
Local Checkability in Dynamic Networks

Klaus-Tycho Foerster
∗

Microsoft Research, USA
foklaus@ethz.ch

Oliver Richter
ETH Zurich, Switzerland

richtero@ethz.ch

Jochen Seidel
ETH Zurich, Switzerland

seidelj@ethz.ch

Roger Wattenhofer
ETH Zurich, Switzerland
wattenhofer@ethz.ch

ABSTRACT
In this work we study local checkability of network prop-
erties considering inconsistency throughout the verification
process. We use disappearing and appearing edges to model
inconsistency and prover-verifier-pairs (PVPs) for verifica-
tion. We say that a network property N is locally checkable
under inconsistency if there exists a PVP for a specified in-
consistency. In such a PVP, a prover P assigns a label to
each vertex of an initial graph Gi. A distributed time con-
stant verifier V computes Yes on every vertex of the altered
graph Ga, if Ga has the property N and was labeled by P,
and No on at least one vertex of Ga if Ga does not fulfill N .

For s-t-reachability, we present an optimal 2-bit-label PVP
considering one disappearing edge and an upper bound of
O(logn) bits as label size for one appearing edge. For cyclic-
ity, we prove that no general PVP can be found considering
disappearing edges, as well as an upper bound of O(n2 logn)
bits as the label size for one appearing edge. Furthermore,
we show that no PVP can be found for s-t-reachability nor
general cyclicity that can consider multiple inconsistencies.

CCS Concepts
�Networks → Network properties; �Computer sys-
tems organization → Dependable and fault-tolerant
systems and networks; �Theory of computation →
Models of computation; �Computing methodologies
→ Distributed computing methodologies;

Keywords
Local Checking, s-t Reachability, Cyclicity, Dynamic Graphs

1. INTRODUCTION
A network administrator must know whether the network

is correct [20]. E.g., is destination t reachable from source s,
or may the current forwarding rules send packets in a cycle?

∗Most of the work was done while being at ETH Zurich.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICDCN ’17, January 04-07, 2017, Hyderabad, India
© 2017 ACM. ISBN 978-1-4503-4839-3/17/01. . . $15.00

DOI: http://dx.doi.org/10.1145/3007748.3007779

Edge s-t Cyclicity Cyclicity
Inconsistencies reachability (max. 1 cycle) (general)

One Disappearing 2 2 NLC
One Appearing O(logn) O(n2 logn)+ O(n2 logn)+

Multiple Disappearing NLC 2 NLC
Multiple Appearing NLC NLC NLC

Combinations NLC NLC NLC

Table 1: Main findings of this work summarized in a ta-
ble. The table entries show the proof label size (in bits)
of a prover-verifier algorithm solving the problem or NLC
if the problem is Not Locally Checkable, i.e., not solvable
in the model we introduce. Two entries carry the addition
“+”, which means that these algorithms are only feasible
if the graph vertices carry unique identification tags (IDs).
Reachability is covered in Section 3, Cyclicity in Section 4.

Traditionally, such network properties are checked by send-
ing probing packets into the network. It is potentially much
less costly to check these global network properties by inex-
pensive local verification, e.g. [8, 19]: each node just com-
pares its state with the state of its neighbors, and raises an
alarm if it senses that something is not right. Such local
checkability is studied and well understood.

In real networks, however, links appear and disappear reg-
ularly. Unfortunately, previous work on local checkability
does not support such dynamic situations. In this work we
explore the possibilities and limitations of local checkability
of global network properties in dynamic networks. We study
disappearing and/or appearing edges. E.g., is there a way
to locally determine whether destination t is still reachable
from source s even after an arbitrary link went down?

We check a property through a distributed nondetermin-
istic algorithm modeled as prover-verifier-pair (PVP) as in-
troduced in [8]: A prover P assigns specific labels to all
vertices (the proof) if the graph has (or might get through
inconsistencies) the property in question. From then on, a
distributed deterministic verifier V can verify the property
by taking as input on each vertex v only the label of v and
its immediate neighbors’ labels.

The results we found for the problems addressed are sum-
marized in Table 1. Besides these results the contributions
of this work are a prover-verifier-pair for checking s-t reach-
ability if one edge in the graph might disappear or appear
between labeling and verification; and the fact that no such
pair can be found for checking cyclicity in a graph where
one edge might disappear without losing the generality that
a graph might have multiple cycles.

Due to the space restrictions for this extended abstract,
some proofs are deferred to the full version of this article.

mailto:foklaus@ethz.ch
mailto:richtero@ethz.ch
mailto:seidelj@ethz.ch
mailto:wattenhofer@ethz.ch
http://dx.doi.org/10.1145/3007748.3007779

2. DEFINITIONS AND MODEL
Networks are modeled as graphs G = (V (G), E(G)) in

this article, where V (G) denotes the set of vertices and E(G)
the set of edges. If the graph G is clear from the context,
a shorter notation V = V (G) and E = E(G) is used. This
work focuses on undirected graphs, i.e., if u, v ∈ V (G) then
e = (u, v) ∈ E(G) is equivalent to e′ = (v, u) or in short
e = e′ = {u, v}. For any vertex v ∈ V we denote the number
of edges adjacent to v by deg(v), called degree of v.

The function l : V → {0, 1}∗ shall denote a (vertex) la-
beling for G that assigns a finite bit-string as label to each
vertex in V . Given a graph G with labeling l, let M(v) =
{l(u1), ..., l(udeg(v))} denote the set of messages vertex v re-
ceives in one communication round, where u1, ..., udeg(v) ∈ V
are the immediate neighbors of v. Note that the set M(v)
is unordered and neither vertex identifiers nor port numbers
are attached to it. The function oM(v) : {0, 1}∗ → N0 shall
denote the number of occurrences a given label has in the
set of messages M(v). If M(v) is clear from the context
we will use the short form o(·). Furthermore, in this article
logarithms are rounded up to integer value and use base 2.

To model inconsistency, Gi shall denote the initial graph,
the graph in question before any inconsistencies are con-
sidered, and Ga shall denote the altered graph, the graph
after all inconsistencies were considered. Since we only alter
graph edges to model inconsistency V (Gi) = V (Ga) = V .
Note that even though the set of vertices V stays the same,
the degree deg(v) and set of messages M(v) for a given v ∈ V
might change. However, we shall evaluate deg(v) and M(v)
solely on the altered graph Ga.

2.1 Inconsistencies
Inconsistency is modeled through disappearing edges and

appearing edges. For u, v ∈ V , a disappearing edge d =
{u, v} ∈ E(Gi) is an edge that is part of the initial graph Gi

but not of the altered graph, i.e., d /∈ E(Ga). For x, y ∈ V
an appearing edge a = {x, y} ∈ E(Ga) is an edge that is part
of the altered graph Ga but was not in the initial graph, i.e.,
a /∈ E(Gi). Thus, E(Ga) = E(Gi)\D ∪A, where D denotes
the set of all disappearing edges and A denotes the set of all
appearing edges.

