this is not ensured the same argument we used for the proof
with A applies. The CM would have to assume that no event except T -events occur for
T ′ij in drb as the future is unknown. Let ∆ωrb be the part of the priority increase on T ′ij
in drb which is only due to T -events.M cannot let Tij’s priority grow more than ∆ωrb

in drb. Since the increase in priority due to time steps is added anyway, M can only
choose δ = 0.M does not increase priority on A-events. Contradiction. ut

5 Non-Priority Based CM

One example of a CM which is not priority-based is Randomized (cf. [8]). To resolve
conflicts, Randomized simply flips a coin in order to decide which competing transac-
tion to abort. The advantage of this simple approach is that it bases decisions neither
on information about a transaction’s history nor on predictions about the future. This
leaves programmers little possibility to boost their competitiveness.

Lemma 3. Randomized is GPI compatible.

Proof (Sketch). The proof is very similar to the proof of Lemma 2. In order to show
that Randomized incentivizes partitioning and necessary locking, we compare Ji with
J ′i under all possible environments. The environment includes the CM’s randomized
decisions. In some cases, the same argument as in Lemma 1 is used, namely that starting
immediately is the better strategy than waiting, although Randomized is not a priority-
accumulating CM. In fact, to show this for Randomized is much easier. An adversary
can provoke the same conflicts for a transaction, if it is started immediately or if it is
delayed for some time ∆. Since in any conflict, the probability of winning is the same,
the expected runtime increases by ∆ when the transaction is delayed. ut

Employing such a simple Randomized CM is not a good solution although it rewards
good programming. The probability psuccess that a transaction runs until commit de-
creases exponentially with the number of conflicts, i.e., psuccess ∼ p|C| where p is the
probability of winning an individual conflict and C the set of conflicts. However, we
see great potential for further developement of CMs based on randomization.

6 Conclusion and Future Work

While Transactional Memory constitutes an inalienable convenience to programmers in
concurrent environments, it does not automatically defuse the danger that selfish pro-
grammers might exploit a multicore system to their own but not to the general good.
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A TM system thus has to be designed strategy-proof such that programmers have an
incentive to write code that maximizes the system performance. Priority-based CMs
are prone to be corrupted unless they are based on time only. CMs not based on prior-
ity seem to feature incentive compatibility more naturally. We therefore conjecture that
by combining randomized conflict resolving with a time-based priority mechanism,
chances of finding an efficient, GPI compatible CM are high. Further potential future
research includes the analysis of GPI compatibility if the programmer makes assump-
tions about the execution environment E−i or if the system employs a pessimistic CM
policy. Does waiting make sense in these settings? How accurate is the model of selfish,
independent programmers and what is the actual efficiency loss due to GPI incompati-
bility in existing systems?
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A Appendix: Proofs

A.1 Proof of Theorem 1

First notice that we can assume w.l.o.g. that under M∗ there are no conflicts: Any
transaction Tij will finally run from start to commit. If in an optimal schedule, Tij is
started and aborted already before the final run, then the same schedule where Tij is not
started until the final run is also optimal. Hence, we may assume that M∗ schedules
each transaction such that it runs completely until commit. This reflects the fact that an
optimal CM is able to “look into the future”. Hence it can avoid mistakes.

It is easy to see that M∗ performs at least as good with Ji as with J ′i . M∗ sets
tij1 = tij and starts Tij2 immediately after Tij1 commits, i.e., tij2 = tij1 + dM

∗,E
ij1 .

Ji accesses the same resources as J ′i while Ti1 is running. Since the time needed for
committing and starting is negligibly small, Tij2 accesses the same resources at the
same time as Tij . Tij2 starts with no resources locked, hence Ji accesses a subset of
the resources that are accessed by J ′i while Tij2 is running. As J ′i does not provoke
a conflict, Ji neither does so and Tij2 will commit at the same time as Tij . Thus, the
system has the same performance with Ji as with J ′i .

tj1+dj1-δt0

Ti1 T-i Ti2

Ti2Tj1Ti1T-i

Tj1 Tj2

R1
Ri

Rj

tj1+dj1 tend
t

Fig. 5. Example illustrating the proof of Theorem 1.

