
DISS. ETH NO. 16740

Locality, Scheduling, and Selfishness:

Algorithmic Foundations of Highly Decentralized
Networks

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

Doctor of Sciences

presented by

THOMAS MOSCIBRODA

Dipl. Inf.-Ing., ETH Zürich

born 11.09.1979

citizen of

Malters LU

accepted on the recommendation of

Prof. Dr. Roger Wattenhofer, examiner
Prof. Dr. Christos H. Papadimitriou, co-examiner

Prof. Dr. David Peleg, co-examiner

2006

Abstract

Large-scale and highly decentralized networks such as the Internet have
emerged as arguably the most complex computer systems. The size of such
networks, as well as their dynamic, socio-economic, and often wireless nature
brings about a large variety of challenging problems. Achieving efficient and
provably robust algorithmic solutions for these problems, in turn, necessitates
the development and employment of novel techniques and methods. This
dissertation studies three major concepts that stand out as being of particular
importance and interest in this context: locality, wireless communication, and
selfishness.

In large-scale networks, gathering information about the whole network
topology is either too resource consuming or simply impossible due to mo-
bility, dynamics, or churn. Hence, no node is typically able to collect or
maintain a global state about the network and each node has to base its
decision on local information only. This discrepancy between the need to
achieve global efficiency and the limitation to local knowledge motivates the
study of local algorithms and local computation. The first part of this dis-
sertation investigates the possibilities and limitations of local computation
in the classic message passing model of distributed computing. We present
near-tight upper and lower bounds on the achievable trade-off between the
amount of local knowledge and the resulting global solution for a variety of
fundamental network problems.

The integration of wireless devices into the Internet, and the advent of
wireless multi-hop networks such as ad hoc and sensor networks poses nu-
merous algorithmic challenges. This dissertation investigates the distributed
complexity of computing network coordination structures such as clusterings
and colorings in models that closely capture unstructured wireless multi-hop
networks. We then define and study the scheduling complexity of wireless
networks in a physical model of wireless communication. This measure de-
scribes the theoretically achievable performance of any scheduling protocol
and allows to characterize and analytically evaluate existing protocols from
a worst case perspective.

Hosts in the Internet or peers in a peer-to-peer network are typically
governed by socio-economic agents whose main interest is not the benevolent
optimization of the network’s entirety, but rather the maximization of their
own benefit. In other words, participating agents may be selfish, rather than
acting in a coordinated manner that optimizes social welfare. The final part
of this thesis analyzes the impact of selfish and potentially malicious behavior
on the efficiency of peer-to-peer and other decentralized computer networks.

Zusammenfassung

Grossflächige, dezentrale Netzwerke wie das Internet haben sich zu äusserst
komplexen Computersystemen entwickelt. Diese Netzwerke sind typischer-
weise dynamisch, beinhalten drahtlose Verbindungen und werden oft von
unabhängigen, eigennützig agierenden Netzwerk-Knoten betrieben. Um die
daraus resultierenden Probleme zu lösen, bedarf es algorithmischer Verfahren
die beweisbar effizient sind und auch in worst-case Szenarien akzeptable Re-
sultate liefern. Diese Dissertation befasst sich mit drei zentralen Problem-
feldern von grossen, dezentralen Netzwerken: Lokalität, drahtlose Kommu-
nikation und das eigennützige Verhalten einzelner Netzwerkteilnehmer.

In grossen und dynamischen Netzwerken ist es für einzelne Knoten nicht
möglich, den Zustand des gesamten Netzwerkes zu kennen. Typischerweise ist
kein Knoten in der Lage, globale Informationen über das Netzwerk einzusam-
meln oder zu verwalten. Trotz dieser Beschränkung auf lokales Wissen
müssen die Knoten jedoch die Leistungsfähigkeit des gesamten Netzwerkes
garantieren oder globale Ziele wie Stabilität und Effizienz erreichen. Das
verteilte Berechnen und Optimieren globaler Eigenschaften basierend auf
lokaler Information ist demnach eine der zentralen Fragestellungen im Bere-
ich der verteilten Algorithmen. Der erste Teil dieser Dissertation analysiert
die fundamentalen Möglichkeiten solcher lokalen Algorithmen im klassischen
Message-Passing Model des verteilten Rechnens. Wir charakterisieren den
theoretisch erreichbaren Trade-off zwischen the Menge an lokalem Wissen
und der resultierenden globalen Lösung für wichtige Netzwerk-Probleme mit-
tels nahezu übereinstimmenden oberen und unteren Schranken.

Die Einbindung von drahtlosen Geräten ins Internet und das Entstehen
von Ad-Hoc-, Sensor- und anderen drahtlosen Multi-Hop-Netzwerken wirft
ebenfalls eine Vielzahl algorithmischer Fragestellung auf. Der zweite Teil
dieser Dissertation untersucht die Komplexität des verteilten Berechnens
wichtiger Netzwerk-Strukturen wie beispielsweise Färbungen und “Cluster-
ings” in Modellen, welche die physikalische Realität drahtloser Netzwerke
möglichst genau abbilden. Des Weiteren wird die “Scheduling Complex-
ity of Wireless Networks” im physikalischen Modell drahtloser Kommunika-
tion definiert. Dieses Mass beschreibt die maximal erreichbare Effizienz von
Scheduling Protokollen und erlaubt ausserdem eine analytische Charakter-
isierung des worst-case Verhaltens existierender Protokolle.

Computer im Internet oder Peers in einem Peer-to-Peer Netzwerk werden
typischerweise von unabhängigen, sich ökonomisch verhaltenden Individuen
betrieben und kontrolliert. Das Hauptinteresse dieser Netzwerkteilnehmer ist
dabei oft nicht die Leistungsoptimierung des gesamten Netzwerkes, sondern
die Maximierung des eigenen Profits. Mit anderen Worten, dezentrale Netzw-
erke werden oft von Teilnehmern gebildet, welche sich eigennützig verhalten,
ohne Berücksichtigung des Gesamtwohles im Netzwerk. Der letzte Teil dieser
Dissertation analysiert den Einfluss eigennütziger und möglicherweise sogar
bösartiger Teilnehmer auf die Leistungsfähigkeit und Effizienz von Peer-to-
Peer- und anderen dezentralen Computer Netzwerken.

Acknowledgements

I would like to express my gratefulness to my advisor Roger Wattenhofer
for guiding me through my thesis and for encouraging me to pursue a Ph.D. in
the Distributed Computing Group in the first place. During my time as your
student, you have not only invested a lot of time and effort in supporting my
studies, but you have also made me acquainted with the customs of academic
life and research. It has been a tremendous pleasure to work with you and I
am proud to be your scientific offspring!

I would also like to express my profoundest gratitude to my co-examiners
Christos H. Papadimitriou and David Peleg for their willingness to read
through the thesis and serve on my committee board. It has been a great
pleasure and honor to receive positive comments from two such renowned
researchers.

Many thanks go to all members of the Distributed Computing Group for
creating a warm and inspiring atmosphere during the last two and a half
years. First and foremost, I would like to thank my office mate Pascal von
Rickenbach for being my faithful and good companion during many years of
undergraduate studies, the master thesis, and finally the time as a Ph.D. stu-
dent. I have always enjoyed your delightful sense of humor and your positive
and candid way of reacting to the ups and downs of life. I also thank you
for our countless discussions about everything and nothing that have been
a source of inspiration and an enrichment of my daily work hours. Also, I
would like to thank Aaron Zollinger—the master of poetry and cultivated
language—for being a true role model in so many ways, not only when it
comes to table-soccer; Fabian Kuhn for successfully guiding and supervising
me through my Master thesis and for our very interesting, intensive, and pro-
lific research collaboration ever since; Keno Albrecht for his amazing patience
in solving my often self-made computer problems, his dynamic style of play-
ing table soccer, and for his spam-filter “Spamato” that has helped me cope
with spam; Regina O’Dell for teaching me about the marvels of birth and
breast-feeding and, generally, for her wit and stamina in defending women’s
perspectives in our male-dominated group; Nicolas Burri for his great sense
of humor and for conveying some of the subtleties of modern didactics to me,
and for sharing my passion for table soccer. Stefan Schmid for a productive
research collaboration, for successfully challenging my blind-chess skills, and
for his mastery in creating scientific figures.

Furthermore, I would like to thank all the newer members of the DCG
group—Roland Fluri, Michael Kuhn, Yves Weber, Thomas Locher, Olga
Goussevskaia, and Yvonne Anne Oswald—for providing a warm and inspiring
research and work environment during the final stages of my PhD. It is good
to know that the future of the DCG group is in the hands of so many great
colleagues.

Above all, I would like to express my gratitude to my family. I thank my
brothers, Stefan and Kentaro, for interesting and adventurous discussions
about life and the world’s future. I also thank my parents-in-law Takako
and Izumi for their warmth and hospitality during my stays in Japan, where
many of my research results originated and developed. I am forever grateful

and indebted to my parents Rosa and Josef for their love and care. From
the very beginning, you have provided me with support and guidance on my
way that has now led me to where I stand today.

Finally and most importantly, my deepest and most sincere thanks belong
to my beloved wife Hiroko. Your incessant love and encouragement has been
my motivation to work hard throughout the thesis and before. I am—and
will always be—grateful to you for standing by me through all ups and downs,
relaxing and (unfortunately too often) stressful times, at home and on one
of our wonderful trips allover the world. After all, I know that it is you who
brings out the best in me.

Contents

1 Introduction 7

2 Definitions and Preliminaries 11

I Local Computation 15

3 Locality in Distributed Computations 17

4 Computational Models 21
4.1 Message Passing Model in Distributed Computing 21
4.2 The LOCAL Model . 23
4.3 The CONGEST Model . 25

5 Local Network Coordination Problems 29
5.1 Clustering in Ad Hoc and Sensor Networks 29
5.2 Covering and Packing Problems 31
5.3 Facility Location . 33
5.4 MIS and other Exact Problems 36
5.5 Network Decompositions . 38

6 Local Computation: Upper Bounds 41
6.1 Distributed Minimum Vertex Cover Approximation 43
6.2 Facility Location Approximation: LOCAL Model 47
6.3 Facility Location Approximation: CONGEST Model 52
6.4 Distributed Randomized Rounding 65

7 Local Computation: Lower Bounds 69
7.1 General Lower Bound for Vertex Cover 71
7.2 Locality Preserving Reductions 86
7.3 Lower Bounds for MDS and Facility Location 86
7.4 Lower Bounds for Maximum Matching 88
7.5 Lower Bounds for Maximal Matching 91
7.6 Lower Bounds for Maximal Independent Set 92
7.7 Discussion . 93

7.8 Lower Bounds for Capacitated Problems 94

8 Locality in Bounded Independence Graphs 97
8.1 From UDGs to Graphs of Bounded Independence 98
8.2 Fast Deterministic MIS Computation 102
8.3 Faster Algorithms with Distance Information 110
8.4 Local Approximation Schemes 118

9 Conclusions and Outlook 125

II Radio Networks 129

10 Wireless Ad Hoc and Sensor Networks 131

11 Unstructured Radio Network Model 135
11.1 Model and Notation . 136
11.2 Related Work . 137

12 Coloring Radio Networks 141
12.1 Algorithm . 142
12.2 Analysis . 148

13 Computing an MIS in Radio Networks 159
13.1 Algorithm . 160
13.2 Analysis . 163

14 Deployment of Sensor Networks 179
14.1 The Deployment Problem . 181
14.2 Simple Algorithms . 183
14.3 Cluster-Based Algorithm . 187

15 Conclusions and Outlook 195

III Scheduling Complexity of Wireless Networks 197

16 Wireless Networks Beyond Graph Models 199

17 Models and Definitions 203
17.1 SINR: Modeling Interference 203
17.2 Graphs vs. SINR: Simple Examples 205
17.3 The Scheduling Complexity 208

18 Inefficiency of Simple Protocols 211
18.1 Uniform Power Assignment 212
18.2 Linear P ∼ dα Power Assignment 213

19 Polylogarithmic Scheduling Complexity 215
19.1 The Complexity of Connectivity 215
19.2 A Simple Linear-Time Algorithm 229

20 The Complexity of Arbitrary Topologies 233
20.1 Static Interference . 234
20.2 Algorithm in the Generalized Model 236

21 Conclusions and Outlook 247

IV Selfishness in Networks 251

22 Selfishness in Networks 253

23 Topologies Formed by Selfish Peers 257
23.1 Model . 259
23.2 Price of Anarchy . 260
23.3 The Complexity of Nash Equilibrium 265

24 Byzantine Players among Selfish Agents 283
24.1 Related Work . 285
24.2 Virus Inoculation Game . 285
24.3 Byzantine Game Theoretic Model 286
24.4 Price of Malice . 290

25 Conclusions and Outlook 303

Chapter 1

Introduction

In recent years, large-scale and highly decentralized networks such as the
Internet, wireless ad hoc and sensor networks, or peer-to-peer networks have
emerged as the most interesting and challenging computer systems. The sheer
size of such networks as well as their inherently dynamic nature brings about
a large number of problems that require efficient and robust algorithmic
solutions, which, in turn, can only be obtained by developing and employing
a variety of novel methods and techniques.

One new dimension added to the focus of computer scientists is the socio-
economic nature of modern networks. Hosts in the Internet or peers in a
peer-to-peer network may have no incentive to altruistically follow a pre-
defined protocol. Instead, such entities may prefer to selfishly deviate from
protocols in order to increase their own benefit or reduce their own cost.
But even in systems consisting entirely of benevolent participants, numerous
challenges remain. In particular, one of the key distinctions of large-scale
computer networks is the absence of global knowledge, leaving local computa-
tion as the only acceptable method for performing global tasks or maintaining
global structures and equilibria. In dynamic and mobile settings, for instance,
nodes may be unable to obtain a large set of up-to-date information about
the state of the network. Nonetheless, algorithms are expected to adapt to
topology and state changes in a quick and light-weight manner, even at the
cost of a potentially sub-optimal solution. Also, in view of the ever-growing
complexity of large-scale computer networks, managing these systems has
become an increasingly crucial part of these network’s success. One way to
enhance the manageability (and at the same time reduce the vulnerability)
of large-scale computer networks is to construct them in a self-organizing,
self-healing, and potentially self-protecting way, which, again, asks for local
distributed algorithms that are capable of quickly reacting to changes.

Two concepts thus stand out as being of particular algorithmic impor-
tance in large-scale and highly decentralized networks: locality and selfish-
ness. And as it turns out, studying either of these concepts requires novel
algorithmic techniques and leads to fascinating insights into the nature and
complexity of modern computer networks.

7

8 CHAPTER 1. INTRODUCTION

In large computer networks (as well as other networks such as the human
brain or society), no participating entity has the ability to achieve global
knowledge about the entire state or topology of the network. Instead, each
node can maintain only a restricted amount of local information about its
neighborhood. The importance of an algorithmic theory of locality and local
computation therefore stems from the discrepancy between local knowledge
and global objective: in spite of the restriction to local information only, the
entirety of the network is supposed to achieve a global goal, to keep a global
equilibrium, or (at least) to maintain a reasonable global performance. Part
I of this thesis aims at studying the fundamental consequences implied by
the restriction to local knowledge. Specifically, this part is geared towards
shedding light into the local computability or approximability of important
network coordination tasks. That is, it explores the trade-off between the
amount of local knowledge (or alternatively, between the time required to
gather such knowledge) and the quality of the resulting global solution.

Part IV of this thesis studies the other important concept of Internet-
like networks: selfishness. As motivated above, the participating hosts in the
Internet or a peer-to-peer network may not necessarily be considered as altru-
istic in the sense that they cooperate to achieve a common goal. Instead, each
network node may be primarily interested in optimizing its own utility. In
order to characterize and analytically capture the implications of selfish and
rational behavior in distributed systems, researchers have introduced micro
economic models in computer science. Part IV applies these techniques two
specific problem scenarios found in peer-to-peer networks and the Internet.

Another aspect of modern computer networks is the integration of wireless
devices—and hence, wireless communication links—into the Internet. Tech-
nologies such as WLAN or UMTS have rendered ubiquitous Internet access
a reality in many areas of public life. A crucial aspect of communication in
a wireless medium is scheduling. If too many devices in physical proximity
transmit simultaneously, the interference caused by these transmissions will
prevent an intended receiver from receiving the signal, i.e., the message is
lost. On the other hand, if too few nodes transmit at the same time, valu-
able bandwidth is wasted and the overall throughput suffers. Hence, the
dilemma faced by any scheduling protocol is that neither selecting too many
nor too few devices for concurrent transmission is acceptable. Part III of this
thesis focuses on the theoretical possibilities and limitations of scheduling
and MAC layer protocols in wireless networks. Based on a physical model
of signal propagation, it is shown that the throughput achieved by intuitive
and often employed MAC layer and scheduling protocols can be drastically
sub-optimal even for simple communication tasks. This is the case even for
protocols that can be shown to be optimal under frequently studied, yet
idealistic graph-based models of communication.

Mobile phone technology or Wireless LAN still require the availability
of a statically installed backbone infrastructure. Typically, it is only the
last hop—from the access point to the end device—that uses a wireless link.
An even more intrepid idea, however, is the construction of self-organizing
multi-hop wireless networks that are capable of working in the absence of
any built-in infrastructure. Such wireless ad hoc and sensor networks have

9

been envisioned in a large number of application fields. The prospect of
aggregating sensor nodes into sophisticated computation and communica-
tion infrastructures is bound to have a significant impact on a wide array
of scientific, social, and industrial applications. Moreover, there are a grow-
ing number of real (even commercial) systems that are being built, ranging
from monitoring and surveillance, to medical applications, the observation
of biological and chemical processes, disaster relief, and the construction of
community-based mesh networks.

These networks are formed by autonomous nodes that communicate via
radio, without any additional a-priori infrastructure. Typically, if two nodes
are not within mutual transmission range, they communicate through inter-
mediate nodes relaying their messages. In other words, the nodes themselves
provide and maintain a virtual communication infrastructure in a distributed
manner. From an algorithmic point of view, dealing with these networks of-
fers a multitude of interesting and challenging problems. One of the key
peculiarities of these networks is that they are supposed to work under harsh
environments, especially during their deployment phase. Achieving efficient
algorithmic solutions to the outstanding problems of initializing and struc-
turing ad hoc and sensor networks therefore requires a subtle modeling of
the specific characteristics encountered in these networks. Part II of this
thesis explores the impact of harsh realities faced by wireless ad hoc and sen-
sor networks on the distributed complexity of solving network coordination
problems. Based on a novel unstructured radio network model, we present
provably efficient protocols for setting up network coordination structures
such as clusterings and colorings in ad hoc and sensor networks, thus—in
a sense—providing an “unstructured wireless counterpart” to many of our
results obtained in Part I of this thesis.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Definitions and Preliminaries

This chapter defines terms that are going to be used throughout this work.
Notation that is peculiar to a specific chapter will be introduced in the cor-
responding model sections.

We begin with some terminology regarding graphs. When modeling a
network as a graph G = (V,E), the vertices V = {v1, v2, . . . , vn} correspond
to nodes in the network and there is a bidirectional communication link
between two nodes vi and vj , if (vi, vj) ∈ E. As customary, the number
of nodes in the graph is denoted by n = |V |. The distance measured in
hops (called the hop-distance) between two nodes vi and vj is denoted by
dG(vi, vj). The graph’s diameter D is the maximal hop-distance between
any two nodes in the graph, i.e., D = maxu,v∈V dG(u, v).

The notion of neighborhoods plays an important role in large parts of this
thesis. The neighborhood of a node v ∈ V , denoted by Γ(v), is the set of v’s
neighbors in the graph. Unless otherwise stated, this definition is extended
to include also v itself in Γ(v). Formally, the neighborhood of node v is

Γ(v) := {v} ∪ {w | (v, w) ∈ E}.

When dealing with local distributed algorithms, we will make use of neigh-
borhoods of a particular depth. For some constant ρ ≥ 0, the ρ-neighborhood
Γρ(v) of a node v ∈ V is defined as the union of nodes that are at most ρ
hops away from v in G:

Γρ(v,G) := {v} ∪ {w | dG(v, w) ≤ ρ}.

Whenever G is clear from the context, we simply write Γρ(v). Finally, note
that Γ1(v) = Γ(v) and Γ0(v) = {v}.

The degree δv of a node v is the number of neighbors of v in G, i.e.,
δv := |Γ(v)| − 1. Some of our asymptotic results presented in later chapters
will depend not only on the number of nodes n, but also on the maximal degree
∆ in the graph, which is the maximal number of nodes in the neighborhood of
a node v ∈ V . Formally, ∆ := maxv∈V δv. Clearly, it holds that 1 ≤ ∆ ≤ n.

11

12 CHAPTER 2. DEFINITIONS AND PRELIMINARIES

We call two nodes u, v ∈ V independent if they are not adjacent in the
graph G, i.e., (u, v) /∈ E. An independent set S ⊆ V in a graph is a set of
nodes that are mutually independent, i.e., no two nodes in S are neighbors.

Sometimes, we will consider metric spaces instead of graphs. A metric
space M is a pair (X, d), where X is a set of points and d : X×X → [0,∞) is
a distance function satisfying the properties ρ(u, v) = ρ(v, u) and the triangle
inequality, ρ(u,w)+ρ(w, v) ≤ ρ(u, v) for all u, v, w ∈ X. A finite metric space
can be represented as a complete graph on |X| vertices, with edge lengths
between pairs of vertices equal to the distance between the respective points
in the metric space. In a metric space M = (X, d), the ball of radius r around
node v, denoted by Br(v), consists of all points that are at most at distance
r of v, formally Br(v) = {u ∈ X|d(u, v) ≤ r}.

If not specified otherwise, log x corresponds to the logarithm to base 2,
whereas the natural logarithm of x is written as ln x. An important function
in distributed complexity is the so-called log-star function log∗x. Let the ith

logarithm of x be the value which results from applying the logarithm to x i
times. Formally, for an integer i > 0, the ith logarithm of x is defined as

log(i)x :=

{
log n , i = 1

log (log(i−1)n) , i > 1

The log-star function is then defined as the number of times the logarithm
has to be taken before the value decreases below 2.

log∗x := min{i | log(i)n ≤ 2}.
Throughout the thesis, we will study combinatorial optimization problems

and (distributed) algorithms, which compute solutions to those problems. In
order to measure the quality of the achieved solution, it is compared to an
optimal solution. Consider a minimization problem. Let ALGI be the value
of the solution produced by an algorithm A for input I . The value of the
optimal solution for I is denoted by OPTI . The approximation ratio α of
algorithm A is defined as

α := sup
I

ALGI

OPTI
.

For maximization problems, the approximation ratio is analogously defined
as α := maxI

OPTI
ALGI

. If adapting constant parameters in the algorithm allows

to achieve an approximation ratio of 1 + ε for every constant ε > 0, the
algorithm is called an approximation scheme.

As far as randomized algorithms and probabilistic arguments are con-
cerned, we use the term “with high probability” for events that occur with
probability 1 − n−c for a constant c, which can be made arbitrarily large by
setting the corresponding parameters to large enough values. Typically, we
require c ≥ 1.

The chapter is concluded with some well-known mathematical theorems
and facts. When bounding probabilities, the Chernoff Bounds (see for in-
stance [181]) describe the tail behavior of the distribution of the sum of
independent Bernoulli experiments.

13

Theorem 2.1 (Upper Tail). Let X1,X2, . . . ,XN be independent Bernoulli
variables with probability Pr[Xi = 1] = pi. Let X :=

∑
i Xi be the sum of

the Xi and let µ := E[X] =
∑

i pi be the expected value for X. For δ > 0, it
holds that

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ

.

Theorem 2.2 (Lower Tail). Let X1,X2, . . . ,XN be independent Bernoulli
variables with probability Pr[Xi = 1] = pi. Let X :=

∑
i Xi be the sum of

the Xi and let µ := E[X] =
∑

i pi be the expected value for X. For δ ∈ (0, 1],
it holds that

Pr[X < (1 − δ)µ] <

(
e−δ

(1 − δ)(1−δ)

)µ

< e−µδ2/2.

The following fact was proven in [138] and relates the product of a set of
(small-enough) probabilities to their sum.

Fact 2.1. Given a set of probabilities p1 . . . pn with ∀i : pi ∈ [0, 1
2
], the

following inequalities hold:

(
1

4

)∑n
k=1 pk

≤
n∏

k=1

(1 − pk) ≤
(

1

e

)∑n
k=1 pk

.

Finally, the following inequalities are frequently used.

Fact 2.2. For all n, t, with n ≥ 1 and |t| ≤ n, it holds that

et

(
1 − t2

n

)
≤
(

1 +
t

n

)n

≤ et.

14 CHAPTER 2. DEFINITIONS AND PRELIMINARIES

Part I

Local Computation

Chapter 3

Locality in Distributed

Computations

Modern large-scale distributed systems such as peer-to-peer networks, wire-
less ad hoc and sensor networks, or the Internet have in common that they
consist of individual nodes which can directly communicate with a limited
number of neighboring nodes only. In such networks, no node is typically
able to collect global information from the entire network or maintain a
global state, because gathering information about the whole network topol-
ogy is either too resource consuming or simply impossible due to mobility,
dynamism, or churn. In spite of these inherent limitations to local knowl-
edge and local information, networks are expected to compute a good global
solution, maintain stability, or achieve a reasonable performance. This dis-
crepancy between the need to achieve global efficiency or stability and the
impossibility of basing individual decisions global knowledge motivates the
study of local algorithms and local computation.

Consider nodes in wireless ad hoc and sensor networks, which are typically
severely constrained with regard to bandwidth, memory, computing power,
and energy. As a consequence, protocols running on these devices should re-
quire as little communication as possible and—in view of constantly changing
topologies—should run as fast as possible. Both goals can only be achieved
by distributed algorithms that require only few (ideally a constant number
of) rounds of communication until termination. In such a local algorithm,
each node must take its decision without global coordination or global knowl-
edge. Likewise, there are numerous practical settings in which employing a
local algorithm is the only acceptable choice when designing scalable network
protocols that can cope with dynamism and mobility.

What exactly is a local algorithm? Informally, a distributed algorithm
or a computation can be considered local if each individual node requires
only knowledge about its vicinity in the network graph (as opposed to global
knowledge) in order to collectively achieve an efficient solution to a global

18 CHAPTER 3. LOCALITY IN DISTRIBUTED COMPUTATIONS

problem. Technically speaking, we call a distributed algorithm local if it is
run by individual nodes in the network and the algorithm’s running time is
(significantly) smaller than the network’s diameter. Inevitably, if the number
of communication rounds is smaller than the network’s diameter, each node
can base its decision only on partial, in fact local knowledge.

The following fundamental questions arise from these observations: What
can and what cannot be computed locally? Or more technically, how good
can a global solution be if the local decisions at individual nodes are based on
restricted local views? What is the price of not having global coordination
and knowledge? And, how much does the global solution improve if each
node is given information about one additional “hop” of its neighborhood?
In other words, what is the value of local information?

Besides being of practical importance in networking, a profound under-
standing of the possibilities and limitations of local computation appears to
be of theoretical interest in various areas, including distributed computing,
graph and approximation theory, and information theory. A theory of local
computation may even turn out to be an instrumental ingredient for theoret-
ical studies of social networks or the human brain, because, after all, neurons
in the brain or individuals in society can also base their decisions on partial
and local knowledge about the entirety of the global state only.

In Part I of this thesis, we examine the impact of locality and local com-
putation on the complexity of distributed problems in the classic message
passing model of distributed computing. In this model, which we describe
in detail in Chapter 4, each node of a graph represents a processor and has
a unique identifier (e.g. IP address), two nodes can communicate if they
share an edge in the graph. In the standard synchronous model where time
is divided into rounds and each node can send a message to all of its neigh-
bors in every round, there is a strong correspondence between the locality of
local computation on the one hand (graph theory), and the time complexity
of a distributed algorithm on the other hand (distributed computing). Specif-
ically, in k rounds of communication, a node can gather information from at
most its k-hop neighborhood in the graph.

While global optimization with full information has been studied by re-
searchers in great detail for decades, surprisingly little is known about the
foundations of local computation and many of the major achievements in
this field (e.g. by Linial [166], Naor and Stockmeyer [184], Papadimitriou
and Yannakakis [193], or Peleg [196]) date back more than 15 years.

While certain combinatorial problems such as the MST or Steiner prob-
lems appear to be inherently global, there are others that seem much more
local in nature. Consider for example the traditional graph theory problem
of computing a minimum dominating set (MDS), or even simpler, a mini-
mum vertex cover (MVC) in a graph. In a global setting, the complexity
of both MDS and MVC is well understood. But what if nodes are pro-
cessors of a network and only have local knowledge? How much do nodes
need to know about the entirety of the network in order to come up with
a feasible solution and a good global approximation? Specifically, what is
the achievable trade-off between the locality of a distributed computation
(number of communication rounds) and the quality of the achieved global

19

solution (e.g. approximation ratio)? Chapter 5 defines MVC, MDS, facil-
ity location, and other related local problems, including exact combinatorial
problems such as the maximal independent set (MIS) problem which can
trivially be solved by sequential algorithms, but becomes much harder in the
distributed case. Subsequent Chapter 6 presents distributed algorithms that
achieve non-trivial approximation guarantees for various local problems even
for an arbitrary constant running time k, i.e., when the nodes’ information
about the network is limited to their k-hop neighborhood.

Intuitively MVC appears to be perfectly suited for a local algorithm: A
node should be able to decide whether to join the vertex cover by communi-
cating with its neighbors a few times. Very distant nodes seem to be super-
fluous for its decision. The fact that there is a simple greedy algorithm which
approximates MVC within a factor 2 in the global setting, additionally raises
hope for a fast local algorithm. Surprisingly, however, there is no such local
distributed algorithm. In Chapter 7, we prove strong lower bounds on the
achievable global solution of MVC and MDS given that each node must base
its decision on local information from its k-hop neighborhood only. This, in
turn, implies novel time lower bounds for distributed algorithms and, in par-
ticular, hardness of distributed approximation lower bounds. Moreover, from
these approximability lower bounds, we can derive locality lower bounds for
two important exact problems in distributed computing: maximal matchings
and maximal independent sets (MIS). Since all lower bounds hold even in
the cases of unbounded messages and complete synchrony, the lower bounds
are a true consequence of locality limitations, and not merely side-effects of
congestion, asynchrony, or limited message size as frequently encountered
in distributed computing. As such, our results stand in line with the only
previous unconstrained locality lower bound in the message passing model
of distributed computing [166]. Particularly, our time lower bounds improve
on the classic Ω(log∗n) lower bound by Linial [166], and they also show that
Luby’s [169] probabilistic O(log n) time MIS algorithm is close to optimal.

Motivated by the wireless nature of networks like ad hoc and sensor net-
works, we study local computation in network models that more closely cap-
ture wireless networks in Chapter 8. In some classes of graphs, we obtain
results that exactly capture the amount of local information required to solve
a large number of distributed tasks. These results show, for instance, that
from the point of view of locality, a simple ring network is asymptotically as
hard as the vast family of unit ball graphs when the underlying metric space
is doubling. Finally, the fact that the doubling dimension of the network’s
underlying metric space has a significant impact on the running time of dis-
tributed algorithms reveals an interesting relationship between distributed
computing and recent work on low-dimensional metric spaces.

Finally, it should be noted that our work on local computation is closely
related to—and often goes hand in hand with—another evolving discipline in
distributed computing: distributed approximation. The study of distributed
computing is interesting because it lies on the boundary of well-established
areas: approximation theory and distributed computing.