In our model, any vertex v ∈ V (Ga) gets an additional
3 bits of information R(v) = {r1, r2, r3} to report inconsis-
tency: r1 is set if and only if v has an adjacent disappearing
edge, r2 is set if and only if v has an adjacent appearing
edge, and r3 is set if and only if there has been an appear-
ing edge, i.e., if A 6= ∅. We will refer to these bits as first,
second, or third inconsistency reporting bit, respectively.

2.2 Prover-Verifier-Pair
A network or graph property is defined as a set Y contain-

ing all graphs that posses a common attribute, also referred
to as Yes-instances. Any graph G /∈ Y is referred to as No-
instance. We verify graph properties in two steps, a proof
step and a verification step.

In the proof step, a prover P gets as input an initial graph
Gi and computes for every vertex v ∈ V (Gi) a finite label
l(v). We refer to this labeling l as the proof.

For the verification step let Ga be any graph and let l be
any labeling for Ga. A verifier V is a distributed algorithm
that gets as input on every vertex v: the vertex label l(v),
the set of messages M(v) containing the labels of neighbor-
ing vertices, and the three inconsistency reporting bits; and

computes as output for each vertex either Yes or No.
A prover-verifier-pair (P,V) or PVP in short is said to

be correct for Y if the following two points hold: First, if
Ga ∈ Y and l was obtained from P, then V computes Yes
as output for all vertices, and second, if Ga /∈ Y , then V
computes No as output for at least one vertex, regardless of
the labeling.

A network property Y is not locally checkable (or NLC in
short) if there exists no PVP that is correct for Y . To mea-
sure the quality of a PVP we specify the proof size f(n) as
the maximal number of bits any vertex of any Yes-instance
with n vertices might get assigned by the prover. For a given
network property Y , the smallest proof size for which there
exists a correct PVP for Y defines the proof size for Y .

3. REACHABILITY
One of the fundamental questions in network theory is

the question of s-t-reachability : Can a given source vertex
s ∈ V in the network reach a destination vertex t ∈ V in
the network? This question is the basis for all data transfer
throughout the network since two devices (network vertices)
can only communicate if they can reach each other.

More formally: s ∈ V can reach t ∈ V if and only if there
exists a path from s to t in the underlying network graph.

For two vertices u, v ∈ V for which there exists a path
from u to v we will use the two expressions “u can reach
v” and “u is connected to v” interchangeably.

To make meaningful statements about reachability or con-
nectivity we focus in this section on finite graphs with at
least two vertices from which one is carrying the unique la-
bel s and another is carrying the unique label t, cf. [14].

3.1 One Disappearing Edge
First, we take a look at what can happen if at most one

edge d disappears, i.e., E(Ga) = E(Gi)∨E(Gi)\{d}, where
d can be any edge of the initial graph.

Here we focus on the case that s-t-reachability is given in
the initial graph since this is the case where the property
might get altered. Therefore let s-t-reachability denote
the set of all undirected graphs with a path from s to t.

In this subsection we first explain the proof idea and then
prove the following theorem:

Theorem 1. The proof size for s-t-reachability is 2 bit
if at most one edge is disappearing.

We look for a prover-verifier-pair that takes the assump-
tion of a disappearing edge into consideration. Considering
s-t-reachability given initially, the property only changes
if the disappearing edge d is on the path from s to t and
there exists no other path from s to t that does not include
d. Therefore, a prover considering one disappearing edge
should mark two distinct paths wherever possible to still
prove the property even if one of these paths breaks due to
the disappearing edge. With distinct paths we thereby refer
to paths that do not share any vertices except for the first
and last.

More precisely, any s-t-path P can be segmented in criti-
cal path segments and uncritical path segments, where crit-
ical path segments are path segments that are also part of
all other paths from s to t and uncritical path segments are
the remaining segments of P . A prover can now differen-
tiate between critical-path-vertices, uncritical-path-vertices

s

01

10

00

01

10

11 11

01

10

00

11

c

01

10

01

10

00

t

d

Figure 1: Example graph showing a possible 2 bit proof la-
beling to verify s-t-reachability considering that at most one
edge might disappear, e.g., d. Here, non-path-vertices are la-
beled 00, critical-path-vertices are labeled 11 and uncritical-
path-vertices 10 or 01, respectively, marking the two possible
uncritical path segments chosen by the prover. Note that a
critical path segment can consist of a single vertex.

and non-path-vertices. Thereby, critical-path-vertices are all
vertices that are on every path from s to t, i.e., all ver-
tices on critical path segments including the endpoints of the
critical path segments. Uncritical-path-vertices are vertices
chosen by the prover to mark two distinct paths for every
uncritical path segment, whereas non-path-vertices are the
remaining vertices in the graph. A simple coding of these
vertex classes generates the labeling the prover can put on
the graph Gi ∈ Y .

A verifier can then read neighboring labels together with
the first inconsistency reporting bit on every vertex v ∈ V
of the altered graph Ga and verify

• if the proof-labeling is a correct proof-labeling indicat-
ing s-t-reachability before the graph was altered by
checking if the amount of each label class in M(v)
aligns with a possible proof labeling of a Yes-instance

• if the disappearing edge (if there is any) disappeared
on a critical path segment, on an uncritical path seg-
ment or not on any path specified by the prover by
checking the vertex label l(v) and the first inconsis-
tency reporting bit on the vertex

• if s-t-reachability is given in the altered graph by tak-
ing the first two points into consideration

Consider Figure 1 as a possible example how such a proof
labeling might look like.

To prove Theorem 1 we first consider the following lemma:

Lemma 2. There exists a correct PVP with a proof size
of 2 bit that is correct for s-t-reachability if at most one
edge d disappears.

Proof. A prover-verifier-pair (P,V) as required is de-
scribed here. Given Gi = (V,Ei) ∈ s-t-reachability let
C ⊂ V denote the set of all critical path vertices. Note that
s, t ∈ C.

The prover P first labels all vertices vc ∈ C\{s, t} with the
label l(vc) = 11. For a given path from s to t, each uncritical
path segment Ui has a starting vertex us(Ui) ∈ C and an
termination vertex ut(Ui) ∈ C. For each uncritical path
segment Ui the prover P chooses two distinct paths P1(Ui),
P2(Ui) from us(Ui) to ut(Ui) and labels all not yet labeled
vertices on P1(Ui) with 01 and all not yet labeled vertices on
P2(Ui) with 10. Such two distinct paths for uncritical path
segments exist as a consequence of the definition of critical-
path-vertices. P then labels all remaining vertices with the
label 00. See Figure 1 as an example of this proof labeling.

