
J. Parallel Distrib. Comput. 64 (2004) 449–460

ARTICLE IN PRESS
$A prelimin

International C

nication Comp

our suggestion,

been proposed b

thank the Swiss

this research.

*Correspond

Zurich, 8092 Z

E-mail addr

widmayer@inf.

0743-7315/$ - se

doi:10.1016/S07
The counting pyramid: an adaptive distributed counting scheme$

Roger Wattenhofer* and Peter Widmayer

Department of Computer Science, ETH Zurich, Switzerland

Received 21 May 1999; revised 5 July 2002
Abstract

A distributed counter is a concurrent object which provides a fetch-and-increment operation on a shared value. On the basis of

a distributed counter, one can implement various fundamental data structures, such as queues or stacks. We present the counting

pyramid, an efficient implementation of a distributed counter in a message passing system, which is based on software combining.

The counting pyramid adapts gracefully to changing access patterns, guarantees linearizability, and offers more general fetch-and-F
operations. We analyze the expected performance of the counting pyramid, using queueing theory and simulation. We show that the

latency of the counting pyramid is asymptotically optimal.

r 2003 Elsevier Inc. All rights reserved.

Keywords: Queueing theory; Contention; Latency; Linearizability; Decentralization
1. The problem

A distributed counter is a variable that is common to
all processors in a distributed message passing system,
and supports an atomic fetch-and-increment opera-
tion: It delivers the counter value to the requesting
processor and increments it. The counter is required to
satisfy elementary soundness conditions: Whenever no
operation is active in the system, the mechanism has
delivered consecutive counter values, with none missing
and none delivered twice, a property known as quiescent

consistency [2]. In addition, applications may require
that a counting scheme be linearizable [14] in the sense
that whenever the first of two operations is completed
before the second is initiated, the first gets a lower
counter value than the second.
The quest for finding an efficient scheme for

distributed counting is strongly related to the quest for
ary version of this paper was presented at the 5th

olloquium on Structural Information and Commu-

lexity, 1998 [27]. A short time after the publication of

a similar approach called ‘‘Combining Funnels’’ has

y Nir Shavit and Asaph Zemach [23]. We would like to

National Science Foundation for partially supporting

ing author. Department of Computer Science, ETH

urich, Switzerland. Fax: +41-1-632-1172.

esses: wattenhofer@inf.ethz.ch (R. Wattenhofer),

ethz.ch (P. Widmayer).

e front matter r 2003 Elsevier Inc. All rights reserved.

43-7315(03)00114-X
finding an appropriate measure of efficiency for
distributed data structures. The traditional measures of
efficiency for algorithms in distributed message passing
systems, such as message complexity, are not satisfac-
tory. For instance, even though a structure could be
message optimal by just storing the whole data structure
with a single central processor and having all other
processors access the data structure with one message
exchange only, such an implementation is clearly
unreasonable because it does not scale—with a growing
number of accesses, the central processor will become a
bottleneck. In other words, the work of an algorithm
should not be concentrated at any single processor or
within a small group of processors, even if this optimizes
some measure of efficiency. We advocate the use of
queueing theory to uniformly assess the efficiency of a
distributed counting scheme: We analyze the expected
latency—the time spent from the initiation of a fetch-

and-increment operation to its completion.
Counting networks [1,2] are an original and seminal

solution to the distributed counting problem. They
make sure that message contention at each individual
node of the network is low—an important precondition
for efficiency. In addition, however, not every operation
in an efficient counter should be forced to travel through
a somewhat large number of nodes. These two goals
appear to be in conflict with each other, and any fast
counting scheme must respect both of them; Counting
networks achieve the first goal, but not the second.



ARTICLE IN PRESS
R. Wattenhofer, P. Widmayer / J. Parallel Distrib. Comput. 64 (2004) 449–460450
Diffracting trees [21,22] have an ingenious design that
also avoids contention at nodes (by means of diffractors)
and thereby achieves low latency. Both, counting net-
works and diffracting trees, are not linearizable; counting
networks can be made linearizable [13], with a significant
extra effort that makes them by far less efficient.
One might ask whether in principle, the hot-spot

problem of a central counter can be overcome without
losing other desirable properties, such as the ability to
compute arbitrary functions (instead of counting only).
A natural approach here tries to minimize the ‘‘bottle-
neck complexity’’—the number of messages which a
‘‘busiest’’ processor of the system must exchange [26].
Even though this tells about the lower bound of how
much a basic distributed data structure such as a
counter can be decentralized, it is not advisable to
construct a real counting scheme directly along this
theoretical concept, just because the stand-alone bottle-
neck complexity abstracts too much from reality.
In this paper, we propose a new counting scheme—

the counting pyramid. Its design follows the basic idea of
combining several requests along upward paths in a tree,
and to decombine the answers on the way down. The
idea of combining several requests to one message which
is sent to a destination processor instead of sending
every request alone, is well known in computer science.
The first hardware proposals towards this end date back
to the early eighties. Gottlieb, Lubachevski, and
Rudolph introduced the combining metaphor in 1983
[10]. More articles on how to combine messages in
networks followed shortly thereafter [5,8,16,19]. Later,
research started separating the combining and the
underlying hardware of the network which resulted in
the software combining tree [29]. Another analysis and
several applications are due to [7].
The counting pyramid extends the concept of combin-

ing in two ways. First, a node forwards a request up the
tree to any one of the nodes on the next higher level, not
necessarily to its parent. This target node is selected at
random for each individual request, and the response
travels down the tree along the same path as the request
went up. This helps to spread out the load evenly across
entire levels. Since this concept departs from a tree
substantially, we name it differently for clearer distinc-
tion: The tree develops into a pyramid, a level becomes a
floor, and a node becomes a brick. Second, a processor
decides freely on the floor in the pyramid at which it
initially sends its request. We propose that this decision
be based on the frequency with which the processor itself
increments: If processor p increments often, p should
send the request to a low floor; if processor p increments
very rarely, p may go directly to the top of the pyramid.
We will show that this technique makes the counting
pyramid adaptive to any access pattern.
There have been other constructions of adaptive