20 CHAPTER 3. LOCALITY IN DISTRIBUTED COMPUTATIONS

Chapter 4

Computational Models

As mentioned before, one of the main characteristics of today’s most interest-
ing computer networks is their low coupling level between the participating
entities. Peer-to-peer networks, wireless ad hoc and sensor networks, or the
Internet form loosely coupled distributed systems, in which there is restricted
global knowledge and no centralized control. Moreover, instead of the tightly
synchronized communication via shared memory typically employed by pro-
cessors of a parallel machine, nodes in multi-hop networks communicate with
each other by exchanging messages. In this chapter, we present the classic
computational model that explicitly captures the communication between
independent entities forming a network: the message passing model. This
model will be studied throughout Part I of this thesis.

4.1 Message Passing Model in Distributed Com-

puting

In the message passing model of distributed computing, the network is mod-
eled as an undirected graph G = (V,E), in which each vertex v ∈ V represents
a node (host, device, processor, . . .) of the network. Two nodes u, v ∈ V
are connected by an edge (u, v) ∈ E if and only if there is a bidirectional
communication channel that connects the two nodes. Every node v ∈ V
is assigned a unique identifier id(v) of size O(log n) bits, which, in reality,
may correspond to an IP-address or a MAC-address. A node may communi-
cate directly only with its neighbors in the network graph G, and messages
between non-neighboring nodes must be relayed in a multi-hop fashion by
nodes on a path connecting the two nodes.

Throughout Part I, we study the synchronous message passing model. In
this model, all nodes wake up simultaneously and start executing their lo-
cally stored distributed algorithm. Communication occurs in discrete, glob-
ally synchronized pulses. The time interval between two consecutive pulses
is called a round. In each round, every node v ∈ V is allowed to send an arbi-

22 CHAPTER 4. COMPUTATIONAL MODELS

trary message to each of its neighbors u ∈ Γ(v) in the network graph. Since
we consider point-to-point networks, a node may send different messages to
different neighbors in the same round. Additionally, every node is allowed to
perform local computations based on information obtained in the messages
of previous rounds. Communication is reliable, that is, every message that
is sent during a communication round is correctly received by the end of the
round.

There are two main measures of efficiency of distributed algorithms: the
time complexity and the message complexity. An algorithm’s time complexity
is defined as the number of communication rounds until all nodes terminate.
Since the efficiency of a distributed algorithm typically depends mainly on
the time used for communication, the model makes no explicit restriction
on the amount of local computation. Principally, every node can locally
compute an arbitrary computable function in every round. Note, however,
that in virtually all algorithms presented in literature, local computation is
reasonably small. Unless stated otherwise, our algorithms presented in Part
I of this thesis require only minimal local computation. The algorithm’s
message complexity is the total number of messages sent by the nodes in
the network throughout the algorithm’s execution. For a more formal and
thorough introduction to the message passing model of distributed computing
and its relevant complexity measures, we refer to standard textbooks, e.g.
[16, 196].

The importance of the message passing model stems from both theoretical
and practical considerations. From a practical point of view, the model
provides a fairly realistic and clean abstraction of many of today’s prominent
networks, including peer-to-peer networks, wireless networks, or the Internet.
From a theoretical point of view, the model is concise and robust enough to
allow for rich and profound structural insights into the nature of distributed
computing. Moreover, its proximity to other fields of computer science such
as graph theory, approximation theory, geometry, or information theory has
additionally enriched the literature on this distributed computing model. For
these reasons, the message passing model in its various flavors has become
the standard model in networking and large areas of distributed computing,
e.g. [17, 98, 166, 196, 197].

Depending on the kind of network studied, it may be appropriate to re-
place our point-to-point network model by a “broadcast” network model.
Motivated by wireless radio networks or multi access channels like the Eth-
ernet, the main characteristic of broadcast models is that in a single round,
a node cannot send different messages to different nodes. Instead, a message
sent by a node may be received by all its neighbors. Also, it is clear that the
synchronous message passing model is idealistic in the sense that it abstracts
away numerous challenges arising in real networks. In particular, messages
exchanged in real networks may be lost or corrupted and nodes may wake up
asynchronously, starting the algorithm at different times. For the purpose
of studying local computation, however, the model is well suited because
it provides a clean abstraction that allows to succinctly analyze the inter-
play between time complexity, locality, and approximation. In particular,
results obtained in the synchronous message passing model capture the fun-

4.2. THE LOCAL MODEL 23

damental distributed complexity of network problems without “side-effects”
stemming, say, from unreliable communication channels. In Parts II and III
of this thesis—when studying the complexity of network coordination tasks
from a more low-level perspective—, we will move from the synchronous
message passing model to more realistic and harsher computational mod-
els, which incorporate additional challenges such as interference, congestion,
asynchronous wake-up, or unreliable communication.

Finally, it is important to note that besides the synchronous message pass-
ing model, research in distributed computing has also prominently featured
the asynchronous variant of the message passing model. Roughly speaking,
this model allows messages to be delayed an arbitrary (but finite) amount
of time. The time complexity of an algorithm is the time of a worst-case
execution in which—for the sake of analysis—a maximum message delay of
1 time unit is assumed. Throughout this part of the thesis, we deliberately
abstract away all problems arising from asynchronous executions. The rea-
son is that when studying local computation, there is a close relationship
between an algorithm’s time complexity and the locality of the underlying
problem. Our main focus being on time complexity and local knowledge,
rather than on message complexity, there is a simple method to locally syn-
chronize an asynchronous system. In particular, we can simply employ the
so-called α-synchronizer as defined in the work on network synchronizers by
Awerbuch [17]. Essentially, this synchronizer lets every node send a message
to all its neighbors in every “round”, regardless of whether these messages are
actually required in a synchronous protocol. A node can proceed to its next
round of computation only when it has received the corresponding message
from all its neighbors. This procedure guarantees that all nodes are always
in the same (or at least subsequent) rounds and the distributed algorithm’s
execution behaves like in a synchronized system. As shown in [22], the mes-
sage complexity of the α-synchronizer can be reduced to a polylogarithmic
overhead (as compared to the corresponding synchronous algorithm) at the
cost of a polylogarithmic deterioration of the time complexity.

There is one aspect that we have only vaguely specified in our description
of the message passing model: the messages. In particular, we have made
no restriction on the size of the messages, i.e., the number of bits contained
in each of them. In fact, it turns out that the question of allowable message
size leads to the two fundamental limitations arising in message passing net-
works: locality and congestion. The prototypical communication modes that
capture these two obstacles have been described in Peleg’s seminal book on
locality in distributed computing [196]. These models, called the LOCAL
and CONGEST models in [196], differ in the way they model the amount of
information that can be sent in a single message.

4.2 The LOCAL Model:

The Power of Knowing your Neighborhood

The first prototypical model is known as the LOCAL model [196] or as
Linial’s free model [166]. In this model, there is no bound on the amount of

24 CHAPTER 4. COMPUTATIONAL MODELS

information that can be transmitted in a single message, i.e., messages are
unbounded.

Definition 4.1. In the LOCAL model, every node v ∈ V can send an arbi-
trarily large message to every neighbor u ∈ Γ(v) in each round of communi-
cation.

By abstracting away all restricting factors besides locality (e.g., conges-
tion or asynchronity), the LOCAL model provides an ideal abstraction layer
for analyzing the effects of locality on distributed computation. In partic-
ular, because message size is unlimited, congestion has no influence on an
algorithm’s time or message complexity. For this reason, the LOCAL model
provides the strongest possible model when proving lower bounds on local
computation.

The importance of the LOCAL model also stems from the fact that it
provides a one-to-one correspondence between the notion of time complexity
of distributed algorithms and the graph theoretic notion of neighborhood-
information. In particular, having a distributed algorithm perform k com-
munication rounds is equivalent to a scenario in which distributed decision
makers at the nodes of a graph must base their decision on (complete) knowl-
edge about their k-hop neighborhood Γk(v) only. To see this, note that be-
cause messages are unbounded, every node v ∈ V can collect the identifiers
and interconnections of all nodes in its k-hop neighborhood in k communica-
tion rounds. Collecting the complete k-neighborhood can be achieved if all
nodes send their complete states to all their neighbors in every round. After
round i, all nodes know their i-neighborhood. Learning the i-neighborhoods
of all neighbors in round i+ 1 suffices to know the i+ 1-neighborhood.

On the other hand, a node cannot obtain any information from a node at
distance k+1 or more, because sending information over k+ 1 hops requires
at least as many communication rounds. Therefore, in the LOCAL model,
knowing one’s k-hop neighborhood is exactly as powerful as employing a
distributed algorithm with running time k. In this sense, the LOCAL model
concisely relates distributed computation to the algorithmic theory of the
value of information as studied in [193]: the question of how much local
knowledge is required for distributed decision makers to solve a global task
or approximation a global goal is equivalent to the question of how many
communication rounds are required by a distributed algorithm to solve the
task. This correspondence renders the LOCAL model an interesting subject
of study even beyond distributed computing, but also from a graph- and
information-theoretic point of view.

More formally, in k communication rounds, a node v may collect the
IDs and interconnections of all nodes in Γk(v). Each node therefore has a
partial view of the graph and must base its algorithm’s outcome solely on
information obtained in this k-hop neighborhood. Formally, let Tv,k be the
topology seen by v after these k rounds, i.e. Tv,k is the graph induced by the
k-neighborhood of v where edges between nodes at exactly distance k are
excluded. The labelling (i.e. the assignment of identifiers to nodes) of Tv,k is
denoted by L(Tv,k). The view of a node v is the pair Vv,k := (Tv,k,L(Tv,k)).
The best a local algorithm with running time k can do in the LOCAL model

4.3. THE CONGEST MODEL 25

is to gather all information about its k-hop neighborhood and decide upon
this information. This shows that in principle, every local algorithm in the
LOCAL model can be transformed into the following canonical form.

1. Collect complete k-neighborhood Γk(v) in k communication rounds

2. Compute the output by locally simulating the relevant part of the
distributed algorithm (no communication required)

It is therefore clear that in the LOCAL model, every computable problem
can be solved in time D, because this is the time required for each node to
learn the entire topology of the network graph.

The LOCAL model was first studied by Linial in his classic paper de-
voted to the fundamental possibilities and limitations of local computation
in graphs [166]. In particular, this paper featured the famous Ω(log∗ n) time
lower bound for computing an MIS on a ring, the only previously known
lower bound on local computation that holds even in the LOCAL model and
is thus a true consequence of locality limitations only. The ultimate question
concerning local computation in graphs was articulated by Naor and Stock-
meyer in their paper entitled ‘What Can Be Computed Locally?’ [184]. In this
paper, the authors prove that there exist locally checkable labelings that can
be computed in a constant number of communication rounds. We describe
this and other related work on the LOCAL model when discussing specific
network coordination problems in Chapter 5. Chapters 6 and 8 present upper
bounds on the distributed complexity of algorithms for various network prob-
lems in the LOCAL model. In combination with the locality lower bounds
established in Chapter 7, these results capture the inherent trade-off between
the amount of local knowledge (or time used by a distributed algorithm) and
the quality of the resulting global solution.

4.3 The CONGEST Model:

The Impact of Limited Bandwidth

By uniquely focusing on capturing the local nature of a distributed program’s
execution, the LOCAL model provides a clean abstraction for describing the
locality of distributed computation. On the other hand, the model abstracts
away many challenges arising in real world networks, such as congestion
and bandwidth restrictions. It is the role of the CONGEST model [196]
to capture these additional aspects of distributed computing. In particular,
the CONGEST model is aimed at incorporating the effects of the volume of
communication, in addition to its locality.

Definition 4.2. In the CONGEST model, every node v ∈ V can send a
message of size O(log n) bits to every neighbor u ∈ Γ(v) in each round of
communication.

The message size of O(log n) bits allows each message to contain a con-
stant number of node identifiers and constants that are polynomial in n.

26 CHAPTER 4. COMPUTATIONAL MODELS

Also, when studying weighted graphs, we typically assume that the weight
of an edge is at most polynomial in n and therefore, a weight of a single edge
can be communicated in one message.

In the LOCAL model, every distributed problem can be solved neighbor-
hood optimally : every node first collects the entire network topology in time
D and solves the problem locally. In the CONGEST model, however, a node
v ∈ V may be able to gather only a subset of the available information from
its neighborhood Γk(v) due to congestion. Therefore, even problems on a
complete graph—which could easily be solved in a single round of communi-
cation in the LOCAL model—become non-trivial in the CONGEST model.
For instance, the fastest known algorithm for the MST problem in a complete
graph in the CONGEST model has a running time of O(log log n) [168]. No-
tice again that the same problem is trivially solved in the LOCAL model by
first exchanging all edge-weights in the graph. Every node then has complete
information of the instance and can locally compute the global solution.

In fact, the MST problem has turned out to be of utmost importance
in the study of the CONGEST model and there has been a long line of
gradual improvements. The distributed complexity of the MST problem in
the CONGEST was first studied by Gallager, Humblet, and Spira, their
algorithm featuring a time complexity of O(n log n) [98]. Subsequent im-
provements of this algorithms include [43, 97] and [18], who reduced the
time complexity to O(n log∗n) and O(n), respectively. This last result is
“existentially” optimal in the sense that there exist input instances under
consideration for which the algorithm is asymptotically best possible.

But what if the network’s diameter D is significantly smaller than n? In
such networks, it should be possible to obtain even much more efficient algo-
rithms. In particular, considering our focus on the locality of distributed com-
puting, it is interesting to precisely identify the parameters of the problem
that are inherently responsible for the problem’s complexity. In other words,
a competitive distributed algorithm for the MST problem should be as local
as possible; it should incur little overhead beyond the Ω(D) time complexity
that appears to be inherent. The fundamental question whether there ex-
ists such a locality optimal or neighborhood optimal algorithm for MST in the
CONGEST model was first raised by Garay, Kutten, and Peleg in [101]. The
algorithm presented in [101] has a time complexity of O(D + n0.613 log∗n).
This time complexity was later improved to O(D +

√
n log∗n) by Kutten

and Peleg in [156]. By giving a lower bound of Ω(D +
√
n/ log n) in [197],

Peleg and Rubinovich not only proved the aforementioned algorithm to be
almost optimal, but they managed to more closely quantify the “locality” (or
actually, the “non-locality”) of the MST problem.

In a recent breakthrough paper, Elkin proved the surprising fact that
the diameter D is actually not the parameter that determines the complex-
ity of the MST problem [75]. In particular, Elkin singles out the so-called
MST-radius µ(G) of a graph to be the exact parameter that reflects the
problems distributed complexity. Interestingly, this parameter can be n/2
times smaller than the network’s diameter. In particular, [75] presents a
randomized algorithm that computes an MST with high probability in time

4.3. THE CONGEST MODEL 27

O(µ(G)·log3n+
√
n log n log∗n). In a remarkable recent work, Elkin not only

improved the MST lower bound, but generalized it towards approximations
of the MST problem [76]. It is shown that every algorithm which computes
a tree whose weight is within a factor α of the MST requires at least time
Ω(
√
n/(α log n)). This implies that for a constant approximation, at least

Ω(
√
n/ log n) rounds are required, thus both improving and generalizing the

lower bound of [197].
As mentioned above, the CONGEST model’s limited bandwidth renders

solving distributed problems difficult even in graphs with low diameter, in
which the problem could easily be solved in the LOCAL model by simply
gathering all information from the entire network. For instance, it has been
shown that the MST can be computed in time O(log log n) in a complete
graph in the CONGEST model [168], but no corresponding lower bound has
been proven. In fact, there appears to be hardly any lower bound on the
CONGEST model for graphs with diameter 1 or 2, and coming up with such
lower bounds appears to be challenging because usual arguments based on
cuts over which a certain amount of information must flow are ruled out
in such graphs. Finding techniques for obtaining such lower bounds is an
intriguing open problem.

28 CHAPTER 4. COMPUTATIONAL MODELS

Chapter 5

Local Network Coordination

Problems

There are problems that are inherently non-local in the sense that nodes
cannot compute a feasible solution to the problem without gathering infor-
mation from the entirety of the network, or at least a significant part of it.
As seen in Section 4.3, the prototypical non-local problem is the problem
of computing a minimum-weight spanning tree (MST). Another instructive
example for a non-local problem is the task of two-coloring a ring network.
While there exists a beautiful deterministic distributed algorithm by Cole
and Vishkin that colors a ring with 3 colors in time O(log∗n) [58], coloring
a ring with an even number of nodes with 2 colors requires at least n − 1
communication rounds as formally proven by Linial in [166]. In a proper
2-coloring of a ring, nodes must alternately select colors 1 and 2. Intuitively,
this means that every node must obey to a global “sense of direction” in
order to decide whether it should take color 1 or 2.

In contrast, many of the important coordination problems in networks
appear to be much more local by nature, especially when we allow for non-
optimal, approximative solutions to optimization problems. In the sequel,
we define such local network coordination problems and describe their appli-
cations. As we will see, these problems typically boil down to classic graph
theoretic constructs.

5.1 Clustering in Ad Hoc and Sensor Networks

The first application scenario is clustering in wireless multi-hop networks.
Wireless ad hoc and sensor networks consist of autonomous devices commu-
nicating via radio. Typically, there is no central server or common, stationary
infrastructure which could be used for the organization of the network. In-
stead, the underlying communication infrastructure has to be provided by
the nodes themselves by means of applying distributed algorithms.

30 CHAPTER 5. LOCAL NETWORK COORDINATION PROBLEMS

Consider the task of routing a message between two distant nodes. In ab-
sence of a stationary infrastructure and because the topology of the network
may be constantly changing, routing algorithms for ad hoc networks differ
significantly from standard routing schemes used in wired networks. One
effective way of improving the performance of routing algorithms is to group
nodes into clusters [11, 216, 227, 229, 238]. The routing is done between
clusterheads who act as routers, whereas all other nodes merely communi-
cate via a neighboring clusterhead. Besides facilitating the communication
between distant nodes (i.e., routing), another important purpose of clustering
in wireless multi-hop networks is to enable efficient communication between
adjacent nodes. In particular, many medium access control (MAC) protocols
are implicitly based on the notion of clusters [122, 203]).

In battery powered wireless sensor networks featuring tight energy con-
straints, structuring the network into energy-efficient clusters plays a key role
for prolonging the networks lifetime, e.g., [179, 122]. Only selected cluster-
leaders remain active, while all other nodes can go into an energy-efficient
sleep mode thus saving valuable battery power [67].

In all these settings, it is required that every non clusterhead has at least
one clusterhead within its communication range. Moreover, from a global
point of view, it is advantageous to minimize the number of clusterheads.
When modeling the network as a graph G = (V,E), the above clustering
problem maps directly to the graph theoretic problem of computing a mini-
mum dominating set in a graph.

Definition 5.1 (Minimum Dominating Set (MDS)). Given a graph
G = (V,E). A dominating set is a subset S ⊆ V such that every node is
either in S or has at least one neighbor in S. The minimum dominating set
problem asks for a dominating set S of minimum cardinality.

In the centralized, sequential case, the complexity of MDS is understood
well. It has been shown in [87, 171] that under reasonable complexity assump-
tions, the best possible approximation ratio for MDS is ln ∆. On the other
hand, this ratio is achieved by the natural greedy algorithm [54]. Much less
is known about the distributed approximation of dominating sets. In [156],
an algorithm that computes a dominating set of size at most n/2 in time
O(log∗n) is presented. While being extremely fast, the algorithm’s approx-
imation ratio can be Θ(∆). The algorithm proposed in [238] and its recent
adaptation in [65] computes a connected dominating set in constant time,
but does not have any worst-case guarantees. In unit disk graphs, the algo-
rithm of [100] computes an O(1)-approximation in expectation and features
a running time of O(log log n). This result was subsequently generalized
in [149]. The first algorithms guaranteeing a non-trivial approximation ratio
for general graphs are given in [134] and [202], both achieving an O(log ∆)
approximation in polylogarithmic time.

The first constant-time algorithm with a non-trivial approximation ratio
was given by Kuhn and Wattenhofer in [151]. Their algorithm works in the

CONGEST model and computes an O(
√
k∆1/

√
k log ∆) approximation to

MDS in O(k) rounds of communication, for any integer k. While not sur-
passing the ratios achieved by [134] or [202], the algorithm in [151] is the first

5.2. COVERING AND PACKING PROBLEMS 31

to give a full upper bound on the achievable trade-off between the amount of
communication and the resulting global approximation of a local algorithm.
In Chapter 6 of this thesis, we improve on these results in the LOCAL model
by giving new approximation guarantees for the generalized facility location
problem. Moreover, our hardness of distributed approximation lower bound
in Chapter 7 proves that the trade-off achieved by this algorithm is not far
from being optimal.

5.2 Covering and Packing Problems

The MDS problem described in Section 5.1 is a well-known covering problem.
In general, covering problems can be captured as an integer linear program
of the following form:

min cTx

subject to A · x ≥ b

xi ∈ N0.

(ILPCovering)

In a covering problem, it is assumed that all entries aij of A are non-
negative and that all entries bi and cj are positive. The MDS problem is
a covering problem in which all bi = cj = 1 and the matrix A corresponds
to the graph’s adjacency matrix. When relaxing the constraints xi ∈ N0

to xi ≥ 0, we obtain the linear relaxation of the covering problem, denoted
by LPCovering . The dual linear program DLPCovering is called a fractional
packing problem (also denoted by LPPacking).

max bT y

subject to AT · y ≤ c

yi ≥ 0.

(LPPacking)

Many important problems can be captured as covering or packing prob-
lem. Problems such as (the possibly weighted versions of) minimum set cover
or minimum dominating set fall into the category of covering problems. Pack-
ing problems occur in a wide range of resource allocation problems. Specific
examples include the assignment of flows to a given fixed set of paths or the
maximization of a utility in an environment in which a complex combination
of possibly scarce resources (bandwidth, memory, CPU power, etc...) must
be allocated optimally. Possibly the most simple of all NP-hard covering
problems is the minimum vertex cover problem.

Definition 5.2 (Minimum Vertex Cover (MVC)). Given a graph G =
(V,E). A vertex cover S ⊆ V is a set of nodes such that for every e ∈ E,
at least one incident node is in S. The minimum vertex cover problem is to
find a vertex cover S of minimum cardinality.

32 CHAPTER 5. LOCAL NETWORK COORDINATION PROBLEMS

The minimum vertex cover problem is captured by the following covering
integer linear program.

min
∑

vi∈V

xi

subject to xi + xj ≥ 1 ,∀(vi, vj) ∈ E

xi ∈ {0, 1} ,∀vi ∈ V.

(ILPMV C)

The dual packing problem to the ILPMV C integer linear program is the
maximum matching problem ILPMM . Again, the relaxed fractional versions
of both problems are denoted by LPMV C and LPMM , respectively.

max
∑

e∈E

ye

subject to
∑

e∈E(v)

ye ≤ 1 ,∀v ∈ V

ye ∈ {0, 1} ,∀e ∈ E.

(ILPMM)

Definition 5.3 (Maximum Matching (MM)). Given a graph G = (V,E).
A matching M ⊆ E is a set of edges, such that no two edges in M have a
common endpoint. The maximum matching problem is to find a matching M
of maximum cardinality.

Covering and packing problems are well-studied in the algorithmic lit-
erature. Problems such as MVC or MDS appeared in the first list on NP-
complete problems presented by Karp [140]. In the sequential, centralized
case, the study of linear programming techniques and their use in approxi-
mation algorithms for hard combinatorial optimization problems has been at
the center of attention in the theoretical computer science community. For
a textbook on the role of linear programming techniques in approximation
algorithms, we refer for instance to [223]. Sequential algorithms for covering
and packing linear programs have been presented in [72, 93, 103, 200], while
more general mixed packing and covering linear programs were studied in
[94, 141, 241].

In a parallel context, covering and packing linear programs were first
studied by Luby and Nisan in [170]. Young presents an efficient parallel
algorithm for mixed covering and packing linear programs [241]. Both algo-
rithms are parallel (as opposed to distributed) in the sense that they require
global knowledge about the system’s state. In [193], Papadimitriou and Yan-
nakakis were the first to study the approximability of a packing linear pro-
gram in complete absence of any global knowledge, thus initiating the field
of distributed approximation. The first algorithm with guaranteed constant
approximation in polylogarithmic time was given by Bartal, Byers, and Raz
in [31]. In particular, the algorithm of [31] computes a (1+ ε)-approximation
in time O(log2(γm) log(γmn/ε)/ε3), where γ := amax/amin is the ratio be-
tween the largest and the smallest coefficient in the linear program. Unlike

5.3. FACILITY LOCATION 33

our parameterized, constant-time algorithms in Chapter 6, however, the algo-
rithm of [31] explores the trade-off between the approximation guarantee and
the required locality only partially. In particular, the algorithm has a time
complexity of O(log2(γm)) regardless of the achieved approximation ratio.

In addition to these generic algorithms for general covering and pack-
ing linear programs, there are several distributed approximation algorithms
for specific optimization problems that fall into the covering/packing cate-
gory. In Section 5.1, we have already reviewed the relevant literature on the
distributed approximation of the minimum dominating set problem. For the
maximum matching problem, the probabilistic distributed maximal matching
algorithms of [9, 129, 169] provide 2-approximations for MM in time O(log n).
Interestingly, the same approximation guarantee can also be obtained deter-
ministically in polylogarithmic time (see Section 5.4) [119, 120]. Also, it was
shown that a 1.5 approximation to the maximum matching problem can be
computed deterministically in time O(log4n) [64]. Finally, a 5-approximation
to the weighted maximum matching problem in time O(log2n) was presented
in [230].

Intuitively, a simple covering problem such as MVC appears to be ideally
suited for local computation. In particular, a node should be able to decide
whether or not to join the vertex cover by communicating with its neighbors
a few times; information about nodes that are very distant appears to have
little impact on this decision. Interestingly, as we will shown in Chapter 7,
this intuition is misleading and even such a pronounced and seemingly sim-
ple local problems such as MVC cannot be approximated well in a constant
number of communication rounds. In other words, we present hardness of
distributed approximation lower bounds for MVC and related problems that
hold even in the LOCAL model. This lower bounds the inherent amount of
locality (or topological information) needed by distributed decision makers
in order to achieve a good approximation to even a simple problem such as
MVC.

Section 6.1 presents a distributed algorithm for MVC and for the frac-
tional MM problem. An extended version of an algorithm for general cover-
ing and packing linear programs will be presented in Section 6.2. While the
MVC and MM algorithms are virtually optimal with regard to the achievable
trade-off between locality and approximation ratio, the general upper bound
of Section 6.2 is not too far from being optimal either.

5.3 Facility Location

There are important and interesting network coordination problems that
appear to have a local characteristic but cannot be captured as a covering
and packing pair of linear programs. One of the most studied problems in
operations research and the theory of approximation, the facility location
problem, is such a case. In the facility location problem, there is a set of
clients (a.k.a. cities or demands) and a set of possible server locations, called
facilities. Every client must be connected to a facility that serves the client’s
demand. Opening a facility i causes opening costs fi and connecting a client

34 CHAPTER 5. LOCAL NETWORK COORDINATION PROBLEMS

j to an opened facility i incurs connection costs cij . The goal is to open a
subset of the facilities and connect each client to an opened facility in such
a way that minimizes the sum of connection costs and opening costs.

The facility location problem captures a large variety of important ap-
plication scenarios. Traditionally, it has been used to model the problem of
finding the best geographic location for the construction of industrial facili-
ties or warehouses. While this classic application can be satisfactorily solved
by a centralized algorithm, there are numerous applications that explicitly
demand for distributed algorithms. Consider, for instance, the problem of
dynamically setting up servers or placing caches in the Internet for a certain
application. Setting up a server at a host in the Internet incurs overhead,
traffic, and maintenance costs at that particular host. On the other hand,
every client wishes to access its data from a server that is as close as possible
in order to minimize its delay. The resulting trade-off between the number
of servers to be installed and the propagation delay maps precisely to the
facility location problem.

Another example for a particularly distributed facility location problem
is found in battery powered wireless ad hoc and sensor networks. When
employing clustering techniques for the purpose of saving energy, the result-
ing trade-off follows along the same lines. It is desirable to have as few
cluster-leaders as possible since this in turn allows more nodes to go into
sleep mode (this part is equivalent to the MDS problem). However, having
few cluster-heads naturally increases the distance between clusterheads and
their associated nodes, which forces nodes to set their transmission power to
higher values in order to reach their clusterhead. Ideally, a clustering should
therefore consist of few clusterheads that are physically close to as many
non-leaders as possible.

In the sequel, we formalize a model for the local facility location prob-
lem that generalizes the minimum dominating set problem discussed in Sec-
tion 5.1. In this model, the facility location instance is represented by a
bipartite graph G = (C ∪ F,E). C and F denote the set of clients and fa-
cilities, respectively, and we write n = |C| and m = |F |. Each client and
facility has a distinct ID of size O(log n) bits. The non-negative opening costs
of facility vi ∈ F are denoted by fi. The connection costs between facility
vi ∈ F and client vj ∈ C are denoted by cij . Note that we do not assume the
connection costs cij to form a metric and a client can only be connected to a
neighboring facility in the graph, i.e., the connection cost cij is only specified
for vj ∈ C and vi ∈ F such that vi ∈ Γ(vj). Also, cij may be infinitely large.
As for notation, we write F (vj) to denote the set of neighboring facilities
of client vj , and C(vi) to denote the set of neighboring clients of facility vi.
With these definitions, we can define the local facility location problem as
follows.

Definition 5.4 (Facility Location Problem (FL)). Given a bipartite
graph G = (F ∪ C,E), where F and C are the sets of facilities and clients,
respectively. The problem is to find a subset I ⊆ F of facilities that should be
opened, and a function φ : C → I assigning clients to open facilities in such
a way that the sum of the opening costs and connection costs are minimized.

5.3. FACILITY LOCATION 35

The facility location can be described as an integer linear program ILPF L

due to Balinski [26], in which yi indicates whether facility vi is opened, and
xij indicates if client vj is connected to the open facility vi.

min
∑

vi∈F

fiyi +
∑

vi∈F

∑

vj∈C

cijxij

∑

vi∈F (vj)

xij ≥ 1 , ∀vj ∈ C

yi − xij ≥ 0 , ∀vj ∈ C, vi ∈ F

xij , yi ∈ {0, 1} , ∀vj ∈ C, vi ∈ F.

The first constraint ensures that each client vj ∈ C is assigned to some
neighboring facility vi ∈ F (vj). The second constraint guarantees that a
client vj can be assigned only to an open facility vi. As usual, we obtain
the LP-relaxation—denoted by LPF L—by relaxing the integer constraints to
yi ≥ 0 and xij ≥ 0. The relaxed dual program (DLPF L) is:

max
∑

vj∈C

αj

αj − βij ≤ cij , ∀vj ∈ C, vi ∈ F (vj)∑

vj∈C(vi)

βij ≤ fi , ∀vi ∈ F

αj , βij ≥ 0 , ∀vj ∈ C, vi ∈ F.

Notice that this primal and dual pair of LPs have negative coefficients and
do not form a covering-packing pair. Further, observe that this formulation
of the facility location problem directly generalizes the minimum dominating
set (MDS) problem of Section 5.1. Consider an instance of the MDS problem
on graph G = (V,E). For every node u ∈ V , define a facility vu

i and a client
vu

j . Now, connect every client vu
j to a facility vw

i if and only if w ∈ Γ(u) in
the original graph G. When we now define all facility costs to be 1 and all
connection costs as 0, the resulting facility location instance is identical to
the original MDS instance. Hence, all results on the local approximability of
FL in Chapter 6 (Sections 6.2 and 6.3, in particular) directly carry over to
the (weighted) MDS problem as well.

Related Work

Its wide applicability and appealing simplicity have rendered the uncapaci-
tated facility location problem one of the most well-studied optimization prob-
lems in the literature [26, 61, 125]. It has not only occupied a central place
in operations research, but has recently attracted a lot of attention from the
perspective of approximation theory [118, 130, 132, 144, 212].