For the verifier V consider the pseudo code in Algorithm 1.
Given Ga ∈ s-t-reachability we show that V outputs

Yes on all vertices if l was obtained from P:

• All vertices labeled 00 output Yes by default

• All vertices labeled 01 or 10 are on an uncritical path
segment. Therefore they have exactly two neighbors
indicating a possible s-t-path or one such neighbor and
an adjacent edge that disappeared. Note that for the
latter s-t-reachability is still given since the one and
only disappearing edge disappeared on an uncritical
path segment. In both cases the verifier V will output
Yes.

• All vertices labeled 11 are critical-path-vertices that
have either

1. two critical-path-vertices as neighbors

2. one critical-path-vertex as neighbor and they are
an end point of an uncritical path segment or

3. no critical-path-vertex as neighbor, meaning that
they are in between two uncritical path segments
(see vertex c in Figure 1 as an example)

If no adjacent edge disappeared this can be summa-
rized to y = 2, where y is the number of critical-path-
vertices in M(v) plus the number of uncritical-path-
vertices pairs. This holds since for every adjacent un-
critical path segment there must be one neighbor la-
beled 01 and either one neighbor labeled 10, forming a
pair, or directly another critical vertex. Furthermore
the path should continue in both directions (as critical
or uncritical path segment) which leads to y = 2.
If however an edge disappeared on an adjacent un-
critical path, point 2 and 3 of the enumeration above
have to be accounted for and are summarized to {y =
1∧ o(01) + o(10) = 1∧ r1 is set} and {y = 1∧ o(01) +
o(10) = 3 ∧ r1 is set} respectively.
In all of these cases the verifier V will output Yes.

• Finally, a vertex carrying the label s or t marks the
start or end of the path in question, therefore it neigh-
bors either a critical-path-vertex or an uncritical path
segment. With the same argumentation as before this
can be summarized to y = 1 if no adjacent edge dis-
appears or y = 0 ∧ o(01) + o(10) = 1 ∧ r1is set if an
adjacent uncritical path edge disappears. In both cases
the verifier V will output Yes.

Therefore V will generate the output Yes on all vertices of
Ga ∈ s-t-reachability if l was obtained from P.

What is left to show is that given Ga /∈ s-t-reachability,
V will compute No as output on at least one vertex.

Consider for the sake of contradiction that there exists a
graph Ga /∈ s-t-reachability that triggers V to compute
Yes on every vertex.

Such a graph must have a vertex s due to the problem set-
ting. Since o(l) ≥ 0 for all labelings l, Algorithm 1 requires
s to have either

• Case 1: a vertex labeled as critical-path-vertex as neigh-
bor. In this case a vertex labeled 11 since the only
other possibility (t) would lead already to a contradic-
tion.

• Case 2: a vertex labeled 01 and a vertex labeled 10 as
neighbor. Or

• Case 3: a vertex labeled 01 or 10 as neighbor and an
adjacent disappearing edge (r1 set)

We consider these cases separately:

Algorithm 1: Pseudo code of verifier V checking s-t-
reachability if at most one edge is disappearing. Ga

denotes the altered graph, l(v) the label on vertex
v, M(v) the set of messages received by v, r1(v) the
first inconsistency reporting bit (reporting an adja-
cent disappearing edge) and o(·) the number of oc-
curences a given label has in M(v).

foreach v ∈ V (Ga) do
Input: l(v),M(v), r1(v) ∈ R(v)
o(·) ≡ oM(v)(·)
if l(v) = 00 then

Output: Yes

if l(v) = 01 or l(v) = 10 then
// Define x as the number of path vertices in
the neighborhood

x = o(11) + o(s) + o(t) + o(l(v))
if x = 2 or x = 1 ∧ r1 is set then

Output: Yes
else

Output: No

// Set y as the number of critical-path-vertices in
the neighborhood

y = o(11) + o(s) + o(t)
// A pair{01, 10} is a continuation of the path
foreach pair {01, 10} ∈M(v) do

y = y + 1

if l(v) = 11 then
if y = 2 or
y = 1 ∧ o(01) + o(10) = 1 ∧ r1 is set or
y = 1 ∧ o(01) + o(10) = 3 ∧ r1 is set then

Output: Yes
else

Output: No

if l(v) ∈ {s, t} then
if y = 1 or
y = 0 ∧ o(01) + o(10) = 1 ∧ r1 is set then

Output: Yes
else

Output: No

if l(v) /∈ {s, t, 00, 01, 10, 11} then
Output: No

s

01

10

01

10

d

(a) Graph with disappearing
edge d connecting two different
uncritical paths into a loop

s

01

11

10

10

d

(b) Graph with disappearing
edge d leading to a loop after
a critical-path-vertex.

Figure 2: Example graphs to show that one side might end in
a loop. Here d denotes a disappearing edge. In these graphs,
the verifier V would compute Yes for every vertex. However
these graphs do not contain t which contradicts the model
assumption. Since there is at most one edge disappearing,
any subgraph containing t must be connected to s or grow
to infinity if it had to output Yes on all vertices as well.

Case 1: For the vertex v labeled 11, y ≥ 1 since a critical
vertex (s) is its neighbor. Therefore Algorithm 1 requires
either

• y = 2 which requires a next vertex to have a label 11
having v as neighbor (which is equivalent to case 1) or
a pair{01, 10} as next neighbors(which is equivalent to
case 2). Or

• y = 1 and a vertex labeled 01 or 10 as additional neigh-
bor and an adjacent disappearing edge. This is equiv-
alent to case 3.

Case 2: A vertex u carrying a label l ∈ {01, 10} outputs
Yes if

• two of its neighbors report to be either a critical-path-
vertex or to have the same label as u has. This en-
sures a continuation of the uncritical path up to a next
critical-path-vertex, considering that Ga is finite. This
leads to case 4. Or

• only one neighbor reports to be critical-path-vertex or
to have the same label as u and u has an adjacent
disappearing edge. This can happen to one of the
two paths initiated by the first two vertices labeled
01 and 10 or the disappearing edge disappeared be-
tween a vertex labeled 01 and a vertex labeled 10. If
only one path gets interrupted by a disappearing edge,
the other path is guaranteed to lead to a next critical-
path-vertex (case 4). If the disappearing edge connects
both path ends (see Figure 2a for illustration), we have
a loop requiring a disappearing edge (case 5).

Case 3: Similar to case 2 here the disappearing edge is
already at the start of one of the two uncritical paths. Since
there is at most one disappearing edge, Algorithm 1 en-
sures a continuation of the other path to a next critical-
path-vertex (case 4) or that the path ends up on the other
side of the edge that disappeared, forming a loop (case 5).