distributed counters: The Reactive Synchronization
Algorithm [17] keeps a global state that tells which
counting structure is currently used. The reactive
diffracting tree [6] grows and shrinks the size of the tree
in order to keep up with the current load situation. In
contrast to these two algorithms, the counting pyramid
does modify neither form nor state when access patterns
change, and hence there is no learning curve for a new
access pattern. In other words, the adaptivity of the
counting pyramid is not reactive but instantaneous.
Due to its adaptiveness and because counting is not

the only operation that is supported, the counting
pyramid is quite a flexible structure with high potential
for a variety of applications. To realize various
established data structures, one often needs more
powerful operations. For instance, diffracting trees can
be extended to elimination trees [20] offering both, a
fetch-and-increment and a fetch-and-decrement

operation, which is sufficient to implement stacks and
pools. The counting pyramid is able to add or subtract
any value. Even more generally, it naturally supports a
fetch-and-F [9] operation, where F is an arbitrary
associative binary operation defined on a set, resulting
in fetch-and-add, swap, fetch-and-or, or fetch-

and-max [4,28]. In a system where accesses are frequent
(the load is high)—[29] call this an ‘‘unlimited’’ access
system—the processors can use the fetch-and-add

operation in the pyramid to increment in bulk; this is
not possible with diffracting trees or counting networks.
A short time after the first conference publication of the

counting pyramid [27], a similar approach called ‘‘combin-
ing funnels’’ has been proposed by Shavit and Zemach
[23]. The combining funnel is designed for the ‘‘shared
memory’’ computational model, while the counting
pyramid is presented in the ‘‘message passing’’ model;
both computational models are standard in distributed
computing, and as the combining/counting funnel/pyra-
mid shows, often equivalent. Moreover, [23] focus on
empirical testing while [27] give a detailed analysis.
We start by introducing the model of operation in

Section 2. In Section 3, we advocate the use of queueing
theory to uniformly assess the efficiency of a distributed
counting scheme. We give an example by analyzing the
behavior of a centralized counter. Section 4 proposes
and Section 6 analyzes the counting pyramid, while
Section 5 proves elementary correctness conditions. We
show that the performance of the counting pyramid is
asymptotically optimal with a lower bound argument in
Section 7. In Section 8, we simulate the counting
pyramid against the most important competitors.
Section 9 concludes this paper.
2. The model

Consider a distributed message passing system of n

processors, where each processor is uniquely identified



ARTICLE IN PRESS
R. Wattenhofer, P. Widmayer / J. Parallel Distrib. Comput. 64 (2004) 449–460 451
with one of the integers from 1 to n: Each processor has
unbounded local memory; there is no shared memory.
Any processor can exchange messages directly with any
other processor. A message arrives at its destination a
finite amount of time after it has been sent. No failures
whatsoever occur in the system.
An abstract data-type distributed counter is to be

implemented for such a distributed system. A distrib-
uted counter encapsulates an integer value val and
supports the operation inc (short for fetch-and-

increment): When a processor initiates the inc opera-
tion, then the system’s counter value val is returned to
the initiating processor and the system’s counter value is
incremented (by one).
Each processor in the system has two roles: It is part

of the counting pyramid infrastructure that realizes the
distributed counter; in this role it receives messages from
other processors that are to be handled according to the
specifications. In the other role each processor runs an
application program that triggers the inc operation at
random.
The application program running at a processor is

interrupted by a message arrival. We will see that (with
one exception) such an interrupt can be handled with a
constant number of local computation steps. Since more
than one message may arrive at a processor p at
(approximately) the same time, p queues all incoming
messages and dequeues them sequentially in first-come-
first-serve order, with ties broken arbitrarily.
For concreteness in our subsequent calculations, we

make the following assumptions:

* It takes time tm on average to transfer a message from
one processor to some other processor.

* It takes time at most tc to do the constant number of
local computation steps in the case of a message
arrival interrupt. In Section 4 we will see that (with
one exception that we will take care of in Section 5)
the interrupt handling routines consist of two to three
simple pseudocode statements. Each pseudocode
statement is either an assignment, a coin flip, an
Oð1Þ operation in a local data structure, or a message
send, and therefore takes constant time.

* The expected time that elapses between two con-
secutive increment operations initiated by processor
p’s application program is tp; for a processor p:

Apart from these system parameters we need two
support variables. For completeness we present them
here and use them later:

* There is one interrupt which is not triggered by a
message arrival but by a timeout. There is one
timeout per time interval tw:

* The response time tr is a queueing theory term that
determines the time a message spends in a queue of a
processor plus the time for the processor to handle
the message. We will make extensive use of tr in the
next two sections.

We aim at minimizing the time that elapses from the
initiation of an inc operation to its completion; we call
this the latency. Let us now provide the basis of our
reasoning by first focussing on the most simple
implementation of a distributed counter, the central
scheme.
3. The central scheme

In the central scheme, a distinguished ‘‘central’’
processor c administrates the counter, by storing the
counter value val; which initially is 0: When a processor
p initiates an inc operation, processor p sends a request
message to processor c: When processor c dequeues a
request message, it returns a copy of val to the requestor
and increments val by one.
Assume that accesses of the processors to the counter

are very sparse (low load): The time between any two
increment initiations for a processor p is long enough
that even a central scheme can handle all requests one
after the other, without being a bottleneck processor.
If tpbntc for all p; there will usually be no queue when

a request arrives at the central processor c: Therefore,
processor c can respond immediately, resulting in a
latency of roughly 2tm þ tc: However, although it is
unlikely, it is possible for many requests to arrive at
processor c at more or less the same time. These requests
will be dequeued and handled sequentially. Therefore,
the last request in the queue will have a latency of up to
2tm þ ntc; a delay that grows linearly with the number of
processors; the system does therefore not scale.
Queueing theory has proven to be a very powerful

tool to argue about expected queue sizes and response
times. By using the average-case as a yardstick, we get a
simple and consistent way to assess the performance of
the central scheme. By choosing an exponential dis-
tribution for the time to handle a message, and by letting
processors have independent Poisson access patterns, we
can use standard M/M/1 queueing theory to analyze the
performance. (If the handling time does not have an
exponential distribution, one can apply M/G/1 queueing
theory.) For an introduction into queueing theory, see
[11,18]. For a closer look at queueing or probability
theory in the context of analyzing the performance of
distributed counting, see [24] or [21].
The key attributes for processor c are the arrival rate l