For the general non-metric case, Hochbaum [125] showed that the greedy
algorithm is an O(log n) approximation. Set cover being a special case of

36 CHAPTER 5. LOCAL NETWORK COORDINATION PROBLEMS

facility location, this is asymptotically optimal unless it holds that NP ⊆
DTIME(nO(log log n)) [87, 171]. The filtering technique introduced by Lin
and Vitter [165] yields another O(log n) approximation algorithm. In the
metric facility location problem, it is assumed that the connection costs obey
the triangle inequality. In that case, the problem remains NP-hard, but
constant approximations become possible. The first algorithm achieving a
constant approximation ratio was given in [212]. Ever since, a flurry of
research activity has lead to various improvements. Also, numerous variants
of facility location have been studied, e.g. [118, 220].

Considering the vast literature on the facility location problem, surpris-
ingly little is known about the important distributed case. In a seminal paper,
Jain and Vazirani [132] claim that their primal-dual algorithm for the metric
case of the facility location problem was also suitable in a distributed setting.
However, this is only the case if either the instance is a complete-bipartite
graph and message-size is unbounded, or the algorithm’s time-complexity de-
pends on the size of the problem instance. That is, there is no straightforward
distributed implementation of their primal-dual algorithm when restricting
the number of communication rounds to an arbitrary constant.

As described in Section 5.2, there have been proposals for approximating
covering and packing problems in parallel or in distributed settings. To the
best of our knowledge, however, there have so far been no specific results on
the distributed approximability of any non-covering or non-packing problem.
The results in Sections 6.2 and 6.3 thus push the boundaries of distributed
LP approximation.

5.4 MIS and other Exact Problems

So far, we have presented combinatorial optimization problems that appear
to be “local” in nature. Of particular importance in the context of local
computation are certain exact combinatorial problems, and specifically the
the maximal independent set (MIS) problem.

Definition 5.5 (Maximal Independent Set (MIS)). Given a graph G =
(V,E). An independent set is a subset of pair-wise non-adjacent nodes in G.
A maximal independent set in G is an independent set S ⊆ V such that for
every node u /∈ S, there is a node v ∈ Γ(u) in S.

On the one hand, the distributed computing community’s interest in the
MIS problem stems from its practical importance in various application set-
tings. Specifically, in a network graph consisting of nodes representing pro-
cessors, an MIS defines a set of processors which can operate in parallel
without interference. In wireless ad hoc and sensor networks, for instance,
clusterings induced by an MIS have been shown to exhibit particularly de-
sirable properties [11]. Beyond its practical importance, however, the MIS
problem is also of outstanding theoretical interest, because it prototypically
captures the notion of symmetry breaking—one of the central aspects in dis-
tributed computing—in a simple, well-defined way. What does symmetry

5.4. MIS AND OTHER EXACT PROBLEMS 37

breaking mean? Clearly, it is trivial to select an MIS in a graph by a se-
quential algorithm with running time O(n): Greedily pick one node after the
other and discard all adjacent nodes of the picked node. While computing
an MIS therefore poses no challenge for any centralized algorithm, doing the
same in a distributed local way is much harder. The reason is that symme-
tries between nodes must be broken, i.e., of neighboring nodes that appear
to be equally qualified to join the MIS, exactly one must be selected.

One way to break symmetries is the use of randomization. And indeed,
the fastest known distributed MIS algorithms are elegant probabilistic algo-
rithms with an expected running time of O(log n) [9, 169]. Although orig-
inally proposed for the parallel PRAM model, the algorithms can directly
be adapted to both the LOCAL and CONGEST models. This shows that
in order to compute an MIS, distributed decision makers need to known at
most about their O(log n)-local neighborhood.

Breaking symmetries deterministically appears to be intrinsically more
difficult. For instance, if nodes do not have unique identifiers, it is easy to
see that there exists no distributed deterministic algorithm for selecting an
MIS, even in a graph consisting of only two nodes. But even if every node
has a unique identifier, the problem remains hard. Consider, for instance, the
straightforward distributed implementation of the sequential MIS algorithm
which works as follows: Every node joins the MIS if it has the smallest ID
among its neighbors and if none of its neighbors has already joined the MIS.
Unfortunately, this algorithm can result in an entirely sequential execution
and linear running time because there may be only a single point of activity
at any time.

Interestingly, there exist deterministic distributed algorithms that greatly
outperform the aforementioned simple distributed implementation of the
greedy algorithm [21, 189]. However, even the fastest currently known so-
lutions fall short of achieving a polylogarithmic time complexity. In fact,
the question whether there exists a deterministic distributed algorithm for
computing an MIS in general graphs remains one of the well-known open
problems in distributed computing [166, 196]. The picture looks different
when considering special classes of graphs. On a ring, a rooted tree, or a
constant-degree graph, an MIS can be computed in time O(log∗n) [58, 108].
These algorithms are asymptotically optimal due to a corresponding lower
bound of Ω(log∗n) for computing an MIS in a ring.

In this thesis, we prove that the complexity of computing an MIS strongly
depends on the structural complexity of the underlying graph. In Chapter 7,
we prove that in order to solve the MIS problem in general graphs, every
node needs to know at least about its Ω(

√
log n/ log log n) neighborhood,

which implies a corresponding time lower bound for any distributed algo-
rithm. On the other hand, we show in Chapter 8 that the problem can
be solved much more efficiently in vast and practically important classes of
graphs (so-called graphs with bounded independence and unit ball graphs in
which the underlying metric space is doubling). In particular, the problem
can be solved deterministically in time O(∆ log∗n) (if distances are known to
the nodes even in O(log∗n)) in such graphs. In combination with the above

38 CHAPTER 5. LOCAL NETWORK COORDINATION PROBLEMS

lower bound on general graphs, this establishes a separation result that de-
scribes the relative complexity of the underlying graph model with regard to
local computability.

In close relation to an MIS is the maximal matching problem1, which is a
matching (i.e., a set of edges that do not share a common end-point) that is
maximal with regard to inclusion.

Definition 5.6 (Maximal Matching). Given a graph G = (V,E). A
maximal matching in G is a set of non-adjacent edges M ⊆ E such that all
edges in E \M have at least one common end-point with an edge in M .

In contrast to the MIS problem, distributed deterministic algorithms with
polylogarithmic running time are known for the maximal matching problem.
Such algorithms were given by Hańćkoviak, Karoński, and Panconesi in [119,
120].

5.5 Network Decompositions and other Locality-

preserving Structures

With all the different local optimization and exact problems presented in
the previous sections, the question is whether there exists some uniting, un-
derlying structural property that captures the essential local nature of these
problems. Ideally, there exists a problem-independent method for decompos-
ing a global problem into (globally consistent) locally solvable sub-problems,
such that the global solution could be obtained by simply combining the local
solutions. One type of network representation that often allows to do exactly
this is the concept of network decompositions. The idea is to decompose the
graph into clusters of small diameter, in which local sub-problems can be
efficiently solved in a distributed way. Formally, network decompositions are
defined as follows [21].

Definition 5.7 (Network Decomposition). Given a graph G = (V,E).
A (d, c)-decomposition is a partition S of G into clusters of diameter at most
d such that the cluster graph obtained by contracting each cluster into a single
node can be colored using c colors.

The corresponding notion of a weak network decomposition is defined
analogously with the only difference that only the clusters’ weak diameter is
bounded by d.

In order to exemplify the usefulness of network decompositions for lo-
cal distributed computing, consider the distributed computation of an MIS.
Given a (d, c)-decomposition, an MIS can be computed as follows. The pro-
tocol works in c phases. In the first phase, all clusters with color 1 select
an MIS within the cluster and add these nodes to the global MIS. In the

1The maximal matching problem is not to be confused with the maximum matching

(MM) problem defined in Section 5.2. While MM represents an optimization problem,
the maximal matching problem is an exact problem that can trivially be computed by
sequential algorithms.

5.5. NETWORK DECOMPOSITIONS 39

i’th phase, each cluster with color i computes an MIS within the cluster and
adds all those nodes to the global MIS which do not conflict with an MIS
node selected by a previously considered cluster. Because the diameter of
each cluster is at most d and because clusters with the same color do not
have a common edge (and are therefore not interfering), each phase can be
computed in O(d) time. Given a (d, c)-decomposition, it is therefore possible
to compute an MIS in time O(c·d). In a similar way, network decompositions
are useful building blocks for solving a variety of other distributed problems
ranging from distributed coloring [21] and network synchronization [17] to
the computation of sparse spanners [69].

The notion of network decomposition was introduced by Awerbuch, Gold-
berg, Luby, and Plotkin in [21]. Specifically, [21] proposes a determinis-
tic distributed algorithm for computing a (nε, nε)-decomposition in time

O(nε), where ε ∈ O(
√

log log n/ log n). This result was later improved to

ε ∈ O(
√

1/ log n) by Panconesi and Srinivasan in [189]. This network de-
composition algorithm in combination with the above scheme for computing
an MIS is currently the fastest known deterministic distributed algorithm for
computing an MIS in general graphs. Using a proof technique by Awerbuch
and Peleg [23], Linial and Saks showed in [167] that every graph G = (V,E)

admits an (O(k), O(kn1/k))-decomposition, which can be found by a sequen-
tial algorithm. In particular, this implies that every graph can be decom-
posed in an (O(log n), O(log n))-decomposition. In addition to this existen-
tial result, [167] presents a beautiful randomized distributed algorithm that
computes a weak network decomposition that essentially matches the opti-
mal bounds. As for deterministic algorithms, Awerbuch, Berger, Cowen, and
Peleg show in [20] how to improve the decomposition in [189] and get an

(O(log n), O(log n))-decomposition deterministically in time O(nO(
√

1/ log n))
and probabilistically (in combination with [167]) in polylogarithmic time.
Finally, an efficient parallel decomposition algorithm was studied in [19].

In a larger context, network decompositions can be regarded as an ex-
ample of locality-preserving network representations, i.e., network represen-
tations whose structure succinctly capture certain aspects of the network
topology. In his book on locality-sensitive distributed computing, [196], Pe-
leg motivates the use of such methods in distributed computing and describes
several locality-preserving representations in detail. Typically, the idea is to
decompose the network graph into small-diameter regions that satisfy cer-
tain desirable properties, such as low overlap or sparseness. Besides network
decompositions, the most important notions of cluster-based representations
are covers and partitions, defined by Awerbuch and Peleg in [17, 23, 194].
Sparse covers and partitions have found countless applications in distributed
computing, including for instance network synchronization [17], distributed
directories [195], compact routing [4, 24], or the computation of spanners [69].
Representing networks using succinct cluster-based representations such as
covers and partitions has found application even beyond distributed comput-
ing, including approximation theory and online algorithms. For an overview
over many of these results, we refer the reader to Peleg’s book [196].

In this thesis, we consider network decompositions in two contexts. First,

40 CHAPTER 5. LOCAL NETWORK COORDINATION PROBLEMS

we use the decomposition algorithm of [167] to obtain efficient local approx-
imation algorithms for combinatorial optimization problems in Chapter 6.2.
In Chapter 8, we then show that a large family of practically important
graphs allows for an (O(1), O(1))-decomposition which can be computed ef-
ficiently even deterministically.

Chapter 6

Local Computation: Upper

Bounds

The chapter begins with an upper bound on the most basic covering problem,
the minimum vertex cover problem, in Section 6.1. Interestingly, the MVC
problem is simple enough to allow deterministic solutions that are as effi-
cient as randomized ones. Our deterministic algorithm in combination with
the corresponding lower bound on possibly randomized algorithms in Chap-
ter 7 shows that from the point of view of locality, approximating ILPMV C

and its fractional version LPMV C are equally hard. Unfortunately, more so-
phisticated covering and packing problems do not exhibit the same desirable
characteristic, because problems such as MDS or facility location—besides
locality—pose the additional challenge of symmetry breaking.

As noted in Sections 5.4 and 5.5, symmetry breaking is one of the main
challenges in devising local distributed algorithms. Consider for instance the
MDS problem on a regular graph. Because every node has the same degree,
every node appears to be equally qualified to join the dominating set, but in
order to maintain a good approximation ratio only a few nodes are actually
allowed to join. In a sequential greedy algorithm, the problem is easily solved
by picking “good” (cost-efficient) nodes consecutively and updating the re-
maining node set accordingly. In a local distributed algorithms, on the other
hand, nodes cannot employ such an iterative selection procedure and must
decide locally (within a few communication rounds) which of these nodes can
join.

One way to break symmetries is to employ randomization, and indeed,
some of the fastest known distributed solutions use randomization, e.g. [134].
Another important tool for dealing with symmetry breaking problems in lo-
cal algorithms, however, is LP relaxation. Intuitively, the idea is to avoid
breaking the symmetry between equally qualified nodes (for example in the
aforementioned MDS example) and instead, let each of these nodes join the
dominating set fractionally. Technically, the algorithm is divided into two

42 CHAPTER 6. LOCAL COMPUTATION: UPPER BOUNDS

phases. In the first phase, nodes employ a deterministic (or potentially prob-
abilistic) algorithm to solve the linear program relaxation of the combinato-
rial optimization problem at hand. In the second phase, nodes interpret
their fractional values as probabilities and employ a distributed randomized
rounding scheme to achieve a feasible integer solution to the original prob-
lem. For example, instead of solving MDS or facility location directly, nodes
first compute local approximations to the fractional versions of MDS and FL
only.

The underlying reason for employing such a two-phase algorithm is that
this technique allows to separate the two fundamental challenges arising when
devising distributed, local algorithms: locality and symmetry breaking. The
locality nature of problems such as MDS or facility location are captured in
their relaxed, fractional LP representation. But, whereas the integer prob-
lems of MDS and FL contain the additional complexity of symmetry break-
ing, these problem’s fractional versions purely represent their locality. In
other words, locally approximating the LP relaxation allows to capture the
underlying combinatorial structure of the problem without the additional
difficulty of symmetry breaking, which is completely postponed to the final
phase. As it turns out, this scheme has the additional advantage that it al-
lows to establish a complete trade-off between the number of communication
rounds k (or in other words, the amount of local knowledge available to the
distributed decision makers) and the resulting global approximation ratio,
for all integers k > 0. This yields non-trivial approximation guarantees even
in a constant number of communication rounds.

For the local optimization problems discussed in Chapter 5, distributed
randomized rounding can be performed in a constant number of communi-
cation rounds without incurring too great a loss in approximation quality.
The more interesting part when devising local approximation algorithms is
therefore to locally approximate the LP relaxation in order to achieve a
locality-approximation trade-off for the fractional versions of the problems.

As we have seen in Section 5.5, network decomposition is a fundamental
tool for solving various distributed tasks in the LOCAL model. In Section 6.2,
we show how—based on an efficient network decomposition algorithm by
Linial and Saks [167]—the fractional versions of general covering and packing
problems, and even the facility location problem can be approximated locally.
In particular, we show that for arbitrary integers k, the fractional facility
location problem can be approximated within a factor of O(m1/k) in time
O(k) in the LOCAL model.

Unfortunately, this result heavily uses the fact that every node v can col-
lect its entire k-hop neighborhood Γk(v) in the LOCAL model. Therefore,
the scheme cannot easily be implemented in the CONGEST model with lim-
ited bandwidth and therefore, we propose an approach with a different flavor
for this model. In the sequential, centralized case, most of the local problems
discussed in Chapter 5 have simple greedy algorithms that achieve asymptot-
ically optimal approximation guarantees. The idea for obtaining distributed
approximation algorithms in the CONGEST model is therefore to implement
an efficient version of a distributed greedy algorithm. This algorithm, as well

6.1. DISTRIBUTED MINIMUM VERTEX COVER APPROXIMATION43

as a discussion of the difficulties arising in the parallelization of greedy algo-
rithms is given in Section 6.3. Naturally, the time-approximation trade-off
achieved by this algorithm is somewhat worse as compared to the algorithm
for the LOCAL model.

Finally, we are not only interested in achieving solutions to fractional
problems, but we also want to end up obtaining feasible solutions to the
original (integer) optimization problems. For this purpose, we present a
distributed randomized rounding procedure for the facility location problem
in Section 6.4. In combination with the local approximation algorithms for
the fractional facility location problem in Sections 6.2 and 6.3, the distributed
randomized rounding step produces local algorithms for the facility location
problem.

6.1 Minimum Vertex Cover: A Simple

Distributed Approximation Algorithm

The MVC problem appears to be an ideal starting point for studying the
power of local approximation algorithms. In particular, MVC does not in-
volve the aspect of symmetry breaking which is so crucial in more complex
combinatorial problems: A fractional solution to LPMV C can be turned into
an integer solution to MVC by rounding up all nodes with a fractional value
at least 1/2. This increases the approximation ratio by at most a factor of 2.
Moreover, any maximal matching is a 2-approximation for MVC and hence,
the randomized parallel algorithm for maximal matching by Israeli et al. pro-
vides a 2-approximation in time O(log n) with high probability [129]. This
indicates that the amount of locality required in order to achieve a constant
approximation for MVC is bounded by O(log n). In this section, we present
a simple distributed algorithm that places an upper bound on the achievable
trade-off between time-complexity and approximation ratio for the minimum
vertex cover problem.

Specifically, the algorithm comes with a parameter k, which can be any in-
teger larger than 0. The algorithm’s time complexity—and hence its locality—
is O(k) and its approximation ratio depends inversely on k. The larger k,
the better the achieved global approximation.

Algorithm 6.1 simultaneously approximates both MVC and its dual prob-
lem, the fractional maximum matching problem LPMM . Let Ei denote the
set of incident edges of node vi. The idea is to compute a feasible solution
for minimum vertex cover (MVC) and while doing so, distribute dual values
yj among the incident edges of each node. Each node vi that joins the vertex
cover S sets its xi to 1 and subsequently, the sum of the dual values yj of
incident edges ej ∈ Ei is increased by 1 as well. Hence, at the end of each
iteration of the main loop, the invariant

∑
vi∈V xi =

∑
ej∈E yj holds. We

will show that for all nodes vi,
∑

ej∈Ei
yj ≤ α for α = 3 + ∆1/k and that

consequently, dividing all yj by α yields a feasible solution for LPMM . By
LP duality, α is an upper bound on the approximation ratio for FMM and
MVC. We call an edge covered if at least one of its endpoints has joined the

44 CHAPTER 6. LOCAL COMPUTATION: UPPER BOUNDS

Code executed by node vi ∈ V
1: xi := 0; ∀ej ∈ Ei : yj := 0;
2: for ` := k − 1 to 0 by −1 do
3: δ̃i := |{uncovered edges e ∈ Ei}| = |Ẽi|;
4: δ̃

(1)
i := maxi′∈Γ(vi) δ̃i′ ;

5: if δ̃i ≥ (δ̃
(1)
i)`/(`+1) then

6: xi := 1;
7: ∀ej ∈ Ẽi : yj := yj + 1/δ̃i;
8: end if
9: Yi :=

∑
ej∈Ei

yj ;

10: if (xi = 0) and (Yi ≥ 1) then
11: xi := 1;
12: ∀ej ∈ Ei : yj := yj · (1 + 1/Yi);
13: end if
14: end for
15: Yi :=

∑
ej∈Ei

yj ;

16: ∀ej = (vi, vi′) ∈ Ei : yj := yj/max{Yi, Yi′};
Algorithm 6.1: MVC-FMM-Algorithm

vertex cover. The set of uncovered edges incident to a node vi is denoted by
Ẽi, and we define node vi’s dynamic degree to be δ̃i := |Ẽi|. The maximum

dynamic degree δ̃i′ among all neighbors vi′ of vi is denoted by δ̃
(1)
i .

In the algorithm, a node joins the vertex cover if it has a large dynamic
degree—i.e., many uncovered incident edges—relative to its neighbors. In
this sense, it is a faithful distributed implementation of the natural sequential
greedy algorithm. Because the running time is limited to k communication
rounds, however, the greedy selection step must inherently be parallelized,
even at the cost of sub-optimal decisions.

The following lemma bounds the resulting decrease of the maximal dy-
namic degree in the network.

Lemma 6.1. At the beginning of each iteration, it holds that δ̃i ≤ ∆(`+1)/k

for every vi ∈ V .

Proof. The proof is by induction over the main loop’s iterations. For ` =
k− 1, the lemma follows from the definition of ∆. For subsequent iterations,
we show that all nodes having δ̃i ≥ ∆`/k set xi := 1 in Line 6. In the

algorithm, all nodes with δ̃i ≥ (δ̃
(1)
i)`/(`+1) set xi := 1. Hence, we have to

show that for all vi, (δ̃
(1)
i)`/(`+1) ≤ ∆`/k. By the induction hypothesis, we

know that δ̃i ≤ ∆(`+1)/k at the beginning of the loop. Since δ̃
(1)
i represents

the dynamic degree δ̃i′ of some node vi′ ∈ Γ(vi), it holds that δ̃
(1)
i ≤ ∆(`+1)/k

for every such vi and the claim follows because (δ̃
(1)
i)`/(`+1) ≤ ∆

`+1
k

· `
`+1 .

6.1. DISTRIBUTED MINIMUM VERTEX COVER APPROXIMATION45

The next lemma bounds the sum of dual y values in Ei for an arbitrary
node vi ∈ V . For that purpose, we define Yi :=

∑
ej∈Ei

yj .

Lemma 6.2. At the end of the algorithm, for all nodes vi ∈ V ,

Yi =
∑

ej∈Ei

yj ≤ 3 + ∆1/k.

Proof. Let Φh denote the iteration in which ` = h. We distinguish three
cases, depending on whether (or in which line) a node vi joins the vertex
cover. First, consider a node vi which does not join the vertex cover. Until
Φ0, it holds that Yi < 1 since otherwise, vi would have set xi := 1 in Line 11
of a previous iteration. In Φ0, it must hold that δ̃i = 0 because all nodes
with δ̃i ≥ 1 set xi := 1 in the last iteration. That is, all adjacent nodes vi′ of
vi have set xi′ := 1 before the last iteration and Yi does not change anymore.
Hence, Yi < 1 for nodes which do not belong to the vertex cover constructed
by the algorithm.

Next, consider a node vi that joins the vertex cover in Line 6 of an arbi-
trary iteration Φ`. With the same argument as above, we know that Yi < 1
at the beginning of Φ`. When vi sets xi := 1, Yi increases by one. In the
same iteration, however, neighboring nodes vi′ ∈ Γ(vi) may also join the ver-
tex cover and thereby further increase Yi. By the condition in Line 5, those

nodes have a dynamic degree at least δ̃i′ ≥ (δ̃
(1)

i′
)`/(`+1) ≥ δ̃

`/(`+1)
i . Further,

it holds by Lemma 6.1 that δ̃i ≤ ∆(`+1)/k and therefore

δ̃i · 1

δ̃i′
≤ δ̃i

δ̃
`/(`+1)
i

= δ̃
1/(`+1)
i ≤ ∆1/k.

Thus, edges that are simultaneously covered by neighboring nodes may entail
an additional increase of Yi by ∆1/k. Together with vi’s own cost of 1 when
joining the vertex cover, the total increase of Yi in Line 7 of Φ` is then at
most 1+∆1/k. In Line 7, dual values are distributed among uncovered edges
only. Therefore, the only way Yi can increase in subsequent iterations is
when neighboring nodes xi′ set xi′ := 1 in Line 11. The sum of the yj of
all those edges covered only by vi (note that only these edges are eligible
to be increased in this way) is at most 1. In Line 12, these yj can be at

most doubled. Putting everything together, we have Yi ≤ 3+∆1/k for nodes
joining the vertex cover in Line 6.

Finally, we study nodes vi that join the vertex cover in Line 11 of some
iteration Φ`. Again, it holds that Yi < 1 at the outset of Φ`. Further, using
an analogous argument as above, Yi is increased by at most ∆1/k due to
neighboring nodes joining the vertex cover in Line 6 of Φ`. Through the
joining of vi, Yi further increases by no more than 1. Because the yj are
increased proportionally, no further increase of Yi is possible. Thus, in this
case we have Yi ≤ 2 + ∆1/k.

Based on the bound obtained in Lemma 6.2, the main theorem follows
from LP duality.

46 CHAPTER 6. LOCAL COMPUTATION: UPPER BOUNDS

Theorem 6.3. In k rounds of communication, Algorithm 6.1 achieves an
approximation ratio of O(∆1/k) even in the CONGEST model. The algo-
rithm is deterministic and requires O(log ∆) and O(log ∆/ log log ∆) rounds
for a constant and polylogarithmic approximation, respectively.

Proof. We first prove that the algorithm computes feasible solutions for MVC
and fractional maximum matching. For MVC, this is clear because in the
last iteration, all nodes having δ̃i ≥ 1 set xi := 1. The dual y-values form a
feasible solution because in Line 16, the yj of each edge ej is divided by the
larger of the Yi of the two incident nodes corresponding to ej , and hence, the
constraint of LPMM is guaranteed to be satisfied. The algorithm’s running
time is O(k), because every iteration can be implemented with a constant
number of communication rounds even in the CONGEST model. As for the
approximation ratio, it follows from Lemma 6.2 that each yj is divided by at

most α = 3 + ∆1/k and therefore, the objective functions of the primal and
the dual problem differ by at most a factor α. By LP duality, α is a bound
on the approximation ratio for both problems. Finally, setting k1 = β log ∆
and k2 = β log ∆/ log log ∆ for an appropriate constant β leads to a constant
and polylogarithmic approximation ratio, respectively.

The reason why Algorithm 6.1 does not achieve a constant or polyloga-
rithmic approximation ratio in a constant number of communication rounds
is that it “discretizes” the greedy step. Whereas the sequential greedy al-
gorithm would select a single node with maximum dynamic degree in each
step, a k-local distributed algorithm must inherently take many such deci-
sions in parallel. This discrepancy between Algorithm 6.1 and the simple
sequential greedy algorithm can be seen even in simple networks. Consider
for instance the network induced by the complete bipartite graph Km,

√
m.

When running the algorithm with parameter k = 2, it holds for every node

vi that δ̃i ≥ (δ̃
(1)
i)`/(`+1) in the first iteration (` = 1) of the loop. Hence,

every node will join the vertex cover, resulting in a cover of cardinality
m+

√
m. The optimal solution being

√
m, the resulting approximation factor

is
√
m+ 1 = ∆1/2 + 1.

Intuitively, it seems plausible that better distributed approximation algo-
rithms than Algorithm 6.1 exist. After all, MVC appears to be a particularly
local problem and distant nodes do not seem to influence a node’s decision.
As we prove in Chapter 7, however, the trade-off achieved by Algorithm 6.1
is essentially optimal for any (possibly randomized) distributed algorithm.
Hence, there exists no distributed approximation algorithm with significantly
better (asymptotic) guarantees, and the amount of locality required by Algo-
rithm 6.1 to solve MVC (as well as fractional maximum matching) is inherent.

Algorithm 6.1 is deterministic and computes a valid solution for ILPMV C ,
not only for its fractional version. As argued in Section 5.4, one of the ma-
jor challenges arising in the design of distributed (and particularly local)
algorithms is to efficiently break symmetries. Breaking these symmetries
in a deterministic way has proven to be particularly difficult and there are

6.2. FACILITY LOCATION APPROXIMATION: LOCAL MODEL 47

currently no deterministic, polylogarithmic distributed algorithms for char-
acteristic symmetry breaking problems such as MIS or network decomposi-
tion. In this context, it is interesting to note that because of its particularly
simple combinatorial structure, MVC allows for efficient (polylogarithmic)
deterministic distributed algorithms.

6.2 Facility Location: Distributed

Approximation in the LOCAL Model

In the previous section, we have seen how simple covering and packing prob-
lems can be approximated in a local, distributed fashion. The question is,
whether a similar approach may be used for approximating other problems
as well. Unfortunately, it appears that achieving non-trivial approximation
guarantees for more general covering and packing problems (such as MDS, for
instance) or the facility location problem requires more sophisticated tech-
niques.

As argued in Section 5.5, network decompositions are fundamental to
computation in the LOCAL model in the sense that they can be applied to
obtain fast algorithms for a large class of problems. And indeed, network de-
compositions can be employed as a building block for locally approximating
a wide range of combinatorial optimization problems, including general cov-
ering and packing problems, or even the facility location problem. In [167],
Linial and Saks presented a randomized distributed algorithm to decompose
a graph into sub-graphs of limited diameter. We use their algorithm to de-
compose the linear program into sub-programs which can be solved locally
in the LOCAL model. In [150], we have shown how to use this technique for
solving the fractional version of general covering and packing problems. In
this section, we apply the method to the even more general facility location
problem, which—as shown in Section 5.3—does not form a covering LP.

Intuitively, the output of a single iteration of the algorithm in [167] con-
sists of connected components of G with the following properties.

1. Different components are far enough from each other such that a local
linear program for each component can be defined in a way in which
the LPs of any two components do not interfere.

2. Each node belongs to one of the components with probability at least
p, where p depends on the diameter the components are allowed to
have.

Because of the limited diameter, the LPs of each component can then be
computed locally. We then apply the decomposition process in parallel to
ensure that with high probability each client is connected to an opened facility
a logarithmic number of times.

More specifically, the algorithm by Linial and Saks [167] iteratively con-
structs the network decomposition one color-class at a time. For each such
color class and for parameters B and p, the algorithm yields a subset S ⊂ V

48 CHAPTER 6. LOCAL COMPUTATION: UPPER BOUNDS

of the nodes, such that each node v ∈ S has a leader C(v) ∈ V and the
following properties hold:

1. ∀u ∈ S : d(u,C(u)) < B

2. S forms a 2-separated partial partition [196]. That is, it holds for any
pair of nodes u, v ∈ S with C(u) 6= C(v) that d(u, v) ≥ 2.

3. ∀u ∈ V : Pr[u ∈ S] ≥ p(1 − pB)n.

Further, the running time required for computing S is B. In Algorithm 6.2,
we apply the above scheme many times in parallel to an auxiliary graph
G = (V, E), setting B := k and p := 1/m1/k. The solution S` constructed in
every such independent instance ` of the decomposition features the following
properties.

i) ∀u ∈ S` : d(u,C(u)) < k

ii) ∀u, v ∈ S` : C(u) 6= C(v) −→ (u, v) 6∈ E .

iii) ∀u ∈ V : Pr[u ∈ S`] ≥ 1

em1/k .

iv) S` can be computed in k communication rounds.

Let G = (V,E) be the bipartite facility location graph consisting of nodes
V = (C ∪ F) and consider the linear program relaxation LPF L and its dual
DLPF L as defined in Section 5.3. When specifically distinguishing client and
facility nodes, we use the notation vj and vi, respectively, and recall that
n := |C| and m := |F |. For the decomposition obtained in the algorithm,
we define local linear programs LP `

F L and DLP `
F L which are induced by all

facilities and clients that have the same leader. In the sequel, we call the set
of facility and client nodes with the same leader to be an LP-component.

Let R ∈ V be an LP-component of nodes with the property that all
border-nodes of R (i.e., all nodes v ∈ R for which Γ(v) ∩ (V \ R) 6= ∅) are
facilities. Let OPT be the objective value of the optimal solution to the
facility location problem LPF L. The following lemma captures a straightfor-
ward relation between the LPs induced by R and the original LPs LPF L and
DLPF L.

Lemma 6.4. In the optimal solution to the LP induced by R, every client
vj ∈ R ∩ C is connected to an open facility vi ∈ R ∩ F . Furthermore, the
dual solution is feasible for DLP `

F L, i.e.,

∀vi ∈ R :
∑

vj∈Γ(vi)

βij ≤ fi

∀vj ∈ R, vi ∈ Γ(vj) : αj − βij ≤ cij .

Finally, it holds that the objective value of the problem induced by R is at
most OPT , formally,

∑
vi∈R fiyi +

∑
vi∈R

∑
vj∈R cijxij ≤ OPT .

6.2. FACILITY LOCATION APPROXIMATION: LOCAL MODEL 49

wiv’iiC(v) C(w)iv

v

i

j

Figure 6.1: A possible outcome of the decomposition algorithm. Facilities
and clients are represented as triangles and circles, respectively. Shaded
facilities in the solid black rectangle have been selected to be in S` by the
decomposition algorithm. Nodes in the dashed rectangle are added to S` by
Algorithm 6.2 and represent LP-components. Notice that no node occurs in
a constraint of more than one LP-component.

