
Good Programming in Transactional Memory�

Game Theory Meets Multicore Architecture

Raphael Eidenbenz and Roger Wattenhofer

Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland

{eidenbenz,wattenhofer}@tik.ee.ethz.ch

Abstract. In a multicore transactional memory (TM) system, concurrent execu-

tion threads interact and interfere with each other through shared memory. The

less interference a program provokes the better for the system. However, as a pro-

grammer is primarily interested in optimizing her individual code’s performance

rather than the system’s overall performance, she does not have a natural incentive

to provoke as little interference as possible. Hence, a TM system must be designed

compatible with good programming incentives (GPI), i.e., writing efficient code

for the overall system coincides with writing code that optimizes an individual pro-

gram’s performance. We show that with most contention managers (CM) proposed

in the literature so far, TM systems are not GPI compatible. We provide a generic

framework for CMs that base their decisions on priorities and explain how to mod-

ify Timestamp-like CMs so as to feature GPI compatibility. In general, however,

priority-based conflict resolution policies are prone to be exploited by selfish pro-

grammers. In contrast, a simple non-priority-based manager that resolves conflicts

at random is GPI compatible.

1 Introduction

In traditional single core architecture, the performance of a computer program is usually
measured in terms of space and time requirements. In multicore architecture, things are
not so simple. Concurrency adds an incredible, almost unpredictable complexity to to-
day’s computers, as concurrent execution threads interact and interfere with each other.
The paradigm of Transactional Memory (TM), proclaimed and implemented by Herlihy
and Moss [6] in the 1990’s, has emerged as a promising approach to keep the challenge
of writing concurrent code manageable. Although today, TM is most-often associated
with multithreading, its realm of application is much broader. It can for instance also be
used in inter process communication where multiple threads in one or more processes
exchange data. Or it can be used to manage concurrent access to system resources. Basi-
cally, the idea of TM can be employed to manage any situation where several tasks may
concurrently access resources representable in memory. A TM system provides the possi-
bility for programmers to wrap critical code that performs operations on shared memory
into transactions. The system then guarantees an exclusive code execution such that no
other code being currently processed interferes with the critical operations. To achieve
this, TM systems employ a contention management policy. In optimistic contention man-
agement, transactional code is executed right away and modifications on shared resources
take effect immediately. If another process, however, wants to access the same resource,
a mechanism called contention manager (CM) resolves the conflict, i.e., it decides which

� A full version including all proofs, is available as TIK Report 310 at http://www.tik.ee.ethz.ch

2 R. Eidenbenz and R. Wattenhofer

incRingCounters(Node start){
var cur = start;
atomic{

while(cur.next!=start){
c = cur.count;
cur.count = c + 1;
cur = cur.next; }}}

incRingCountersGP(Node start){
var cur = start;
while(cur.next!=start){
atomic{

c = cur.count;
cur.count = c + 1;}

cur = cur.next; }}

Fig. 1. Two variants of updating each node in a ring.

transaction may continue and which must wait or abort. In case of an abort, all modifi-
cations done so far are undone. The aborted transaction will be restarted by the system
until it is executed successfully. Thus, in multicore systems, the quality of a program
must not only be judged in terms of space and (contention-free) time requirements, but
also in terms of the amount of conflicts it provokes due to concurrent memory accesses.

Consider the example of a shared ring data structure. Let a ring consist of s nodes
and let each node have a counter field as well as a pointer to the next node in the ring.
Suppose a programmer wants to update each node in the ring. For the sake of simplicity
we assume that she wants to increase each node’s counter by one. Given a start node, her
program accesses the current node, updates it and jumps to the next node until it ends up
at the start node again. Since the ring is a shared data structure, node accesses must be
wrapped into a transaction. We presume the programming language offers an atomic
keyword for this purpose. The first method in Figure 1 (incRingCounters) is one way
of implementing this task. It will have the desired effect. However, wrapping the entire
while-loop into one transaction is not a very good solution, because by doing so, the up-
date method keeps many nodes blocked although the update on these nodes is already
done and the lock1 is not needed anymore. A more desirable solution is to wrap each up-
date in a separate transaction. This is achieved by a placement of the atomic block as in
incRingCountersGP on the right in Figure 1. When there is no contention, i.e., no other
transactions request access to any of the locked ring nodes, both incRingCounters
and incRingCountersGP run equally fast2 (cf. Figure 2). If there are interfering jobs,
however, the affected transactions must compete for the resources whenever a conflict
occurs. The defeated transaction then waits or aborts and hence system performance is
lost. In our example, using incRingCounters instead of incRingCountersGP leads
to many unnecessarily blocked resources and thereby increases the risk of conflicts with
other program parts. In addition, if there is a conflict and the CM decides that the pro-
grammer’s transaction must abort, then with incRingCountersGP only one modifica-
tion needs to be undone, namely the update to the current node in the ring, whereas with
incRingCounters all modifications back to the start node must be rolled back. In brief,
employing incRingCounters causes an avoidable performance loss.