(the time between two message arrivals has expected
value 1=l ¼ tp=n), and the handling rate m (the time to
handle a message is 1=m ¼ tc on average). The utilization

of processor c; denoted by r; is the fraction of time
where processor c is busy. It can be calculated as r ¼
l=m: Since both, l and m; are positive, we have r40: An



ARTICLE IN PRESS
R. Wattenhofer, P. Widmayer / J. Parallel Distrib. Comput. 64 (2004) 449–460452
important constraint is that processor c must not be
overloaded—that is, 1=mo1=l; which results in ro1:
Thus r can vary between 0 and 1. Whenever rX1; we
have tppntc and the central scheme fails, since an
unbounded queue builds up at processor c; we therefore
must choose some decentral counting scheme to have
good expected latency. Whenever ro1; the expected
response time tr is

1
mð1�rÞ:

Theorem 1 (Central scheme performance). Let n tc

tp
¼

rp1� 1
k

for some positive constant k: Then the expected

latency is Oðtm þ tcÞ:

Proof. The expected response time of processor c is tr ¼
1

mð1�rÞpktc ¼ OðtcÞ: Since the request message has to be
sent from the initiating processor to processor c and
back, there is an additional term of OðtmÞ for the
latency. &

Since every counting scheme has to transfer some
messages and has to do some local computation, the
expected latency of Oðtm þ tcÞ for the central scheme is
asymptotically optimal if the load is low.
In the other extreme, there is the case in which we

have very high access rates. In [24,25], we proved a lower
bound on the latency for counting of Oðtm logtm=tc

nÞ;
which is similar to the proof of Section 6. To show this
bound to be tight, we proposed a counting scheme, the
‘‘optimal combining tree’’ (OCtree), and proved that the
tree has an expected latency of Oðtm logtm=tc

nÞ: The
OCtree, however, is not sufficiently flexible to qualify as
a universal, practical distributed counter. Ideally, a
distributed data structure should behave efficiently when
access is low as well as when access is high, and it should
adjust to changes of the situation instantly. In the next
section, we present the counting pyramid, an adaptive
scheme which can be seen as a randomized and
generalized combining tree.
4. The counting pyramid

In this section we will present the counting pyramid.
Each processor p has a completely local view of the
counting speed—the performance of the counting
pyramid for processor p does not depend on the access
rates of the other processors, but solely on processor p:
That is, the latency experienced by processor p will only
depend on tp; the expected time between two inc

operations initiated by processor p: Obviously, this
individual treatment of the processors is bound to fail if
their access patterns are correlated. Our approach will
work nicely whenever processors initiate the inc

operation with a Poisson access pattern and completely
independently of each other.
A counting pyramid consists of h floors. Floor f ðf ¼
0;y; h � 1Þ is made of mf bricks where m41 is an
integer. The single brick in floor 0 is the top of the
pyramid, with floor numbers increasing from top to
bottom. The height h of the pyramid is defined as h ¼
logm n; for simplicity, assume that h is an integer. The
number of bricks in the pyramid is smaller than n; becausePh�1

f¼0 mf ¼ n�1
m�1on: Thus, it is possible to give each brick

a distinct number between 1 and n: We identify each brick
with its number—processor p will act for brick p:
The current counter value val is stored at the top.

Whenever a processor p wants to increment, it sends a
request message to a random brick b in floor f (0pfoh;
a good choice for f is to be specified later). A brick in
floor f40 that receives a request picks a brick in floor
f � 1 at random and forwards the request to that brick.
The top (brick in floor 0), upon receipt of a request,
assigns in its response a value val to the request, and val is
sent down the pyramid along the same path that it took
on its way up. As soon as the response value arrives at
brick b; it is returned to the initiating processor p:
This simple approach is bound to be inefficient since the

top is a hot-spot, and the performance of the system is not
better than that of a central scheme. To overcome this
problem, we use the combining technique [10] and let a
brick combine several requests into one. That means,
instead of just forwarding each individual request up the
pyramid, a brick tries to combine requests arriving at
‘‘roughly the same time’’ (within a certain time frame). We
still have to guarantee that requests and counter values are
forwarded up and down the pyramid quickly, i.e., without
waiting too long. We distinguish two kinds of messages:
upward and downward messages. An upward message is
sent up the pyramid and contains z; the number of
increment operations requested, and an id; from which the
requestor later can match the reply to its original request.
A downward message is sent down the pyramid and
contains an interval of counter values, specified by the first
value of the interval and the same id as in the request. Let
us describe the counting scheme more precisely by defining
the behavior of the participating entities:
Top
The top works as in the Central Scheme; in
pseudocode:
Top manages local variable:

val: (of type) integer, initially 0.
Top, upon receiving upward(z, id) from processor q {

send to processor q: downward(val, id);

val:¼ val+ z;
}

4.1. Initiating processor

Let processor p initiate an inc operation. Processor p

sends an upward message (asking for one counter value)



ARTICLE IN PRESS
R. Wattenhofer, P. Widmayer / J. Parallel Distrib. Comput. 64 (2004) 449–460 453
to a random brick b in floor f : The value of f will
be specified in the next section—it is a function of tp;
the expected time between two inc operation initiations
of processor p: Later, processor p will get a down-
ward message from brick b with an assigned
counter value. Then, the inc operation is completed.
In pseudocode:

Application on processor p, initiating an inc

operation {

on floor f, choose a brick q uniformly at random;

send to brick q: upward(z, id);

}

Brick (not the top)