Proof. The first claim is clear from the definition of the LP induced by R.
The dual feasibility and the upper bound on the objective value follow from
the fact that every border node of R is a facility. That is, every client in R
has all its neighboring facilities also in R. Hence, a feasible dual solution for
the LP induced by R must also be feasible for LPF L. Moreover, the optimal
solution for LPF L must connect every client in R to facilities in R and the
objective value for the LP induced by R is therefore bounded by OPT .

We want to argue that the different LP-components constituting a set
S` of every parallel instance of the decomposition algorithm can be solved
completely independently from each other. Unfortunately, when running the
decomposition algorithm on the original graph G, this independence is not
guaranteed because, for instance, a facility can have neighboring clients in two
different LP-components. In order to achieve the desired degree of separation
between LP-components, we let the nodes run the entire algorithm on the
auxiliary graph G = (V, E), whose node set is the set of facilities, V = F , and
there is an edge between two facilities if their distance in the original graph
is 6 or less,

E := {(vi, v
′
i)|vi, v

′
i ∈ V ∧ dG(vi, v

′
i) ≤ 6}.

By this, we can guarantee that non-adjacent facilities in G have at least
a distance of 8 hops in the original graph G. Further, a message over an
imaginary edge of G can be sent in 6 communication rounds on the network
graph G. In other words, executing the decomposition algorithm on G instead
of G increases the time complexity by at most a factor 6.

The algorithm now proceeds as shown in Algorithm 6.2. Each facility sim-
ulates N = 5em1/k ln(n + m) independent executions of the decomposition
algorithm on G in parallel. This is possible because in the LOCAL model,
message size is unbounded and the messages of the different instances can
be sent in a single message. If in such an instance, a facility vi is in S`,
all its neighboring clients vj ∈ Γ(vi) also join S`. Because we want all
border-nodes of LP-components to be facilities, all neighboring facilities of

50 CHAPTER 6. LOCAL COMPUTATION: UPPER BOUNDS

Code executed by node v ∈ V :
1: Run N = 5em1/k ln(n + m) instances of GRAPH DECOMP on G in

parallel;
2: if v = vj ∈ C then
3: For each facility i ∈ Γ(vj) do xij := (

∑
`:vj∈S` x

`
ij)/ ln(n+m);

4: else if v = vi ∈ F then
5: yi := (

∑
`:vi∈S` y

`
i)/ ln(n+m);

6: end if ;

Procedure GRAPH DECOMP
1: Run graph decomposition of [167] on G with B := k and p := 1/m1/k;

2: if vj ∈ C and some neighboring facility vi ∈ Γ(vj) is in S` then
3: vj joins S` with C(vj) := C(vi);
4: end if ;
5: if vi ∈ F \ S` and some neighboring client vj ∈ Γ(vi) is in S` then
6: vi joins S` with C(vi) := C(vj);.
7: end if ;
8: if vi ∈ S` ∩ F then
9: send fi and all connection costs cij for vj ∈ Γ(vi) to C(vi).

10: end if ;
11: if v = C(u) for some u ∈ S` then

12: locally compute optimal feasible solutions for LP `
F L and DLP `

F L in-
duced by all facilities and clients u ∈ S` for which v = C(u).

13: send resulting values x`
ij , y

`
i , α

`
j , and β`

ij to nodes holding the respec-
tive variables.

14: end if

Algorithm 6.2: Facility Location Algorithm in LOCAL model

clients in S` also join S`. Note that by the definition of G and by Property
(ii) of the decomposition algorithm, two nodes v and v′ belonging to differ-
ent LP-components (i.e., that have a different leader) have distance at least
d(v, v′) ≥ 4 in G (see Figure 6.1). Hence, it follows that the leader assign-
ment in Lines 3 and 6 of Algorithm 6.2 is always well-defined. Moreover, the
LP-components are independent in the sense that there exists no variable
in either LPF L or DLPF L, which appears in a constraints induced by two
different LP-components. Therefore, computing an optimal solution for each
LP-component independently is valid and the properties of Lemma 6.4 apply.
At the end of the algorithm, the variables y`

i and x`
ij of the N sub-LPs S`

are added up at every node and divided by ln(n+m).

Theorem 6.5. Algorithm 6.2 has a running time of O(k) rounds. With high
probability, it computes a feasible solution to the fractional facility location
problem and achieves an approximation ratio of O(m1/k), where m is the
number of facilities.

Proof. We start with the running time. The N executions can be performed

6.2. FACILITY LOCATION APPROXIMATION: LOCAL MODEL 51

completely in parallel in the LOCAL model and we therefore focus on one in-
stance of the basic algorithm. By Property (i), collecting the topology of the
LP-component and the subsequent distribution of the variables (Lines 6,8,12)
can be performed in O(k) time. The same holds for the graph decomposition
in Line 1 by Property (iv).

For the approximation ratio, we have to bound the ratio between the pri-
mal and the dual objective value at the end of the algorithm. Let Xij :=∑

`:vj∈S` x
`
ij denote the sum of the primal variables x`

ij over all N paral-

lel executions of the decomposition algorithm and let Yi, Aj , and Bij be
the analogous sums for the other primal and dual variables. In each LP-
component, the leader computes an optimal solution to the sub-LP induced
by the LP-component, and therefore the primal and dual objective value are
equal within an LP-component, i.e.,

∑
vi∈S` fiy

`
i +

∑
vi∈S`

∑
vj∈V cijx

`
ij =

∑
vj∈S` α

`
j . When summing up all primal and dual variables at the end of

the algorithm, it therefore holds that
∑

vi∈V

fiYi +
∑

vi∈V

∑

vj∈V

cijXij =
∑

vj∈V

Aj . (6.1)

Unfortunately, the summed up dual variables Aj and Bj may no longer con-
stitute a feasible solution to the dual problem DLPF L. In order to bound
the degree of infeasibility of the dual variables, we note that by Lemma 6.4,
the dual variables of each of the N sub-LPs constitute a feasible solution for
DLPF L. Because at most N values are added up, it holds that

∀vi ∈ V :
∑

vj∈Γ(vi)

Bij ≤ N · fi

∀vj ∈ V, vi ∈ Γ(vj) : Aj − Bij ≤ N · cij .
We can therefore obtain a feasible dual solution by setting αj := Aj/N and
βij := Bij/N .

The final primal variables yi and xij are set in the algorithm as xij :=
Xij/ ln(n + m) and yi := Yi/ ln(n + m), respectively. We now show that
these variables satisfy all constraints of LPF L with high probability. By
Lemma 6.4, each time a client occurs in some S`, its primal constraints are
satisfied, i.e., it is completely connected to (fractionally) open facilities. With
high probability, each client occurs in no fewer than ln(n+m) different sets
S`: A client joins S` whenever at least one of its neighboring facilities is in S`.
By Property (iv) of the network decomposition algorithm, the probability of

a facility node being in S` is at least 1/(em1/k) in each of the N independent

instances. Let Z denote the number of times, a client is selected to be in S`

by the graph decomposition algorithm. Then, by Chernoff bound,

Pr[Z < ln(n+m)] <

(
e−4/5

(1 − 4/5)(1−4/5)

)5 ln(n+m)

=
eln 5·ln(n+m)

e4 ln(n+m)

=
1

(n+m)4−ln 5
<

1

(n+m)2
.

52 CHAPTER 6. LOCAL COMPUTATION: UPPER BOUNDS

Hence, with probability at least 1−1/(n+m) it holds for every client vj ∈ V
and every facility vi ∈ V that

∀vj ∈ V :
∑

vi∈Γ(vj)

Xij ≥ ln(n+m)

∀vi ∈ V, vj ∈ Γ(vi) : Yi −Xij ≥ 0.

It follows that with high probability, the variables xij := Xij/ ln(n+m) and
yi := Yi/ ln(n+m) as computed in Algorithm 6.2 form a feasible solution to
LPF L.

The approximation ratio γ now follows from LP duality, Equality (6.1),
and the fact that

∑

vi∈V

fi · Yi

ln(n+m)
+
∑

vi∈V

∑

vj∈V

cij · Xij

ln(n+m)
= γ ·

∑

vj∈V

Aj

N
,

for γ = N/ ln(n+m) ∈ O(m1/k).

Setting k = O(logm), we obtain the following corollary that places an
upper bound on the amount of time and locality required for a constant
approximation.

Corollary 6.6. Algorithm 6.2 computes a constant approximation to LPF L

in time O(logm) communication rounds.

Distributed Covering and Packing Problems The facility location
algorithm presented in this Section is analogous to our algorithm for the
distributed approximation of general covering and packing linear programs
in [150]. In particular, we have shown in [150] that based on the decompo-
sition algorithm by Linial and Saks [167], every covering and packing linear

program can be approximated within a factor of O(n1/k) in O(k) communica-
tion rounds in the LOCAL model. Here n is the number of primal variables,
for instance the number of nodes in the MDS problem. In other words, in
order to achieve a global O(n1/k) approximation to a covering or packing lin-
ear program in a distributed setting, each node v ∈ V must have knowledge
only about its O(k)-hop neighborhood ΓO(k)(v) in the graph. This gives an
answer to a question raised by Papadimitriou and Yannakakis in [193].

6.3 Facility Location: Distributed

Approximation in the CONGEST Model

The algorithm in the previous section highlights the trade-off between ap-
proximation and time complexity of local computation. On the other hand,
the algorithm makes heavy use of the fact that in the LOCAL model, mes-
sages can be unbounded. The question is whether similar trade-offs can
be achieved even if the exchangeable volume of information is limited and

6.3. FACILITY LOCATION APPROXIMATION: CONGEST MODEL 53

nodes cannot simply gather the entire topological information about their
k-hop neighborhood in k communication rounds. For several reasons, there
appears to be no simple implementation of the algorithm in Section 6.2 in the
CONGEST model without overly deteriorating its running time. Therefore,
we resort to a different idea.

In the MVC algorithm of Section 6.1, the idea was to imitate the se-
quential greedy algorithm and parallelize its greedy step. Since greedy algo-
rithms are known to yield asymptotically optimal approximation guarantees
for problems like MDS and facility location (at least in its general, non-metric
case) [54, 125], the question is whether there exist efficient distributed local
implementations of these algorithms. In the case of the FL problem, roughly
speaking, the sequential greedy algorithm iteratively opens the star (consist-
ing of a facility and several neighboring clients) with the best cost efficiency.
A simple distributed version of this process can be implemented based on
the following observation: A facility’s cost efficiency can only be reduced if
a neighboring client connects to a facility at distance 2. Therefore, if the
cost efficiency of a facility vf is greater than the cost efficiency of any other
facility in Γ2(vf), the sequential greedy algorithm opens vf and assigns the
corresponding clients of the star before any other facility in Γ2(vf). This
leads to a simple distributed version of the greedy algorithm: At the outset
of each step, every facility computes its cost efficiency (i.e., the cost efficiency
of its most cost efficient star). Facility vf joins the dominating set if it has
the best cost efficiency of all facilities in Γ2(vf). Note that every such step
can be implemented in 2 communication rounds using a local flooding.

The approximation ratio of the above distributed algorithm is identical to
the sequential algorithm and thus asymptotically optimal. On the negative
side, however, the algorithm’s time complexity can be polynomial in the
number of nodes. In fact, there are graphs in which in each step, only one
facility is opened and some clients have to wait for a long time before being
assigned. As pointed out in [134], this holds even in the MVC or MDS
case, for example on the graph in Figure 6.2. An optimal vertex cover or
dominating set consists of all nodes on the center axis. In the example graph,
the distributed greedy algorithm manages to find this optimal vertex cover or
dominating set, but selects nodes one-by-one from left to right. Hence, the
running time of the algorithm can be as bad as Ω(

√
n).

Figure 6.2: Simple distributed greedy algorithm: The caterpillar graph is a
bad example for MVC and MDS.

One elegant way to solve the problem of avoiding long cascading waiting
chains is to use randomization in each greedy-step [134]. In contrast, we

54 CHAPTER 6. LOCAL COMPUTATION: UPPER BOUNDS

consider the approach of fractionally opening equally (or in fact, similarly)
qualified facilities and fractionally connecting the corresponding clients. In
this sense, our algorithm generalizes the distributed MDS algorithm proposed
by Kuhn and Wattenhofer in [151] to the facility location problem.

6.3.1 Algorithm

At the heart of the algorithm is the distributed primal-dual technique which
deterministically approximates LPF L within a constant number of commu-
nication rounds. Each facility and client executes Algorithm 6.3 and 6.4,
respectively, during which they keep track of the value of their primal vari-
ables xij and yi. The algorithms consist of two nested loops which are both

executed h = d
√
ke times. The number of communication rounds in each

iteration of the inner loop is constant, yielding the claimed constant time
complexity of O(k). Initially, all primal and dual variables yi, xij , αj , and
βij are set to zero. Hence, the initial primal solution is infeasible, and the
dual solution is feasible, yet far from optimal. During the course of the algo-
rithm, both the primal and dual variables are gradually increased, thereby
decreasing the primal infeasibility, and increasing dual optimality. At the
end of the hth iteration of the outer loop, the primal variables yi and xij

form a feasible solution to LPF L.
A client vj is called uncovered if it is not yet (fractionally) connected to a

neighboring facility, i.e.,
∑

vi∈F (vj) xij < 1. At any moment throughout the

algorithm, the set of uncovered clients is called the uncovered set A, initially
A = C. Further, we write A(vi) := A∩F (vi). Whenever a client vj becomes
covered, it sends a message Mj to facilities in F (vj). That way, the facilities
always have a consistent view of the current A(vi) (Lines 7 and 8 of the
algorithm).

A star consists of one facility vi ∈ F and several uncovered, neighboring
clients vj ∈ A(vi). The cost efficiency of a star B is the sum of the connection
costs of the clients to facility vi plus the facility cost fi divided by the number
of clients |B|. The cost efficiency c(vi) of a facility vi is defined as the
minimum star spanned from vi, i.e.,

c(vi) := min
B∈2A(vi)

fi +
∑

vj∈B cij

|B| . (6.2)

The basic idea of the outer loop (s-loop) is to increase the yi value of
facilities with comparatively good cost efficiency c(vi)

1. More precisely, we
call a facility active in a given iteration if its cost efficiency is at most c(vi) ≤
ρs/h. Only active facilities, that is, only facilities with good cost efficiency will
execute the code between Lines 10 and 19. Particularly, only active facilities
will increase their yi value during an iteration. The idea of increasing the
yi value of facilities with good cost efficiency is inspired by the centralized

1In spite of there being exponentially many sets B ∈ 2A(vi), the facility can compute
its cost efficiency c(vi) in polynomial time in Line 9 of Algorithm 6.3 by considering the
clients ordered according to their connection costs cij .

6.3. FACILITY LOCATION APPROXIMATION: CONGEST MODEL 55

1: h := d
√
ke;

2: receive cij from all vj ∈ C(vi);
3: yi := 0; A(vi) := C(vi);
4: for s := 1 to h by 1 do
5: πs

i := 0;
6: for t := h− 1 to 0 by −1 do
7: receive Mj from all vj ∈ C(vi);
8: A(vi) := A(vi) \ {vj ∈ C(vi) | Mj = 1}
9: c(vi) := minB∈2A(vi)\{}

fi+
∑

vj∈B cij

|B| ;

10: if c(vi) ≤ ρs/h then

11: Ti := {vj ∈ A(vi) | cij ≤ ρs/h}
12: (∗ Γi := (fi +

∑
vj∈Ti

cij)/|Ti| ∗)
13: if t = h− 1 then
14: T s

i := Ti; Γs
i := Γi; πs

i := 1;
15: end if
16: ∆yi := max {yi, m

−t/h} − yi;
17: yi := yi + ∆yi;
18: send (yi, fi/|Ti|) to all vj ∈ Ti

19: end if
20: end for
21: forall vj ∈ T s

i do

22: (∗ ∆βij :=

0 , ρs/h < cij
ρs/h − cij , ρs/h ≥ cij ∧ πs

i = 0

Γs
i − cij , ρs/h ≥ cij ∧ πs

i = 1

∗)

23: (∗ βij := βij + ∆βij ∗)
24: end for

Algorithm 6.3: Facility vi

greedy algorithm [125] that iteratively picks the facility with the best cost
efficiency. In order to come up with fast, constant time algorithms in a
distributed setting, this “greedy step” has to be parallelized. However, the
greedy step’s parallelization must be carefully implemented in order to avoid
opening too many facilities at once, thus overly deteriorating the algorithm’s
performance.

We call a client vj tight to an active facility vi in iteration s of the outer

loop if cij ≤ ρs/h. That is, the tight set Ti in Line 11 consists of all clients that

are connected to vi by a connection of cost at most ρs/h. The significance
of the tight set is that the increase of yi in a given iteration results in an
increase of xij of all clients vj being in the tight set Ti. Since a client vj

may concurrently be in the tight set of several facilities, the increase of the
different yi must be handled with care. This is the role of the inner loop
(t-loop), during which the yi are gradually increased (Line 16) as long as the
facility remains active.

The parameter ρ is a global parameter that depends on the given facility

56 CHAPTER 6. LOCAL COMPUTATION: UPPER BOUNDS

1: h := d
√
ke;

2: send cij to all vi ∈ F (vj);
3: αj := 0;
4: ∀vi ∈ F (vj) : xij := 0;
5: for s := 1 to h by 1 do
6: for t := h− 1 to 0 by −1 do
7: Mj := 0;
8: if

∑
vi∈F (vj) xij ≥ 1 then Mj := 1;

9: send Mj to all vi ∈ F (vj);
10: receive (yi, fi/|Ti|) from all vi : vj ∈ Ti;
11: forall vi : vj ∈ Ti do
12: if

∑
vi∈F (vj) xij < 1 then

13: ∆xij := yi − xij ; xij := xij + ∆xij ;
14: end for

15: (∗ ∆αj :=
∑

vi:vj∈Ti

(
∆yifi
|Ti| + ∆xijcij

)
; αj := αj + ∆αj ; ∗)

16: end for
17: end for

Algorithm 6.4: Client vj

location instance, i.e., on the coefficients of the underlying linear program.
The importance of ρ in the algorithm is to place an upper bound on the cost
efficiency of a facility. More formally, ρ is defined as

ρ := max
vj∈C

min
vi∈F

(cij + fi).

In a complete bipartite graph, the global parameters ρ, m, and n could be
computed in 2 communication rounds by every node. In a general graph,
however, computing these global parameters cannot be done locally. It is
possible to circumvent this dependency on global knowledge by using a pow-
erful technique introduced by Kuhn in Chapter 2 of [147]. Specifically, it
is shown in [147] how nodes can use locally computable approximations ρ̂
(m̂, n̂) to the globally exact values ρ (m, n), without deteriorating the algo-
rithm’s asymptotic time complexity and approximation guarantee. For ease
of presentation, we present the algorithm assuming that the global constants
ρ, n and m are known to every node. Also, we assume that cij ≥ 1 and
fi ≥ 1 for all vi ∈ F, vj ∈ C in Section 6.3.2. The results are generalized to
more general costs in Section 6.3.3.

6.3.2 Analysis

In a sense, our algorithm’s analysis is based on the method of dual fitting [130]
applied in a distributed setting. The basic idea of this method applied to
FL can be described as follows: Using the linear program relaxation (LP)
for facility location and its dual (DLP), we interpret our combinatorial algo-
rithm as an algorithm that iteratively makes primal and dual updates in a

6.3. FACILITY LOCATION APPROXIMATION: CONGEST MODEL 57

distributed fashion. Unfortunately, these updates do generally not lead to a
feasible dual solution. However, the idea is to show that the objective func-
tion of the primal fractional solution computed by the algorithm is bounded
by that of the dual. That is, the primal solution is fully paid for by the dual.
By the laws of LP duality, it then remains to divide all dual values by a suit-
ably large factor α that renders the dual variables feasible. The shrunk dual
objective function is then a lower bound on OPT, and α is the algorithm’s
approximation guarantee. That is, instead of relaxing complementary slack-
ness conditions as done in other primal-dual algorithms (e.g., [107, 235]), the
feasibility of the dual itself is relaxed.

For notational clarity, we denote the increase of ∆yi in a certain iteration
of the s and t-loop by ∆yi(s, t) throughout this section. ∆xij(s, t), ∆αi(s, t),
and ∆βij(s) are defined analogously.

We begin the analysis with the observation that the resulting solution is
feasible.

Lemma 6.7. Algorithms 6.3 and 6.4 produces a feasible primal solution for
LPF L.

Proof. The feasibility of the second LP condition, yi − xij ≥ 0, ∀vj ∈ C, i ∈
F , directly follows from the definition of the algorithm. Specifically, in
Line 13 of Algorithm 6.4, the value of a connection variable xij never ex-
ceeds the value of the corresponding yi.

As for the first LP condition, observe that in Lines 12 and 13, the xij

values of client vj are set to the corresponding yi as long as
∑

vi∈F (vj) xij < 1.

Hence, as soon as the sum of the yi values of facilities to which vj is tight
exceeds 1, the sum of the xij variables of vj also exceeds 1. Formally, we
have that

∑
vi:vj∈Ti

yi ≥ 1 implies
∑

vi∈F (vj) xij ≥ 1.

Now, assume for contradiction that vj is a client which is still uncovered
at the end of the algorithm, i.e.,

∑
vi:vj∈Ti

yi < 1. Consider the very last

iteration of the inner loop (s = h, t = 0). By the definition of ρ, there
exists at least one facility vi ∈ F (vj) with cost efficiency c(vi) ≤ ρ covering
client vj . Because s = h, facility vi becomes active and increases its yi value

to m−t/h = 1 in Lines 16 and 17. Subsequently, vj sets xij := 1 which
contradicts the assumption that vj ∈ A(vi) at the end of the algorithm.

If a facility is active in a certain iteration, its cost-efficiency c(vi) is, by

definition, at most ρs/h. The tight set Ti does not necessarily contain the
same clients which constituted the optimal cost-efficiency. Although the cost
efficiency of Ti may be larger than c(vi), Γi ≥ c(vi), the next lemma shows

that the cost-efficiency of the tight set Ti, Γi, is at most ρs/h.

Lemma 6.8. In every iteration of the t-loop, if c(vi) ≤ ρs/h for a facility

vi, then Γi ≤ ρs/h.

Proof. Let the set B be the optimal star that constituted c(vi). First, observe

that if c(vi) ≤ ρs/h, and because B minimizes c(vi), no client vj ∈ B can

58 CHAPTER 6. LOCAL COMPUTATION: UPPER BOUNDS

have connection cost cij > ρs/h. Let Q := Ti \B be the set of clients vj /∈ B

with cij ≤ ρs/h. Γi is upper bounded by

Γi =
fi +

∑
vj∈Ti

cij

|Ti|
=

fi +
∑

vj∈B cij +
∑

vj∈Q cij

|Ti|

≤
c(vi) ≤ ρs/h

|B|ρs/h + |Q|ρs/h

|Ti|
= ρs/h.

Bounding the primal objective function by the dual objective function is
key to applying the method of dual fitting. The next lemma provides such a
bound by showing that throughout the execution of the algorithm, the values
of the primal and dual objective functions are equal.

Lemma 6.9. At the end of each t-loop, it holds that

∑

vj∈C

αj =
∑

vj∈C,vi∈F

cijxij +
∑

vi∈F

fiyi. (6.3)

Proof. We prove the claim by induction over the iterations of the t-loop. At
the beginning of the algorithms, both sides of the equation are 0. Assume
that the claim is true before starting a new iteration s′. If facility vi increases
its yi during s′, tight clients vj ∈ Ti may increase their corresponding xij as
well. Hence, the right hand side of (6.3) increases by

∆RHS =
∑

i∈F

∆yifi +
∑

j∈C,i∈F

∆xijcij .

As for the left hand side of (6.3), Line 15 of Algorithm 6.4 defines the increase
of the clients αj values. Its sum

∑
j∈C αj therefore increases as

∆LHS =
∑

vj∈C

∑

vi:vj∈Ti

(
∆yifi

|Ti|
+ ∆xijcij

)

=
∑

vi∈F

∑

vj∈Ti

∆yifi

|Ti|
+
∑

vj∈C

∑

vi∈F

∆xijcij

=
∑

vi∈F

∆yifi +
∑

vj∈C,vi∈F

∆xijcij = ∆RHS.

In the next lemma, we characterize the steady increase of a facility vi’s
cost efficiency during the course of the algorithm.

Lemma 6.10. At the beginning of each iteration of the s-loop, it holds for
all facilities vi ∈ F that c(vi) ≥ 1 for s = 1 and c(vi) > ρs−1/h for s > 1.

6.3. FACILITY LOCATION APPROXIMATION: CONGEST MODEL 59

Proof. The case s = 1 follows from the assumption that cij ≥ 1 and fi ≥ 1
(cf. Section 6.3.3). Consider iteration s > 1 and let s′ = s − 1. For all

facilities with c(vi) > ρs′/h, the claim holds. In the last t-loop iteration

of the s′th iteration, all facilities vi with c(vi) ≤ ρs′/h set yi to m−0/k = 1.
Consequently, all vj in the tight set Ti of iteration s′ become covered and leave

A. It follows that for such a facility vi, it holds that ∀vj ∈ A(vi) : cij > ρs′/h.
The claim now follows from

c(vi) = min
B∈2A(vi)\{}

fi +
∑

vj∈B cij

|B| >
fi

|B| +
|B|ρs−1/h

|B| > ρs−1/h.

A client may be tight to several facilities. If all these facilities simulta-
neously increased their yi values, the dual value αj of vj may increase too
much. Consider an iteration of the s-loop. During the early iterations of the
t-loop, the increase in ∆yi of active facilities is small, because t is close to
h. Intuitively, it is acceptable if a client is tight to many active facilities in
these early iterations. In other words, the higher the increases ∆yi of active
facilities, the fewer active facilities a client is allowed to be tight to. The
following lemma establishes precisely this relationship.

Lemma 6.11. Let Aj := {vi | vj ∈ Ti} be the active set for an uncovered
client vj . At the beginning of each iteration of the t-loop,

|Aj | ≤ mt+1/h.

Proof. From the previous iteration of the loop, we know that for each active
facility vi ∈ Aj , it holds that yi ≥ m−(t+1)/h. Now, assume for contradiction

that |Aj | > mt+1/h for some vj ∈ C. If so, then

∑

vi∈Aj

yi ≥ |Aj | ·m−(t+1)/h > 1

and consequently
∑

vi∈F (vj) xij > 1 in Line 13 of Algorithm 6.4 of the same

loop iteration. This contradicts the assumption that client vj is uncovered
and thus, the claim follows.

In the next lemma, we bound the total amount of ∆αj that each client
can receive in one iteration of the s-loop. For that purpose, let ∆αj(s) :=∑h−1

t=0 ∆αj(s, t) be the increase of αj during the sth iteration of the outer
loop. Let Ti(s, t) be the set of clients that are tight to vi in the iterations s
and t. Further, we define

σj(s) :=

h∑

t=1

∑

vi∈Aj(s,t)

∆yi.

60 CHAPTER 6. LOCAL COMPUTATION: UPPER BOUNDS

Intuitively, σj(s) is the increase of the yi value at facilities to which client vj

has been tight during the course of the sth iteration of the outer loop. The
following lemma relates αj(s) and σj(s).

Lemma 6.12. The sum of the ∆αj values collected in iteration s at a node
vj is upper bounded by

∆αj(s) ≤ (σj(s) + 2) · ρs/h.

Proof. Applying Lemma 6.8 and by the definition of ∆αj , we have

∆αj(s) ≤
h−1∑

t=0

∆αj(s, t)

≤
h−1∑

t=0

∑

vi∈Aj(s,t)

∆yifi

|Ti|
+

h−1∑

t=0

∑

vi∈Aj(s,t)

∆xijcij

≤
h−1∑

t=0

∑

vi∈Aj(s,t)

∆yiΓi +

h−1∑

t=0

∑

vi∈Aj(s,t)

∆xijcij .

The connection cost cij between a client vj and any facility vi ∈ Aj(s, t) is by

definition at most ρs/h. Moreover, by Lemma 6.8, we know that Γi ≤ ρs/h

in every iteration of the s-loop. When plugging in the definition of σj(s), we
therefore have

∆αj(s) ≤ ρs/h

σj(s) +

h−1∑

t=0

∑

vi∈Aj(s,t)

∆xij

 .

Finally, we need to bound the term
∑h−1

t=0

∑
i∈Aj(s,t) ∆xij . By Lines 12

and 13 of the client algorithm, the values xij are increased only as long as∑
vi∈Aj(s,t) xij < 1 and therefore, the sum of all but the last non-zero ∆xij

values cannot exceed 1. Because the final non-zero ∆xij is clearly at most 1,

it follows that
∑h−1

t=0

∑
vi∈Aj(s,t) ∆xij ≤ 2, which concludes the proof.

Next, we want to find bounds for σj(s). Assume that client vj becomes
covered during iteration s∗j of the outer loop. Notice that for every client
vj , there is exactly one iteration s∗j . Once covered, vj will not be in A and
therefore, not in any Ti. Consequently, σj(s

′) = 0 for all s′ > s∗j . The other
two cases, s′ < s∗j and s′ = s∗j are subject of the following lemma.

Lemma 6.13. For all iterations of the s-loop, it holds that

σj(s) ≤ 1 ∀s 6= s∗j
σj(s) ≤ m1/h s = s∗j

6.3. FACILITY LOCATION APPROXIMATION: CONGEST MODEL 61

Proof. The first case, s′ < s∗j , follows from the definition of σj(s). If

σj(s
′) =

h∑

t=1

∑

vi∈Aj(s,t)

∆yi ≥ 1,

then vj would have become covered in iteration s′ and hence, s′ = s∗j .
It remains to analyze the iteration during which vj becomes covered, i.e.,

s′ = s∗j . Consider the iterations of the inner loop during iteration s∗j of the
outer loop. Let t∗ denote the iteration during which vj becomes covered.
Clearly, for all t′ > t∗, it holds that

∑
vi:vj∈Ti(t

′) ∆yi(t
′) = 0 because vj is

already covered. Hence, we only need to analyze the first t∗ iterations of the
inner loop. Summing up all increases, we get

σj(s
′) =

h−1∑

t=t∗+1

∑

vi∈Aj(t)

∆yi(t) +
∑

vi∈Aj(t∗)

∆yi(t
∗)

≤ 1 +
∑

vi∈Aj(t∗)

∆yi(t
∗)

≤ 1 +
(
m−t/h −m−(t+1)/h

)
· |Aj(t

∗)|

≤ 1 +
(
m−t/h −m−(t+1)/h

)
·mt+1/h

≤ 1 +
(
m1/h − 1

)
= m1/h.

The first inequality follows from the fact that by definition of t∗, client vj

is not covered after the iterations h − 1, . . . , t∗ + 1. The second inequality
holds because a facility cannot be active in an iteration t∗ if it has not been
active in iteration t∗ − 1 already. Therefore, the increase of yi of active
facilities vi is at most m−t/h −m−(t+1)/h. The third inequality follows from
Lemma 6.11.

For the dual solution to be feasible, the linear program condition imposes
that

∑
vj∈C(vi)

βij ≤ fi holds for every facility vi ∈ F . Unfortunately, the

dual solution produced by our algorithm does not exhibit this feasibility
property. However, we can at least show that the degree of infeasibility is
bounded. Specifically, it holds that the sum of the increases of the βij in a
single iteration of the s-loop, it fulfils the desired property.

Lemma 6.14. For all vi ∈ F and all iterations s of the outer loop, it holds
that ∑

vj∈C(vi)

∆βij(s) ≤ fi.