Now we show how to choose an execution environment E−i that makes Ji fa-
vorable to J ′i (cf. Figure 5). Let R(Tij) be the set of all resources which Tij ac-
cesses during execution.Let t0 be the time when Ji and J ′i enter the system. Let
E−i contain a job Jj = Tj1, Tj2 that enters the system at time t0 as well. Let
Tj1 = ({(Rj , 0), (Ri, dj1 − δ)}, dj1) and Tj2 = ({(Rj , 0)}, dj2) where Rj /∈ R(Tij)
and Ri ∈ R(Tij1). Furthermore, let dj1 = dEij + δ and dj2 = dEij2. Let E−i be s.t.M∗
schedules Tij1 at time t0 and Tij2 as well as Tj2 at time tj1 +dj1 when the programmer
uses Ji. In addition, assume that all resources R(Tij) are locked by other jobs in the
period [tj1, tj2 + dj2] unless Tj1, Tij1 or Tij2 needs them. M∗ completes all jobs at
tend = tj2 + dj2. If the developer decides to not partition Tij and thus she uses J ′i
thenM∗ can not schedule Tij at time t0 since both Tij and Tj1 need Ri in the period
[t′j1, t

′
j1 + δ]. Note that the only modification to the scheduling of Jj that would not de-

lay the execution is swapping Tj1 and Tj2. However, this is not allowed by Jj’s logic.
Thus, in order to prevent conflicts,M∗ must either schedule Tij s.t. it commits before
Tj1 accesses Ri or s.t. it accesses Ri after tj1 + dj1. The former is impossible since J ′i
is not available toM∗ before t0. The latter would forceM∗ to delay the execution by
at least δ. ut
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A.2 Proof of Corollary 1

For Timestamp, Karma, Eruption and Polka, the claim follows immediately, since they
are quasi-priority-accumulating. For the other CMs we can show that they do not pre-
vent the case where, after a commit of transaction Tij ∈ Ji, the subsequent transaction
Ti(j+1) ∈ Ji starts with a lower priority than Tij had at commit time. In the following,
we provide counter-examples showing the claim for Timestamp- and Karma-like CMs
as well as for Polite and Kindergarten. In addition to proving Corollary 1, this section
also illustrates how one can use the framework introduced in Definition 1 to describe
priority-based CMs. If we write X ; f this means that the described CM reacts to
an event X with the modifications f . Usually, a few such modification rules suffice to
define a CM.

Timestamp, Greedy A Timestamp-like manager assigns priorities to transactions ac-
cording to their time in the system. Older transactions win against newer ones. We can
describe Timestamp with the following two modification rules.

T ; ωi = ωi + dω.
C ; ωi = 0.

Timestamp-like CMs are not GPI compatible since they reset a job’s priority when a
contained transaction commits. By partitioning a transaction, a job loses its high priority
when committing the transaction’s first part. Figure 6 depicts Timestamp’s partitioning
incentive incompatibility.

Karma, Polka Karma and Polka take the number of accessed resources by a transac-
tion as an estimate for the work done. A process keeps its priority after an abort, but not
after commit. The difference between the two managers is that Polka uses exponential
backoff when transactions encounter contention.

Rk ; ωi = ωi + ε where ε > 0.
C ; ωi = 0.

Apart from the fact that a job can cheat, e.g., by creating and accessing many resources
and thus gaining high priority, the situation in Figure 7 shows that also partitioning may
lead to a longer execution time.

Eruption Eruption is a variant of Karma which adds the losing transaction’s priority
to the winner’s priority.

Rk ; ωi = ωi + ε where ε > 0.
W against Tj ; ωi = ωi + ωj .
C ; ωi = 0.

In addition to accessing dummy resources, a programmer can also exploit Eruption by
having several dummy jobs lose against a main job and thus boost the latter’s priority
(cf. Figure 8).
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Polite With the Polite manager, the transaction that has already been locking a resource
R has higher priority than one that tries to newly gain access to R. When a transaction
fails getting access of a resource it retries to gain access using exponential backoff. Note
that we neglect Polite’s killing rule which allows a transaction to kill a competing trans-
action after a certain number of unsuccessful access attempts. Polite modifies priorities
onR-, A- and C-events as follows:

Rk ; ωi[k] = ε where ε > 0.
A; ωi = 0.
C ; ωi = 0, where 0 is a vector of zeros.

