Multidimensional Approximate Agreement with Asynchronous Fallback

Diana Ghinea¹ Chen-Da Liu-Zhang² Roger Wattenhofer¹

¹ETH Zürich ²NTT Research

Multidimensional Approximate Agreement (D-AA)

Consider some $\mathcal{E} > 0$, and a setting of n parties holding inputs in \mathbb{R}^D .

Even when t of the n parties are Byzantine, honest parties obtain:

- \mathcal{E} -close outputs in \mathbb{R}^D (\mathcal{E} -Agreement).
- That are in the convex hull of their inputs (Validity).

In \mathbb{R}^2 , t $\geq n/3$ is too much.

In \mathbb{R}^2 , t $\geq n/3$ is too much.

In \mathbb{R}^2 , t $\geq n/3$ is too much.

In \mathbb{R}^2 , t $\geq n/3$ is too much.

• t < n/(D + 1): necessary.

[PODC:VaiGar13]

 t < n/(D + 1): necessary and sufficient in the synchronous model. (where parties' clocks are synchronized; messages get delivered within Δ time)
 [PODC:VaiGar13]

- t < n/(D + 1): necessary and sufficient in the synchronous model. (where parties' clocks are synchronized; messages get delivered within Δ time)
 [PODC:VaiGar13]
- t < n/(D + 2): necessary and sufficient in the asynchronous model.
 [STOC:MenHer13, PODC:VaiGar13]

Main question

The parties do not know whether the network is synchronous or not:

- synchronous $\Rightarrow t_s < n/(D+1)$ corruptions.
- asynchronous $\Rightarrow t_a < n/(D+2)$ corruptions ($t_a \le t_s$).

Can we achieve D-AA in this model?

Main question

The parties do not know whether the network is synchronous or not:

- synchronous $\Rightarrow t_s < n/(D+1)$ corruptions.
- asynchronous $\Rightarrow t_a < n/(D+2)$ corruptions ($t_a \le t_s$).

Can we achieve D-AA in this model?

- D = 1: yes, iff $2 \cdot t_s + t_a < n$ (with PKI). [PODC:GhLiWa22]
- D > 1: yes, if $(D + 1) \cdot t_s + t_a < n$ (without setup). [this work]

Algorithm outline

- Iterations:
 - 1. Parties distribute their current values via Overlap All-to-All Broadcast (OBC).
 - 2. Based on the values received, compute a *safe area*.
 - 3. Choose a new value from the safe area for the next iteration.

[STOC:MenHer13, PODC:VaiGar13]

[STOC:MenHer13, PODC:VaiGar13]

AL

[STOC:MenHer13, PODC:VaiGar13]

• \mathcal{M} : multiset containing the $n - t_s + k$ values received via OBC.

- \mathcal{M} : multiset containing the $n t_s + k$ values received via OBC.
- The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

- \mathcal{M} : multiset containing the $n t_s + k$ values received via OBC.
- The network is synchronous?
 - \Rightarrow at most k of these values are corrupted.
- The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

- \mathcal{M} : multiset containing the $n t_s + k$ values received via OBC.
- The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

• The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

 \Rightarrow Intersect the convex hulls of all subsets of \mathcal{M} of size $|\mathcal{M}| - \max(k, t_a)$.

- \mathcal{M} : multiset containing the $n t_s + k$ values received via OBC.
- The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

• The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

 \Rightarrow Intersect the convex hulls of all subsets of \mathcal{M} of size $|\mathcal{M}| - \max(k, t_a)$.

- Safe areas are:
 - non-empty.
 - included in the honest values' convex hulls.

New values from the safe areas

• New value: the midpoint of a segment realizing the safe area's diameter.

[DISC:FügNow18]

New values from the safe areas

• New value: the midpoint of a segment realizing the safe area's diameter.

[DISC:FügNow18]

New values from the safe areas

• New value: the midpoint of a segment realizing the safe area's diameter.

[DISC:FügNow18]

Why do honest parties' values get closer?

The safe areas obtained by every two honest parties intersect.

Why do honest parties' values get closer?

The safe areas obtained by every two honest parties intersect.

=> the diameter of the honest values' convex hull decreases by a factor of $\sqrt{7/8}$ in each iteration.

How many iterations are needed?

• We estimate the honest inputs' convex hull.

Summary

We are working in a model where the parties do not know whether the network is synchronous or asynchronous.

- synchronous $\Rightarrow t_s < n/(D+1)$ corruptions.
- asynchronous $\Rightarrow t_a < n/(D+2)$ corruptions ($t_a \le t_s$).

D-AA can be achieved in this model when:

- D = 1: iff $2 \cdot t_s + t_a < n$ (with PKI). [PODC:GhLiWa22]
- D > 1: if $(D + 1) \cdot t_s + t_a < n$ (without setup). [this work]