Case 4: In this case we arrive at a critical-path-vertex
vc that must carry the label 11 (since t is not an option)
and has at least one neighbor carrying a label l ∈ {01, 10}.
Algorithm 1 requires here for a Yes either

• y = 1 leading to a next critical-path-vertex (case 1),

• y = 2 from two pairs{01, 10} leading to two next un-
critical path vertices with distinct labels (case 2) or

• o(01) + o(10) = 3 ∧ r1 is set. If the two next path
neighbors have distinct labels, we are again at case
2. However if they have the same label, this is a case
where the path might end in a loop (see Figure 2b for
illustration). Note that this case requires an adjacent
disappearing edge. Therefore we are again at case 5.

Case 5: In this case we end up in a loop that somewhere
required a disappearing edge (see Figure 2 for two examples).
Since there is at most one disappearing edge and the whole
path argumentation can also be started from t instead of s,
only one side can end in this case.

Therefore, since every case leads to another case, at least
from one side the path continues to infinity which contra-
dicts the assumption of a finite graph Ga.

This concludes the proof of Lemma 2.

Remark 3. Note that this PVP does not deliver the cor-
rect output for each individual connected component sepa-
rately, since on one side the path might end up in a loop

s

1a

1

1

1

t

(a) Graph with s-t-
reachability

s

1a’

1

1

1

t

(b) Graph where s-t-
reachability is not given

Figure 3: Example graphs showing that extending the idea
of marking two paths from s to t with the same label each
will not work: The vertices a and a′ get exactly the same
information, therefore it is indistinguishable for a verifier
whether the vertices are on a loop or an s-t-path.

s

a1

b1

a2

b2

t

d

(a) Graph with s-t-
reachability and a disap-
pearing edge d

s

a′1

b′1

a′2

b′2

t

(b) Graph without s-t-
reachability

Figure 4: Example graphs to show why the ability to sense
an adjacent disappearing edge is necessary. If a vertex can-
not sense an adjacent disappearing edge, vertices a′1, a′2, b′1
and b′2 would all get the same information as a1 and a2 and
therefore would be indistinguishable for a verifier.

as shown in Figure 2. Interestingly, we can show that no
such PVP exists that can consider each individual connected
component separately. The proof details are deferred to the
full version of this article.

Lemma 4. The proof size for s-t-reachability consid-
ering that one edge d might disappear is at least 2 bits.

Combining Lemma 2 and Lemma 4 yields Theorem 1. Again,
due to space restrictions, the proof details of Lemma 4 are
deferred to the full version of this article. We refer to Fig-
ure 3 for an example why extending the standard checkabil-
ity idea without failing edges does not suffice.

3.2 One Appearing Edge
In this subsection we look at what happens if at most one

edge appears, i.e., E(Ga) = E(Gi)∨E(Gi)∪{a} where a can
appear between any two vertices u, v ∈ V . We focus on the
non-trivial case of s-t-reachability not given initially, first
explaining the idea and then proving the following theorem:

Theorem 5. There exists a PVP with a proof size in
O(logn) bit that is correct for s-t-reachability if at most
one edge a appears.

If s-t-reachability is not given initially, s and t must be
located in two different connected components of the graph.
An appearing edge a can make the altered graph Ga ∈ s-t-
reachability if and only if it connects these two connected
components. Since a can appear between any two vertices,
every vertex must be able to verify locally

1. if it is connected to s, t or neither s nor t

s

s1

s1

s2

s2

s2

s3 s4

s5 t2

t2

t1

t1

0

0

0

t

a

Figure 5: Example graph showing a possible O(logn) bit
proof labeling to verify s-t-reachability considering that at
most one edge might appear, e.g., a. Here, proof labels
consist of s or t and the distance to s or t. For vertices not
connected to neither s nor t the label 0 is used.

2. if it got an adjacent appearing edge connecting it to
a different connected component, possibly resulting in
s-t-reachability

3. if an edge appeared somewhere else in the graph, pos-
sibly resulting in s-t-reachability

The second and third point can be checked by the second
and third inconsistency reporting bits.

The first point can be assured by introducing a labeling
composed of a prefix and a distance. Thereby the prefix of
each label l(v) indicates whether v is connected to s or to
t and the distance indicates the minimal distance to s or t,
respectively. Since we focus on the non-trivial case, a vertex
cannot be connected to both s and t at the time of labeling.
If a vertex is connected to neither s nor t, a simple label 0
can be used.

To decode the prefix of such a labeling we introduce a
prefix function p : {0, 1}∗ → {s, t, 0} that takes a label lv
and computes whether the label contains a prefix referring
to s (p(lv) = s), a prefix referring to t (p(lv) = t) or no
prefix (p(lv) = 0). Note that p(s) = s and p(t) = t.

To decode the distance of such a labeling we introduce a
distance function d : {0, 1}∗ → N0 ∪ {∞} that takes a label
lv and returns

• 0, if lv ∈ {s, t}
• the distance, if lv contains a distance > 0 or

• ∞ if lv does not contain a distance or an invalid (e.g.,
≤ 0) distance and lv is neither s nor t.

Proof. For Gi = (V,Ei) /∈ s-t-reachability we present
a PVP (P,V) as required. Let S ⊂ V denote the set of all
vertices vs that s can reach, i.e., for which there exists a
path from s to vs. Similarly let T ⊂ V denote the set of all
vertices that can be reached by t.

The prover P labels all vertices vs ∈ S with the label s
concatenated with the shortest distance to s. Similarly P
labels all vt ∈ T with t and the shortest distance to t. All
remaining vertices v ∈ V \{S ∪T} are labeled with the label
0. Since any distance is strictly smaller than the number of
vertices n and the labels s and t are of constant size, this
proof size is in O(logn). An illustration of such a labeling
can be found in Figure 5.