One might think that it is in the programmer’s interest to choose the placement of
atomic blocks as beneficial to the TM system as possible. The reasoning would be that
by doing so she does not merely improve the system performance but the efficiency of
her own piece of code as well. Unfortunately, in current TM systems, it is not necessarily
true that if a thread is well designed—meaning that it avoids unnecessary accesses to
shared data—it will also be executed faster. On the contrary, we will show that most

1 An optimistic, direct-update TM system “locks” a resource as soon as the transaction reads or

writes it and releases it when committing or aborting. This is not to be confused with an explicit

lock by the programmer. In TM, explicit locks are typically not supported.
2 if we disregard locking overhead

Good Programming in Transactional Memory 3

Fig. 2. Transactional allocation of ring nodes (a) by incRingCounters and (b) by

incRingCountersGP.

CMs proposed so far privilege threads that incorporate long transactions rather than short
ones. This is not a severe problem if there is no competition for the shared resources
among the threads. Although in minor software projects all interfering threads might be
programmed by the same developer, this is not the case in large software projects, where
there are typically many developers involved, and code of different programmers will
interfere with each other. Furthermore, we must not assume that all conflicting parties
are primarily interested in keeping the contention low on the shared objects, especially if
doing so slows down their own thread. It is rather realistic to assume that in many cases, a
developer will push his threads’ performance at the expense of other threads or even at the
expense of the entire system’s performance if the system does not prevent this option.To
avoid this loss of efficiency, a multicore system must be designed such that the goal of
achieving an optimal system performance is compatible with an individual programmer’s
goal of executing her code as fast as possible. This paper shows analytically that most
CMs proposed in the literature so far lack such an incentive compatibility. As a practical
proof of our findings, we implemented free-riding strategies in the TM library DSTM2[5]
and tested them in several scenarios. These results can be found in [3].

2 Model

We use a model of a TM system with optimistic contention management, immediate
conflict detection and direct update. As we do not want to restrict TM to the domain
of multithreading, we will use the notion of jobs instead of threads to denote a set of
transactions belonging together. In inter process communication, e.g., a job is rather a
process than a thread. A job Ji consists of a sequence of transactions Ti1, Ti2, . . . , Tik.
If Ji consists of only one transaction, we sometimes write Ti instead of Ti1. Transactions
access shared resources Ri. At any point in time, we denote by n the number of running
transactions in the system and by s the number of resources currently accessed. For the
sake of simplicity, we consider all accesses as exclusive, thus, if two transactions both
try to access resource Ri at the same time or if one has already locked Ri and the other
desires access to Ri as well, they are in conflict. When a conflict occurs, a mechanism
decides which transaction gains (or keeps) access of Ri and aborts the other competing
transaction. Such a mechanism is called contention manager (CM). We assume that once
a transaction has accessed a resource, it keeps the exclusive access right until it either
commits or aborts. We further assume that the time needed to detect a conflict, to decide
which transaction wins and the time used to commit or start a transaction are negligible.
We neither restrict the number of jobs running concurrently, nor do we impose any re-
strictions on the structure and length of transactions.3 We say a job Ji is running if its

3 That is why we do not address the problem of recognizing dead transactions and ignore heuris-

tics included in CMs for this purpose.