Proof. We distinguish two cases, depending on whether πi(s) equals 0 or 1.
In the first case, πi(s) = 0, the facility vi’s cost efficiency was insufficient to

62 CHAPTER 6. LOCAL COMPUTATION: UPPER BOUNDS

increase its yi value during the sth iteration. We therefore have

∑

vj∈C(vi)

∆βij(s) =
∑

vj∈Ti

(ρs/h − cij) = ρs/h|Ti| −
∑

vj∈Ti

cij

Assume for contradiction that
∑

vj∈C(vi)
∆βij(s) > fi for some facility vi

and iteration s. It follows that

ρs/h >
fi +

∑
vj∈Ti

cij

|Ti| ≥ c(vi),

which in turn implies πi(s) = 1 for B = Ti. This establishes the contradic-
tion.

As for the second case, πi(s) = 1, we have

∑

vj∈C(vi)

∆βij(s) =
∑

vj∈Ti

(Γs
i − cij) = |Ti| ·

fi +
∑

vj∈Ti
cij

|Ti|
−
∑

vj∈Ti

cij = fi.

Therefore, the lemma holds in both cases.

Having bounded the degree of infeasibility of one dual constraint of LPF L,
it now remains to do the same for the other one, αj −βji ≤ cij , for all vj ∈ C
and vi ∈ F (vj). Again, we give weaker bounds that do not hold for the entire
execution of the algorithm, but merely for a single iteration of the outer loop.

Lemma 6.15. Let ∆αj(s) be the sum of the ∆αj(t) over all iterations of
the t-loop in the sth iteration of the s-loop. For all vj ∈ C, vi ∈ F (vj), and
all iterations s, it holds that

∆αj(s)

(m1/h + 2)ρ1/h
− ∆βij(s) ≤ cij

Proof. We distinguish three cases, depending on how much increase of βij

was assigned to the connection between vi and vj in Line 22 of the facility
algorithm. Regardless of the specific case, the value ∆αj(s) is bounded by

∆αj(s) ≤ ρs/h(m1/h + 2) due to Lemmas 6.12 and 6.13.

1) In the case ρs/h ≤ cij , the algorithm sets ∆βij(s) to 0. Therefore

∆αj(s)

(m1/h + 2)ρ1/h
− ∆βij(s) ≤ ρ(s−1)/h ≤ cij .

2) In the second case, the client j is tight to i, i.e., ρs/h > cij , but
πi(s) = 0. Plugging in the corresponding value for ∆βij(s), we get

∆αj(s)

(m1/h + 2)ρ1/h
−
(
ρs/h − cij

)
≤ ρ(s−1)/h−ρs/h+cij ≤ cij .

6.3. FACILITY LOCATION APPROXIMATION: CONGEST MODEL 63

3) Finally, consider the last case, ρs/h > cij and πi(s) = 1. Substituting
∆βij(s) by Γs

i − cij yields

∆βij(s) + cij = Γs
i − cij + cij = Γs

i ≥ c(vi).

For s > 1, we know by Lemma 6.10, that c(vi) ≥ ρ(s−1)/h at the beginning
of iteration s, hence

∆βij(s) + cij ≥ ρ(s−1)/h.

Using the above inequality, we obtain

∆αj(s)

(m1/h + 2)ρ1/h
≤ ρ(s−1)/h ≤ ∆βij(s) + cij .

Subtracting ∆βij(s) concludes the proof for the case s > 1. The case s = 1
follows similarly. By Lemma 6.10, we can lower bound c(vi) ≥ 1 and therefore
∆βij(s) + cij ≥ 1. The claim now follows from

∆αj(s)

(m1/h + 2)ρ1/h
≤ ρ(s−1)/h = 1 ≤ ∆βij(s) + cij .

Having bounded the degree of dual infeasibility in the two previous lem-
mas, we can now establish the approximation ratio of the algorithm using
the laws of LP duality. Specifically, the dual feasibility is violated only by a
factor O(h(mρ)1/h) and hence, when dividing αj and βij by suitably large

values, we obtain a feasible solution α̂j and β̂ij .

Theorem 6.16. For an arbitrary integer k > 0, the algorithm computes an

O(
√
k(mρ)1/

√
k) approximation to the fractional facility location problem in

O(k) communication rounds.

Proof. The running time follows from the definition of the algorithm. For

the analysis of the approximation ratio, let α̂j and β̂ij be defined as

α̂j :=
αj

h(m1/h + 2)ρ1/h
and β̂ij :=

βij

h
,

respectively. We show that the variables α̂j and β̂ij form a feasible so-
lution to the dual LP. The feasibility of the second dual constraint fol-
lows from Lemma 6.14. Particularly, it holds that

∑
vj∈C(vi)

βij(s) ≤ fi

for all iterations s and all facilities vi ∈ F . As a consequence, we obtain∑
vj∈C(vi)

βij ≤ h · fi and therefore,
∑

vj∈C(vi)
β̂ij ≤ fi.

Next, we show the feasibility of the first constraint by bounding α̂j − β̂ij

as

α̂j − β̂ij =

∑h−1
s=0 αj(s)

h(m1/h + 2)ρ1/h
−
∑h−1

s=0 βij(s)

h

=
1

h

h−1∑

s=0

(
αj(s)

(m1/h + 2)ρ1/h
− βij(s)

)
.

64 CHAPTER 6. LOCAL COMPUTATION: UPPER BOUNDS

By Lemma 6.15, each term of the sum is bounded by cij . Therefore, we have

α̂j − β̂ij ≤ hcij/h ≤ cij .
Let OPT and ALG denote the optimal value and the value as computed

by the algorithm, respectively. By LP duality, the sum of the α̂j values is a
lower bound for OPT . As for ALG, recall that by Lemma 6.9, we know that
the value of the primal and dual objective function is equal at the end of the
algorithm. Therefore, we can bound ALG as

ALG =
∑

vi∈F

fiyi +
∑

vi∈F

∑

vj∈C

cijxij

=
Lemma 6.9

∑

vj∈C

αj ≤ h(m1/h + 2)ρ1/h
∑

vj∈C

α̂j

≤ h(m1/h + 2)ρ1/h ·OPT ∈ O(h(mρ)1/h) · OPT.

Finally, the theorem follows from h = d
√
ke.

Remark It is possible to express the results of this section in a tighter
form. In particular, the algorithm’s approximation guarantee can equally be
expressed in terms of ∆m and ∆n instead of m and n, respectively, where
∆m and ∆n denote the largest degree of any facility or client in the graph.

6.3.3 Arbitrary Coefficients

The algorithm and analysis of Sections 6.3.1 and 6.3.2 is based on the as-
sumption that cij ≥ 1 and fi ≥ 1 for all vj ∈ C, vi ∈ F . In this section, we
show how to handle the general case in which connection and opening costs
can be arbitrary non-negative values. Furthermore, this technique can be
used to get rid of the dependency on ρ in the approximation ratio.

The idea is to initially scale all costs such that the above condition holds.
The problem is that the straightforward approach of multiplying all costs
with the minimum cij or fi might overly blow up the coefficient ρ, or it may
even be infeasible for zero valued costs. For that reason, we need to perform
a more subtle scaling that is inspired by a similar technique given in [32].

The parameter ρ is a lower bound for the objective value OPT of the
optimal solution. Because there are n clients, all stars with cost-efficiency
smaller than ρ/n can be added to a solution ALG, incurring costs at most
OPT . This observation motivates the following scaling procedure performed
at the beginning of the algorithm.

1. For every facility vi, choose the largest set Bi of clients such that
(fi +

∑
vj∈Bi

cij)/|Bi| ≤ ρ/n. If such a Bi exists, set yi := 1 and

xij := 1 for all vj ∈ Bi. Let C′ be the set of unconnected clients.

2. For all vj ∈ C′ and vi ∈ F , set c′ij := ncij/ρ and f ′
i := nfi/ρ, respec-

tively. Clients in C \ C′ do not participate in the algorithm further.

6.4. DISTRIBUTED RANDOMIZED ROUNDING 65

3. Execute Algorithms 6.3 and 6.4 with clients and facilities in C′ and F ,
the coefficient ρ′ = n (the new ρ), and costs c′ij and f ′

i .

Notice that—if we assume that every node knows n—the above procedure
can be executed in our distributed model in a constant number of com-
munication rounds. The facility location instance resulting from the above
transformation fulfils the following useful and simple property.

Lemma 6.17. Consider a facility location instance derived from the above
transformation. Throughout the algorithm and for all vi ∈ F , it holds that
c(vi) ≥ 1.

Proof. If B is the set of clients constituting c(vi), then

c(vi) =
f ′

i +
∑

vj∈B c
′
ij

|B| =

n
ρ

(
fi +

∑
vj∈B cij

)

|B|

If we assume for contradiction that vi ∈ F and c(vi) < 1, it follows that
fi+

∑
vj∈B cij

|B| < ρ
n
. This contradicts the fact that the star B was not selected

during the transformation, that is, the clients vj ∈ B are in C′.

Having Lemma 6.17 allows us to apply Lemmas 6.10 and 6.15 as in the
proof of Section 6.3.2. The remainder of the proof in Section 6.3.2 remains
the same.

In summary, the transformed algorithm runs in O(k) communication

rounds and yields a solution of cost at most O(
√
k(mn)1/

√
k) ·OPT +OPT

for the fractional facility location problem LPF L.

6.4 Distributed Randomized Rounding

The algorithms presented in Sections 6.2 and 6.3 merely compute approxi-
mations to the fractional facility location problem. In order to come up with
a solution to the integer facility location problem, the fractional solutions
obtained in the previous section need to be rounded. Clearly, the random-
ized rounding step should neither overly increase the total opening costs,
nor the total connection costs. Interestingly, randomized rounding schemes
that have been well-studied in the sequential case can also be implemented
in distributed settings. The idea for the randomized rounding is inspired by
the filtering technique introduced in [165].

In the following, let xij and yi be the values obtained from a fractional
facility location algorithm. The variables x̂ij and ŷi denote the corresponding
rounded integer values. For every client vj ∈ C, let C∗

j :=
∑

vi∈F (vj) cijxij

be the weighted cost of vj ’s connections. Further, let the log-neighborhood
Λ(vj) of a client vj be the set of all facilities that are located within a factor
of log (n+m) of the weighted connection cost. Formally, for every vj ∈ C,
Λ(vj) := {vi ∈ F (vj) | cij ≤ log (n+m) · C∗

j }. The idea is to round the

66 CHAPTER 6. LOCAL COMPUTATION: UPPER BOUNDS

INPUT: fractional solution yi from Algorithm 6.3
OUTPUT: integral solution ŷi to ILP
1: pi := min {1, yi · ln (n+m)};
2: ŷi :=

{
1 , with probability pi

0 , with probability 1 − pi

3: send ŷi to all clients vj ∈ C(vi);
4: if receive JOIN-MSG then ŷi := 1;

Algorithm 6.5: Randomized Rounding - Facility

fractional values yi at each facility vi in such a way that with high probability,
all clients have at least one open facility in their log-neighborhood. The set
of open facilities in a client’s log-neighborhood is denoted by Open(vj). Each
client then simply connects itself to the open facility in Λ(vj) with minimum
connection cost cij . In case some vj has no open facility in Λ(vj), it asks the
“cheapest” facility to open itself. Algorithms 6.5 and 6.6 present the scheme
in more detail.

Theorem 6.18. Let xij and yi for each vj ∈ C and vi ∈ F be a feasible
solution for the fractional facility location problem LPF L with cost at most
α ·OPT . In two rounds of communication, Algorithms 6.5 and 6.6 produce a
feasible integer solution x̂ij, ŷi to ILPF L with expected cost O(log(m+n))α ·
OPT .

Proof. It follows from the definition of C∗
j and Λ(vj) that

∑

vj∈F\Λ(vj)

xij ≤ 1

log (n+m)
,

because otherwise, C∗
j would be larger. Any feasible solution to LPF L must

maintain the invariants
∑

vi∈F (vj) x̂ij ≥ 1 and
∑

vi∈Λ(vj) x̂ij ≤∑vi∈Λ(vj) ŷi.

Therefore,
∑

vi∈Λ(vj)

ŷi ≥
∑

vi∈Λ(vj)

x̂ij ≥ 1 − 1

log (n+m)
. (6.4)

For each client vj having Open(vj) 6= ∅, the connection costs are at most cij ≤
ln (n+m)C∗

j by the definition of the neighborhood Λ(vj). These clients thus
account for total connection costs of at most ln (n+m)

∑
vj∈C,vi∈F cijxij .

A facility declares itself open in Line 2 of Algorithm 6.5 with a probability
of min {1, yi · ln (n+m)}. The expected opening costs of facilities opened in
Line 2 are thus bounded by ln (n+m)

∑
vi∈F yifi.

It remains to bound the costs entailed by clients that are not covered,
i.e. Open(vj) = ∅, and facilities that are opened via a JOIN-MSG message.
The probability qj that a client vj does not have an open facility in its log-

6.4. DISTRIBUTED RANDOMIZED ROUNDING 67

INPUT: fractional solution xij from Algorithm 6.4
OUTPUT: integral solution x̂ij to ILP
1: C∗

j :=
∑

vi∈F (vj) cijxij ;

2: Λ(vj) := {vi ∈ F (vj) | cij ≤ ln (n+m) · C∗
j };

3: receive yi from all vi ∈ F (vj);
4: Open(vj) := Λ(vj) ∩ {vi ∈ F (vj) | yi = 1};
5: if Open(vj) 6= ∅ then
6: v′i := argminvi∈Λ(vj)cij ; x̂i′j := 1;

7: else
8: v′i := argminvi∈F (cij + fi);

9: send JOIN-MSG to facility v′i; x̂i′j := 1;
10: fi

Algorithm 6.6: Randomized Rounding - Client

neighborhood is at most

qj =
∏

vi∈Λ(vj)

(1 − pi) =

n+m

√ ∏

vi∈Λ(vj)

(1 − pi)

n+m

≤
(∑

vi∈Λ(vj) (1 − pi)

n+m

)n+m

≤
|Λ(vj)|≤m

(
1 −

ln (n+m)
∑

vi∈Λ(vj) yi

n+m

)n+m

≤
Eq. (6.4)

(
1 − ln (n+m)

n+m

(
1 − 1

ln (n+m)

))n+m

=

(
1 − ln (n+m) − 1

n+m

)n+m

≤ e− ln (n+m)−1 ≤ 1

e(n+m)
. (6.5)

The first inequality follows from the fact that for every sequence of positive
numbers, the geometric mean is smaller than or equal to the arithmetic mean
of these numbers.

An uncovered client vj sends a JOIN-MSG message to the facility vi ∈
F (vj) that minimizes cij+fi. Each of these costs is at most

∑
vj∈C,vi∈F cijxij+∑

vi∈F yifi because x and y would not constitute a feasible solution other-

68 CHAPTER 6. LOCAL COMPUTATION: UPPER BOUNDS

wise. Combining this with the above results, the total expected cost is

E[ALG] ≤ ln (n+m)

 ∑

vj∈C,vi∈F

cijxij +
∑

vi∈F

yifi

 +

+
n

e(n+m)

 ∑

vj∈C,vi∈F

cijxij +
∑

vi∈F

yifi

≤ (ln (n+m) +O(1))α ·OPT,

which concludes the proof of Theorem 6.18.

When using this distributed randomized rounding scheme with the ap-
proximation algorithms for the fractional FL problem presented in Sections 6.2
and 6.3, we obtain local approximation algorithms for ILPF L. Their perfor-
mance is summarized in the following corollaries.

Corollary 6.19. In the LOCAL model, Algorithm 6.2 in combination with
randomized rounding achieves an approximation ratio of O(m1/k log(n+m))
to ILPF L in O(k) communication rounds.

Corollary 6.20. In the CONGEST model, Algorithms 6.3 and 6.4 in com-
bination with randomized rounding achieve an approximation ratio that is in

the order of O(
√
k(mρ)1/

√
k · log(n+m)) to ILPF L in O(k) communication

rounds, where ρ depends on the coefficients of the problem instance.

Corollary 6.19 implies that in order to achieve an O(m1/k log(n+m)) ap-
proximation to the distributed non-metric facility location problem, nodes
only need to have knowledge about their O(k)-hop neighborhood. Fur-
thermore, an O(log(m + n)) approximation to ILPF L can be computed in
O(logm) time in the LOCAL model, whereas our algorithm in the CONGEST
model achieves only an approximation ratio of O(log(mρ) log(n+m)) in time
O(log2(mρ)).

Chapter 7

Local Computation: Lower

Bounds

Studying lower bounds and impossibility results has a long tradition in the
theory of distributed computing [90]. When it comes to distributed approx-
imation or the distributed complexity of problems in the message passing
model in general, however, interesting lower bounds become rarer. This is
particularly true for the unrestricted LOCAL model. In fact, most of the
well-known lower bounds in this area of distributed computing are based on
restrictions on message reception in the radio network model (e.g. [10, 155])
or on bandwidth restrictions in the CONGEST model. In particular, the
lower bounds on the distributed computation (or approximation) of the MST
fall into the latter category [76, 197]. The only general lower bound on local
computation derived solely on the limitations of locality is the pioneering
and seminal lower bound by Linial [166], which showed that the non-uniform
O(log∗n) coloring algorithm by Cole and Vishkin [58] is asymptotically op-
timal for the ring. This lower bound has been cherished by researchers as a
fundamental advancement in the theory of distributed computation.

Linial’s lower bound is based on the drosophila melanogaster of distributed
computing, the ring network. For simple optimization problems such as min-
imum vertex cover, however, highly symmetric graphs such as rings often
feature a straight-forward solution with constant approximation ratio. In
any δ-regular graph, for example, the algorithm which includes all nodes in
the vertex cover is already a 2-approximation for MVC: Each node will cover
at most δ edges, the graph has nδ/2 edges, and therefore at least n/2 nodes
need to be in the minimum vertex cover. On the other extreme, asymmet-
ric graphs often enjoy constant-time algorithms, too. In a tree, choosing all
inner nodes yields a 2-approximation. The same trade-off exists for node
degrees. If the maximum node degree is low (constant), we can tolerate to
choose all nodes, and have by definition a good (constant) approximation.
If there are nodes with high degree, the diameter of the graph is small, and

70 CHAPTER 7. LOCAL COMPUTATION: LOWER BOUNDS

a few communication rounds suffice to inform all nodes of the entire graph.
So, what could be a hard instance for an optimization problem like MVC?
If there exists such an instance at all, it needs to be based on the construc-
tion of a not too symmetric and not too asymmetric graph with a variety of
node degrees! Not many graphs with these “non-properties” are known in
distributed computing.

In this chapter, we construct such a graph in order to derive the lower
bound on the achievable time-approximation trade-off by any distributed al-
gorithm. In particular, we show that if every node has information about its
k-hop neighborhood (or alternatively, if nodes employ a distributed algorithm
with running time at most k), MVC cannot be approximated better than by

a multiplicative factor of Ω(nc/k2

/k) for some constant c. This implies that in
order to achieve a constant or even polylogarithmic approximation, the run-
ning time of any distributed algorithm must be at least Ω(

√
log n/ log log n).

Using the notion of locality-preserving reductions, we extend these MVC
lower bounds to other network coordination problems, including exact prob-
lems such as MIS or maximal matching. For general graphs, this MIS result
improves on Linial’s Ω(log∗n) lower bound for rings. Moreover, our result
currently stands—together with Elkin’s lower bound on the distributed ap-
proximability of MST in the CONGEST model—as the only hardness of
distributed approximation results (see [77]).

All our lower bounds hold even in the LOCAL model and are therefore
true consequences of limitations imposed by locality only, not side-effects
resulting from aspects such as congestion, asynchrony, collisions and inter-
ference, or bounded message size. The lower bounds are therefore the first
general results (for all k) on the achievable trade-off between locality and the
resulting approximation quality. Finally, all lower bounds hold even for ran-
domized algorithms and if nodes have unique identifiers in the range 1, . . . , n.

The lower bounds not only limit the achievable performance of any dis-
tributed algorithm that is restricted to a specific running time, but they
also capture the amount of information inherently required by distributed
decision makers for solving or approximating global tasks. And because we
establish lower bounds for every k, that is, for every size of the local neigh-
borhood around each node, these lower bounds (in combination with the
upper bounds of Chapter 6) also characterize the value of information of
every additional “layer” of neighbors around the decision makers.

The chapter is organized as follows. Section 7.1 presents our main techni-
cal result, a general hardness of approximation lower bound for MVC in the
LOCAL model. Using the notion of locality-preserving reductions, we then
generalize these bounds to various other problems, including exact problems
like MIS and maximal matching in subsequent sections. Finally, Section 7.8
shows that simple capacitated variants of MVC and MDS are inherently
non-local problems and solutions based merely on local information cannot
achieve a good approximation ratio.

7.1. GENERAL LOWER BOUND FOR VERTEX COVER 71

7.1 General Lower Bound for Vertex Cover

The proofs of our lower bounds are based on the timeless indistinguishability
argument [92, 157]. In k rounds of communication, a network node can only
gather information about nodes which are at most k hops away and hence,
only this information can be used to determine the computation’s outcome.
If we can show that after k communication rounds many nodes see exactly
the same graph topology; informally speaking, all these nodes are equally
qualified to join the MIS, dominating set, or vertex cover. The challenge is
now to construct the graph in such a way that selecting the wrong subset of
these nodes is ruinous.

Unfortunately, constructing such a hard graph for the MDS or FL problem
for an arbitrary number of communication rounds turns out to be difficult.
In order to obtain general lower bounds, we therefore turn our attention to
the simpler MVC problem. As mentioned in Section 5.2, the MVC problem
has a simple combinatorial structure and, it appears to be an ideal candidate
for local computation. Intuitively, a node should be able to decide whether
or not to join the vertex cover using information from its local neighborhood
only; very distant nodes appear to be superfluous for its decision. The fact
that—as discussed in Section 6.1—the aspect of symmetry breaking does not
need to be tackled in the MVC problem fuels further hope for efficient local
algorithms.

In the sequel, we prove that this intuition is misleading and even such
a seemingly simple local problems such as MVC cannot be approximated
well in a constant number of communication rounds. In other words, we
present hardness of distributed approximation lower bounds for MVC and
related problems that hold even in the LOCAL model. With this, we show
a lower bound on the inherent amount of locality (i.e., information about
the topology) needed in order for distributed decision makers to achieve a
good approximation to MVC. Interestingly, our lower bounds even hold for
randomized algorithms as well as for the fractional version of MVC.

We start with an outline of the proof. The basic idea is to construct a
graph Gk = (V,E), for each positive integer k. In Gk, there are many neigh-
boring nodes that see exactly the same topology in their k-hop neighborhood,
that is, no distributed algorithm with running time at most k can distinguish
between these nodes. Informally speaking, both neighbors are equally quali-
fied to join the vertex cover. However, choosing the wrong neighbors in Gk

will be ruinous.
Gk contains a bipartite subgraph S with node set C0 ∪ C1 and edges in

C0 × C1 as shown in Figure 7.1. Set C0 consists of n0 nodes each of which
has δ0 neighbors in C1. Each of the n0 · δ0

δ1
nodes in C1 has δ1, δ1 > δ0,

neighbors in C0. The goal is to construct Gk in such a way that all nodes in
v ∈ S see the same topology Tv,k within distance k. In a globally optimal
solution, all edges of S may be covered by nodes in C1 and hence, no node in
C0 needs to join the vertex cover. In a local algorithm, however, the decision
of whether or not a node joins the vertex cover depends only on its local
view, that is, the pair (Tv,k,L(Tv,k)). We show that because adjacent nodes
in S see the same Tv,k, every algorithm adds a large portion of nodes in C0 to

72 CHAPTER 7. LOCAL COMPUTATION: LOWER BOUNDS

its vertex cover in order to end up with a feasible solution. In other words,
we construct a graph in which the symmetry between two adjacent nodes
cannot be broken within k communication rounds. This yields suboptimal
local decisions and hence, a suboptimal approximation ratio. Throughout
the proof, C0 and C1 denote the two sets of the bipartite subgraph S.

The proof is organized as follows. The structure of Gk is defined in
Subsection 7.1.1. In Subsection 7.1.2, we show how Gk can be constructed
without small cycles, ensuring that each node sees a tree within distance k.
Subsection 7.1.3 proves that adjacent nodes in C0 and C1 have the same view
Tv,k and finally, Subsection 7.1.4 derives the lower bounds.

7.1.1 The Cluster Tree

The nodes of graph Gk = (V,E) can be grouped into disjoint sets which are
linked to each other as bipartite graphs. We call these disjoint sets of nodes
clusters. The structure of Gk is defined using a directed tree CTk = (C,A)
with doubly labelled arcs ` : A → N × N. We refer to CTk as the cluster
tree, because each vertex C ∈ C represents a cluster of nodes in Gk. The
size of a cluster |C| is the number of nodes the cluster contains. An arc
a = (C,D) ∈ A with `(a) = (δC , δD) denotes that the clusters C and D are
linked as a bipartite graph, such that each node u ∈ C has δC neighbors in D
and each node v ∈ D has δD neighbors in C. It follows that |C|·δC = |D|·δD.
We call a cluster leaf-cluster if it is adjacent to only one other cluster, and
we call it inner-cluster otherwise.

Definition 7.1. The cluster tree CTk is recursively defined as follows:

CT1 := (C1,A1), C1 := {C0, C1, C2, C3}
A1 := {(C0, C1), (C0, C2), (C1, C3)}

`(C0, C1) := (δ0, δ1), `(C0, C2) := (δ1, δ2),

`(C1, C3) := (δ0, δ1)

Given CTk−1, we obtain CTk in two steps:

• For each inner-cluster Ci, add a new leaf-cluster C′
i with `(Ci, C

′
i) :=

(δk, δk+1).

• For each leaf-cluster Ci of CTk−1 with (Ci′ , Ci) ∈ A and `(Ci′ , Ci) =
(δp, δp+1), add k−1 new leaf-clusters C′

j with `(Ci, C
′
j) := (δj , δj+1) for

j = 0 . . . k, j 6= p+ 1.

Further, we define |C0| = n0 for all CTk.

Figure 7.1 shows CT2. The shaded subgraph corresponds to CT1. The
labels of each arc a ∈ A are of the form `(a) = (δl, δl+1) for some l ∈
{0, . . . , k}. Further, setting |C0| = n0 uniquely determines the size of all
other clusters. In order to simplify the upcoming study of the cluster tree,
we need two additional definitions. The level of a cluster is the distance to
C0 in the cluster tree (cf. Figure 7.1). The depth of a cluster C is its distance

7.1. GENERAL LOWER BOUND FOR VERTEX COVER 73

12δ δ3 δ2 δ0 δ1

δ0 δ1

δ3δ2 δ1δ0

δ3δ2δ2 δ1δ0δ1

δ

Level 0

Level 1

Level 2

Level 3

3

2C

0C
S

1

C

C

Figure 7.1: Cluster-Tree CT2.

to the furthest leaf in the subtree rooted at C. Hence, the depth of a cluster
plus one equals the height of the subtree corresponding to C. In the example
of Figure 7.1, the depths of C0, C1, C2, and C3 are 3, 2, 1, and 1, respectively.

Note that CTk describes the general structure of Gk, i.e. it defines for
each node the number of neighbors in each cluster. However, CTk does not
specify the actual adjacencies. In the next subsection, we show that Gk can
be constructed so that each node’s local view is a tree.

7.1.2 The Lower-Bound Graph

In Subsection 7.1.3, we will prove that the topologies seen by nodes in C0

and C1 are identical. This task is greatly simplified if each node’s topology is
a tree (rather than a general graph) because we do not have to worry about
cycles. The girth of a graph G, denoted by g(G), is the length of the shortest
cycle in G. We want to construct Gk with girth at least 2k + 1 so that in k
communication rounds, all nodes see a tree. Given the structural complexity
of Gk for large k, constructing Gk with large girth is not a trivial task. The
solution we present is based on the construction of the graph family D(r, q)
as proposed in [158]. For given r and q, D(r, q) defines a bipartite graph
with 2qr nodes and girth g(D(r, q)) ≥ r + 5. In particular, we show that
for appropriate r and q, we obtain an instance of Gk by deleting some of
the edges of D(r, q). In the following, we introduce D(r, q) up to the level of
detail which is necessary to understand our results.

For an integer r ≥ 1 and a prime power q, D(r, q) defines a bipartite
graph with node set P ∪ L and edges ED ⊂ P × L. The nodes of P and
L are labelled by the r-vectors over the finite field Fq, i.e. P = L = Fr

q . In
accordance with [158], we denote a vector p ∈ P by (p) and a vector l ∈ L
by [l]. The components of (p) and [l] are written as follows (for D(r, q), the

74 CHAPTER 7. LOCAL COMPUTATION: LOWER BOUNDS

vectors are projected onto the first r coordinates):

(p) = (p1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, p3,2, . . .

pi,i, p
′
i,i, pi,i+1, pi+1,i, . . .) (7.1)

[l] = [l1, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, l3,2, . . .

li,i, l
′
i,i, li,i+1, li+1,i, . . .]. (7.2)

Note that the somewhat confusing numbering of the components of (p) and
[l] is chosen in order to simplify the following system of equations. There
is an edge between two nodes (p) and [l], exactly if the first r − 1 of the
following conditions hold (for i = 2, 3, . . .).

l1,1 − p1,1 = l1p1

l1,2 − p1,2 = l1,1p1

l2,1 − p2,1 = l1p1,1

li,i − pi,i = l1pi−1,i (7.3)
l′i,i − p′i,i = li,i−1p1

li,i+1 − pi,i+1 = li,ip1

li+1,i − pi+1,i = l1p
′
i,i

In [158], it is shown that for odd r ≥ 3, D(r, q) has girth at least r + 5.
Further, if a node u and a coordinate of a neighbor v are fixed, the remaining
coordinates of v are uniquely determined. This is concretized in the next
lemma.

Lemma 7.1. For all (p) ∈ P and l1 ∈ Fq, there is exactly one [l] ∈ L such
that l1 is the first coordinate of [l] and such that (p) and [l] are connected by
an edge in D(r, q). Analogously, if [l] ∈ L and p1 ∈ Fq are fixed, the neighbor
(p) of [l] is uniquely determined.

Proof. The first r−1 equations of (7.3) define a linear system for the unknown
coordinates of [l]. If the equations and variables are written in the given
order, the matrix corresponding to the resulting linear system of equations
is a lower triangular matrix with non-zero elements in the diagonal. Hence,
the matrix has full rank and by the basic laws of (finite) fields, the solution
is unique. Exactly the same argumentation holds for the second claim of the
lemma.

We are now ready to construct Gk with large girth. We start with an arbi-
trary instance G′

k of the cluster tree which may have the minimum possible
girth 4. An elaboration of the construction of G′

k is deferred to Subsec-
tion 7.1.4. For now, we simply assume that G′

k exists. Both Gk and G′
k are

bipartite graphs with odd-level clusters in one set and even-level clusters in
the other. Let m be the number of nodes in the larger of the two partitions
of G′

k. We choose q to be the smallest prime power greater than or equal to
m. In both partitions V1(G

′
k) and V2(G

′
k) of G′

k, we uniquely label all nodes
v with elements c(v) ∈ Fq.

As already mentioned, Gk is constructed as a subgraph of D(r, q) for
appropriate r and q. We choose q as described above and we set r = 2k − 4

7.1. GENERAL LOWER BOUND FOR VERTEX COVER 75

such that g(D(r, q)) ≥ 2k + 1. Let (p) = (p1, . . .) and [l] = [l1, . . .] be two
nodes of D(r, q). (p) and [l] are connected by an edge in Gk if and only if
they are connected in D(r, q) and there is an edge between nodes u ∈ V1(G

′
k)

and v ∈ V2(G
′
k) for which c(u) = p1 and c(v) = l1. Finally, nodes without

incident edges are removed from Gk.