For the verifier V consider the pseudo code in Algorithm 2.
Given Ga ∈ s-t-reachability we show that V outputs

Yes on all vertices if l was obtained from P. Note that
in this case an edge a must have appeared connecting the
two connected components containing s and t, respectively.
Therefore the third inconsistency reporting bit r3(v) ∈ R(v)
is set for all vertices v ∈ V . Looking at Algorithm 2 and
given that the labeling l was obtained from P we note that

• each vertex v0 labeled l(v0) = 0 outputs Yes since

Algorithm 2: Pseudo code of verifier V checking s-t-
reachability if at most one edge is appearing. Ga denotes
the altered graph, l(v) the label on vertex v, M(v) the set
of messages received by v, r2(v) the second inconsistency
reporting bit (reporting an adjacent appearing edge) and
r3(v) the third inconsistency reporting bit (reporting an
appearing edge in the graph). oprefix(k) shall denote the
number of labels in M(v) carrying the prefix k, where
k ∈ {s, t}. p(·) denotes the prefix decoding function and
d(·) denotes the distance decoding function.

foreach v ∈ V (Ga) do
Input: l(v),M(v), r2(v) ∈ R(v), r3(v) ∈ R(v)
if r3(v) is not set then

Output: No

if l(v) = 0 then
if r2(v) is set then

Output: No
else

Output: Yes

// Decode l(v) into prefix pv ∈ {s, t} and distance
dv.

pv = p(l(v))
dv = d(l(v))
if pv = 0 or dv =∞ then

Output: No

if l(v) ∈ {s, t} ∧ (s ∈M(v) or t ∈M(v)) then
Output: Yes

if dv = 0 ∧ @l0 ∈M(v) : d(l0) = 0 or
∃l1 ∈M(v) : d(l1) = dv − 1 then

if r2(v) is set then
if oprefix(pv) = |M(v)| − 1∧
∃! l ∈M(v) : p(l) ∈ {s, t} ∧ p(l) 6= pv then

Output: Yes

else
if oprefix(pv) = |M(v)| then

Output: Yes

if non of the cases above then
Output: No

the the appearing edge a connects the connected com-
ponent containing s to the connected component con-
taining t and therefore no vertex labeled 0 can have an
adjacent appearing edge

• vertices s and t have a distance dv = 0 and no neighbor
with distance 0 unless the edge appeared between s
and t (which is separately handled in the algorithm).

• each vertex v ∈ {S ∪ T}\{s, t} has at least one neigh-
bor with distance dn = dv − 1 where dv denotes the
distance of v

• there exists a vertex va,s ∈ S and a vertex va,t ∈ T
that have an adjacent appearing edge (second incon-
sistency reporting bit r2(v) ∈ R(v) set). va,s and va,t
receive exactly one prefix p(l) ∈ {s, t} 6= pv where pv
denotes their own prefix. This prefix p(l) is the one
received through the edge a that appeared. All other
prefixes received from neighbors are equal to pv since
they were all in the same connected component of the

initial graph Gi. Given all this, V computes Yes for
va,s and va,t
• for each vertex v ∈ {S∪T}\{va,s, va,t} r2(v) is not set,

since there is at most one appearing edge. All prefixes
received by v are equal to its own prefix pv since they
were all in the same connected component of the initial
graph Gi. Therefore V will compute Yes for all those
vertices as well

This concludes that V will compute Yes for every vertex of
an altered graph Ga ∈ s-t-reachability if the labeling l
was obtained from P.

What is left to show is that given Ga /∈ s-t-reachability,
V will compute No as output on at least one vertex.

Assume for the sake of contradiction that there exists a
graph Ga /∈ s-t-reachability for which V computes Yes
on all vertices.

Considering Algorithm 2 and the case of no edge appear-
ing (r3(v) is not set for any v ∈ V), V would compute No
for all vertices. Therefore Ga must have an edge a that
appeared.

We further note that for any vertex v carrying a prefix pv
the following must hold:

1. if r2(v) is not set, all neighbors of v must carry the
same prefix pv since V requires oprefix(pv) = |M(v)|
to output Yes

2. if r2(v) is set, all neighbors but one must carry the
same prefix pv and the remaining neighbor must have
a label l with prefix p(l) ∈ {s, t} not equal to pv. Since
there are only the prefixes s and t, p(l) = t if pv = s
and vice versa.

From Point 1 it follows that if any vertex within a connected
component carries a prefix pv and no vertex within that
connected component has an adjacent appearing edge, all
vertices of the connected component must carry the prefix
pv. From Point 2 it follows that if a vertex v has an adjacent
appearing edge, v must be connected to a vertex carrying
a different prefix p(l) ∈ {s, t}. Thus, if the appearing edge
a is adjacent to any vertex carrying a prefix, there must be
a connection between a connected component carrying only
prefixes s and a connected component with only prefixes t.

Next, consider that Algorithm 2 requires every vertex v
with l(v) 6= 0 to have a prefix pv ∈ {s, t} and a distance dv 6=
∞. We note that distances assigned by the labeling l(·) must
be strictly > 0 for vertices v /∈ {s, t} since otherwise d(·)
would decode them as∞ which would lead V to output No.
Furthermore, each vertex v with dv > 0 requires a neighbor
u with distance du = dv − 1, especially, vertices having a
distance 1 require either s or t in their neighborhood.

Therefore, since s and t are unique, there can only be one
connected component carrying the prefixes s containing s
itself and one connected component carrying the prefixes t
containing t itself. None of those can have the appearing
edge a adjacent to any of their vertices since this would, as
shown earlier, request a connection between the two compo-
nents, thereby connecting s and t.

The only accepted label not carrying a prefix is 0. How-
ever, if an appearing edge a were adjacent to a vertex v
carrying the label l(v) = 0, V would compute No as output
for v. Therefore, since there has to be an appearing edge a
but no vertex in Ga can have an adjacent appearing edge,
we have a contradiction proving our initial claim.

s

a

c

b

d

t
d1d′1

d2 d′2

Figure 6: Graph showing that s-t-reachability cannot be
verified in a local manner if there might be two edges disap-
pearing. Here, vertex a can sense an adjacent disappearing
edge d1, but cannot receive enough information within one
round of communication to decide if a second disappearing
edge disappeared at a location d2 or d′2. Since it might be
d′2, a verifier on a has to output Yes. The same applies
however to b as well as to c and d, where c and d cannot
know whether d1 or d′1 disappeared.This leads all vertices to
output Yes even though s-t-reachability might not be given.

3.3 Multiple Inconsistencies
In this subsection we present the challenges in checking s-

t-reachability when considering multiple inconsistencies. We
will first look at multiple disappearing edges, then look at
multiple appearing edges, and end with combinations of dis-
appearing and appearing edges. Due to space constraints,
the technical proofs of this subsection are deferred to the
full version of this article.

3.3.1 Multiple Disappearing Edges
We consider the initial graph Gi ∈ s-t-reachability and

ask whether there is a correct PVP to verify if Ga ∈ s-t-
reachability with E(Ga) = E(Gi)\D where D denotes
the set of disappearing edges. Sadly, the answer is no, since
edges might disappear anywhere in the graph and the verifier
on a vertex v can only check the local neighborhood of v.
We refer to Figure 6 for an illustration of the deferred proof.

Theorem 6. There exists no correct PVP for s-t-reach-
ability as specified in our model that can consider more
than one disappearing edge.

3.3.2 Multiple Appearing Edges
We consider the initial graph Gi /∈ s-t-reachability and

ask whether there is a correct PVP to verify if Ga ∈ s-t-
reachability with E(Ga) = E(Gi) ∪ A where A denotes
the set of appearing edges.