4 R. Eidenbenz and R. Wattenhofer

first transaction Ti1 has started and the last Tik has not committed yet. Notice that in op-
timistic contention management, the starting time ti of a job Ji and therewith the starting
time ti1 of Ti1 is not influenced by the CM, since it only reacts once a conflict occurs.
The environment E is a potentially infinite set of tuples of a job and the time it enters the
system, i.e., E = {(J0, t0), (J1, t1), . . .}. We assume that the state at a time t of a TM
system managed by a deterministic CM is determined by the environment E . The execu-
tion environment of a job Ji is then E−i = E \ {(Ji, ti)}.We further assume that once
a job Ji is started at time ti, any contained transaction Tij accesses the same resources
in each of its executions and for any resource, the time of its first access after a (re)start
of Tij remains the same in each execution. Once ti is known, this allows a description
of a contained transaction by a list of all resources accessed with their relative access
time. E.g., Tij = ({(R1, t1), . . . , (Rk, tk)}, dij) means that transaction Tij accesses R1

after t1 time and so forth until it hopefully commits after dij time. The contention-free
execution time dEij is the time the system needs to execute Tij if Tij encounters no con-

flicts. The job execution time dM,E
i is the time Ji’s execution needs in a system managed

by M in environment E , i.e., the period from the time Ti1 enters the system, ti1, until

the time Tik commits. Similarly, dM,E
ij denotes the execution time of transaction Tij and

dM,E is the makespan of all jobs in E , i.e., the time from mini ti until maxi(ti + dM,E
i).

We denote by M∗ an optimal offline CM. We presume M∗ to know all future transac-
tions. It can thus schedule all transactions optimally so as to minimize the makespan. We
assume that the program code of each job is written by a different selfish developer and
that there is competition among those developers. Selfish in this context means that the
programmer only cares about how fast her job terminates. A developer is considered ra-
tional, i.e., she always acts so as to maximize her expected utility. This is, she minimizes
her job’s expected execution time. Further, we assume the developers to be risk-averse in
the sense that they expect the worst case to happen, however they expect their job Ji to
eventually terminate even if under certain environments, M does not terminate Ji. This
assumption is inevitable since with many CMs, there exist (at least theoretically) execu-
tion environments E−i which make Ji run forever. Thus a risk-averse developer could
just as well twirl her thumbs instead of writing a piece of code without this assumption.
In Lemma 1, the used notion of rationality will be further adapted in that we argue that
delaying a transaction does not make sense if an arbitrary environment is assumed.

3 Good Programming Incentives (GPI)

Our main goal is to design a multicore TM system that is as efficient as possible. As we
may not assume programmers to write code so as to maximize the overall system per-
formance but rather to optimize their individual job’s runtime, we must design a system
such that the goal of achieving an optimal system performance is compatible with an
individual programmer’s goal of executing her code as fast as possible. A first step in
this direction is to determine the desired behavior, that is, we have to find the meaning of
good programming in a TM system. We want to find out how a programmer should struc-
ture her code, or in particular, how she should place atomic blocks in order to optimize
the overall efficiency of a TM system.

When a job accesses shared data structures it puts a load on the system. The insight
gained by studying the example in the introduction is that the more resources a job locks

Good Programming in Transactional Memory 5

Fig. 3. Partitioning example. The picture depicts the optimal allocation of two resources R1 and R2

over time in two situations (a) and (b). In (a), the programmer of job J1 does not partition T1. In

(b), she partitions T1 into T11 and T12. The overall execution time is shorter in (b), the individual

execution of J1, however, is faster in (a).

and the longer it keeps those locks, the more potential conflicts it provokes. If the program
logic does not require these locks, an unnecessary load is put on the system.

Fact 1 Unnecessary locking of resources provokes a potential performance loss in a TM
system.

However the question remains whether partitioning a transaction into smaller
transactions—even if this does not reduce the resource accesses—results in a better sys-
tem performance. Consider an example where the program logic of a job J1 requires
exclusive access of resource R1 for a period of d1. One strategy for the programmer is
to simply wrap all operations on R1 into one transaction T1 = ({(R1, 0)}, d1). How-
ever, let the semantics also allow an execution of the code in two subsequent transac-
tions T11 = ({(R1, 0)}, d11) and T12 = ({(R1, 0)}, d12) without losing consistency
and without overhead, i.e., d11 + d12 = d1. Figure 3 shows the execution of both
strategic variants in a system managed by an optimal CM M∗ in an execution en-
vironment E−1 = {(J2, 0)} with only one concurrent job J2. Both jobs J1 and J2