As already sketched, bricks are to combine upcoming
messages and decombine them on the way down the
pyramid. In local memory, a brick keeps track of all
open requests sent up to the top whose response did not
come down yet. An open request is a set of received
upward messages that were combined by the brick and
sent to a brick on the next higher floor. Whenever a
timeout occurs (every tw), the brick sends the combined
open request to a random brick on the next higher floor.
We use an id to find the matching open request when a
downward message is received. We give the details in
pseudocode:



ARTICLE IN PRESS
R. Wattenhofer, P. Widmayer / J. Parallel Distrib. Comput. 64 (2004) 449–460454
5. Correctness

In this section, we give safety and liveness proofs of

the counting pyramid presented in Section 4. In
particular, we will proof that (a) every initiated inc

operation will terminate, (b) the counting pyramid is
correct, and that (c) the counting pyramid is linearizable.
A counting scheme is correct if it fulfills these

correctness criteria at any time t:
(1)
 No duplication: No value is returned twice.

(2)
 No omission: Every value returned before time t is

smaller than the number of inc operations initiated
before time t:
The system is in a quiescent state when every initiated
inc operation is completed. If a system is in a quiescent
state and k inc operations were initiated, exactly the
values 0; 1;y; k � 1 were returned by a correct counting
scheme.
A counting scheme is called linearizable [14], when, in

addition to accomplishing the correctness criteria, the
values assigned reflect the order in which they were
requested. More formally, a correct counting scheme is
linearizable [14] if the following is granted: Whenever the
first of two inc operations is completed before the
second is initiated, the first gets a lower counter value
than the second.

Lemma 2 (Termination). An inc operation does termi-

nate eventually.

Proof. An inc operation is initiated by an application
and sent to a random brick on floor f : After a timeout,
the inc is then included and forwarded in an upward
message to a brick in floor f � 1; then for the same
reason to f � 2 and so on, until it reaches the single
brick in floor 0 (the top). After reaching the top, it is
forwarded in downward messages along the same bricks
in floors 1; 2;y; f � 1 until it reaches the brick f ; and is
from there returned to the application. &

At every brick, upward messages that arrive within a
small time-frame (between two timeouts) are combined
into a single upward message. For our correctness proof
it is enough to put all the inc operations that jointly
arrive at the top (that is, in the same upward message)
into the same ‘‘group.’’

Lemma 3 (Correctness). The counting pyramid is correct.

Proof. A group of inc operations is defined as the set of
inc operations that arrive in the same upward message
at the top. Each inc operation is in exactly one group.
All counter values are assigned centrally at the top.

The top gives intervals of values to the groups. The first
group receives the interval f0; 1;y; z � 1g; where z is
the number of inc operations in the group. The next
groups receive a subsequent intervals, so that no value is
omitted and none is given twice. That is, at any time the
values f0; 1;y; val � 1g are given to the group, where
val � 1 is the largest value given.
The bricks distribute the values of the interval of a

group to the inc operations of the group. Both
correctness conditions follow immediately. &

Lemma 4 (Linearizability). The counting pyramid is

linearizable.

Proof. With Lemmas 2 and 3, we can identify each inc

operation by the counter value it will eventually receive.
Let the top decide at time tdðvÞ that some inc operation
will receive counter value v: This inc operation is
initiated (by an application) at time tiðvÞ and is
completed (the value is returned to the application) at
time tcðvÞ: Because the time for decision must be
between initiation and completion, we know that
tiðvÞptdðvÞptcðvÞ: Moreover, we have tdðaÞotdðbÞ )
aob because the local variable val is never decremented
at the top. (Note that if a and b both belong to the same
group, tdðaÞ ¼ tdðbÞ:) The linearizability condition
‘‘whenever the first of two operations is completed
before the second is initiated ðtcðaÞotiðbÞÞ; the first gets
a lower counter value than the second ðaobÞ’’ is fulfilled
since tdðaÞptcðaÞotiðbÞptdðbÞ ) aob: &

Lemmas 2–4 directly lead to Theorem 5.

Theorem 5 (Safety and Liveness). The counting pyramid

is correct and linearizable.
6. A performance analysis

In this section, we will argue on the performance of
the counting pyramid by means of queueing theory. We
essentially need to show that all the queues at all the
bricks (processors) are small on average. We do this by a
cascade of queueing theory arguments.
This analysis is more complicated than the one in

Section 3 for the central scheme, since there is not just a
single processor with one queue, but a whole network of
processors. The counting pyramid forms a queueing

network, a well-studied topic in queueing theory.
Queueing networks are usually presented directly upon
the single processor queueing system in many textbooks
[3,18]. The basic idea of how to make queueing networks
analytically tractable comes from Jackson [15]:

Theorem 6 (Jackson). Given a queueing network in

which every handling rate is distributed exponentially,
the system arrivals are Poisson distributed, and the



ARTICLE IN PRESS
R. Wattenhofer, P. Widmayer / J. Parallel Distrib. Comput. 64 (2004) 449–460 455
messages are sent to other stations with fixed probabil-

ities, then, in the equilibrium, every processor in the

system can be modeled as an isolated M/M/1 processor,
totally independent of the rest of the system.

Jackson’s Theorem makes us having Markov dis-
tribution for all random variables. Even though we
would not recommend exponentially distributed ran-
dom variables (e.g. tw) in an implementation, we will
assume so for this analysis.
We simplify the analysis of the counting pyramid

by introducing two restrictions for the time being.
First, let the expected time for transferring a message
be significantly larger than the time for handling a
message arrival, that is, tmX6tc: In Section 2 we have
defined the expected time between two consecutive
inc operations as tp; we restrict tp such that tpXtw; for
every processor p: Later, we will show how to get
around these two restrictions. In order to arrive at a fast
scheme, we set the parameters of the counting pyramid
as follows:

m ¼ tm

tc

� �
; tw ¼ 6tm; f ðtpÞ ¼ min logm

ntw

tp

� �
; h

� �
� 1:

Directly from these definitions and the restrictions on
tm and tp follows:

Fact 7 (Relative durations). tpXtw ¼ 6tmX36tc:

Lemma 8 (Up equals down). At each brick, the local

computation time for handling all upward messages is the

same as the local computation time for handling all

downward messages.