As with disappearing edges in Section 3.3.1 appearing
edges can appear anywhere in the graph and therefore can-
not be located within the graph by a non-adjacent vertex.
We refer to Figure 7 for an illustration of the deferred proof.

Theorem 7. There exists no correct PVP for s-t-reach-
ability as specified in our model that can consider more
than one appearing edge.

3.3.3 Combination of Dis– and Appearing Edges
We consider now any initial graph Gi and ask whether

there is a correct PVP to verify if Ga ∈ s-t-reachability
with E(Ga) = {E(Gi) ∪ A}\D where A denotes the set
of appearing edges and D denotes the set of disappearing
edges.

Assuming that there is at most either one edge disappear-
ing or at most one edge appearing, a combination of the
algorithms presented in Section 3.1 and Section 3.2 could

s

v

t

a1 a2

a′2

a3

Figure 7: Graph showing that s-t-reachability cannot be ver-
ified in a local manner if there might be two edges appear-
ing. Here, vertex v can sense an adjacent appearing edge a1,
but cannot receive enough information within one round of
communication to decide if a second appearing edge a2 or
a′2 exists that would lead to s-t-reachability. Note that even
if v would get the information of another appearing edge, it
could also be that the second edge that appeared is a3 (and
not a2 or a′2), leaving s and t unconnected.

s

v

t

d

a

Figure 8: Graph showing that s-t-reachability cannot be
verified in a local manner if there might be an edge disap-
pearing and an edge appearing. Here, vertex v can sense
an adjacent disappearing edge d, but cannot receive enough
information within one round of communication to decide if
an appearing edge a on the other side of the graph exists
that would lead to s-t-reachability.

make up a PVP for s-t-reachability with proof size in
O(logn). This by choosing the proof labeling according to
whether the initial graph Gi is in s-t-reachability or not (if
it is, choose the labeling from Section 3.1, if not choose the
labeling form Section 3.2) and adapt the verifier to switch to
Algorithm 1 or Algorithm 2 depending on the proof labeling
it finds.

However, assuming that there is at most one edge disap-
pearing and at most one edge appearing, a correct PVP for
s-t-reachability cannot be found. This due to the fact
that if there is a disappearing edge d breaking the graph
into two connected components, vertices adjacent to d can-
not know if there is an appearing edge on the other end of
the graph connecting the two components again. We refer
to Figure 8 for an illustration of the deferred proof.

Theorem 8. There exists no correct PVP for s-t-reach-
ability as specified in our model that can consider a combi-
nation of at most one disappearing edge and of at most one
appearing edge.

4. CYCLICITY
Cyclicity, i.e., if a given graph contains edges that form a

cycle, is one of the key attributes when analyzing networks.
Especially for routing protocols it is important to know if
the routed packet gets forwarded indefinitely in a cycle or is
guaranteed to advance to a new vertex with every new step.

In the following subsections we discuss if a prover verifier
pair can be found to check if a graph contains a cycle or
not under the assumption of inconsistency. We will look at
individual connected components of graphs. Therefore we
introduce C(G) = (VC , EC) to be a connected component
of a graph G, with VC ⊂ V (G) and EC ⊂ E(G) such that

any two vertices u, v ∈ VC can reach each other. We further
introduce two small changes to our model:

1. Let Y be a network property. A prover verifier pair
(P,V) is said to be correct for Y if the following two
points hold for any connected component C(Ga) =
(VC,a, EC,a) of the altered graph Ga:

(a) if C(Ga) ∈ Y and l was obtained from P, then V
computes Yes as output for all vertices v ∈ VC,a

(b) if C(Ga) /∈ Y , then V computes No as output
for at least one vertex v ∈ VC,a, regardless of the
labeling

2. for a vertex v ∈ V (Ga), the third inconsistency re-
porting bit r3(v) is set if and only if there has been an
appearing edge adjacent to v or any vertex u connected
to v, i.e., if there has been an appearing edge adjacent
to any vertex of the connected component C(Ga) to
which v ∈ VC,a belongs

1-cyclic we shall denote the set of all (sub-)graphs con-
taining exactly one cycle, and cyclic shall denote the set
of all (sub-)graphs containing at least one cycle.

4.1 Disappearing Edges
We first look at the case that edges might disappear. As

it was with s-t-reachability in Section 3.1 we focus here on
the case that the initial graph Gi ∈ cyclic.

We divide this problem further into two cases:

1. The initial graph Gi contains exactly one cycle, i.e.,
Gi ∈ 1-cyclic

2. The initial graph Gi contains at least one cycle, i.e.,
Gi ∈ cyclic

4.1.1 Single Cycle
In [8] a proof size of 2 bits was shown for cyclicity checking

in unaltered undirected graphs. For the case that Gi ∈ 1-
cyclic has at most one cycle, the PVP [8] introduces works
also under the consideration of disappearing edges and the
model adaptions we introduced.

This is due to the fact that if there is at most one cycle,
a disappearing edge can only break the cycle or split a con-
nected component in two connected components. Therefore
each connected component C(Ga) of the altered graph Ga

can be seen as an unaltered graph and verified individually,
if it contains a cycle or not.

Theorem 9. The proof size for 1-cyclic is 2 bit for any
number k ≤ |Ei| of edges disappearing. |Ei| denotes the
number of edges in the initial graph.

[8] proves that the proof size for cyclic in undirected
graphs is at least 2 bits. Since their model does not con-
sider any inconsistencies and is therefore stronger, this lower
bound holds also in our model. To prove Theorem 9 we are
left to prove the following lemma:

Lemma 10. There exists a correct PVP with a proof size
of 2 bit that is correct for 1-cyclic if any number k ≤ |Ei|
of edges might disappear. |Ei| denotes the number of edges
in the initial graph.

Due to space constraints, we defer the proof to the full ver-
sion of this article. See Figure 9 for an example of the proof
labeling used.

0

2

2

1

1

1

0 3

3

3

0

3

0

0

1

1

d1

d2

d3

Figure 9: Example graph showing the 2 bit proof labeling
introduced by [8] to verify cyclicity. We take an analogous
PVP showing that it is correct for 1-cyclic considering that
edges might disappear, e.g., d1, d2 and/or d3. Here, vertices
on the cycle are labeled 3 and vertices not on the cycle are
labeled with their distance modulo 3 to the root of their
subtree, where the root is a vertex next to the cycle.

v

u

d

d′

(a) Graph with 2 cycles and
one disappearing edge d or d′

leaving the graph cyclic

v

u

d

(b) Graph with 1 cycle and a
disappearing edge d breaking
the cyclicity

Figure 10: Example graphs to show why no PVP can be
correct for cyclic if one edge might disappear. A prover
would have to give v in Figure 10a a label for which the
verifier outputs Yes with adjacent disappearing edge d since
there is a connection through u to the other cycle. The same
holds for the label u gets since if d′ disappears there is a
connection through v to the other cycle. Such a labeling
would however output Yes on all vertices in Figure 10b.