enter the system at time t = 0. Job J2 consists of transactions T21 and T22 with
T21 = ({(R2, 0), (R1, d21 − δ1)}, d21) and T22 = ({(R2, 0), (R1, δ2)}, d22). Further-
more, let δ1 << d1 and δ2 << d1. In situation (a), the programmer does not partition
T1, M∗ schedules T1 first, at time t = 0, T21 at t = δ1 + δ2 and T22 at t = d1 + δ1.
This optimal schedule of T1, T21 and T22 has a makespan of d1 + δ1 + d22. In situation
(b), the programmer partitions T1 into T11 and T12, an optimal CM schedules T11 and
T21 concurrently at time t = 0, T12 at t = d21 = d11 + δ1 and T22 at t = d11 + 2δ1.
This yields a makespan of d11 + 2δ1 + d22 = d1 + δ1 + d22 − δ2. Thus, in the example
of Figure 3, partitioning T1 allows to schedule J1 and J2 by δ2 faster. We can show that
partitioning is beneficial in a system managed by M∗ in general.

Theorem 1 Let Tij1, Tij2 be a valid partition of Tij . Let Ji be a job containing Tij1, Tij2

and J ′
i the same job except it contains Tij instead of Tij1, Tij2. A finer transaction gran-

ularity speeds up a transactional memory system managed by an optimal CM M∗, i.e.,
∀ E−i, t : dM

∗,E−i∪{(Ji,t)} ≤ dM∗,E−i∪{(J ′
i,t)} and ∃ E−i, t such that inequality holds.

Proof (Sketch). Partitioning transactions only gives more freedom to M∗. To be at least
as fast with Ji as with J ′

i , M∗ could execute Ti2 right after Ti1. In some cases it might
be even faster to schedule an intermediary transaction between Ti1 and Ti1. ��
Let us reconsider the example from Figure 3. We have seen that partitioning T1 into T11

and T12 results in a smaller makespan. But what about the individual execution time of

6 R. Eidenbenz and R. Wattenhofer

job J1? In the unpartitioned execution, where J1 only consists of T1, J1 terminates at
time t = d1. In the partitioned case, however, J1 terminates at time t = d1 + δ1. This
means that partitioning a transaction speeds up the overall performance of a concurrent
system managed by an optimal CM, but it possibly slows down an individual job. Thus,
from a selfish programmer’s point of view, it is not rational to simply make transactions
as fine granular as possible. In fact, if a finer grained partitioning of transactions might
result in a slower execution of a job, why should a selfish programmer make the effort of
finding a transaction granularity as fine as possible?

Avoiding unnecessary locks and partitioning transactions whenever possible is ben-
eficial to a TM system. We say a CM M rewards partitioning of transactions if in a
system managed by M, it is rational for a programmer to always partition a transaction
whenever the program logic allows her to do so. Further, M punishes unnecessary lock-
ing if in a system managed by M, it is rational for a programmer to never lock resources
unnecessarily, i.e., she only locks a resource when required by the program logic. One
can expect that, from a certain level of selfishness among developers, a CM which in-
centivizes these two crucial aspects of good programming, performs better than the best
incentive incompatible CM. In the remainder, we are mainly concerned with the question
of which CM policies fulfill the following property.

Property 1. A CM is good programming incentive (GPI) compatible if it rewards parti-
tioning and punishes unnecessary locking.

As a remark, we would like to point out that the optimal CM M∗ does not reward par-
titioning and hence is not GPI compatible (cf. Figure 3). If we assume developers act
selfish then also a system managed by an optimal offline scheduler suffers a performance
loss and a CM which offers incentives for good programming might be more efficient
than M∗. There is, however, an inherent loss due to the lack of collaboration, commonly
known as price of anarchy (cf. [2, 7]).

4 Priority-Based Contention Management (CM)

One key observation when analyzing the contention managers proposed in [1, 4, 8–10]
is that most of them incorporate a mechanism that accumulates some sort of priority for
a transaction. In the event of a conflict, the transaction with higher priority wins against
the one with lower priority. Most often, priority is supposed to measure, in one way or
another, the work already done by a transaction.The intuition behind this approach is
that aborting old transactions discards more work already done and thus hurts the system
efficiency more than discarding newer transactions. The proposed CMs base priority on
a transaction’s time in the system, the number of conflicts won, the number of aborts or
the number of resources accessed. Definition 1 introduces a framework that comprises
priority-based CMs. It allows us to classify priority-based CMs and to make generic
statements about GPI compatibility of certain CM classes.