Lemma 7.2. The graph Gk constructed as described above is a cluster tree
with the same degrees δi as in G′

k. Gk has at most 2mq2k−5 nodes and girth
at least 2k + 1.

Proof. The girth directly follows from the construction; removing edges can-
not create cycles.

For the degrees between clusters, consider two neighboring clusters C′
i ⊂

V1(G
′
k) and C′

j ⊂ V2(G
′
k) in G′

k. In Gk, each node is replaced by q2k−5 new
nodes. The clusters Ci and Cj consist of all nodes (p) and [l] which have their
first coordinates equal to the labels of the nodes in C′

i and C′
j , respectively.

Let each node in C′
i have δα neighbors in C′

j , and let each node in C′
j have

δβ neighbors in C′
i. By Lemma 7.1, nodes in Ci have δα neighbors in Cj and

nodes in Cj have δβ neighbors in Ci, too.

Remark In [159], it has been shown that D(r, q) is disconnected and

consists of at least qb
r+2
4

c isomorphic components which the authors call
CD(r, q). Clearly, those components are valid cluster trees as well and we
could use one of them for the analysis. As the asymptotic results remain
unaffected by this observation, we continue to use Gk as constructed above.

7.1.3 Equality of Views

In this subsection, we prove that two adjacent nodes in clusters C0 and C1

have the same view, i.e. within distance k, they see exactly the same topology
Tv,k. Consider a node v ∈ Gk. Given that v’s view is a tree, we can derive
its view-tree by recursively following all neighbors of v. The proof is largely
based on the observation that corresponding subtrees occur in both node’s
view-tree.

Let Ci and Cj be adjacent clusters in CTk connected by `(Ci, Cj) =
(δl, δl+1), i.e. each node in Ci has δl neighbors in Cj , and each node in Cj

has δl+1 neighbors in Ci. When traversing a node’s view-tree, we say that we
enter cluster Cj (resp., Ci) over link δl (resp., δl+1) from cluster Ci (resp.,
Cj). Furthermore, we make the following definitions:

Definition 7.2. The following nomenclature refers to subtrees in the view-
tree of a node in Gk.

• Mi is the subtree seen upon entering cluster C0 over a link δi.

• Bi,d,λ is a subtree seen upon entering a cluster C ∈ C \ {C0} over a
link δi, where C is on level λ and has depth d.

76 CHAPTER 7. LOCAL COMPUTATION: LOWER BOUNDS

Definition 7.3. When entering subtree Bi,d,λ from a cluster on level λ− 1
(λ + 1), we write B↑

i,d,λ (B↓

i,d,λ). The predicate ¬ in B¬
i,d,λ denotes that

instead of δi, the label of the link into this subtree is δi − 1.

The predicate ¬ is necessary when, after entering Cj from Ci, we imme-
diately return to Ci on link δi. In the view-tree, the edge used to enter Cj

connects the current subtree to its parent. Thus, this edge is not available
anymore and there are only δi−1 edges remaining to return to Ci. The pred-
icates ↑ and ↓ describe from which “direction” a cluster has been entered.
As the view-trees of nodes in C0 and C1 have to be absolutely identical for
our proof to work, we must not neglect these admittedly tiresome details.

The following example should clarify the various definitions. Additionally,
you may refer to the example of G3 in Figure 7.2.

Example 7.1. Consider G1. Let VC0 and VC1 denote the view-trees of nodes
in C0 and C1, respectively:

VC0 = B↑

0,1,1 ∪B↑

1,0,1 VC1 = B↑

0,0,2 ∪M1

B↑

0,1,1 = B↑

0,0,2 ∪M¬
1 B↑

0,0,2 = B↓,¬

1,1,1

B↑

1,0,1 = M¬
2 M1 = B↑,¬

0,1,1 ∪ B↑

1,0,1

· · · · · ·
We start the proof by giving a set of rules which describe the subtrees seen

at a given point in the view-tree. We call these rules derivation rules because
they allow us to derive the view-tree of a node by mechanically applying the
matching rule for a given subtree.

7.1. GENERAL LOWER BOUND FOR VERTEX COVER 77

δ2 δ1δ3 δ0

δ0δ2δ3δ3 δ1 δ0δ0δ1δ2

δ2 δ0δ3 δ1 δ0 δ3 δ0δ2δ3δ2 δ1 δ0

δ2 δ1 δ0 δ3 δ2 δ0

δ

δ −1δ2 0δ1δ

−1δ3 1δ 0δ

−1δ2 −1δ1

2δ

−1δ3

0δ

−1δ2 −1δ1

2δ

−1δ3 −1δ4

3δ

3δ 2δ 0δ−1δ1

1δ

3δ −1δ2 1δ 0δ 3δ 2δ 0δ−1δ1

0δ−1δ2

−1δ4

3δ

0δ 3δ 3δ 2δ 0δ−1δ1

0δ−1δ12δ

3δ 2δ
1δ 0δ

1δ2δ−1δ3 2δ 1δ −1δ0−1δ3 2δ 1δ 0δ

−1δ4

−1δ4

3δ

0δ

1δ

3δ −1δ2 1δ 0δ 3δ 2δ 0δ−1δ1

2δ −1δ0

1δ2δ−1δ3 −1δ4

3δ

0δ 3δ 3δ 2δ 0δ−1δ1

0δ−1δ12δ

3δ 2δ
1δ 0δ

1δ2δ−1δ3 2δ 1δ −1δ0−1δ3 2δ 1δ 0δ

−1δ4

3δ −1δ2 0δ1δ

−1

3

3 1δ

VC0

VC1

Figure 7.2: The Cluster Tree CT3 and the corresponding view-trees of nodes
in C0 and C1. The cluster trees CT1 and CT2 are shaded dark and light,
respectively. The labels of the arcs of the cluster tree represent the number of
higher-level cluster. The labels of the reverse links are omitted. In the view-
trees, an arc labelled with δi stands for δi edges, all connecting to identical
subtrees.

78 CHAPTER 7. LOCAL COMPUTATION: LOWER BOUNDS

Lemma 7.3. The following derivation rules hold in Gk:

Mi =
⋃

j=0...k
j 6=i−1

B↑

j,k−j,1 ∪ B↑,¬

i−1,k−i+1,1

B↑

i,d,1 = F{i+1} ∪D{} ∪ M¬
i+1

B↓

i,d,1 = F{i−1,k−d+1} ∪D{} ∪Mk−d+1 ∪B↑,¬

i−1,d−1,2

B↑

i,d,λ = F{i+1} ∪D{i+1} ∪B↓,¬

i+1,d+1,λ−1

where F and D are defined as

FW :=
⋃

j=0...k−d+1
j /∈W

B↑

j,d−1,λ+1

DW :=
⋃

j=k−d+2...k
j /∈W

B↑

j,k−j,λ+1.

Proof. We first show the derivation rule for Mi. It can be seen in Example 7.1
that the rule holds for k = 1. For the induction step, we build CTk+1 from
CTk as defined in Definition 7.1. M (k) is an inner cluster and therefore, one
new cluster Bk+1,0,1 is added. The depth of all other subtrees increases by

1 and M (k+1) :=
⋃

j=0...k+1B
↑

j,k−j,1 follows. If we enter M (k+1) over link δi,
there will be only δi−1 − 1 edges left to return to the cluster from which we
had entered C0. Consequently, the link δi−1 features the ¬ predicate.

The remaining rules follow along the same lines. Let Ci be a cluster
with entry-link δi which was first created in CTr, r < k. Note that in CTk,
r = k − d holds because each subtree increases its depth by one in each
“round”. According to the second building rule of Definition 7.1, r new
neighboring clusters (subtrees) are created in CTr+1. More precisely, a new
cluster is created for all entry-links δ0 . . . δr, except δi. We call these subtrees
fixed-depth subtrees F . If the subtree with root Ci has depth d in CTk, the
fixed-depth subtrees have depth d − 1. In each CTr′ , r′ ∈ {r + 2, . . . , k},
Ci is an inner-cluster and hence, one new neighboring cluster with entry-link
δr′ is created. We call these subtrees diminishing-depth subtrees D. In CTk,
each of these subtrees has grown to depth k − r′.

We now turn our attention to the differences between the three rules.
They stem from the exceptional treatment of level 1, as well as the predicates
↑ and ↓. In B↑

i,d,1, the link δi+1 returns to C0, but contains only δi+1 − 1

edges in the view-tree. In B↓

i,d,1, we have to consider two special cases. The

first one is the link to C0. For a cluster on level 1 with entry-link (from C0)
i, the equality k = d + i holds and therefore, the link to C0 is δk−d+1 and
thus, Mk−d+1 follows. Secondly, we write B↑,¬

i−1,d−1,2, because there is one

edge less leading back to the cluster where we had come from. (Note that
since we entered the current cluster from a higher level, the link leading back
to where we came from is δi−1, instead of δi+1). Finally in B↑

i,d,λ, we again
have to treat the returning link δi+1 specially.

7.1. GENERAL LOWER BOUND FOR VERTEX COVER 79

Note that the general derivation rule for B↓

i,d,λ is missing as we will not
need it for the proof.

Next, we define the notion of r-equality. Intuitively, if two view-trees are
r-equal, they have the same topology within distance r.

Definition 7.4. Let V1 =
⋃

i=0...k bi and V2 =
⋃

i=0...k b
′
i be view-trees; bi

and b′i are subtrees entered on link δi. Then, V1 and V2 are r-equal if all
corresponding subtrees are (r−1)-equal,

V1
r
= V2 ⇐= bi

r−1
= b′i , ∀i ∈ {0, . . . , k}.

Further, all subtrees are 0-equal: Bi,d,λ
0
= Bi′,d′,λ′ and

Bi,d,λ
0
= Mi′ for all i, i′, d, d′, λ, and λ′.

Using the notion of r-equality, we can now define what we actually have
to prove. We will show that in Gk, VC0

k
= VC1 holds. This is equivalent to

showing that each node in C0 sees exactly the same topology within distance
k as its neighbor in C1. We first establish several helper lemmas.

Lemma 7.4. Let β and β′ be sets of subtrees, and let Vv1 = B↑

i,d,x ∪ β and

Vv2 = B↑

i,d,y ∪ β′ be two view-trees. Then, for all x and y,

Vv1
r
= Vv2 ⇐= β r−1

= β′.

Proof. Assume that the roots of the subtree of Vv1 and Vv2 are Ci and Cj .
The subtrees have equal depth and entry-link and they have thus grown
identically. Hence, all paths which do not return to clusters Ci and Cj must
be identical. Further, consider all paths which, after s hops, return to Ci

and Cj over link δi+1. After these s hops, they return to the original cluster
and see views V ′

v1
and V ′

v2
, differing from Vv1 and Vv2 only in the placement

of the ¬ predicate. This does not affect β and β′ and therefore,

Vv1
r
= Vv2 ⇐= V ′

v1

r−s
= V ′

v2
∧ β r−1

= β′ , s > 1.

The same argument can be repeated until r − s = 0 and because V ′
v1

0
= V ′

v2
,

the lemma follows.

Lemma 7.5. Let β and β′ be sets of subtrees, and let Vv1 = B↑

i,d,x ∪ β

and Vv2 = B↑

i,d′,y ∪ β′ be two view-trees. Then, for all x and y, and for all

r ≤ min (d, d′),

Vv1
r
= Vv2 ⇐= β r−1

= β′.

Proof. W.l.o.g, we assume d′ ≤ d. In the construction process of Gk, the
root clusters of Vv1 and Vv2 have been created in steps k − d and k − d′,
respectively. By Definition 7.1, all subtrees with depth d∗ < d′ have grown
identically in both views. The remaining subtrees of Vv2 were all created in
step k−d′+1 and have depth d′−1. The corresponding subtrees in Vv1 have

80 CHAPTER 7. LOCAL COMPUTATION: LOWER BOUNDS

at least the same depth and hence, each pair of corresponding subtrees are
(d′−1)-equal. It follows that for r ≤ min (d, d′), the subtrees B↑

i,d,x and B↑

i,d′,y

are identical within distance r. Using the same argument as in Lemma 7.4
concludes the proof.

2 Τ2 Τ1 Τ0

δ4−1

δ1

δ1

VC1

δ4−1

δ1

Τ2

δ3 δ2+ +1 δ3 δ2+ +1

δ3 δ0−13

−1δ2 δ1

δ0

’ ’ ’

δ

VC

δ

0

2

Τ1 Τ0Τ

Figure 7.3: The view-trees VC0 and VC1 in G3 seen upon using link δ1.

Figure 7.3 shows a part of the view-trees of nodes in C0 and C1 in G3.
The figure shows that the subtrees with links δ0 and δ2 cannot be matched
directly to one another because of the different placement of the −1. It
turns out that this inherent difference appears in every step of our theorem.
However, the following lemma shows that the subtrees T0 and T2 (T ′

0 and
T ′

2) are equal up to the required distance and hence, nodes are unable to
distinguish them. It is this crucial property of our cluster tree, which allows
us to “move” the ¬ predicate between links δi and δi+2 and enables us to
derive the main theorem.

Lemma 7.6. Let β and β′ be sets of subtrees and let Vv1 and Vv2 be defined
as

Vv1 = M¬
i ∪B↑

i−2,k−i,2 ∪ β
Vv2 = Mi ∪B↑,¬

i−2,k−i,2 ∪ β′.

Then, for all i ∈ {2, . . . , k},
Vv1

k−i
= Vv2 ⇐= β k−i−1

= β′.

Proof. Again, we make use of Lemma 7.3 to show that Mi and B↑

i−2,k−i,2 are

(k−i−1)-equal. The claim then follows from the fact that the two subtrees
are not distinguishable and the placement of the ¬ predicate is irrelevant.

Mi =
⋃

j=0...k
j 6=i−1

B↑

j,k−j,1 ∪ B↑,¬

i−1,k−i+1,1

B↑

i−2,k−i,2 =
⋃

j=0...i+1
j 6=i−1

B↑

j,k−i−1,3 ∪
⋃

j=i+2...k

B↑

j,k−j,3

∪ B↓,¬

i−1,k−i+1,1

7.1. GENERAL LOWER BOUND FOR VERTEX COVER 81

For j = {0, . . . , i−2, i, . . . , k}, all subtrees are equal according to Lemmas 7.4

and 7.5. It remains to be shown that B↑

i−1,k−i+1,1
k−i−2

= B↓

i−1,k−i+1,1. For

that purpose, we plug B↑

i−1,k−i+1,1 and B↓

i−1,k−i+1,1 into Lemma 7.3 and
show their equality using the derivation rules. Let β be defined as β :=
F{i−2,i} ∪D{}.

B↑

i−1,k−i+1,1 = F{i} ∪D{} ∪M¬
i

= B↑

i−2,k−i,2 ∪M¬
i ∪ β

B↓

i−1,k−i+1,1 = F{i−2,i} ∪D{} ∪Mi ∪ B↑,¬

i−2,k−i,2

= B↑,¬

i−2,k−i,2 ∪Mi ∪ β

Again, if Mi and B↑

i−2,k−i,2 are (k−i−3)-equal, we can move the ¬ predicate
because the subtrees are indistinguishable. Hence, what needs to be shown
is Mi

k−i−3
= B↑

i−2,k−i,2. In the proof, we have reduced Vv1
k−i
= Vv2 stepwise to

an expression of diminishing equality conditions, i.e.

Vv1
k−i
= Vv2 ⇐= Mi

k−i−1
= B↑

i−2,k−i,2

⇐= B↑

i−1,k−i+1,1
k−i−2

= B↓

i−1,k−i+1,1

⇐= Mi
k−i−3

= B↑

i−2,k−i,2.

This process can be continued until either

B↑

i−1,k−i+1,1
0
= B↓

i−1,k−i+1,1 or Mi
0
= B↑

i−2,k−i,2

which is always true.

Finally, we are ready to prove the main theorem.

Theorem 7.7. Consider graph Gk. Let VC0 and VC1 be the view-trees of

two adjacent nodes in clusters C0 and C1, respectively. Then, VC0
k
= VC1 .

Proof. Initially, each node in C0 sees subtree M∗ and each node in C1 sees
B∗,k,1 (∗ denotes that the subtree has not been entered on any link):

VC0 : M∗ =
⋃

j=0...k

B↑

j,k−j,1

VC1 : B∗,k,1 =
⋃

j=0...k
j 6=1

B↑

j,k−j,2 ∪M1.

It follows VC0
k
= VC1 ⇐= B↑

1,k−1,1
k−1
= M1 because all other subtrees are

(k − 1)-equal by Lemma 7.4. Having reduced VC0
k
= VC1 to B↑

1,k−1,1
k−1
= M1,

82 CHAPTER 7. LOCAL COMPUTATION: LOWER BOUNDS

we can further reduce it to M2
k−2
= B↑

2,k−2,1:

M1 =
⋃

j=1...k

B↑

j,k−j,1 ∪ B↑,¬

0,k,1

B↑

1,k−1,1 = B↑

0,k−2,2 ∪B↑

1,k−2,2 ∪D{} ∪ M¬
2

k−2
=

Lem. 7.6
B↑,¬

0,k−2,2 ∪B↑

1,k−2,2 ∪D{} ∪ M2.

By Lemmas 7.4 and 7.5, all subtree are (k − 2)-equal, except B↑

2,k−2,1 and
M2.

It seems clear that we can continue to reduce VC0
k
= VC1 step by step

in the same fashion until we reach 0. For the induction step, we assume
VC0

k
= VC1 ⇐= B↑

r,k−r,1
k−r
= Mr for r < k and prove VC0

k
= VC1 ⇐=

B↑

r+1,k−r−1,1
k−r−1

= Mr+1.

Mr =
⋃

j=0...k
j 6=r−1

B↑

j,k−j,1 ∪ B↑,¬

r−1,k−r+1,1

B↑

r,k−r,1 =
⋃

j=0...r

B↑

j,k−r−1,2 ∪D{} ∪ M¬
r+1

k−r−1
=

Lem. 7.6

⋃

j=0...r
j 6=r−1

B↑

j,k−r−1,2 ∪ B↑,¬

r−1,k−r−1,2

∪
⋃

j=r+2...k

B↑

j,k−j,2 ∪ Mr+1.

Apart from Mr+1 (resp,. B↑

r+1,k−r−1,1), all subtrees are (k− r− 1)-equal by

Lemmas 7.4 and 7.5. Since Mr+1 and B↑

r+1,k−r−1,1 are the only subtrees not
being immediately matched, the induction step follows. For r = k−1, we get
VC0

k
= VC1 ⇐= B↑

k,0,1
0
= Mk, which concludes the proof because B↑

k,0,1
0
= Mk

is true.

Remark As a side-effect, the proof of Theorem 7.7 has highlighted the
fundamental significance of the critical path P = (δ1, δ2, . . . , δk) in CTk.
After following path P , the view of a node v ∈ C0 ends up in the leaf-cluster
neighboring C0 and sees δi+1 neighbors. Following the same path, a node
v′ ∈ C1 ends up in C0 and sees

∑i
j=0 δj − 1 neighbors. There is no way to

match these views. This inherent inequality is the underlying reason for the
way Gk is defined: It must be ensured that the critical path is at least k hops
long.

7.1.4 Analysis

In this subsection, we derive the lower bounds on the approximation ratio
of k-local MVC algorithms. Let OPT be an optimal solution for MVC and

7.1. GENERAL LOWER BOUND FOR VERTEX COVER 83

let ALG be the solution computed by any algorithm. The main observation
is that adjacent nodes in the clusters C0 and C1 have the same view and
therefore, every algorithm treats nodes in both of the two clusters the same
way. Consequently, ALG contains a significant portion of the nodes of C0,
whereas the optimal solution covers the edges between C0 and C1 entirely by
nodes in C1.

Lemma 7.8. Let ALG be the solution of any distributed (randomized) ver-
tex cover algorithm which runs for at most k rounds. When applied to Gk

as constructed in Subsection 7.1.2 in the worst case (in expectation), ALG
contains at least half of the nodes of C0.

Proof. Let v0 ∈ C0 and v1 ∈ C1 be two arbitrary, adjacent nodes from
C0 and C1. We first prove the lemma for deterministic algorithms. The
decision whether a given node v enters the vertex cover depends solely on
the topology Tv,k and the labelling L(Tv,k). Assume that the labelling of the
graph is chosen uniformly at random. Further, let pA0 and pA1 denote the
probabilities that v0 and v1, respectively, end up in the vertex cover when
a deterministic algorithm A operates on the randomly chosen labelling. By
Theorem 7.7, v0 and v1 see the same topologies, that is, Tv0,k = Tv1,k. With
our choice of labels, v0 and v1 also see the same distribution on the labellings
L(Tv0,k) and L(Tv1,k). Therefore it follows that pA0 = pA1 .

We have chosen v0 and v1 such that they are neighbors in Gk. In order
to obtain a feasible vertex cover, at least one of the two nodes has to be in
it. This implies pA0 + pA1 ≥ 1 and therefore pA0 = pA1 ≥ 1/2. In other words,
for all nodes in C0, the probability to end up in the vertex cover is at least
1/2. Thus, by the linearity of expectation, at least half of the nodes of C0

are chosen by algorithm A. Therefore, for every deterministic algorithm A,
there is at least one labelling for which at least half of the nodes of C0 are
in the vertex cover.1

The argument for randomized algorithms is now straight-forward using
Yao’s minimax principle. The expected number of nodes chosen by a random-
ized algorithm cannot be smaller than the expected number of nodes chosen
by an optimal deterministic algorithm for an arbitrarily chosen distribution
on the labels.

Lemma 7.8 gives a lower bound on the number of nodes chosen by any
k-local MVC algorithm. In particular, we have that E[|ALG|] ≥ |C0|/2 =
n0/2. We do not know OPT , but since the nodes of cluster C0 are not
necessary to obtain a feasible vertex cover, the optimal solution is bounded
by |OPT | ≤ n− n0. In the following, we define

δi := δi , ∀i ∈ {0, . . . , k + 1} (7.4)

for some value δ.

1In fact, since at most |C0| such nodes can be in the vertex cover, for at least 1/3 of
the labellings, the number exceeds |C0|/2.

84 CHAPTER 7. LOCAL COMPUTATION: LOWER BOUNDS

Lemma 7.9. If k + 1 < δ, the number of nodes n of Gk is

n ≤ n0

(
1 +

k + 1

δ − (k + 1)

)
.

Proof. There are n0 nodes in C0. By (7.4), the number of nodes per cluster
decreases for each additional level by a factor δ. Hence, a cluster on level
l contains n0/δ

l nodes. By the definition of CTk, each cluster has at most
k + 1 neighboring clusters on a higher level. Thus, the number of nodes nl

on level l is upper bounded by

nl ≤ (k + 1)l · n0

δl
.

Summing up over all levels l and interpreting the sum as a geometric series,
we obtain

n ≤ n0 ·
k+1∑

i=0

(
k + 1

δ

)l

≤ n0 ·
∞∑

i=0

(
k + 1

δ

)l

= n0 + n0

(
k + 1

δ

)(
1

1 − k+1
δ

)

= n0

(
1 +

k + 1

δ − (k + 1)

)
.

It remains to determine the relationship between δ and n0 such that Gk

can be realized as described in Subsection 7.1.2. There, the construction of
Gk with large girth is based on a smaller instance G′

k where girth does not
matter. Using (7.4) (i.e. δi := δi), we can now tie up this loose end and
describe how to obtain G′

k. The number of nodes per cluster decreases by
a factor δ on each level of CTk. Including C0, CTk consists of k + 2 levels.
The maximum number of neighbors inside a leaf-cluster is δk. Hence, we
can set the sizes of the clusters on the outermost level k + 1 to be δk. This
implies that the size of a cluster on level l is δ2k+1−l. Particularly, the size
of C′

0 at level 0 in G′
k is n′

0 = δ2k+1. Let Ci and Cj be two adjacent clusters
with `(Ci, Cj) = (δi, δi+1). Ci and Cj can simply be connected by as many
complete bipartite graphs Kδi,δi+1 as necessary.

If we assume that k+1 ≤ δ/2, we have n ≤ 2n0 by Lemma 7.9. Applying

the construction of Subsection 7.1.2, we get n0 ≤ n′
0 · 〈n′〉2k−5, where 〈n′〉

denotes the smallest prime power larger than or equal to n′, i.e. 〈n′〉 < 4n′
0.

Putting all together, we get

n0 ≤ (4n′
0)

2k−4 ≤ 42k−4δ4k2

. (7.5)

7.1. GENERAL LOWER BOUND FOR VERTEX COVER 85

Theorem 7.10. There are graphs G, such that in k communication rounds,
every distributed algorithm for the minimum vertex cover problem on G has
approximation ratios at least

Ω

(
nc/k2

k

)
and Ω

(
∆1/k

k

)

for some constant c ≥ 1/4, where n and ∆ denote the number of nodes and
the highest degree in G, respectively.

Proof. We can choose δ ≥ 4−1/(2k)n
1/(4k2)
0 due to Inequality (7.5). Finally,

using Lemmas 7.8 and 7.9, the approximation ratio α is at least

α ≥ n0/2

n− n0
≥ n0/2 · δ/2

n0 · (k + 1)
=

δ

4(k + 1)

≥ (n/2)1/(4k2)

41+1/(2k)(k + 1)
∈ Ω

(
n1/(4k2)

k

)
.

The second lower bound follows from ∆ = δk+1.

Theorem 7.11. In order to obtain a polylogarithmic or even constant ap-
proximation ratio, every distributed algorithm for the MVC problem requires

at least Ω
(√

log n
log log n

)
and Ω

(
log ∆

log log ∆

)
communication rounds.

Proof. We set k = β
√

log n/ log log n for an arbitrary constant β > 0. When
plugging this into the first lower bound of Theorem 7.10, we get the following
approximation ratio α:

α ≥ γn
c log log n

β2 log n · 1

β

√
log log n

log n

where γ is the hidden constant in the Ω-notation. For the logarithm of α, we
get

logα ≥ c log log n

β2 log n
· log n− 1

2
· log log n− log β

=

(
c

β2
− 1

2

)
· log log n− log β.

and therefore

α ∈ Ω

(
(log n)

(
c

β2 − 1
2

))
.

By choosing an appropriate β, we can determine the exponent of the above
expression. For every polylogarithmic term α(n), there is a constant β such

86 CHAPTER 7. LOCAL COMPUTATION: LOWER BOUNDS

that the above expression is at least α(n) and hence, the first lower bound
of the theorem follows.

The second lower bound follows from an analogous computation by setting
k = β log ∆/ log log ∆.

Remark By defining δi := δi, i ∈ {0, . . . , k} and δk+1 := δk+1/2 (instead

of δk+1), we obtain slightly stronger approximation lower bounds of

Ω
(
nc/k2 − k

)
and Ω

(
∆c′/k − k

)
. (7.6)

However, these bounds do not suffice to improve the results of Theorem 7.11.

7.2 Locality Preserving Reductions

Using the lower bound for vertex cover, we can obtain lower bounds for
several other classical graph problems, including the minimum dominating
set and the maximum matching problems. Finally, the hardness of distributed
approximation lower bound on the MVC problem also gives raise to time
lower bounds on the distributed computation of two of the most important
exact problems in distributed computing: MIS and maximal matching.

From a more general point of view, the notion of locality preserving reduc-
tions appears to be interesting by itself. In particular, our reductions could
be considered as a first step towards a consistent classification of distributed
computing problems into some sort of complexity classes according to their
locality. Ideally, a theory of locality based on locality preserving reductions—
possibly even including a notion of completeness—could eventually lead to a
hierarchy of locality classes analogous to the ones found in complexity theory
or approximation theory. It would be particularly interesting to establish ties
between this hierarchy of locality classes and the classic complexity classes
originating in the Turing model of computation. Clearly, the reductions pre-
sented in this section fall short of achieving this long-term goal. However, our
reductions show that many of the network coordination problems presented
in Chapter 5 fall into the same “locality-class” in the sense that they all
exhibit the same (or similar) locality-approximation trade-offs. Intriguingly,
an analogous statement can also be made for exact problems such as MIS.

7.3 Lower Bounds for MDS and Facility Location

In a non-distributed setting, MDS in equivalent to the general minimum
set cover problem, whereas MVC is a special case of set cover which can
be approximated much better. It is therefore not surprising that also in a
distributed environment, MDS is harder than MVC. In the following, we
formalize this intuition giving a locality-preserving reduction from MVC to
MDS.

7.3. LOWER BOUNDS FOR MDS AND FACILITY LOCATION 87

Theorem 7.12. There are graphs G, such that in k communication rounds,
every (possibly randomized) distributed algorithm for the minimum dominat-
ing set problem on G has approximation ratios at least

Ω

(
nc/k2

k

)
and Ω

(
∆1/k

k

)

for some constant c, where n and ∆ denote the number of nodes and the
highest degree in G, respectively.

Proof. We show that every MVC instance can be seen as a MDS instance with
the same locality. Let G′ = (V ′, E′) be a graph for which we want to solve
MVC. The corresponding dominating set graph G = (V,E) is constructed as
follows. For every node and for every edge in G′, there is a node in G. We
call nodes vn ∈ V corresponding to nodes v′ ∈ V ′ n-nodes, and nodes ve ∈ V
corresponding to edges e′ ∈ E′ e-nodes. Two n-nodes are connected by an
edge if and only if they are adjacent in G′. An n-node vn and an e-node ve

are connected exactly if the corresponding node and edge are incident in G′.
There are no edges between two e-nodes.

Graphs G′ and G exhibit the same localities, i.e. k communication rounds
on one of the two graphs can be simulated by k + O(1) rounds on the other
graph. Let C be a feasible vertex cover for G′. We claim that all nodes of G
corresponding to nodes in C form a valid dominating set on G. By definition,
all e-nodes are covered. The remaining nodes of G are covered because for a
given graph, a valid vertex cover is a valid dominating set as well. Therefore,
the optimal dominating set on G is at most as big as the optimal vertex cover
on G′. There also exists a transformation in the other direction. Let D be a
valid dominating set on G. If D contains an e-node ve, we can replace ve by
one of its two neighbors. The size of D remains the same and all three nodes
covered (dominated) by ve are still covered. By this, we get a dominating
set D′ which has the same size as D and which consists only of n-nodes.
Because D′ dominates all e-nodes, the nodes of G′ corresponding to D′ form
a valid vertex cover. Thus, MDS on G is exactly as hard as MVC on G′ and
the theorem follows from Theorem 7.10.

Corollary 7.13. In order obtain a polylogarithmic or constant approxima-
tion ratio for minimum dominating set, there are graphs on which every
distributed algorithm requires time

Ω

(√
log n

log log n

)
and Ω

(
log ∆

log log ∆

)
.

Proof. The corollary follows directly from Theorem 7.12 and the proof of
Theorem 7.11.

88 CHAPTER 7. LOCAL COMPUTATION: LOWER BOUNDS

Remark 1 Using the same locality-preserving reduction as from MVC to
MDS, it can also be shown that solving the fractional versions of MDS is at
least as hard as the fractional version of MVC. Theorem 7.10 also holding
for fractional MVC therefore implies that Theorem 7.12 and Corollary 7.13
could equally be stated for fractional MDS.

Remark 2 The minimum dominating set problem is a special case (in
which connection costs cij are 0) of the local facility location problem defined
in Chapter 5. The lower bounds of Theorem 7.12 and Corollary 7.13 therefore
hold for the facility location problem, as well.

7.4 Lower Bounds for Maximum Matching

While MVC and MDS are standard covering problems, the lower bound
can also be extended to packing problems. Unfortunately, we are not aware
of a simple locality-preserving reduction from MVC to a packing problem.
By adjusting the lower-bound graph from Section 7.1.2 somewhat, however,
we can show that the same lower bounds hold for the maximum matching
problem. In fact, we prove the result for the fractional relaxation of maximum
matching in which edges may be selected fractionally, and the sum of these
fractional values incident at a single node must not exceed 1. Recall that
the fractional maximum matching problem is captured by LPMM discussed
in Section 5.2, which is the dual to the fractional minimum vertex cover
problem. Further, note that E(v) denotes the set of edges incident to node v.