The scenario in Figure 9 illustrates that polite does not reward partitioning and it is
therefore not GPI compatible.

Kindergarten Kindergarten is the only CM presented here that uses priorities specific
to competing jobs. Every job maintains a so called hit list of the jobs against which it
has previously lost a conflict. At conflict time, a job may abort its competitor if it is
in its hit list. This CM is not captured by our framework since we only allow resource
specific priorities. One could, however, model Kindergarten with job specific priorities.
Let νi[j] denote Ji’s job specific priority against Jj . If Ji has a conflict on resource
Rk with Jj then it wins if νi[j] + ωi[k] > νj [i] + ωj [k]. In this extended framework,
Kindergarten is modeled as follows:

Rk ; ωi[k] = ε where 0 < ε < 1.
A against Tj ; νi[j] = 1 and ωi = 0.
C ; νi = ωi = 0.

Kindergarten does not seem to be exploited easily by selfish programmers. Neverthe-
less, it suffers the same problem as any quasi-priority-accumulating CM, namely, that a
job loses its built up priority on commit, i.e., the hitlist is cleared. Thus, partitioning is
not rewarded. ut

A.3 Proof of Lemma 3

In a first step, we show that Randomized, denoted byM, incentivizes partitioning. Let
Tij be partitionable in Tij1 and Tij2. Let J ′i be a job with Tij and Ji the same process
except it uses Tij1 and Tij2 instead of Tij . We compare Ji with J ′i under all possible
environments E−i. Let E−i include the CM’s randomized decisions.

In case (A) Tij runs until commit, Tij1 and Tij2 run until commit in the same time,
since we assume that the time needed for committing and restarting is negligible. Ji

and J ′i provoke the exact same conflicts and thus M always decides in favor of Ji,
or J ′i respectively. In case (B) Tij is aborted in the period [tij2, tij + dEij ], Tij1 runs
until commit, Tij2 is started immediately and is aborted in the same conflict as Tij . Tij

and Tij2 are restarted. Let ta be the time when Tij or Tij2 respectively are aborted.
Let t′ij2 be the time when J ′i has successfully completed all operations corresponding
to Tij1 after the restart. Employing J ′i instead of Ji coincides with delaying Tij from
ta until t′ij2. In order to show that Randomized rewards partitioning we can use the
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Fig. 9. Polite Manager. (a) T1 is not partitioned. (b) T1 is partitioned into T11 and T12. A com-
peting transaction T2 tries to access R1 at time t2. In (a) T1 wins because it has already locked
R1. In (b) T12 and T2 try to access R1 at the same time. J1 does not have higher priority on R1

than J2 and possibly loses. Thus, partitioning T1 is not rational.
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Fig. 10. Kindergarten Manager. (a) T1 is partitioned optimally. (b) T1 accesses R2 earlier than
the program logic requires, i.e., after a period of δ′ instead of δ where δ > δ′. In (a) T1 aborts
after t1 +δ and adds T2 to its hitlist. After a restart and another period of δ, T2 is still lockingR2,
but this time T1 may abort T2. In (b), T1 aborts and restarts much quicker and thus wins against
T2 earlier, i.e., at time t1 + 2δ′. The programmer of T1 can achieve a better execution time with
the unnecessary lock. Therefore Kindergarten does not punish unnecessary locking.
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same argument from Lemma 1, namely that starting immediately is the better strategy
than waiting, although Randomized is not a priority-accumulating CM. To show this
for Randomized is much easier. An adversary can provoke the same conflicts for a
transaction, if it is started immediately or if it is delayed for some time ∆. Since in any
conflict, the probability of winning is the same, the expected runtime increases by ∆
when the transaction is delayed. In case (C) Tij is aborted before tij + dEij1, Tij1 has
the same conflict and is aborted as well. They are both restarted at the same time and
we can recurse the argument until case (A) or (B) occur.