Proof. Since every upward message generates a record
and every downward entity removes a record in the open
requests, the lemma follows. (Queueing theory purists
may want an M/M/2 system at each brick; downward
messages are immediately dequeued and handled by a
separate thread.) &

To simplify bookkeeping in the following analysis, we
count twice as many incoming upward messages plus
outgoing upward messages at a brick and forget about
the incoming and outgoing downward messages.

Lemma 9 (Brick arrival rate). The arrival rate at a brick

is

lp2
m

tw

þ m

tw

þ 1

tw

� �
:

Proof. Let us count the rate of the upward messages
arriving at a brick b in floor f :
(1) Brick b receives upward messages from bricks in

floor f þ 1: Bricks (in floor f þ 1) send no more than
one upward messages within time tw on average. As
there are mfþ1 bricks in floor f þ 1; and mf bricks in
floor f ; the arrival rate for upward messages at brick b

from floor f þ 1 is no more than m
tw
:

(2) Brick b is receiving upward messages directly from
initiating processors, choosing floor f as the start floor.
In the worst case, all n processors in the system will
choose f as the start floor for their increments.
(2a) If foh � 1; then

f ¼ f ðtpÞ ¼ logm

ntw

tp

� �
� 13 f þ 1Xlogm

ntw

tp

3 tpX
ntw

mfþ1:

Having at most n independent processors starting at f

(with a choice of mf bricks), the arrival rate is bounded
by

n

tp

1

mf
p

nmfþ1

ntw

1

mf
¼ m

tw

:

(2b) If f ¼ h � 1; the arrival rate at a brick in floor
h � 1 (with a choice of mh�1 bricks) is bounded by

n

tp

1

mh�1 ¼
m

tp

p
m

tw

:

(3) For the analysis, we have assumed that the waiting
time is Poisson, with expected waiting time tw: To stay
within the queueing theory model, we introduce a virtual
waiting message; when this message is consumed by the
brick, waiting is over and a combined upward message is
sent. Thus, virtual waiting messages arrive at brick b

with arrival rate 1
tw
:

From Lemma 8, we know that handling downward
messages costs as much local computation time as
handling upward messages. When adding up the cost for
handling types (1), (2a) or (2b), and (3) of upward
messages, and doubling the result (for downward
messages), the lemma follows. &

Corollary 10 (Brick arrival rate). The arrival rate at a

brick is lp 5
6tc
:

Proof. We simplify Lemma 9 using Fact 7 and the
definition of m ðm ¼ Jtm

tc
nptm

tc
þ 1Þ:

lp 2
m

tw

þ m

tw

þ 1

tw

� �
¼ 2

2m þ 1

tw

p2
2ðtm

tc
þ 1Þ þ 1

tw

¼ 4tm

tctw

þ 6

tw

p
4

6tc

þ 1

6tc

¼ 5

6tc

: &

Corollary 11 (Processor arrival rate). The arrival rate at

a processor is lp 8
9tc
:

Proof. A processor p is not only acting as a brick in the
pyramid, but processor p is also initiating inc opera-
tions from time to time with a delay of tp; on average.



ARTICLE IN PRESS
R. Wattenhofer, P. Widmayer / J. Parallel Distrib. Comput. 64 (2004) 449–460456
Also with an expected delay of tp; processor p receives a
counter value for a preceding inc operation. The arrival
rate at processor p is therefore bounded by the arrival
rate at brick p (with Corollary 10) and 2

tp
(initiating and

receiving). By Fact 7, we get

lp
5

6tc

þ 2

tp

p
8

9tc

: &

Corollary 12 (No overload). No processor is overloaded

since rp8
9
o1:

Proof. Every message takes tc time to be handled, on
average. With Corollary 11, we get r ¼ l

mp
8
9tc

tc ¼ 8
9
: &

Corollary 13 (Brick response). At a brick, any upward

message is consumed within 9tc expected time.

Proof. From queueing theory, we know that the
expected response time for a message at a brick is tr ¼

1
mð1�rÞ: With m ¼ 1=tc and Corollary 12, the Corollary
follows immediately. &

Theorem 14 (Pyramid performance). The expected la-

tency of the Counting Pyramid for processor p is

O tm logtm=tc

ntc

tp

� �
:

Proof. Corollary 13 shows that the response time at a
brick takes only OðtcÞ time. Handling an upward message
goes along with transferring one message ðtmÞ and waiting
until the brick sends it upwards ðtwÞ: From Lemma 8, we
know that downward messages have at most Oðtw=tcÞ
records, on average; thus the last record is handled OðtwÞ
after arrival of the downward message. Using Fact 7, the
expected latency when entering in floor f is 2f ð9tc þ
tmÞ þ ftwp11ftm: With the definition of f ðtpÞ and tw ¼
6tmp6mtc (Fact 7 and definition of m), we have

f ðtpÞ ¼min logm

ntw

tp

� �
; h

� �
� 1

¼O min logm

n 	 6mtc

tp

; logm n

� �� �

¼O logtm=tc
minðntc=tp; nÞ

� �
:

Since tpbtc the theorem follows. &

Corollary 15 (Memory). The expected amount of local

memory needed at a processor is

OðmhÞ ¼ O
tm

tc

logtm=tc
n

� �
:

Proof. With Corollary 10 we know that messages arrive
at the brick with arrival rate less than 1

tc
: More or less

every second message is a potential upward message,
with the consequence that a record has to be stored in
memory. With Theorem 14, the expected latency is
Oðtm logm nÞ: Thus every record is removed after at most
Oðtm logm nÞ expected time. &