Definition 1 A priority-based CM M associates with each job Ji a priority vector
ωi ∈ R

s where ωi[k] is Ji’s priority on resource Rk. M resolves conflicts between
two transactions Tix ∈ Ji and Tjy ∈ Jj over resource Rk by aborting the transaction
with lower priority, i.e., if ωi[k] ≥ ωj [k] then Tix wins otherwise Tiy is aborted.

Good Programming in Transactional Memory 7

In many CMs, all entries of the vector ωi are equal. In this case, we can also replace ωi by
a scalar priority value ωi ∈ R. We call such a CM scalar-priority-based. In the remainder
we often use ωi instead of ωi, for the sake of simplicity, even if we are not talking about
scalar-priority-based CMs only. Mostly, for a correct valuation of a job’s competitive-
ness, absolute priority values are not relevant, but the relative value to other job priori-
ties. A job Ji’s relative priority vector ω̃i is defined by ω̃i[k] = ωi[k]−mini=1...n ωi[k],
∀k = 1 . . . s. If the CM uses scalar priorities, Ji’s relative priority ω̃i is obtained by sub-
tracting mini=1...n ωi from the absolute priority ωi. Since optimistic CMs feature a reac-
tive nature it is best to consider the priority-building mechanism as event-driven. We find
that the following events may occur for a transaction Tij ∈ Ji in a transactional mem-
ory system: A time step (T); Tij wins a conflict (W); Tij loses a conflict and is aborted
(A); Tij successfully allocates a resource Rk (Rk); Tij commits (C). The following two
subtypes of priority-based CMs capture most contention management policies in the lit-
erature.

Definition 2 A priority-based CM is priority-accumulating iff no event decreases a job’s
priority and there is at least one type of event which causes the priority to increase. A
CM is quasi-priority-accumulating iff it is priority-accumulating w.r.t. events T , W , A
and R but it resets Ji’s priority when a transaction Tij ∈ Ji commits.

As an example consider a Timestamp CM MT . MT uses only events of type T and C,
i.e., in a time step dt after Tij ∈ Ji entered the system, ωi is increased by dω = αdt,

α ∈ R
+ until C occurs, then reset to 0. Ji’s scalar priority at time t, tij < t ≤ tij+dMT ,E

ij

is ωi(t) =
∫ t

tij
αdt = α(t− tij). Timestamp is quasi-priority-accumulating since a job’s

priority always increases and never decreases over time except it is reset when a contained
transaction commits.

Waiting Lemma. We argue in this paragraph that delaying the execution of a job4 is
not rational with the assumption that the execution environment E−i is arbitrary. This
assumption implies that at any point in time, the history of the transactions does not hold
any information about their future. Furthermore, we demand two restrictions on the CM’s
priority modification mechanism: (I.) An increase (or decrease) of ωi never depends on
ωi’s current value5 or on any other job’s priority value. (II.) In a period where no events
occur except for time steps, all priorities ωi increase by Δω ≥ 0. Note that if Δω is
always 0, the priority is not based on time.

Lemma 1. If E−i is arbitrary, the strategy of waiting is irrational in a system managed
by a priority-based CM M restricted by (I.–II.).

Proof (Sketch). If a programmer delays a transaction by Δ, the adversary can preserve
the environment and thus increase its execution time by Δ. ��
Note that the assumption on E−i being arbitrary naturally applies if the programmer has
no information about the environment in which her program will be executed. Indeed, if
the environment would be truly a worst case environment, the execution of job Ji would
take forever. As with this assumption, starting a job would be completely pointless, we

4 A programmer can implement waiting by executing code without allocating shared resources.
5 E.g., rules such as “if ωi is larger than 10 add 100” or “ωi = 2ωi” are prohibited. “ωi = ωi +2”

is permitted.

8 R. Eidenbenz and R. Wattenhofer

adapt our model of a risk-averse agent in that we let her suppose that a worst case envi-
ronment yields a finite execution time. In practice, the programmer often has some infor-
mation about the environment in which her programm will be deployed. Hence it might
make sense to presume some structure of E−i. E.g., she could assume that lengths of
locks follow a certain distribution, or that each resource has a given probability of being
locked. In such cases waiting might not be irrational. In the following, we will some-
times argue that a CM is (not) GPI compatible by comparing two jobs Ji and J ′

i where
both are equal except for J ′

i either locks a resource unnecessarily or does not partition a
transaction although this would be semantically possible. We will show that in the same
execution environment E−i, one job either perfoms faster or if it is slower, this is because
it does not wait at a certain point in the execution. Since waiting is irrational, a developer
will prefer this job even if it is not guaranteed to perform better in any environment.