In a second step, we show that M punishes unnecessary locking. Let T ′ij be a
transaction with an unnecessary lock l. Let Ti be the same transaction without l and
dEij = d′Eij where d′Eij is the contention-free runtime of T ′ij in the environment E . l ei-
ther does not provoke a conflict or it does. If it does not, choosing Tij or T ′ij results in
the same execution time. If l provokes a conflict andM decides in favor of T ′ij then l
does not change the course of Tij’s execution either. IfM, however, decides against T ′ij
it is aborted and Tij continues. T ′ij is restarted immediately. If Tij runs until commit,
playing Tij yields a better execution time. Otherwise, let tlast be the time when T ′ij is
restarted for the last time, i.e., T ′ij commits at time tlast + d′Eij . Tij could also be sched-
uled at tlast and reach a commit time at least as good as T ′ij . But this is the same as
if the programmer would let Tij wait from the abort of T ′i until tlast. Thus, employing
T ′ij instead of Tij coincides with delaying and it follows that unnecessarily locking is
irrational.

It remains to show that if dEij < d′Eij then Tij is still preferable. Let T ′ij be exactly like
Tij except for one lock l at time tl which prolongates d′Eij by ∆. If l does not provoke a
conflict, l has the same effect as waiting in the period of [tl, tl +∆] which we showed to
be irrational. In case l provokes a conflict andM decides for Tij , this again coincides
with waiting. If T ′ij is aborted, though, and Tij runs until commit, playing Tij yields
a better execution time. If Tij does not run until commit in its first execution, let tlast

be the time when T ′ij is restarted for the last time, i.e., T ′ij commits at time tlast + d′Eij .
Tij could also be scheduled at tlast + d′Eij − dEij and reach a commit time at least as
good as T ′ij because Tij would provoke a subset of the conflicts that T ′ij provokes and
as M would make the same decisions, Tij would also win all conflicts. Unnecessary
locking coincides again with delaying Tij from the abort until tlast + d′Eij − dEij and not
locking coincides with starting Tij immediately after abort. Hence unnecessary locking
is irrational. ut

B Appendix: Simulations

To verify our theoretical insights, we implemented free-riders in DSTM2 [5], a software
transactional memory system in Java, and let them compete with the threads originally
provided by the authors of the included benchmark.

B.1 Setup

In particular, we added a subclass TestThreadFree to
dstm2.benchmark.IntSetBenchmark that uses coarse transaction granu-
larities, i.e., instead of just updating one resource, a free-rider updates several resources
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per transaction at once. See Figure 11 for the code executed by the free-rider and

while (true) {
thread.doIt(new Callable<void>() {

@Override
public void call()

// access dummy resource <priority> times
Factory<INode> factory = Thread.makeFactory(INode.class);
INode nd = factory.create();
for(int k=0; k < priority; k++){

nd.setValue(k);<

// access shared resource <granularity> times
Random random = new Random(System.currentTimeMillis());
for(int i=0; i < granularity; i++){

intSet.update(random.nextInt(TRANSACTION_RANGE))
}

}
});
}

Fig. 11. Free-riding thread. The call() method is executed as a transaction by the STM.

while (true) {
value = random.nextInt(TRANSACTION_RANGE);

thread.doIt(new Callable<void>() {

@Override
public void call() {
intSet.update(value);
}
});

}

Fig. 12. “Good” thread. The call() method consists of only one update call.

Figure 12 for the collaborative threads’ code. The latter is what we call “good code”,
as it only performs one action per transaction and thus avoids unnecessary locking. We
added a mechanism to the free-rider that attempts to build up priority before accessing
the shared resource. To this end, it simply creates a dummy resource and updates
it a number of times. When the system is managed by Timestamp- or Karma-like
contention managers this could be an advantage as priority is built up in a conflict-safe
environment and once it accesses the truly shared resources, it has higher priority than
most of its competitiors. Hence the free-rider can vary two parameters, the transaction
granularity γ and the priority π it tries to build up before actually starting its work.