The basic idea of the lower bound follows along the lines of the MVC
lower bound in Section 7.1. The view of an edge is defined to be the union
of its incident nodes’ views. In other words, two edges (u, v) and (u′, v′)
have the same view if Vu,k ∪ Vv,k = Vu′,k ∪ Vv′,k. The idea is to construct
a graph Hk which contains a large set E′ ⊂ E of edges with equal view
up to distance k. This implies that, in expectation, the fractional values ye

assigned to the edges in E′ must be equal. Hk is constructed in such a way,
however, that there are edges in E′ who are incident to many other edges in
E′, whereas the majority of edges in E′ are incident to only a few such edges.
Clearly, an optimal solution consists of mainly the latter edges, leading to a
matching with large cardinality. On the other hand, every distributed k-local
algorithm assigns equal fractional values ye to all edges in E′ in expectation.
In order to keep the feasibility at the nodes incident to many edges in E′,
this fractional value must be rather small, which leads to the suboptimality
ultimately captured in the theorem.

The construction of Hk uses the lower-bound graph Gk of the MVC lower
bound as follows. Let Gk and G′

k be two identical copies of the MVC lower-
bound graph defined in Section 7.1. The graph Hk takes the two copies and
connects each node in Gk to its counterpart in G′

k as illustrated in Figure 7.4.
Formally, let φ : V (Gk) → V (G′

k) be an isomorphism mapping nodes of Gk

to G′
k. Graph Hk consists of Gk and G′

k, as well as additional edges between
nodes v ∈ Gk and w ∈ G′

k if and only if w = φ(v). C′
k denotes the set of

7.4. LOWER BOUNDS FOR MAXIMUM MATCHING 89

0C0 C’

Figure 7.4: The structure of lower-bound graph Hk.

nodes in G′
k corresponding to cluster Ci in Gk. Furthermore, we use the

abbreviations S0 := C0 ∪ C′
0 and S1 := C1 ∪ C′

1.
By the construction of Hk and the structural properties proven in Theo-

rem 7.7, the following lemma follows immediately.

Lemma 7.14. Let v and w be two arbitrary nodes in S0 ∪S1 of Hk. It holds
that v and w see the same topology up to distance k.

Lemma 7.14 implies that no distributed k-local algorithm can distinguish
between edges connecting two nodes in S0 ∪ S1. In particular, this means
that edges between C0 and C1 cannot be distinguished from edges between
C0 and C′

0. In the sequel, let OPT be the value of the optimal solution
for fractional maximum matching and let ALG be the value of the solution
computed by any algorithm.

Lemma 7.15. When applied to Hk, any distributed, possibly randomized al-
gorithm which runs for at most k rounds computes, in expectation, a solution
of at most ALG ≤ |S0|/(2δ2) + (|V | − |S0|).

Proof. First, consider deterministic algorithms. The decision of which value
ye is assigned to edge e = (v, v) depends only on the view the topologies
Tu,k and Tv,k and the labelings L(Tu,k) and L(Tv,k), which u and v can
collect during the k communication rounds. Assume that the labeling of Hk

is chosen uniformly at random. In this case, the labeling L(Tu,k) for any
node u ∈ V is also chosen uniformly at random.

All edges connecting nodes in S0 and S1 see the same topology. If the
node’s labels are distributed uniformly at random, it follows that the dis-
tribution of the views (and therefore the distribution of the ye) is the same
for all edges connecting nodes in S0 and S1. We denote the random vari-
ables describing the distribution of the ye by Ye. Every node u ∈ S1 has δ2

neighbors in S0. Therefore, for edges e between nodes in S0 and S1, it fol-
lows by linearity of expectation that E[Ye] ≤ 1/δ2 because otherwise, there
exists at least one labeling for which the computed solution is not feasible.
On the other hand, consider an edge e′ having both end-points in S0. By
Lemma 7.14, these edges have the same view as edges e between S0 and S1.

90 CHAPTER 7. LOCAL COMPUTATION: LOWER BOUNDS

Hence, for y′e of e′, it must equally hold that E[Y ′
e] ≤ 1/δ2. Because there

are |S0|/2 such edges, the expected total value contributed to the objective
function by edges between two nodes in S0 is at most |S0|/(2δ2).

Next, consider all edges which do not connect two nodes in S0. Every
such edge has at least one end-point in V \ S0. In order to obtain a feasible
solution, the total value of all edges incident to a set of nodes V ′, can be
at most |V ′| = |V \ S0|. This can be seen by considering the dual problem,
a kind of minimum vertex cover where some edges only have one incident
node. Taking all nodes of V ′ (assigning 1 to the respective variables) yields
a feasible solution for this vertex cover problem. This concludes the proof
for deterministic algorithms.

For probabilistic algorithms, we can apply an identical argument based
on Yao’s minimax principle as in the MVC lower bound (cf Lemma 7.8).

Lemma 7.15 yields an upper bound on the objective value achieved by
any k-local fractional maximum matching algorithm. On the other hand, it
is clear that choosing all edges connecting corresponding nodes of Gk and G′

k

is feasible and hence, OPT ≥ n/2 ≥ |S0|/2. Let α denote the approximation
ratio achieved by any k-local distributed algorithm, and assume—as in the
MVC proof—that k + 1 ≤ δ/2. Using the relationship between n, |S0|, δ,
and k proven in Lemma 7.9 and combining it with the bound on ALG gives
raise to the following theorem.

Theorem 7.16. There are graphs G, such that in k communication rounds,
every (possibly randomized) distributed algorithm for the (fractional) maxi-
mum matching problem on G has approximation ratios at least

Ω

(
nc/k2

k

)
and Ω

(
∆1/k

k

)

for some constant c ≥ 1/4, where n and ∆ denote the number of nodes and
the highest degree in G, respectively.

Proof. Using Lemmas 7.15 and 7.9, the approximation ratio α is at least

α ≥ |S0|/2
|S0|
2δ2 + (n− |S0|)

≥
Lm 7.9

|S0|/2
|S0|
2δ2 + |S0|(k+1)

δ−(k+1)

≥ 1
1
δ

+ 2(k+1)
δ

=
δ

4k + 5
∈ Ω

(
n1/(4k2)

k

)
.

The second lower bound follows from ∆ = δk+2.

Corollary 7.17. In order to obtain a polylogarithmic or constant approxima-
tion ratio, every distributed algorithm for the (fractional) maximum matching
problem requires at least

Ω

(√
log n

log log n

)
and Ω

(
log ∆

log log ∆

)

communication rounds.

7.5. LOWER BOUNDS FOR MAXIMAL MATCHING 91

7.5 Lower Bounds for Maximal Matching

A maximal matching M of a graph G is a maximal set of edges which do
not share common end-points. Hence, a maximal matching is a set of non-
adjacent edges M of G such that all edges in E(G) \M have a common end-
point with an edge in M. The best known lower bound for the distributed
computation of a maximal matching is Ω(log∗n) which holds for rings [166].

Theorem 7.18. There are graphs G on which every distributed, possibly
randomized algorithm requires time

Ω

(√
log n

log log n

)
and Ω

(
log ∆

log log ∆

)

to compute a maximal matching. This bound holds even if message size is
unlimited and nodes have unique identifiers.

Proof. It is well known that the set of all end-points of the edges of a maximal
matching form a 2-approximation for MVC. This simple 2-approximation al-
gorithm is commonly attributed to Gavril and Yannakakis. For deterministic
algorithms, the lower bound for the construction of a maximal matching in
Theorem 7.18 therefore directly follows from Theorem 7.11.

Generalizing this result to randomized algorithms, however, still requires
some work. The problem is that Theorem 7.10 lower bounds the achiev-
able approximation ratio by distributed algorithms whose time complexity is
exactly k. That is, it does not provide a lower bound for randomized algo-
rithms whose time complexity is at most k in expectation or with a certain
probability. As stated in the theorem, however, we consider distributed algo-
rithms that always compute a feasible solution, i.e., only the time complexity
depends on randomness. In other words, Theorem 7.10 yields a bound on
Monte Carlo type algorithms, whereas in the case of maximal matching, we
are primarily interested in Las Vegas type algorithms.

In order to generalize the theorem to randomized algorithms, we give a
transformation from an arbitrary distributed maximal matching algorithm
AM with expected time complexity T into a distributed vertex cover algo-
rithm AV C with fixed time complexity 2T + 1 and expected approximation
ratio αV C ∈ O(log ∆).

We first define an algorithm A′
V C . In a first phase, A′

V C simulates AM

for exactly 2T rounds. Let EM ⊆ E be the set of edges selected after these
rounds. In the second phase, every node v checks whether it has at most one
incident edge in EV C . If a node has more than one incident edge in EV C , it
removes all these edges from EV C . Hence, EV C forms a feasible matching,
although not necessarily a maximal one.

It follows from Markov’s inequality that when running AM for 2T rounds,
the probability for obtaining a feasible maximal matching is at least 1/2.
Therefore, algorithm A′

V C outputs a matching that is maximal with proba-
bility at least 1/2. Let VV C ⊆ V denote the set of all nodes incident to an
edge in EV C . A maximal matching being a vertex cover, VV C is a feasible

92 CHAPTER 7. LOCAL COMPUTATION: LOWER BOUNDS

vertex cover with probability at least 1/2. If not, the construction of A′
V C

guarantees that |VV C | is at most twice the size of an optimal vertex cover.
Algorithm AV C executes log ∆ independent runs of A′

V C in parallel. The
probability for obtaining a feasible vertex cover in at least one of the runs is
at least 1−∆−1. Let S be the union of the log ∆ node sets |VV C | computed
in the different runs of A′

V C and let OPTV C be the size of an optimal vertex
cover. The size of S is at most 2 log ∆ ·OPTV C and with probability 1−∆−1,
S forms a feasible vertex cover. If S is not a feasible vertex cover, every node
incident to an uncovered edge joins S, thus guaranteeing S to be a vertex
cover. The expected size of S is

E[|S|] ≤
(

1 − 1

∆

)
·2 log ∆ ·OPTV C +

n

∆
<

(
2 log ∆ + 1 +

1

n− 1

)
·OPTV C ,

where the second inequality follows from the fact that every node can cover at
most ∆ edges and there are at least n−1 edges, and thus (n−1)/∆ ≤ OPTV C .

Based on an algorithm AM for maximal matching, we can therefore obtain
a logarithmic approximation to MVC using a reduction that preserves locality
up to a constant factor. Because the time lower bounds of Theorem 7.11 also
holds for polylogarithmic approximation ratios, Theorem 7.18 follows.

7.6 Lower Bounds for Maximal Independent Set

As in the case of a maximal matching, the best currently known lower bound
on the distributed complexity of an MIS has been Linial’s Ω(log∗n) lower
bound. Using a locality-preserving reduction from MM to MIS, we can
strengthen this lower bound on general graphs as formalized in the following
theorem.

Theorem 7.19. There are graphs G on which every distributed, possibly
randomized algorithm requires time

Ω

(√
log n

log log n

)
and Ω

(
log ∆

log log ∆

)

to compute a maximal independent set (MIS). This bound holds even if mes-
sage size is unlimited and nodes have unique identifiers.

Proof. For the MIS problem, consider the line graph L(Gk) of Gk. The
nodes of a line graph L(G) of G are the edges of G. Two nodes in L(G) are
connected by an edge whenever the two corresponding edges in G are incident
to the same node. The MM problem on a graph G is equivalent to the MIS
problem on L(G). Further, if the real network graph is G, k communication
rounds on L(G) can be simulated in k + O(1) communication rounds on G.
Therefore, the times t to compute an MIS on L(Gk) and t′ to compute a MM
on Gk can only differ by a constant, t ≥ t′ −O(1). Let n′ and ∆′ denote the
number of nodes and the maximum degree of Gk, respectively. The number

7.7. DISCUSSION 93

of nodes n of L(Gk) is less than n′2/2, the maximum degree ∆ of Gk is less
than 2∆′. Because n′ only appears as log n′, the power of 2 does not hurt
and the theorem holds (log n = Θ(log n′)).

7.7 Discussion

It is interesting to discuss the lower bounds in relation to the best known
upper bounds for the various problems. The MVC algorithm presented in
Section 6.1 achieves an O(∆1/k) approximation in k communication rounds
for arbitrary k. For all values of k in O(log ∆/ log log ∆), it holds that

∆1/k/k = ∆1/k′

for some k′ ∈ Θ(k), and hence, the upper and lower
bounds achieved in Theorems 6.3 and 7.10 are tight. In particular, our
MVC algorithm requires O(log ∆/ log log ∆) communication rounds in or-
der to achieve a polylogarithmic approximation ratio, which is asymptoti-
cally optimal. When it comes to constant factor approximations, the algo-
rithm requires time O(log ∆), and hence, there is a gap between upper and
lower bound of O(log log ∆). It should also be noted that while the lower
bounds hold in the LOCAL model, the MVC algorithm of Section 6.1 works
in even in the CONGEST model. This yields the interesting result that for
k ∈ O(log ∆/ log log ∆), the distributed complexity of MVC in the LOCAL
and CONGEST models are equivalent.

Unfortunately, our bounds are not equally tight when expressed as a
function of n, rather than ∆. In particular, the gap between upper and
lower bound can be as large as Θ(

√
log n/ log log n) for polylogarithmic and

Θ(
√

log n · log log n) for constant approximations, respectively. The addi-
tional square-root in the lower bounds when formulated as a function of n
follows inevitably from our high girth construction of Gk: In order to derive
a lower-bound graph as described in Section 7.1, there must be many “bad”
nodes that have the same view as a few neighboring “good” nodes. If each

bad node has a degree of δbad (in Gk, this degree was δbad ∈ Θ(n1/k2

)) and if
we want to have girth at least k, the graph must consist of at least n ≥ δk

bad

nodes. If we now take all good nodes and apply Algorithm 6.1 of Section 6.1

to the set of bad nodes, we obtain an approximation ratio of α ∈ O(δ
1/k
bad) in

k communication rounds. Combining this with the bound on the number of
nodes in the graph, it follows that we cannot hope for a better lower bound

than Ω(n1/k2

) with this technique. From this it follows that if we want to
improve the lower bound (i.e., by getting rid of its square-root), we either
need an entirely different proof technique, or we must handle graphs with
low girth in which nodes do not see trees in their k-hop neighborhood, which
would necessitate arguing about views containing cycles.

In comparison to MVC, the lower bounds for (fractional) MDS and fa-
cility location deviate more from the currently best known upper bounds,
particularly in the CONGEST model. It is an interesting open question
whether a lower-bound graph specifically defined for these problems can give
stronger bounds for these problems. Finally, as far as the bounds on MIS
and maximal matching are concerned, the lower bounds prove that the classic

94 CHAPTER 7. LOCAL COMPUTATION: LOWER BOUNDS

randomized algorithms of [9, 169, 129] cannot be improved drastically.
The lower-bound graph Gk of Section 7.1 is a carefully constructed, re-

cursively self-similar graph, which has of course little in common with the
network topologies as they are typically encountered in reality. In Chapter 8,
we will see that there exist algorithms for more “realistic” classes of network
graphs that are faster than the general lower bounds obtained in this chapter,
thus clearly separating the two models with regard to their locality.

7.8 Lower Bounds for Capacitated Problems

So far, we have studied hardness of distributed approximation lower bounds
for pure covering and packing optimization problems. For certain applica-
tions and, generally, from the point of view of distributed approximability,
it may also be interesting to understand the locality of extensions or vari-
ants of these basic problems. One particularly well-known and important
such variant are capacitated or balanced covering problems. In the capaci-
tated minimum dominating set problem (CMDS), every node can cover only
a certain number of neighboring nodes. The task is to select a subset S ⊆ V
of dominators and to assign each of the remaining nodes V \ S to one of
the dominators. Formally, let cap(v) ≥ 1 be the capacity of node v and let
φ(v) denote the dominator φ(v) ∈ S that is assigned to node v ∈ V . The
assignment pair (V, φ) determines a solution to the CMDS problem. The
assignment is feasible if φ(v) ∈ Γ(v) and |{u|φ(u) = v}| ≤ cap(v) for all
v ∈ V .

CMDS and other capacitated covering problems arise naturally in nu-
merous practical settings, because, typically, a leader or center in a network
cannot handle an infinitely large number of clients or slave-nodes. A dis-
tributed time lower bound for the capacitated vertex cover problem was for-
mally proven in [111]. Intuitively, the inherent non-locality of the capacitated
vertex cover problem can be understood on a simple ring network. If every
node has a capacity of 1 on a ring, all nodes in the ring have to decide on
a common direction in order to be able to cover all edges. However, finding
such a common direction requires knowledge about the entire ring. This is
the same argument used when showing that a ring with an even number of
nodes cannot be 2-colored without seeing the whole ring [166].

Whereas the non-locality of capacitated vertex cover is thus clear, MCDS
(at least when assuming that each node’s capacity is at least 1) appears to
be more local, because every node is capable of covering itself. Central-
ized approximation algorithms for the capacitated dominating set and the
non-metric capacitated facility location problem were given by Bar-Ilan, Ko-
rtsarz, and Peleg in [28] and [29], respectively. More specifically, [28] presents
approximation algorithms for a variety of NP-hard capacitated network cen-
ter allocation problems. For the capacitated dominating set problem with
uniform capacities, they give a beautiful greedy algorithm, which (unless
P = NP) achieves an asymptotically optimal approximation ratio of lnn.
An O(log n+ log ρ) approximation algorithm for the capacitated non-metric
facility location problem, where ρ denotes the largest weight is given in [29].

7.8. LOWER BOUNDS FOR CAPACITATED PROBLEMS 95

1C k+2C

v0

m nodes

hopskk hops

v*

Figure 7.5: The structure of lower-bound graph Ik.

As shown in the following theorem, the capacitated dominating set is
non-local, too, even if capacities are uniform.

Theorem 7.20. There are graphs G, such that in k communication rounds,
every (possibly randomized) distributed algorithm for the minimum capaci-
tated dominating set problem on G has approximation ratios at least

Ω
(n
k2

)
and Ω

(
∆

k

)

for some constant c, where n and ∆ denote the number of nodes and the
highest degree in G, respectively. This holds even if capacities are uniform.

Proof. For every k > 0, we construct a graph Ik as illustrated in Figure 7.5.
We assume for ease of presentation that k is even, the case where k is odd
is analogous. Ik is defined as follows. The node set is partitioned into k + 2
clusters C1, . . . , Ck+2 each containing m nodes. Additionally, there are k+1
connecting nodes v1, . . . , vk+1. There is an edge between a connecting node
vi and every node in Ci and Ci+1. Finally, there is a designated connecting
node v0 that has a link to either all nodes in C1 or all nodes in Ck+2. Let
the capacity of all nodes v ∈ V be cap(v) = m+ 1.

Let v∗ denote the connecting node vk/2+1 in the middle of the graph.
After communicating for k rounds, every node has only knowledge about
its k-hop neighborhood. By the definition of Ik, neither v∗ nor any of its
neighbors knows the location of v0. Therefore, the decision of which node v∗

covers cannot depend on the location of v0.
Consider the nodes that are covered by v∗. Because cap(v∗) = m+ 1, at

most m/2 nodes are covered by v∗ in either Ck/2+1 or Ck/2+2. Without loss
of generality, assume that Ck/2+2 is the cluster in which v∗ covers at most
m/2 nodes. Assume that v0 is connected to cluster C1 as in Figure 7.5. There
are at least (k/2+1)m nodes to the right of v∗ that must be covered. On the
other hand, however, there are only k/2 connecting nodes vj for j > k/2+1,

96 CHAPTER 7. LOCAL COMPUTATION: LOWER BOUNDS

each of which can cover at most m+ 1 nodes. The total number of nodes to
the right of v∗ that can be covered by connecting nodes is therefore at most
k/2·(m+1)+m/2. From this, it follows that at least (m−k)/2 nodes in these
clusters must cover themselves and hence, ALG ≥ (m− k)/2. On the other
hand, the optimal solution can cover all nodes using only connecting nodes
when each connecting node vi covers itself and all nodes in Ci+1. Because
the total number of nodes is n = (m+ 1)(k + 2), the approximation ratio α
of every k-local distributed algorithm is therefore at least

α ≥ (m− k)/2

k + 2
=

n
k+2

− k − 1

2(k + 2)
∈ Ω

(n
k2

)
.

The second bound follows analogously because of ∆ = 2m.

Note that if we allow non-uniform capacities, we can construct a similar
lower-bound graph even in simple geometric settings, such as the unit disk
graph in an Euclidean plane (see Chapter 8). In particular, every cluster is
collapsed to a clique, and bridge-nodes cover all nodes in their neighboring
cliques. Every node in a clique has capacity 1, whereas the capacity of
bridge-nodes remains m+ 1. On the other hand, it can be shown that in the
case of uniform capacities, there exist efficient local constant-approximation
algorithms in unit disk graphs.

Chapter 8

Locality in Graphs with

Bounded Independence or

Low Doubling Dimension

In the previous chapters, we have obtained upper and lower bounds on the
locality of network coordination problems. The locality lower bounds in turn
gave raise to time lower bounds and hardness of approximation results for
distributed algorithms. One of the questions arising from these results is
their implication on real-world networks. After all, the topology of typical
networks are unlikely to look like the lower-bound graph constructed in the
previous chapter. The question therefore is, what kind of graphs actually
require the amount of locality to be as large as Ω(

√
log n/ log log n) in order

to compute an MIS or a constant approximation to MVC or MDS? Or more
generally, which fundamental factors of a graph topology (besides n and ∆)
determine the strength of the impossibility results?

In this chapter, we aim at answering these questions by looking at the dis-
tributed complexity and locality of network coordination problems in graphs
that more closely reflect the network topologies appearing in real life. In par-
ticular, we are interested in establishing a more fine-grained understanding
of the relationship between the underlying network graph and the amount of
local knowledge required to solve the distributed coordination tasks discussed
in Chapter 5.

Starting from the notion of unit disk graphs, we will define the more
general family of graphs with bounded independence in Section 8.1. These
graphs capture many of the characteristic properties exhibited by real net-
works, particularly in wireless multi-hop networks. Section 8.2 shows that
in graphs with bounded independence, an MIS as well as a (O(1), O(1))-
decomposition can be computed with a deterministic distributed algorithm
in time O(log ∆ log∗n), greatly improving on the fastest known solutions
for general graphs. We then show in Section 8.3 how information about

98CHAPTER 8. LOCALITY IN BOUNDED INDEPENDENCE GRAPHS

distances between nodes can be exploited to further reduce the amount of
locality required. In particular, we present a deterministic decomposition
algorithm with an asymptotically optimal running time of O(log∗n) if nodes
can estimate distances to neighboring nodes. In fact, a closer inspection of
this algorithm will reveal an intriguing connection between the distributed
complexity and recent work on low-dimensional metric spaces. Finally, Sec-
tion 8.4 presents a distributed approximation scheme for MDS and related
problems.

8.1 From Unit Disk Graphs to Graphs of

Bounded Independence

In order to capture the specific wireless nature of multi-hop radio networks,
researchers have frequently adopted unit disk graphs [55] and other geometric
intersection graphs to model ad hoc and sensor networks.

Definition 8.1 (Unit Disk Graph (UDG)). Let V ⊂ R2 be a set of nodes
in the 2-dimensional Euclidean plane. In a unit disk graph G = (V,E), there
is an edge between two nodes v1, v2 ∈ V if and only if the mutual distance is
at most 1.

While modeling wireless multi-hop networks as general graphs may be
overly pessimistic, the unit disk graph abstraction is an evident simplification
of reality. On the one hand, signal propagation may not form a clear-cut
disk and even in homogeneous networks, the model does not account for
obstacles which may obstruct signal propagation. In order to address these
shortcomings while maintaining some aspects of wireless networks, unit disk
graphs can be extended in several directions. In this section, we consider
two such possibilities. First, we generalize the underlying metric space and
replace the 2-dimensional Euclidean plane by more general metric spaces.
This naturally leads to the notion of a unit ball graph (UBG), which we
define as follows.

Definition 8.2 (Unit Ball Graph (UBG)). Let M = (X, d) be a finite
metric space with n = |X| points and distance function d : X×X → R+

0 . The
graph G = (V,E) with V = X and edge set E = {(u, v) ∈ V ×V | d(u, v) ≤ 1}
is called a unit ball graph induced by M .

Clearly, the unit ball graph induced by the 2-dimensional Euclidean plane
is the unit disk graph. In general, we show in Section 8.3 that the complexity
of distributed computing tasks in unit ball graphs not only depends on the
parameters n and ∆ (as shown in Chapters 6 and 7), but also crucially on
the doubling dimension of the underlying metric space. In [115], the doubling
dimension of a metric space is defined as the smallest α > 0 such that every
ball of radius 2r can be covered by 2α balls of radius r. If α is a constant,
the given metric is called doubling. Analogously, we call a unit ball graph
doubling if the underlying metric space is doubling.

In recent years, studying metrics with low doubling dimension has proven
to be fruitful in various areas of computer science. For instance, it was

8.1. FROM UDGS TO GRAPHS OF BOUNDED INDEPENDENCE 99

v

Figure 8.1: A bounded independence graph G with f(1) = 4 and f(2) = 7.
No node u in G has more than 4 and 7 mutually independent nodes in Γ(u)
and Γ2(u), respectively. For instance, node v has 4 independent neighbors
(grey) and 7 independent nodes in Γ2(v) (black). Note that this network can
easily be modeled as a BIG even though it looks different from a UDG.

shown that considerably better solutions can be found to problems such as
metric space embedding [115], nearest neighbor search [146], approximation
algorithms [221], compact routing [3, 40, 217], or data gathering [133], if the
underlying metric has low doubling dimension. In Section 8.3, we extend
this list by showing that the doubling dimension of a metric space also has a
direct influence on the distributed complexity and locality of local problems
such as MIS or MDS.

A second way of generalizing the rigid UDG definition is to altogether
abandon the notion of an underlying geometry or metric space. This is
motivated by the fact that many fundamental results about unit disk graphs
do not rely on the actual geometry of unit disk graphs. Consider for instance
the classic result that unlike in general graphs, any MIS is a 5-approximation
to the MDS problem in a UDG [173].1 The proof is simple and says that for
every node v in the optimal dominating set, the algorithm can select at most 5
MIS nodes in Γ(v). The reason is that if we put 6 nodes within distance 1 of
v, at least two of these 6 nodes must be within mutual communication range.
In other words, this as well as many other results on unit disk graphs only
rely on the fact that UDG’s are K1,6 free, that is, no node has more than 5
mutually non-adjacent neighbors.

Based on the observation that wireless network topologies are K1,` free for
some constant `, we can formulate the bounded independence model (BIG),
which restricts the number of mutually independent nodes within a certain
neighborhood of any node v ∈ V . As illustrated in Figure 8.1, this more
general model captures the intuitive notion that in wireless networks, nearby
nodes tend to hear each other, whereas far-away nodes cannot communicate

1Actually, better bounds can be proven. See for instance [95].

100CHAPTER 8. LOCALITY IN BOUNDED INDEPENDENCE GRAPHS

because with the available power, radio signals can only be transmitted up
to some distance. In other words, if many nodes of a wireless network are
located in physical proximity, many of them must be within mutual trans-
mission range. While the disk-shape of the unit disk graph model is easily
invalidated by obstacles (such as a wall or a building) or irregular signal prop-
agation, these aspects do not destroy the underlying graph’s K1,` freeness.
Potential, the existence of walls or other obstacles may increase the constant
` somewhat, but in all practical settings, the maximal number of mutually
independent nodes in a neighborhood of a node is still bounded by a (possibly
somewhat larger) constant. This motivates the following definition.

Definition 8.3 (Bounded Independence Graph (BIG)). A graph G
is called f -independence-bounded if there is a function f(r) such that every
r-neighborhood Γr(v) of G contains at most f(r) independent (i.e., pairwise
non-adjacent) nodes. A graph G has polynomially bounded independence if
f(r) is a polynomial in r.

Note that f(r) does not depend on the number of nodes n or any other
property of G. Hence, for constant r, the number of independent nodes in an
r-neighborhood is constant. Notice that an f -independence bounded graph
is K1,f(1)+1-free.

Clearly, the unit disk graph is a special case of a bounded independence
graph with f(1) = 5 and f(2) ≤ 18. In general, the function f for UDGs can
be determined as follows. Consider a node v. The mutual distance between
independent nodes in Γr(v) must be at least 1 and hence, disks of radius 1/2
around each independent node do not overlap. Moreover, all these disks fit
entirely in the disk with radius r + 1/2 centered at v. By a standard area
argument, it follows that for unit disk graphs

fUDG(r) ≤
(
r + 1

2

)2
π

π/4
= 4

(
r +

1

2

)2

.

For general d-dimensional Euclidean spaces, the corresponding independence
function is f(r) ∈ O(rd) and a constant degree graph with maximum degree
∆ has an independence function of f(r) ∈ O(∆r).

Properties

In this section, we derive simple properties of graphs with bounded inde-
pendence and doubling unit ball graphs. The first lemma shows that if the
underlying metric space of a UBG G has constant doubling dimension, G is
polynomially independence bounded

Lemma 8.1. Let G = (V,E) be a UBG induced by a metric space M with
doubling dimension α. It holds that G is f-independence-bounded for f(r) ∈
O(rα), i.e., there are at most f(r) independent nodes in Γr(v) for every
v ∈ V .

8.1. FROM UDGS TO GRAPHS OF BOUNDED INDEPENDENCE 101

Proof. In a UBG, the r-neighborhood of node v in G is completely covered
by the ball Br(v) with radius r around v. By the definition of the doubling

dimension α, Br(v) can be covered by at most 2α(1+log r) balls of radius 1/2.
By the triangle inequality, two nodes inside a ball of radius 1/2 have distance
at most 1, that is, the nodes inside a ball of radius 1/2 form a clique in G.
The number of independent nodes in the r-neighborhood of v is therefore at
most 2α(1+log r) ∈ O(rα).

Another important property of graphs with bounded independence is that
they allow for very efficient partitions and decompositions. In [23], it is shown
that every general graph allows a sparse cover, i.e., a clustering of nodes such
that every node is in at most O(log n) clusters and the diameter of every
cluster is at most O(log n). Similarly, we have seen in Section 5.5 that every
graph allows for an (O(log n), O(log n))-decomposition [167]. In the sequel,
we show that graphs with bounded independence allow for partitions in which
each cluster has constant diameter and the corresponding cluster-graph has
constant degree. First, we need the following definition from [196].

Definition 8.4. (r-ruling set) Let S ⊆ V be a subset of the nodes of a graph
G = (V,E). S is called r-ruling if for each node u ∈ V \ S, the distance to
the closest node in S is at most r.

If the set S in the above definition is an independent set, we speak of an
r-ruling independent set. Note that an MIS is a 1-ruling independent set.

An r-ruling independent set S in a graph G induces a natural clustering in
which every node in S is a cluster-leader and every other node is assigned to
its closest cluster-leader (ties being broken arbitrarily). Let C(s) denote the
resulting cluster for some s ∈ S. The following lemma shows that this clus-
tering yields a partition whose quality depends solely on the independence
function f(r). As customary (see for instance [196]), we define the cluster-

graph G̃(S) = (S, Ẽ) induced by S as the graph in which every cluster is
contracted into a single vertex. Moreover, there is an edge between two clus-
ters if there exists an edge in G between nodes in the two clusters, formally
Ẽ = {(s1, s2) | s1, s2 ∈ S ∧ G contains an edge (u, v) for u ∈ C(s1) and v ∈
C(s2).}. The cluster-degree ∆G̃ is the maximum degree of the cluster-graph.

Lemma 8.2. The clustering induced by an r-ruling independent set S yields
a partition of G = (V,E) with the following properties.