4.1.2 Multiple Cycles
The problem gets much more complicated when more than

one cycle can exist in the graph. For this we consider now
the case where the initial graph Gi ∈ cyclic can have any
amount of cycles and at most one edge d might disappear.

We take as example a connected initial graph Gi that has
two cycles and note that the graph is still cyclic even if one
of the cycles breaks due to the disappearing edge. Therefore,
vertices on each cycle must get some information from the
labeling that there exists another cycle in the graph. This
however leads to an insolvable problem in our model as we
will show. More precisely:

Theorem 11. There exists no correct PVP for cyclic
as specified in our model that can consider one disappearing
edge.

Proof. Assume for the sake of contradiction that there
exists a correct PVP (P,V) as required. Consider the ex-
ample graphs shown in Figure 10:

Given the initial graph Gi,(a) in Figure 10a the prover P
would have to give the vertex v a label l(v), for which the
verifier V computes Yes if it senses an adjacent disappearing
edge d, i.e., if the first inconsistency reporting bit r1(v) is set.
Such a label l(v) is needed since if d disappears in Figure 10a
there is still a path from v through u to the other cycle in the
graph. (Note that at most one edge disappears, so either d
or d′). However, a similar label l(u) is needed for the vertex
u since d′ might disappear instead of d and u would than
still have a path through v to the other cycle. Therefore v
and u must have labels for which V computes Yes if there

is an adjacent disappearing edge. This however would be
a labeling for which V computes Yes on every vertex in
Figure 10b. This contradicts that V should compute No for
at least one vertex for any connected component C(Ga) /∈
cyclic, regardless of the labeling.

Given that there is no correct PVP for cyclic that can
consider one disappearing edge, the question about a cor-
rect PVP for cyclic that can consider multiple disappearing
edges becomes redundant.

4.2 One Appearing Edge
In this subsection we take a look at how cyclicity might

change if at most one edge a appears, i.e., E(Ga) = E(Gi)∨
E(Gi) ∪ {a} where a can appear between any two vertices
u, v ∈ V . Before we prove or disprove a PVP, note the
following facts:

• A connected component containing a cycle cannot be-
come acyclic through an appearing edge

• A connected component C1(Gi) = (VC1, EC1) contain-
ing no cycle can only get cyclic if it has an appearing
edge adjacent to one of its vertices and either the ap-
pearing edge connects C1(Gi) to another connected
component C2(Gi) containing a cycle or both end ver-
tices u and v of the appearing edge are within the
connected component, i.e. u, v ∈ VC1.

• if both end vertices u and v of the appearing edge are
within the connected component, C1(Ga) is for sure
cyclic. This holds since every acyclic connected com-
ponent C = (V,E) has to have exactly the minimal
number of edges |E| = |V | − 1 to be connected and
acyclic. Any additional edge closes a cycle.

Given these facts we note that a vertex v on one side of the
appearing edge must have the ability to distinguish between
initially separated connected component to know, whether u
on the other side of the appearing edge belongs to the same
connected component or not.

Since this cannot be achieved through a potentially ran-
dom labeling we allow for IDs in this subsection. Thereby
an ID is a unique identifier every vertex v ∈ V (Gi) of the
initial graph gets attached to itself, where the uniqueness
is guaranteed by the model. Further, we adjust our model
such that the set of received messages M(v) on vertex v not
only includes labels, but also the IDs of each neighbor of v.

By adding unique identifiers as described to the model, we
can now show the existence of a PVP. The technical proof
is deferred to the full version of this article.

Theorem 12. There exists a PVP, using unique identi-
fiers, with a proof size in O(n2 logn) bit that is correct for
cyclic if at most one edge a appears.

4.3 Multiple Inconsistencies
In this subsection we focus on PVPs for cyclicity consid-

ering more than one inconsistency. We already looked at
multiple disappearing edges in Section 4.1. Therefore, it is
left to discuss multiple appearing edges and combinations of
disappearing and appearing edges.

4.3.1 Multiple Appearing Edges
We consider the initial graph Gi that is a set of connected

components and ask whether there is a correct PVP that

v

A

B

C

a1

a2

a′2

Figure 11: Graph showing that cyclicity cannot be verified
in a local manner if there might be two edges appearing.
A, B and C denote the three acyclic connected components
of the initial graph. Here, vertex v can sense an adjacent
appearing edge a1, but cannot receive enough information
within one round of communication to decide if a second
appearing edge a2 exists that would lead to cyclicity. Even
if v would get the information of another appearing edge, it
could also be that the second edge that appeared is a′2 (and
not a2), leaving the resulting connected component acyclic.

v

d

a

Figure 12: Graph showing that cyclicity cannot be verified in
a local manner if there is an edge appearing and there might
be an edge disappearing. v can sense an adjacent appearing
edge a, but cannot receive the information to decide if a
disappearing edge d on the other side of the graph exists
that would leave the graph acyclic.

considers multiple appearing edges and verifies for each con-
nected component C(Ga) of the altered graph Ga individ-
ually, if C(Ga) ∈ cyclic. This, having the set of edges in
the altered graph E(Ga) = E(Gi) ∪A where A denotes the
set of appearing edges. Remember that appearing edges can
appear anywhere in the graph and therefore cannot be lo-
cated within the graph by a non-adjacent vertex. We refer
to Figure 11 for an illustration of the deferred proof.

Theorem 13. There exists no correct PVP for cyclic
as specified in our model that can consider more than one
appearing edge.

4.3.2 Combination of Dis– and Appearing Edges
Since there is no correct PVP considering disappearing

edges if the graph contains more than one cycle (see Sec-
tion 4.1.2) and appearing edges tend to form cycles, the
question about a correct PVP for cyclicity that considers a
combination of dis– and appearing edges is rather complex.

However if we focus on at most one edge disappearing and
at most one edge appearing, we can already show that no
correct PVP for 1-cyclic can be found. This due to the fact
that if there is an appearing edge a forming a cycle, vertices
adjacent to a cannot know if there is a disappearing edge
on the other end of the graph breaking the cycle again. We
refer to Figure 12 for an illustration of the deferred proof.

Theorem 14. There exists no correct PVP for 1-cyclic
as specified in our model that can consider more than one
inconsistency of any type if at least one edge is appearing.

5. RELATED WORK
The concept of local checkability has a rich history, start-

ing with the seminal paper of Naor and Stockmeyer [18]:

They coined the term Locally Checkable Labelings (LCL),
checking labels locally in a constant number of rounds.