We tested and compared the performance of free-riding threads with collaborative
threads with two benchmarks. In both, there is a total number of 16 threads which
start using a shared data structure for 10 seconds, before they are all stopped. In the
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first benchmark, the threads all work on one shared ordered list data structure, in
the second, they work on a red-black tree data structure. All operations are update
operations, i.e., a thread either adds or removes an element. We ran various config-
urations of the scenario in both benchmarks managed by the Polite, Karma, Polka,
Timestamp or the Randomized contention manager. The variable parameters were the
number of free-riders (0, 1, 8, 16) among the 16 threads, their transaction granularity
γ ∈ {1, 20, 50, 100, 500, 1k, 5k, 10k, 50k, 100k, 500k, 1M} and the number of initial
dummy accesses π ∈ {0, 200, 500, 2000} performed by the free-riders. The bench-
marks were executed on a machine with 16 cores, namely 4 Quad-Core Opteron 8350
processors running at a speed of 2 GHz. The DSTM2.1 Java library was compiled with
Sun’s Java 1.6 HotSpot JVM. To get accurate results every benchmark was run five
times with the same configuration. The presented results are averaged across the five
runs.

B.2 Results

The results confirm the theoretical predictions that a free-rider can outperform and
sometimes almost entirely deprive the collaborative threads of access to the shared re-
sources if the TM system is managed by the Polite, Karma, Polka or the Timestamp
CM. With the Randomized manager on the other hand, the collaborative threads are
much better off than the “free-riders”(cf. Figure 13). In all of our tests, if the system
was managed by Polite, the free-riders were always better off. Under Karma, they were
better off in 92% of all cases and if they used granularities γ of at least 20 operations per
transaction, they always performed better. With Polka, the free-rider success rate was
70% over all runs and 100% for γ ∈ {20, 50, 100}. Of all tests run with the Timestamp
manager, free-riding paid off in 92% of the cases and in 100% if the granularity γ was
at least 20. Under Randomized, free-riders had a larger throughput in only 7% of all
cases.

Further, our simulations suggest that the mechanism included to boost priority π
before actually accessing the shared data does not influence the free-rider’s relative per-
formance significantly. The transaction granularity however has a huge impact. Figure
14 shows the average throughput of both a free-rider and a collaborative thread. In our
experiments, a free-riding thread’s throughput was practically always higher than the
collaborators’ under the Karma, Polka and the Timestamp manager if it used a granu-
larity of at least twenty update operations per transaction. This may in part be because a
coarser transaction needs less overhead than a transaction with granularity γ = 1, how-
ever, with the Randomized contention manager, we see that even a transaction with a
granularity of only twenty updates is unlikely to succeed. To a larger extent, this higher
performance of the free-riders derives from the fact that—except for the first update—
they have higher priority than the collaborative threads. At first, it might be surprising
that the average throughput, i.e., the system efficiency, does not decrease when intro-
ducing more free-riders9. However, with large granularities, there will usually be one
transaction with very high priority. The latter is not endangered of being aborted by
any other transaction and hence runs to commit untouched. It seems that in our setting

9 except for the Randomized manager, where free-riders have a very low chance of success,
independent of whether the competitors are collaborators or free-riders themselves.
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with high contention, one fast free-rider locking the entire datastructure is still quite
efficient. With lower contention, this would obviously not hold. Note also the break in
the throughput increase between γ = 1000 and γ = 5000 under the Polka manager.
This is probably caused by the mechanism included in Polka which allows a transac-
tion trying to access a locked resource to abort the competitor after a certain number of
unsuccessful access attempts. This seems to happen much more often if the free-riders
use granularities higher than 1000.

Fig. 13. Plot of all cases simulated under a Karma, a Randomized, a Polka and a Timestamp CM.
If a point is above the diagonal line this indicates that in the corresponding test run, a free-rider
had a larger throuhput than a good programmer who only employs transactions of granularity 1.
For Karma, the cases where γ = 1 are omitted.
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Fig. 14. Average throughput of a free-riding and a collaborative thread in the red-black tree bench-
mark with 15 collaborators and one free-rider. The free-rider does not employ a priority boosting
mechanism (π = 0). In addition to the collaborators’ and the free-rider’s throughput, the average
throughput of all 16 concurrent threads is depicted. Except for Randomized, we added 1 to the
actual throughput and used a logarithmic scale.