Quasi-Priority-Accumulating CM. Quasi-priority-accumulating CMs increase a trans-
action’s priority over time. Again, the intuition behind this approach is that, on one hand,
aborting old transactions discards more work already done and thus hurts the system ef-
ficiency more than discarding newer transactions and on the other hand, any transaction
will eventually have a priority high enough to win against all other competitors. This ap-
proach is legitimate. Although the former presupposes some structure of E and the latter
is not automatically fulfilled, examples of quasi-priority-accumulating CMs showed to
be useful in practice (cf. [9]). However, quasi-priority-accumulating CMs bear harmful
potential. They incentivize programmers to not partition transactions and in some cases
even to lock resources unnecessarily. Consider the case where a job has accumulated high
priority on an resource Ri. It might be advisable for the job to keep locking Ri in order
to maintain high priority. Although it does not need an exclusive access for the moment,
maybe later on, the high priority will prevent an abort and thus save time. In fact, we can
show that the entire class of quasi-priority-accumulating CMs is not GPI compatible.

Theorem 2 Quasi-priority-acc. CMs restricted by (I.–II.) are not GPI compatible.

Theorem 2 reflects the intuition, that if committing decreases an advantage in priority
then there are cases where it is rational for a programmer not to commit and start a new
transaction but to continue instead with the same transaction. Obviously, the opposite
case is possible as well, namely that by not committing, the developer causes a conflict
with a high priority transaction on a resource, which could have been freed if the transac-
tion would have committed earlier, and thus is aborted. As in our model of a risk-averse
programmer, she does not suppose any structure on E−i, she does not know which case
is more likely to happen either and therefore has no preference among the two cases. She
would probably just choose the strategy which is easier to implement. If we assumed,
e.g., that a resource Ri is locked at time t with probability p by a transaction with prior-
ity x where both, p and x follow a certain probability distribution, then there would be a
clear trade-off between executing a long transaction and therewith risking more conflicts
and partitioning a transaction and thus losing priority.

Note that a similar proof can be used to show that no priority-based CM rewards
partitioning unless it prevents the case where, after a commit of transaction Tij ∈ Ji, the
subsequent transaction Ti(j+1) ∈ Ji starts with a lower priority than Tij had just before
committing. In fact, we can show that all priority-accumulating CMs proposed by [1, 4,
8–10] are not GPI compatible.

Good Programming in Transactional Memory 9

Corollary 1 Polite, Greedy, Karma, Eruption, Kindergarten, Timestamp and Polka are
not GPI compatible.

Priority-Accumulating CM. The inherent problem of quasi-priority-accumulating
mechanisms is not the fact that they accumulate priority over time but the fact that these
priorities are reset when a transaction commits. Thus, by comitting early, a job loses
its priority when starting a new transaction. One possibility to overcome this problem
is to not reset ωi when a transaction of Ji commits. With this trick, neither partitioning
transactions nor letting resources go whenever they are not needed anymore resets the ac-
cumulated priority. We further need to ensure that two subsequent transactions of Ji are
scheduled right after each other, because otherwise partitioning would result in a longer
execution even in a contention-free environment. We denote this property of a CM as
gapless transaction scheduling. If a CM M only modifies priorities on a certain event
type X , we say M is based only on X -events.

Lemma 2. Any priority-accumulating CM M which schedules transactions gapless and
is based only on time (T -events) is GPI compatible.

Proof (Sketch). Unnecessary locking is punished since it can cause the transaction to
abort and restart. Thus restarted, the transaction might be lucky and catch a better slot
for execution. However, this is the same as waiting and hence irrational. Partitioning is
rewarded since committing and restarting does not decrease priority. Furthermore, if a
finer-grained job loses in a conflict, it has to redo less work. ��
For instance, by simply not resetting a job Ji’s priority when a contained transaction
Tij ∈ Ji commits, we can make a Timestamp contention manager GPI compatible. Nev-
ertheless, priority based CMs are generally dangerous in the sense that they bear a po-
tential for programmers to cheat, i.e., to boost their job’s priority at the expense of other
jobs. E.g., consider a CM like Karma [8], where priority depends on the number of re-
sources accessed. One way to gain high priority for a job would be to quickly access an
unnecessarily large number of objects and thus become overly competitive. Or if priority
is based on the number of aborts or the number of conflicts, a very smart programmer
might use some dummy jobs which compete with the main job in such a way that they
boost its priority. In fact, we can show that a large class of priority-accumulating CMs is
not GPI compatible.