We have used two restrictions to simplify the
arguments. We now remove them. One constraint was
that tpXtw ð¼ 6tmÞ: When processors are very active
and initiate the inc operation very often ðtpo6tmÞ; we
do not allow them to send a request immediately, but
force them to wait for at least time 6tm instead, and to
already combine several requests into one message. Thus
tp ¼ OðtmÞ; this does not introduce any extra waiting
time asymptotically.
The other constraint was that tmX6tc: Since sending/

receiving a message includes always at least some local
computation, this constraint will usually be satisfied
naturally. However, if not, we set up the counting
pyramid with m ¼ 4 and choose h ¼ log4 n and tw ¼
12tc: This gives an upper bound of Oðtc log2 nÞ for the
latency.
Note that the pyramid favors processors that do not

initiate the inc operation frequently. Whenever tp is
large, that is tp ¼ Oðnt2c=tmÞ; the logarithmic factor in
Theorem 14 will be constant and thus, the latency will be
OðtmÞ: On the other hand, when tp is very small, the
latency will be Oðtm logtm=tc

nÞ: By setting tc ¼ 1 and
tm ¼ m; the expected latency of the counting pyramid
matches with the lower bound in the next section.
If processor p’s application does not know its access

frequency 1=tp; it can, for each initiation, use the time
that has elapsed since the last initiation of the inc

operation. This is a good practical estimate of the real
access frequency.
7. A lower bound

For a lower bound, we need a computational model
that is a synchronous version of the model in Section 2,
where the processors operate in synchrony: Within each
clock cycle (of a global clock), each processor may
receive one message, perform a constant number of local
computations, and send one message, in this order.
Transferring a message takes exactly m (with m41)
clock cycles. Everything else is as in Section 2.
We will derive a lower bound on the time (number of

cycles) it takes to increment the counter value in the
worst case. To do so, let us first discuss the problem of
broadcasting information.
Let a processor p broadcast a piece of information in

the shortest possible time. If a processor q knows the
information in cycle c; then (a) processor q already knew
the information in cycle c � 1 or (b) processor q received
a message with the information in cycle c; that is,
another processor sent a message to q in cycle c � m:



ARTICLE IN PRESS
R. Wattenhofer, P. Widmayer / J. Parallel Distrib. Comput. 64 (2004) 449–460 457
Therefore, the number of processors that know the
information in cycle c is defined by

fmðcÞ ¼ fmðc � 1Þ þ fmðc � mÞ;
if cXm; and fmðcÞ ¼ 1 if com:

Lemma 16 (Dissemination). Let mX4 and let fmðcÞ ¼
fmðc � 1Þ þ fmðc � mÞ if cXm and fmðcÞ ¼ 1 for c ¼
0;y;m � 1: Then fmðcÞ is bounded from above by

fmðcÞpmc=m:

Proof. For c ¼ 0;y;m � 1; the claim is true since
1pmc=m: If cXm; we have by induction

fmðcÞpmðc�1Þ=m þ mðc�mÞ=m ¼ mc=m m þ m1=m

mm1=m
:

Since mþm1=m

mm1=m o1 for m43:2932; the lemma follows. &

Theorem 17 (Broadcasting). For every m41; broad-

casting information to n processors takes Oðm logm nÞ
cycles.

Proof. Lemma 16 says that in c cycles, we can inform no
more than fmðcÞpmc=m ¼ n processors, when mX4:
Therefore, informing n processors takes at least f �1

m ðnÞ
cycles, where f �1

m ðnÞXc ¼ mJlogm nn: For the cases
m ¼ 2; 3; one can easily show that fmðcÞp2c and
therefore f �1

m ðnÞXlog2 n: For m ¼ 2; 3; we have log2 n ¼
Yðm logm nÞ; and the theorem follows. &

By symmetry, accumulating information from n

different processors at one processor takes the same
time as broadcasting to n processors.

Corollary 18 (Accumulation). For every m41; accumu-

lating information from n processors takes Oðm logm nÞ
cycles.

Finally, we use Corollary 18 to prove a lower bound
for every synchronous distributed counting scheme.

Theorem 19 (Lower bound). In the worst case, the

latency of an inc operation is Oðm logm nÞ cycles, for

every m41:

Proof. At cycle c � 1; assume that the system is
quiescent and the counter value is val: Assume that s

processors initiate an inc operation at cycle c and no
processor initiates an inc operation at cycle c þ
1;y; c þ t; for sufficiently large t: The quiescent
consistency (Section 1) requires that the s processors
get the counter values val;y; val þ s � 1: Assume
processor pw is one of these s processors and gets the
counter value val þ w; w ¼ 0;y; s � 1: For this to be
possible, pw has to accumulate information from w � 1
of the s involved processors. Using Corollary 18 this
takes Oðm logm wÞ cycles. Since for the majority of the s

processors, w ¼ OðsÞ; the result cannot be expected
before cycle c þ Oðm logm sÞ: Whenever s ¼ OðnÞ (a
substantial part of the processors), this bound is
c þ Oðm logm nÞ: &

Note that this lower bound does not only hold for
linearizable counting schemes, but for the weaker
quiescent consistency (Section 1) that is used for
counting networks and diffracting trees.
One can see that the lower bound of Theorem 19 and

the upper bound of Theorem 14 match when we set
tc ¼ 1; and tm ¼ m: Since every lower bound for a
synchronous setting is also a lower bound for an
asynchronous setting, the counting pyramid is optimal.
However, we used different computational models for
deriving the bounds, and hence, such a conclusion
cannot be drawn directly. In [24] we solve the dilemma
by giving a synchronous analogy for the counting
pyramid.
8. Simulation

Although queueing theory is a suitable tool when
arguing about systems where the parameters (e.g. the
handling time) are Markov, the analysis gets intractable
for non-standard distributions. Therefore, we comple-
ment our analysis with a simulation. Simulation has
often been an excellent method to assess the perfor-
mance of distributed counting schemes, starting with the
work of [17]. For purity and generality reasons, we
decided to simulate the counting schemes not for a
specific machine, but for a distributed virtual machine.
First, we will present and discuss the simulation

model and the distributed virtual machine. Then we give
the results of the so-called ‘‘counting benchmark’’. For
other benchmarks the reader is advised to refer to [24].
The distributed virtual machine (DVM) is essentially

the n processor message passing system described in
Section 2. For this benchmark we have chosen the
following parameters: Transferring a message ðtmÞ takes
exactly 5 time units, dequeueing and handling a message
takes always exactly 1 time unit, with the exception of a
downward message, where handling takes as many time
units as we have records in the open request. This
simplification allows us to experimentally evaluate the
counting schemes on very large scale DVMs with up to
214 processors.
On the DVM, we have implemented the central

scheme (Section 3), the bitonic counting network [2],
the diffracting tree [22], and the counting pyramid
(Section 4).
The efficiency of all counting schemes but the central

scheme varies according to a few structural parameters
(e.g. network width, waiting time). For each scheme, we