Further models for local checkability have been introduced
since then, extending and building upon the ideas of [18].
We now cover the four ones closest related to our work:

Göös and Suomela [14, 15] allowed f(n) bits of additional
information on the vertices introducing Locally Checkable
Proofs (LCP) as an addition to Locally Checkable Labelings
(f(n) = 0 being LCL). They investigated on distributed
local decision problems: which proof size f(n) is needed such
that all vertices output Yes on a Yes-instance and at least
one vertex outputs No on any invalid proof or No-instance.

With Proof Labeling Schemes Korman et al. [16] restricted
the LCP model to allow for one communication round only.
Thus, the verification of the proof labels are computed from
each vertex’ immediate neighborhood. Super-constant com-
munication rounds have also been studied in [3].

Both the models of [14] and [16] also investigate the use of
unique identifiers, however a distinction to our work is that
they always assume a port numbering to be given. Further
studies on more universal identifiers were performed in [12].
Cf. also [7] for a generalization, coined local hierarchy LH.

Fraigniaud et al. [11] took a different approach by allowing
multiple communication rounds but separating the proof la-
bels from vertex identifiers. They distributed the labels by
having only the graph structure without identifiers given,
but the verifier is aware of the identifiers. Unlike Göös and
Suomela [14], and Korman et al. [16], Fraigniaud et al. stud-
ied the impact of randomization on local checkability as well,
also regarding reduced proof sizes [2, 10, 13].

Most related to this work is the article of Foerster et al. [8,
9], which uses a combination of the above as model. By
having a Prover P distributing proof-labels and a Verifier
V checking the labels after one communication round, they
introduce the Prover-Verifier-Pairs (PVPs) we adapted for
this work. These have no strings attached meaning that they
rely on neither identifiers nor port numbers of any sort to
make decision. Unlike [8], our work focuses on undirected
graphs, but introduces inconsistencies to the network graph.

For a recent and encompassing overview on distributed
decisions beyond the works discussed above we refer to the
survey of Feuilloley and Fraigniaud [6]. A further field re-
lated to local checkability is property testing, cf. [5].

We are not aware of work that connects local checkabil-
ity with dynamic networks. Dynamic networks are in the
focus of research for a long time [1], especially since the
rise of peer-to-peer computing, but their study in the local
model [4, 17] is more recent.

6. CONCLUDING REMARKS
We discussed the applicability of local checkability to dy-

namic networks, where edges might appear or disappear
when verifying network properties. To the best of our knowl-
edge, our work is the first that extends local checking to dy-
namic network changes. As thus, we focused on (im-)poss-
ibility results – showing that there are cases where quite sim-
ple schemes suffice, but that problems which seem equally
“easy” at first glance can also allow for no local solution at
all, with the occasional corrective supplied by unique identi-
fiers beyond the possibilities of a simple prover-verifier-pair.
We note that the restriction to one communication round
does not fundamentally change the theoretical power of a
PVP in our case: The provided counter-examples can be

extended by replacing edges with paths of nodes of length
k, for any constant k, s.t. problems in NLC stay in NLC.
We believe local checkability in dynamic networks to be an
intriguing field of study, as it extends the fascinating theory
of local verification towards the realm of topology changes.

Acknowledgments
We would like to thank the anonymous reviewers of ICDCN
2017 for their helpful comments on our submitted manuscript.

7. REFERENCES
[1] B. Awerbuch, Y. Mansour, and N. Shavit. Polynomial

end-to-end communication. In FOCS, 1989.

[2] M. Baruch, P. Fraigniaud, and B. Patt-Shamir.
Randomized proof-labeling schemes. In PODC, 2015.

[3] M. Baruch, R. Ostrovsky, and W. Rosenbaum. Brief
announcement: Space-time tradeoffs for distributed
verification. In PODC, 2016.

[4] R. O. Bischoff and R. Wattenhofer. Information
Dissemination in Highly Dynamic Graphs. In
DIALM-POMC, 2005.

[5] K. Censor-Hillel, E. Fischer, G. Schwartzman, and
Y. Vasudev. Fast distributed algorithms for testing
graph properties. CoRR, abs/1602.03718, 2016.

[6] L. Feuilloley and P. Fraigniaud. Survey of distributed
decision. CoRR, abs/1606.04434, 2016.

[7] L. Feuilloley, P. Fraigniaud, and J. Hirvonen. A
hierarchy of local decision. ICALP, 2016.

[8] K.-T. Foerster, T. Luedi, J. Seidel, and
R. Wattenhofer. Local Checkability, No Strings
Attached. In ICDCN, 2016.

[9] K.-T. Foerster, T. Luedi, J. Seidel, and
R. Wattenhofer. Local Checkability, No Strings
Attached: (A)cyclicity, Reachability, Loop Free
Updates in SDNs. Theor. Comput. Sci., To appear.

[10] P. Fraigniaud, M. Göös, A. Korman, M. Parter, and
D. Peleg. Randomized distributed decision. Distributed
Computing, 27(6):419–434, 2014.

[11] P. Fraigniaud, M. Göös, A. Korman, and J. Suomela.
What can be decided locally without identifiers? In
PODC, 2013.

[12] P. Fraigniaud, J. Hirvonen, and J. Suomela. Node
labels in local decision. In SIROCCO, 2015.

[13] P. Fraigniaud, A. Korman, and D. Peleg. Towards a
complexity theory for local distributed computing. J.
ACM, 60c(5):35, 2013.

[14] M. Göös and J. Suomela. Locally checkable proofs. In
PODC, 2011.

[15] M. Göös and J. Suomela. Locally checkable proofs.
Theory of Computing, To appear.

[16] A. Korman, S. Kutten, and D. Peleg. Proof labeling
schemes. Distributed Computing, 22(4):215–233, 2010.

[17] F. Kuhn, N. Lynch, and R. Oshman. Distributed
computation in dynamic networks. In STOC, 2010.

[18] M. Naor and L. J. Stockmeyer. What can be
computed locally? In STOC, 1993.

[19] S. Schmid and J. Suomela. Exploiting locality in
distributed SDN control. In HotSDN, 2013.

[20] N. Shelly, B. Tschaen, K.-T. Foerster, M. A. Chang,
T. Benson, and L. Vanbever. Destroying networks for
fun (and profit). In HotNets, 2015.

	Introduction
	Definitions and Model
	Inconsistencies
	Prover-Verifier-Pair

	Reachability
	One Disappearing Edge
	One Appearing Edge
	Multiple Inconsistencies
	Multiple Disappearing Edges
	Multiple Appearing Edges
	Combination of Dis– and Appearing Edges

	Cyclicity
	Disappearing Edges
	Single Cycle
	Multiple Cycles

	One Appearing Edge
	Multiple Inconsistencies
	Multiple Appearing Edges
	Combination of Dis– and Appearing Edges

	Related Work
	Concluding Remarks
	References