Theorem 3 A priority-acc. CM M is not GPI compatible if one of the following holds:
(i) M increases a job’s relative priority on W-events (winning a conflict).

(ii) M increases relative priority on R-events (having exclusive access of a resource).
(iii) M schedules transactions gapless and increases relative priorities on C-events.
(iv) M restarts aborted transactions immediately and increases relative priorities on

A-events (aborting).

5 Non-Priority Based CM

One example of a CM which is not priority-based is Randomized (cf. [8]). To resolve
conflicts, Randomized simply flips a coin in order to decide which competing transac-
tion to abort. The advantage of this simple approach is that it bases decisions neither on
information about a transaction’s history nor on predictions about the future. This leaves
programmers little possibility to boost their competitiveness.

10 R. Eidenbenz and R. Wattenhofer

Lemma 3. Randomized is GPI compatible.
Proof (Sketch). The proof works similarly to the proof of Lemma 2. Note that Lemma 1
does not apply here as Randomized is not priority-accumulating. However, to show that
waiting is irrational also with Randomized is easy. An adversary can provoke the same
conflicts for a transaction, if it is started immediately or if it is delayed for some time
Δ. Since in any conflict, the probability of winning is the same, the expected runtime
increases by Δ when the transaction is delayed. ��
Employing such a simple Randomized CM is not a good solution although it rewards
good programming. The probability psuccess that a transaction runs until commit de-
creases exponentially with the number of conflicts, i.e., psuccess ∼ p|C| where p is the
probability of winning an individual conflict and C the set of conflicts. However, we see
great potential for further developement of CMs based on randomization.

6 Conclusion and Future Work

While TM constitutes an inalienable convenience to programmers in concurrent envi-
ronments, it does not automatically defuse the danger that selfish programmers might
exploit a multicore system. GPI compatibility has to be addressed when designing a TM
system. Priority-based CMs are prone to be corrupted unless they are based on time only.
CMs not based on priority seem to feature incentive compatibility more naturally. We
conjecture that by combining randomized conflict resolving with a time-based priority
mechanism, chances of finding an efficient, GPI compatible CM are high.

References
1. H. Attiya, L. Epstein, H. Shachnai, and T. Tamir. Transactional contention management as a

non-clairvoyant scheduling problem. In PODC ’06: Proc. of the 25th annual ACM symposium
on Principles of Distributed Computing, pages 308–315, 2006.

2. G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion games. In

STOC ’05: Proc. of 37th annual symposium on Theory of computing, pages 67–73, 2005.
3. R. Eidenbenz and R. Wattenhofer. Brief announcement: Selfishness in transactional memory.

In SPAA ’09: Proc. of the 21st annual symposium on Parallelism in Algorithms and Architec-
tures, pages 41–42, 2009.

4. R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional contention man-

agers. In PODC ’05: Proc. of the 24th annual ACM symposium on Principles of Distributed
Computing, pages 258–264, 2005.

5. M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for implementing software

transactional memory. SIGPLAN Not., 41(10):253–262, 2006.
6. M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for lock-free data

structures. SIGARCH Comput. Archit. News, 21(2):289–300, 1993.
7. T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, 2005.
8. W. N. Scherer III and M. L. Scott. Contention Management in Dynamic Software Transac-

tional Memory. In PODC Workshop on Concurrency and Synchronization in Java Programs
(CSJP), St. John’s, NL, Canada, July 2004.

9. W. N. Scherer III and M. L. Scott. Advanced contention management for dynamic software

transactional memory. In PODC ’05: Proc. of the 24th annual ACM symposium on Principles
of Distributed Computing, pages 240–248, 2005.

10. J. Schneider and R. Wattenhofer. Bounds On Contention Management Algorithms. In ISAAC
’09: Proc. of the 20th International Symposium on Algorithms and Computation, 2009.