ARTICLE IN PRESS
R. Wattenhofer, P. Widmayer / J. Parallel Distrib. Comput. 64 (2004) 449–460458
have chosen the best parameter settings based on
analysis and exhaustive simulation in [24]. We have
implemented the system, the counting schemes, and
methods for statistics in the programming language
Java. The source code and instructions can be found at
http://www.inf.ethz.ch/personal/wroger/sim/

In the benchmark, we measure the average latency.
The other popular criterion to estimate the performance
of a counting system is the throughput where one counts
the number of inc operations that are managed by the
counting scheme within a certain amount of time. For
this benchmark, latency and throughput are inversely
proportional to each other.
In the benchmark, each processor executes a loop that

initiates an inc operation whenever it receives the value
for its previous inc operation. We measure the average
latency of an inc operation. This benchmark produces a
high level of concurrency; Herlihy et al. [12] call this the
‘‘counting benchmark’’. Fig. 1 shows the average latency
as a function of the number of processors of the four
implemented counting schemes.
As long as the number of processors in the system is

small (up to 16 processors), all schemes show equal
performance, since every scheme degenerates to the
central scheme (the bitonic counting network has width
1, the diffracting tree has height 0 and counting pyramid
has height 1); the latency is about twice the message time
because the initiating processor sends one message to the
‘‘central’’ processor which returns the current counter
value immediately. When the number of processors is
high, the central scheme is very slow: With n processors
in the system, the average latency for the central scheme
is about ntc:
Since the bitonic counting network has depth

Oðlog2 nÞ; it is left behind when the number of
processors is very high. In the chart, one can see that
0

50

100

150

200

250

300

350

2 4 8 16 32 64 128

Number of

A
ve

ra
ge

 L
at

en
cy

Central Scheme Bitonic Counting Networ

Fig. 1. Counting
one has to double the width of the bitonic counting
network from time to time in order to keep congestion
low; doubling the width is a major influence on
performance and therefore, the latency grows signifi-
cantly whenever one has to do it. For our setting, the
width was doubled at 256 and 2048 processors,
respectively.
The two most efficient schemes are the diffracting

tree and the counting pyramid, with a small advantage
for the counting pyramid. The latency of both
schemes is logarithmic in the number of processors.
The counting pyramid aims to combine m (where m is
the ratio of message transfer time over local computa-
tion time) requests in a brick, which renders the
logarithm to have base m: The diffracting tree always
diffracts 2 ‘‘tokens’’, such that the base of the logarithm
is 2: The advantage of the counting pyramid therefore
grows with the ratio of message transfer time over local
computation; i.e. in loosely coupled distributed systems
such as the Internet.
Considering previous simulation results such as [12]

or [22] (where the combining tree did not perform
as well as the bitonic counting network and the
diffracting tree), one might be surprised by our results.
There are at least two justifications for the discrepancy.
First, the counting pyramid differs significantly from
the version that [12,22] implemented: They used a
binary tree, we have a children/parent ratio of 5. And
even more severely, their combining tree implementation
did not use our waiting technique that promotes
combining just the right amount of messages. The
second reason might be that we ignored the different
constants involved when handling a message;
Herlihy [12] and Shavit and Zemach [22] use a more
realistic machine model that takes these constants into
account.
256 512 1024 2048 4096 8192 16384

 Processors

k Diffracting Tree Counting Pyramid

benchmark.

http://www.inf.ethz.ch/personal/wroger/sim/


ARTICLE IN PRESS
R. Wattenhofer, P. Widmayer / J. Parallel Distrib. Comput. 64 (2004) 449–460 459
9. Conclusions

We have presented the counting pyramid for a
distributed message passing system. As a basis, the
counting pyramid uses the combining paradigm intro-
duced by Gottlieb et al. [10]. By adding randomization
and by tuning the parameters we get high performance.
We have analyzed the expected latency of the

counting pyramid, and given evidence that the counting
pyramid has asymptotically optimal latency with a lower
bound argument.
The counting pyramid is adaptive in the sense that

processors can change their access frequency and
immediately get the desired performance. Moreover,
processors have a local view of the system; if a processor
does initiate the operation rarely, it will get the same
performance as if the processor would access a ‘‘private’’
counter, even when all other processors initiate the
operation frequently.
For a distributed virtual machine, we have simulated

the counting pyramid against its major competitors: the
central scheme, bitonic sorting networks, and diffracting
trees. In a benchmark that measures the average latency,
the counting pyramid outperforms the other counting
schemes. We have seen that the relative advantage of the
counting pyramid over its competitor counting schemes
grows when a local computation step is much faster than
transferring a message.
The counting pyramid is linearizable, and offers not

only counting but more general fetch-and-F opera-
tions, both not possible with counting networks and
diffracting trees.
We believe that the counting pyramid is a scalable

scheme with a high practical potential, and that it
should be implemented when distributed data structures
experience a bottleneck.
References

[1] J. Aspnes, M. Herlihy, N. Shavit, Counting networks and multi-

processor coordination, in: Proceedings of the Twenty Third

Annual ACM Symposium on Theory of Computing, New

Orleans, Louisiana, 6–8 May 1991, pp. 348–358.

[2] J. Aspnes, M. Herlihy, N. Shavit, Counting networks, J. ACM 41

(5) (September 1994) 1020–1048.

[3] D. Bertsekas, R. Gallager, Data Networks, Prentice-Hall, Engle-

wood Cliffs, NJ, 1987.

[4] W.C. Brantley, K.P. McAuliffe, J. Weiss, RP3 processor-memory

element, Proceedings of the 1985 International Conference on

Parallel Processing, 1985, pp. 782–789.

[5] L.A. Cohn, A conceptual approach to general purpose parallel

computer architecture, Ph.D. Thesis, Columbia University, New

York, 1983.

[6] G. Della-Libera, N. Shavit, Reactive diffracting trees, J. Parallel

Distrib. Comput. 60 (7) (July 2000) 853–890.

[7] J.R. Goodman, M.K. Vernon, P.J. Woest, Efficient synchroniza-

tion primitives for large-scale cache-coherent multiprocessors, in:

Third International Conference on Architectural Support for
Programming Languages and Operating Systems, Boston, Mas-

sachusetts, 3–6 April 1989, pp. 64–75.

[8] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L.

Rudolph, M. Snir, The NYU ultracomputer: designing a MIMD,

shared memory parallel computer, IEEE Trans. Comput. C-32 (2)

(1983) 175–189.

[9] A. Gottlieb, C.P. Kruskal, Coordinating parallel processors: a

partial unification, Comput. Architect. News 9 (6) (October 1981)

16–24.

[10] A. Gottlieb, B.D. Lubachevsky, L. Rudolph, Basic techniques for

the efficient coordination of very large numbers of cooperating

sequential processors, ACM Trans. Programming Languages

Systems 5 (2) (April 1983) 164–189.

[11] D. Gross, C.M. Harris, Fundamentals of Queueing Theory,

Wiley, New York, 1981.

[12] M. Herlihy, B.-H. Lim, N. Shavit, Scalable concurrent counting,

ACM Trans. Comput. Systems 13 (4) (November 1995) 343–364.

[13] M. Herlihy, N. Shavit, O. Waarts, Low contention linearizable

counting, in: Proceedings of the 32nd Annual Symposium

on Foundations of Computer Science, San Juan, Porto Rico,

October 1991, pp. 526–537.

[14] M.P. Herlihy, J.M. Wing, Linearizability: a correctness condition

for concurrent objects, ACM Trans. Programming Languages

Systems 12 (3) (July 1990) 463–492.

[15] J.R. Jackson, Networks of waiting lines, Oper. Res. 5 (1957)

518–521.

[16] G.Y. Lee, C.P. Kruskal, D.J. Kuck, The effectiveness of

combining in shared memory parallel computer in the presence

of ‘hot spots’, in: International Conference on Parallel Processing,

Los Alamitos, CA, USA, August 1986, pp. 35–41.

[17] B.-H. Lim, A. Agarwal, Reactive synchronization algorithms

for multiprocessors, in: Proceedings of the 6th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS VI), October 1994,

pp. 25–35.

[18] R. Nelson, Probability, Stochastic Processes, and Queueing

Theory, Springer, Berlin, 1995.

[19] G.F. Pfister, A. Norton, Hot spot contention and combining in

multistage interconnection networks, IEEE Trans. Comput. C-34

(10) (1985) 943–948.

[20] N. Shavit, D. Touitou, Elimination trees and the construction of

pools and stacks, in: Proceedings of the 7th Annual ACM

Symposium on Parallel Algorithms and Architectures SPAA’95,

Santa Barbara, California, July 1995, pp. 54–63.

[21] N. Shavit, E. Upfal, A. Zemach, A steady state analysis of

diffracting trees, Theory Comput. Systems 31 (4) (July/August

1998) 403–423.

[22] N. Shavit, A. Zemach, Diffracting trees, ACM Trans. Comput.

Systems 14 (4) (November 1996) 385–428.

[23] N. Shavit, A. Zemach, Combining funnels: a new twist on an old

tale..., in: PODC: 17th ACM SIGACT-SIGOPS Symposium on

Principles of Distributed Computing, 1998.

[24] R.P. Wattenhofer, Distributed counting—how to bypass bottle-

necks, Ph.D. Thesis, ETH Zurich, Institut fuer Theoretische

Informatik, September 1998.

[25] R. Wattenhofer, P. Widmayer, Distributed counting at maximum

speed, Technical Report 277, ETH Zurich, Departement Infor-

matik, November, 1997.

[26] R. Wattenhofer, P. Widmayer, An inherent bottleneck in

distributed counting, in: Proceedings of the Sixteenth Annual

ACM Symposium on Principles of Distributed Computing, 1997,

pp. 159–167.

[27] R. Wattenhofer, P. Widmayer, The counting pyramid: an

adaptive distributed counting scheme, in: Proceedings of the

Fifth International Colloquium on Structural Information and

Communication Complexity, June 1998.



ARTICLE IN PRESS
R. Wattenhofer, P. Widmayer / J. Parallel Distrib. Comput. 64 (2004) 449–460460
[28] J. Wilson, Operating system data structures for shared-memory

machines with fetch-and-add, Ph.D. Thesis, New York Univer-

sity, Department of Computer Science, 1988.

[29] P.-C. Yew, M.-F. Tzeng, D.H. Lawrie, Distributing hot-spot address-

ing in large scale multiprocessor, in: International Conference on

Parallel Processing, Los Alamitos, CA, USA, August 1986, pp. 51–58.

Roger Wattenhofer received a M.S. in computer science and operations

research and a Ph.D. in computer science from the Swiss Federal
Institute of Technology (ETH) Zurich. He is currently an assistant

professor at ETH Zurich. His research interests include distributed

data structures and algorithms.

Peter Widmayer received a M.S. in industrial engineering and a Ph.D.

in computer science from the University of Karlsruhe, Germany. He is

currently a professor at the Swiss Federal Institute of Technology

(ETH) Zurich. His research interests are algorithms and data

structures.


	The counting pyramid: an adaptive distributed counting scheme
	The problem
	The model
	The central scheme
	The counting pyramid
	Initiating processor

	Correctness
	A performance analysis
	A lower bound
	Simulation
	Conclusions
	References