• The cluster-degree is at most f(2r + 1).

• The diameter of a cluster is at most 2r.

Proof. We start with the bound on the cluster-degree. Consider a cluster-
leader s ∈ S and its induced cluster C(s). For every neighboring cluster
C(s′), it holds that there exists two nodes u ∈ C(s) and v ∈ C(s′) such that
(u, v) ∈ E. Therefore, dG(s, s′) is at most

dG(s, s′) ≤ dG(s, u) + dG(v, s′) + 1 ≤ 2r + 1,

102CHAPTER 8. LOCALITY IN BOUNDED INDEPENDENCE GRAPHS

because the distance of any node to its cluster-leader is at most r. Because
cluster-leaders form an independent set, there can be at most f(2r + 1)
cluster-leaders within distance 2r+ 1. Finally, the bound on the diameter of
each cluster follows from the definition of an r-ruling set.

Notice that because any graph with maximal degree ∆ admits a valid
coloring with ∆+1 colors, Lemma 8.2 implies the existence of an (2r, f(2r+
1) + 1)-decomposition in G. For constant r, the clustering induced by the r-
ruling independent set therefore implies an (O(1), O(1))-decomposition with
constant cluster-degree.

Finally, we show that in graphs with bounded independence, an MIS
can be converted into a constant-diameter/constant-degree partition in time
O(log∗n), and vice versa. In combination with the Ω(log∗n) lower bound by
Linial [166], this implies the following lemma.

Lemma 8.3. In any graph with bounded independence, the distributed time
complexity of computing an MIS and an (O(1), O(1))-decomposition with con-
stant cluster-degree is equivalent up to constant factors.

Proof. In Section 5.5, we have discussed a distributed procedure for turning
a (d, c)-decomposition into an MIS in time O(c·d). As for the other direction,
it follows from Lemma 8.2 that the clustering induced by an MIS yields a
cluster-graph with constant degree. On this cluster-graph, a coloring can
therefore be computed in time O(log∗n) using the algorithms of [58, 108,
166]. That is, given an MIS in a graph with bounded independence, an
(O(1), O(1))-decomposition can be obtained in time O(log∗n). Finally, the
claim is concluded by observing that the Ω(log∗n) lower bound for computing
an MIS on rings—which are graphs of bounded independence—also implies
the same lower bound for an (O(1), O(1))-decomposition.

8.2 Fast Deterministic MIS Computation

The distributed complexity of computing an MIS has been of interesting to
the distributed computing community for a long time. In Section 5.4, we
have seen that there exist efficient randomized algorithms with running time
O(log n), but no deterministic algorithm with polylogarithmic running time
is known. In this section, we present a deterministic distributed algorithm
which computes an MIS in time O(log ∆ log∗n) in graphs with bounded in-

dependence. Note that for ∆ ∈ o(n1/ log∗n), our algorithm is faster than the
randomized algorithms of [9, 169]. More importantly, however, our algorithm
is deterministic and therefore gives a partial answer to the long-standing open
problem of the deterministic distributed complexity of computing an MIS. In
particular, our result shows that in graphs with bounded independence, an
MIS can be computed deterministicly in almost logarithmic time (for large
∆) and in sub-logarithmic time (for small ∆). This is in contrast to the
fastest known MIS algorithm for general graphs that has a running time of

O(nO(1)/
√

log n), which is faster than polynomial in n, but slower than poly-
logarithmic in n.

8.2. FAST DETERMINISTIC MIS COMPUTATION 103

1: S := ∅;
2: b(v) := act;
3: while b(v) = act do
4: if ∃u ∈ Γ(v) : b(u) = act then
5: d(v) := min{u ∈ Γ(v) | b(u) = act};
6: inform neighbor d(v);
7: Av := {u ∈ Γ(v) | d(u) = v};
8: if Av 6= ∅ then
9: p(v) := select one node from Av;

10: inform neighbor p(v)
11: end if ;
12: Bv := {u ∈ Γ(v) | p(u) = v};
13: if (Av = ∅) ∧ (Bv = ∅) then
14: b(v) := pass
15: else
16: construct MIS I on graph G = (V ,E) with V := {u ∈ V | b(u) =

act} and E := {(u, p(u)) | u ∈ V ∧Au 6= ∅};
17: if v 6∈ I then b(v) := pass fi
18: end if
19: else
20: S := S ∪ {v}; b(v) := pass
21: end if
22: end while

Algorithm 8.1: Computing an IS (code for vertex v)

Finally, it should be noted that because every MIS can be turned into an
(O(1), O(1))-decomposition with constant cluster-degree (Lemma 8.3), our
algorithm also gives raise to efficient deterministic solutions for applications
such as spanners or synchronizers (see [196]).

The algorithm consists of three phases, which will be described in Sec-
tions 8.2.1, 8.2.2, and 8.2.3, respectively. In the first phase, the algorithm
computes a sparse, O(log ∆)-ruling independent set S of the network graph
G in time O(log ∆ · log∗ n). The second phase turns the sparse set S into a
dense independent set S′ such that each node v of G has a node u ∈ S′ at
distance at most 3, that is, S′ is 3-ruling. Finally, the algorithm is concluded
in Section 8.2.3 by deriving the MIS from the network decomposition induced
by the 3-ruling independent set.

8.2.1 Computing a Sparse Independent Set

The first phase of the MIS construction is a distributed algorithm which
locally computes an O(log ∆)-ruling independent set S for a given undirected
independence-bounded graph G = (V,E) in time O(log ∆ log∗n). A detailed
description of the first phase is given by Algorithm 8.1. Before analyzing the
algorithm, we give an informal description of the code.

At the beginning, S is empty and all nodes are active (denoted by the

104CHAPTER 8. LOCALITY IN BOUNDED INDEPENDENCE GRAPHS

Figure 8.2: One iteration of Algorithm 8.1. The dashed nodes are passive at
the outset of the iteration. The dashed arrows between active nodes denote
the links d(v). The graph G is induced by the links p(v) which are denoted

by the solid, bended arrows. Finally, the algorithm computes an MIS on G,
leaving only the black nodes active for the next iteration.

variables b(v) for v ∈ V). Nodes are active as long as they have not decided
whether to join the independent set S. As soon as a node becomes passive,
it has either joined S in Line 20 or it has decided not to join S. From
a general perspective, Algorithm 8.1 tries to eliminate active vertices from
the network until single, locally independent nodes are left. It does so with
the help of edge-induced subgraphs of bounded degree. In each iteration
of the while-loop, a constant-degree graph G consisting of active nodes and
edges of G is computed. On G, an MIS can be constructed in time O(log∗n)

[58, 108, 166]. Only the nodes of the MIS of G stay active after the iteration
of the while-loop. This way, the number of active nodes is reduced by at
least a constant factor in every while-loop iteration. As soon as an active
node v has no active neighbors, v joins the independent set S (Line 20). The

graph G is constructed as follows. First, each active node v chooses an active
neighbor d(v). Then, each active node u which has been chosen by at least
one neighbor v, selects a neighbor p(u) for which d(p(u)) = u. The edge set
E of G consists of all edges of the form (u, p(u)). Because a node u can only

be connected to d(u) and p(u), G has at most degree 2. Now, consider a
single execution of the while-loop (Lines 3–22, Figure 8.2).

Lemma 8.4. In the graph G = (V ,E), every vertex has degree at most 2.

Proof. Consider v ∈ V , then there are at most two vertices adjacent to v by
an edge in E, namely d(v) if p(d(v)) = v, and p(v).

Note that due to this lemma, Line 16 of the algorithm, that is, the local
construction of an MIS I on G, can be completed in O(log∗n) rounds using
methodes described in [58, 108, 166].

8.2. FAST DETERMINISTIC MIS COMPUTATION 105

Lemma 8.5. Let VA denote the set of active nodes. After k iterations of the
while-loop, S ∪ VA is a 2k-ruling set of G.

Proof. We prove the lemma by induction over the number k of while-loop
iterations. Initially all nodes are active, thus the lemma is satisfied for k = 0.
For the induction step, we show that if a node v becomes passive in an
iteration of the while-loop, either v joins S or there is an active node at
distance at most 2 from v which remains active for until the next while-loop
iteration. Node v can become passive in Lines 14, 17, or 20. If v becomes
passive in Line 20, it joins S and therefore the condition of the lemma is
satisfied. In Line 17, v is a node of G and has a neighbor u ∈ Γ(v) which is

in the MIS I of G. Thus, node u remains active.
The last remaining case is that v decides to become passive in Line 14.

By the condition in Line 4, we can assume that v has at least one active
neighbor at the beginning of the while-loop iteration. Therefore, v chooses
a node u = d(v) in Line 5. Since Au 6= ∅, u chooses a node p(u) 6= v and
hence, u is a node of G. Because all nodes of the MIS I of G remain active,
either u or a neighbor w ∈ Γ(u) ∈ Γ2(v) is still active after completing the
while-loop iteration, which completes the proof.

The following two lemmas are used to give bounds on the number of
rounds needed by Algorithm 8.1 for completion, and to explain the result-
ing structure in G for general graphs and for independence-bounded graphs,
respectively.

Lemma 8.6. Given an arbitrary graph G, Algorithm 8.1 produces an O(log n)-
ruling independent set S after O(log n) executions of the while-loop.

Proof. Let nact be the number of active nodes at the beginning of an iteration
of the while-loop. We prove that in one while-loop iteration, at least nact/3
nodes become passive. The claim then follows by Lemma 8.5.

Let n ≤ nact be the number of nodes of G of some particular iteration of
the while-loop. All nodes which are not part of G become passive in Lines 14
or 20. It therefore suffices to prove that at least one third of the nodes of
G become passive. G is constructed such that it does not contain isolated
nodes, that is, all nodes of G have at least degree 1. Because the maximum
degree of a node in G is 2 (Lemma 8.4), the MIS I consists of at most 2n/3
nodes. Hence, at least n/3 nodes become passive in Line 17.

The following lemma shows that for independence bounded graphs, the
running time can be reduced to O(log ∆) (as opposed to O(log n)) executions
of the while-loop.

Lemma 8.7. If the network graph G is independence-bounded, after O(log ∆)
consecutive execution of the while-loop, Algorithm 8.1 terminates with an
O(log ∆)-ruling independent set S.

106CHAPTER 8. LOCALITY IN BOUNDED INDEPENDENCE GRAPHS

v1

v2

v6
v5

v4

v3

v7

Figure 8.3: The cluster with the edges in G. Black nodes will remain active
in the next iteration. The nodes v1, v2, and v3 are in Ci. Nodes v4, v5, and
v6 are connected only to nodes outside of the cluster and hence, are in set
Co. Finally, v6 ∈ Cp.

Proof. Let M be an MIS of G. The set M defines a clustering of G as follows.
We associate a cluster C(u) with each node u ∈ M . Each node v 6∈ M is
assigned to the cluster of an adjacent node u ∈ M . Note that each cluster
contains at most ∆ + 1 nodes. In the cluster graph G̃(M), the nodes are the
clusters C(u). Two nodes C(u) and C(v) are connected if there is an edge in
G connecting the respective clusters. If G is independence bounded, there is
a function f such that there are at most f(3) = O(1) independent nodes at

distance at most 3 from a node u. Therefore, the maximum degree of G̃(M)
is bounded by f(3).

In the following, we show that the maximum number of active nodes per
cluster is reduced by a factor 2 in a constant number of while-loop iterations.
For convenience, we define a unit of time to be one iteration of the while-
loop. Formally, let α be the maximum number of active nodes per cluster at
some time t. We show that there is a constant k such that at time t+ k each
cluster contains at most α/2 active nodes. Note that this implies the lemma
because we have α ≤ ∆+1 at time t = 0. Let C(u) be a cluster with c > α/2
active nodes. Consider a single iteration of the while-loop of Algorithm 8.1.
We partition the c active nodes of C(u) into three groups according to their

neighbors in G (Figure 8.3). We denote the set of nodes v which become
passive in Line 6 because there is no node w for which d(w) = u by Cp. The
set of nodes which have a neighbor inside C(u) and which are only connected
to nodes outside C(u) are called Ci and Co, respectively. Clearly, we have

|Cp| + |Ci| + |Co| = c. Because the maximum degree of G is 2, at least
one third of the nodes in Ci become passive during the MIS construction in
Line 10. The nodes in Co can be divided into the nodes Cp

o which become
passive and the nodes Ca

o which stay active. Each node outside C(u) is
connected to at most 2 nodes in Ca

o . Therefore, at least |Ca
o |/2 nodes outside

Cu become passive. Let ci := |Cp| + |Ci| + |Cp
o | and co := |Ca

o |. We have
ci +co = c. In each iteration of the while-loop at least ci/3 nodes in C(u) and
at least co/2 nodes of clusters which are adjacent to C(u) become passive.
Assume that after k iterations of the while-loop, there are still α/2 active

8.2. FAST DETERMINISTIC MIS COMPUTATION 107

Input: t-ruling independent set S
Output: 3-ruling independent set S
1: S′ := S;
2: while S′ is not 3-ruling do
3: for each u ∈ S′ do
4: compute Ŝu ⊂ Γ4(u) such that S′∪ Ŝu is an IS and ∀v ∈ Γ3(u),∃w ∈

S′ ∪ Ŝu : {v, w} ∈ E;

5: G is the graph induced by
⋃

u∈S′ Ŝu;

6: S′ := S′ ∪ MIS(G);
7: end for;
8: end while

Algorithm 8.2: Computes a dense IS

nodes in C(u). Let c(j), c
(j)
i , and c

(j)
o be the values of c, ci, and co of the jth

iteration, respectively. Because there are at most α nodes at the beginning,
we have

1

3
·

k∑

j=1

c
(j)
i ≤ α

2
(8.1)

because otherwise at least α/2 nodes of C(u) would have become passive.
Therefore, the number of nodes in the neighboring clusters of C(u) that have
become passive is at least

1

2
·

k∑

j=1

c(j)o =
1

2
·

k∑

j=1

(
c(j) − c

(j)
i

)
≥ kα

4
− 1

2
·

k∑

j=1

c
(j)
i .

By Equation (8.1), this is at least (k − 3)α/4. Because there are at most
dα active nodes in neighboring clusters of C(u) at the beginning, after
O(f(3)) = O(1) iterations of the while-loop, there are no active nodes in
the neighborhood of C(u) left. From then on, at least one third of the nodes
in C(u) becomes passive in every further iteration.

Summarizing the Lemmas 8.4–8.7, we obtain the following theorem.

Theorem 8.8. Algorithm 8.1 is a local, distributed algorithm which com-
putes an O(log ∆)-ruling independent set in O(log ∆ · log∗n) rounds for any
independence-bounded graph G = (V,E). For general graphs, the Algorithm
terminates in O(log n · log∗n) rounds producing an O(log n)-ruling indepen-
dent set. All messages are of size O(log n).

8.2.2 From Sparse to Dense:

Making the Ruling Independent Set Dense

This section shows how the sparse ruling independent set constructed in
the previous section can be made dense enough to achieve an (O(1), O(1))-
decomposition for graphs with bounded independence. Specifically, we show

108CHAPTER 8. LOCALITY IN BOUNDED INDEPENDENCE GRAPHS

how for any integer t > 3, a t-ruling independent set can be transformed
into a 3-ruling independent set in such graphs in time O(t log∗ n), even in
the CONGEST model. Algorithm 8.2 describes the basic method to achieve
this. The idea is to enlarge the independent set iteratively such that it
becomes denser in each step. In Line 4, each node of the independent set
adds new nodes to the independent set such that each neighbor in distance
at most 3 has a neighbor in the extended set. Because every independent
set node adds new nodes, it is not guaranteed that the additional nodes
generated by different independent set nodes are independent. Therefore, in
Lines 5 and 6, the independence of the extended independent set is restored
by computing an MIS on the new nodes (see Lemma 8.10). The following
lemma shows that in each iteration of the while-loop, the maximum distance
of any node to the next node of S′ decreases by at least 1.

Lemma 8.9. Let S′ be a t-ruling independent set for t > 3. After one
iteration of the while-loop of Algorithm 8.2, S′ is a (t−1)-ruling independent
set.

Proof. We first prove that S′ remains an independent set throughout the

algorithm. The sets Ŝu are constructed such that nodes in S′ and nodes in

Ŝu are independent. We therefore only have to prove that all the new nodes
form an independent set. This is guaranteed because in Line 6, an MIS of
the graph induced by all the new nodes is computed.

To prove that the maximum distance from a node to the next independent
set node decreases, consider a node v ∈ V for which the distance to the
nearest node u ∈ S′ is t > 3. We prove that after an iteration of the while-
loop, the distance between v and the closest node in S′ is at most t− 1. The

set Ŝu is constructed such that every node w in the 3-neighborhood Γ3(u)

has a neighbor in S′ ∪ Ŝu. On a shortest path (of length t) connecting u and
v, let x be the node which is at distance exactly 3 from u. There must be a

neighbor y of x for which y ∈ Ŝu. After computing the MIS in Line 6, either
y or a neighbor z ∈ Γ(y) joins the independent set S′. The distance between
v and y is at least t − 2 and the distance between v and z is at least t − 1,
which concludes the proof.

It remains to show that Algorithm 8.2 can indeed be implemented by an
efficient distributed algorithm.

Lemma 8.10. Let G be a graph with bounded independence. On G, Al-
gorithm 8.2 can be executed by a distributed algorithm with time complexity
O(t log∗ n) using messages of size O(log n).

Proof. By Lemma 8.9, Algorithm 8.2 terminates after at most t iterations of
the while-loop. It therefore remains to prove that each while-loop iteration
can be exectuted in time O(log∗ n) using messages of size O(log n). Let us

first look at the construction of Ŝu for some node u ∈ S′. A node v ∈ Γ4(u)

can potentially join Ŝu if it has no neighbor in S′ ∪ Ŝu and if it has an

uncovered neighbor w ∈ Γ3(u), that is, w has no neighbor in S′ ∪ Ŝu. We

8.2. FAST DETERMINISTIC MIS COMPUTATION 109

call such a node v candidate. We add a candidate v to Ŝu if it has a lower ID
than all adjacent candidates. Finding out whether a node is a candidate and
whether it has the lowest ID among its neighbor candidates can be done in 3
rounds. First, all nodes of S′ ∪ Ŝu inform their neighbors that they are in
the independent set. Then, all covered nodes in Γ3(u) inform their neighbors
which can now decide whether they are candidates. Finally, the candidates
exchange their IDs. We call those 3 rounds a step. In each step, at least

the candidate with the lowest ID joins Ŝu. Because G is an independence
bounded graph, there can be at most f(4) = O(1) independent nodes in Γ4(u)

for some function f . Hence, the number of nodes in Ŝu and therefore the
number of steps needed to construct Ŝu is constant. Note that if there was no
restriction on the message size, u could collect the complete 4-neighborhood,

locally compute Ŝu, and inform the nodes in Ŝu in 8 rounds.
It now remains to prove that the construction of the MIS in Line 6 of

Algorithm 8.2 can be computed in O(log∗n) rounds. Consider a node v of

the graph G induced by the union of the sets Ŝu for all u ∈ S′. It holds that

v ∈ Ŝu for some u ∈ S′. Further, let w be a neighbor of v in G. Node w is
in Ŝu′ for some node u′ ∈ S′ \ {u}. Because Ŝu′ consists of nodes of Γ4(u

′),
the distance between v and u′ is at most 5. Since G is an independence
bounded graph, there exists a function f such that there are at most f(5)
independent nodes within distance 5 from v. Thus, there are at most f(5)
possible nodes u′ ∈ S′ which can cause neighbors w for v. Because all nodes

in Ŝu′ are independent, the number of neighbors of w in Ŝu′ is at most f(1).
Therefore, the maximum degree of the graph G can be upper bounded by
f(5)·f(1) = O(1). On this constant-degree graph, an MIS can be constructed
in O(log∗n) rounds using messages of size O(log n) [58, 108, 166].

Combining Lemmas 8.9 and 8.10 we obtain the next theorem.

Theorem 8.11. On an independence-bounded graph, a t-ruling independent
set can be transformed into a 3-ruling independent set in O(t log∗n) rounds
using messages of size O(log n).

8.2.3 Computing the MIS

The algorithm’s last phase turns the 3-ruling independent set S′ from Algo-
rithm 8.2 into an MIS. By Lemma 8.3, the degree of the cluster-graph G̃(S′)
is bounded by f(7) = O(1) if G is f -independence-bounded. The first step of

the third phase of our MIS algorithm is to compute G̃(S′) and to color G̃(S′)
with f(7) + 1 colors, resulting in an (O(1), O(1))-decomposition of G. Ap-
plying algorithms from [58, 108, 166], this can be achieved in the CONGEST
model in time O(log∗n).

As already discussed in Section 5.5, this decomposition can be used to
determine an MIS M of G by sequentially computing the contributions from
each color of the coloring of G̃(S′). For each node v, let c(v) be the color
of v’s cluster. Using the cluster colors and the node identifiers, we define a

110CHAPTER 8. LOCALITY IN BOUNDED INDEPENDENCE GRAPHS

lexicographic order ≺ on the set V such that for u, v ∈ V , u ≺ v if and only
if c(u) < c(v) or if c(u) = c(v) ∧ ID(u) < ID(v). Each node now proceeds
as follows. Initially, set M = S′. All nodes v of S′ inform their neighbors
about their joining M by sending a JOIN(v) message. If a node u receives
a JOIN(v) message from a neighbor v, it cannot join the MIS any more and
therefore sends a COVERED(u) message to all neighbors. If a node v has
not received a JOIN(u) message but has received a COVERED(u) from all
u ∈ Γ(v) for which u ≺ v, it can safely join M . Note that all neighbors
w ∈ Γ(v) with w � v, would need to receive a COVERED(v) message from v
before joining M . If a node v joins M , it informs its neighbors by sending a
JOIN(v) message. The described algorithm computes an MIS M in constant
time.

Lemma 8.12. In any f-independence-bounded graph, the above algorithm
computes a MIS M in time 2f(7)f(3).

Proof. To see that M is indeed an MIS, consider any two adjacent nodes u
and v with u ≺ v. Assuming that u joins M means that v must have received
a COVERED(u) message from u and therefore does not join the MIS itself.
Finally, observe that as long as M is not maximal, there is a smallest node
u (with respect to ≺) which is not covered.

As for the algorithm’s time complexity, note that each cluster can contain
at most f(3) MIS nodes. Let us now look at a single cluster C(u) of the
smallest color 1. Because with respect to ≺, the nodes of C(u) are smaller
than all nodes of neighboring clusters, the smallest uncovered node of C(u) is
always free to join M . When a node v joins M , it takes two rounds until the
neighbors of v have forwarded the information that they have been covered.
Because at most f(3) nodes of C(u) join M , it takes at most 2f(3) rounds
until all nodes of color 1 are covered or have joined M . As soon as there
is no uncovered node of a color i, the above argument holds for color i + 1.
Therefore, after at most f(7) · 2f(3) rounds, all nodes are either covered or
have joined M .

In summary, we can combine Theorems 8.8, 8.11, and 8.12 and obtain the
following result.

Theorem 8.13. Let G be a graph of bounded independence. There is a
deterministic distributed algorithm which constructs an MIS on G in O(log ∆·
log∗n) communication rounds in the CONGEST model.

8.3 Faster Algorithms with Coordinate or

Distance Information

In the previous section, we have seen that an MIS can be computed in poly-
logarithmic time by a deterministic distributed algorithm. In this section, we
show that even much faster algorithms are possible if nodes have knowledge
about their coordinates or their distances to neighbors in a unit ball graph
with bounded doubling dimension.

8.3. FASTER ALGORITHMS WITH DISTANCE INFORMATION 111

Studying the distributed complexity of network protocols in models in
which nodes have more information than mere connectivity (i.e., they do
not only know their neighbors) is motivated by practical protocol design for
wireless networks. In wireless multi-hop networking, it is often assumed that
nodes know their coordinates, or nodes can measure or estimate distances or
angles to neighboring nodes by measuring received signal strengths. From
a theoretical point of view, this raises numerous interesting questions. In
particular, what is the value of such additional information when it comes to
distributed computation? Or in other words, how much does this knowledge
reduce the required locality of local network problems?

Intuitively, it seems plausible that knowing coordinates or distances al-
lows for faster (and therefore more local) distributed algorithms for many
problems. In this section, we formalize this intuition by presenting effi-
cient distributed decomposition algorithms for networks modeled as unit
ball graphs. In particular, we show in Section 8.3.1 that computing an
(O(1), O(1))-decomposition can trivially be computed even without commu-
nication if nodes know their coordinates.

The case with known distances discussed in subsequent Section 8.3.2 is
more interesting. In particular, we present an algorithm that computes an
(O(1), O(1))-decomposition in a doubling UBG in asymptotically optimal

time O(log∗n), thus breaking the Ω(
√

log n/ log logn) barrier that holds in
general graphs. Interestingly, a closer inspection of this running time reveals
a dependency on the doubling dimension of the UBG’s underlying metric
space. Therefore, this result establishes an intriguing connection between the
complexity and locality of distributed computing problems and the doubling
dimension of metrics.

8.3.1 Decomposition with Known Coordinates

In many protocols for routing, data gathering, topology control, clustering,
or location services in wireless networks, it is implicitly or explicitly assumed
that nodes either know their coordinates or–at least–have a rough idea about
their coordinates, e.g. [2, 151, 164, 231]. Typically, it is argued that such
information can either be obtained from a positioning system such as GPS,
or by running a distributed positioning protocol.

In the context of distributed computation, having knowledge about coor-
dinates turns out to be extremely powerful. In particular, knowing coordi-
nates allows to compute an (O(1), O(1))-decomposition without any commu-
nication at all. Consequently, local network coordination structures such as
dominating sets or an MIS can be computed in constant time and locality.

Theorem 8.14. In a unit disk graph G, nodes are able to compute an (1, 8)-
decomposition without communication if every node knows its coordinates.

Proof. Because nodes know their global coordinates, they share a common
global coordinate system. The nodes partition the plane by a grid into square
cells of side length 1/

√
2, each cell defining a cluster. By checking its coor-

dinates, every node can decide to which cluster it belongs. Since the length

112CHAPTER 8. LOCALITY IN BOUNDED INDEPENDENCE GRAPHS

7 7

77 8 8

8 8

4 4

4

44 2 32

6 5 6

2 3432

3

5

1 3

11

1

1

1

5 6

2

5 6

23

Figure 8.4: Coloring of the grid with 8 colors

of the diagonal of a single square cell is 1, the graph induced by each cluster
is a clique. A proper coloring of the cluster graph is obtained by globally
coloring the grid such that no two cells whose distance is less than 1 are col-
ored with the same color. Figure 8.4 shows how this can be achieved using 8
colors. Hence, by assigning each cluster the respective color, we obtain a
(1, 8)-decomposition.

The possibility of computing an (O(1), O(1))-decomposition from UDG
coordinates alone indicates the power of coordinate information. Specifically,
it implies that coordinate information suffices to compute essentially all local
network coordination problems of Chapter 5 in a constant number of rounds.

8.3.2 Network Decomposition with Known Distances

In contrast to coordinate information, it is not intuitively clear how much
knowing distances to neighboring nodes helps in the distributed computation
of independent sets or network decompositions. Clearly, distance information
is weaker than coordinate information and in fact, it is not hard to see that it
is impossible to construct an MIS or a decomposition in a constant number or
rounds, as was the case in Section 8.3.1. In particular, Linial’s Ω(log∗n) lower
bound for computing an MIS in a ring [166] applies to this model because in
a ring where all edges have length 1, distance information is useless.

Interestingly, we show in this section that in doubling unit ball graphs,
O(log∗n) rounds indeed suffice to compute an (O(1), O(1))-decomposition
(and therefore an MIS). More generally, the distributed complexity and the
quality of the decomposition depends on the doubling dimension of the un-
derlying metric space. This result also applies in related models where, for
instance, the distance between two nodes reflects the propagation delay of
messages between two nodes.

Basic Algorithm

We begin by presenting a (potentially slow) deterministic distributed algo-
rithm which computes a partition of the nodes into disjoint clusters, such
that the diameter of each cluster is at most 2 and the cluster-graph has con-
stant degree. In a second step, we then provide an efficient implementation

8.3. FASTER ALGORITHMS WITH DISTANCE INFORMATION 113

1: r := min{2−λ | λ ∈ N ∧ 2−λ ≥ dmin};
2: V := V ;
3: while r ≤ 1/2 do
4: Gr := (V, Er) with Er = {{u, v} | d(u, v) < r};
5: compute MIS S ⊆ V on Gr; [58, 166]
6: V := {v ∈ V | v in S};
7: r := r · 2
8: end while;
9: All nodes in V are cluster leaders, the other nodes belong to the cluster

of the nearest leader.
10: Let ∆C be the maximum degree of the cluster graph G̃(V). Color G̃(V)

with ∆C + 1 colors. [58, 166]

Algorithm 8.3: Network Decomposition: Clustering

of the algorithm with time complexity O(log∗n). For the slow version of the
algorithm, we assume for ease of presentation that all nodes know the min-
imum distance dmin between any two nodes. For the fast implementation,
the assumption is not required anymore. Finally, let α denote the doubling
dimension of the underlying metric space.

Algorithm 8.3 starts with a small radius r which is increased by a factor 2
in every iteration of the while-loop. At the beginning, the set V of possible
cluster leaders contains all nodes. In each iteration, the algorithm selects a
subset S ∈ V, such that the nodes selected in the subset form a maximal
independent set on the graph Gr = (V, Er), where Er denotes the set of all
edges of length at most r.

Lemma 8.15. Algorithm 8.3 computes a (2, 24α)-decomposition where α is
the doubling dimension of the underlying metric. The maximum degree of
the cluster graph is at most 24α − 1.

Proof. We first prove the bound on the cluster diameter. The algorithm
maintains a set V of nodes which are candidates for becoming cluster leader.
In each iteration, only nodes in MIS S remain in V. We show that for all
nodes u which are removed, there is a node v with d(u, v) ≤ 1 which stays in
V until the end, that is, v becomes cluster leader. Let ru = 2−λu (λu ∈ N) be
the radius at which u is removed from V. Because S is an MIS on Gr, it holds
that whenever a node is removed from V, there is a node at distance at most
r which stays in V. Hence, after removing u, there is a node u0 ∈ V with
d(u, u0) ≤ ru. If u0 is removed in the subsequent iteration, there is a node
u1 with d(u0, u1) ≤ 2ru which remains in V. In general, we get a sequence
u0, u1, . . . , ui, . . . of nodes where d(ui−1, ui) ≤ 2iru such that ui remains in
V, i iterations after the removal of u. Summing up the distances results in a
geometric series. For the distance between u and ui, it therefore holds

d(u, ui) ≤
i∑

j=0

2jru < 2i+1ru = 2rui ,

114CHAPTER 8. LOCALITY IN BOUNDED INDEPENDENCE GRAPHS

where rui is the radius of the iteration in which node ui remains in V and
where ui−1 is removed from V. Let v be the last node in the sequence, that is,
v is a cluster leader. Because the radius of the last iteration of Algorithm 8.3
is 1/2, we have d(u, v) < 1. Thus, the radius of each cluster is at most 1,
and hence the diameter of each cluster at most 2.

It now remains to show that the maximum cluster-degree ∆C of the cluster
graph is at most 24α −1. On the one hand, the last iteration of the algorithm
(r = 1/2) guarantees that the distance between any two cluster leaders is at
least 1/2. Otherwise, the set S computed in Line 5 would not be independent.
Consequently, each ball of radius 1/4 or smaller contains at most one cluster
leader. On the other hand, because the radius of each cluster is at most 1,
the distance between two cluster leaders of adjacent clusters is at most 3.
This means that for a cluster leader v, all leaders of adjacent clusters are
located in B3(v), the ball with radius 3 around v. By the definition of α,
B3(v) can be covered by at most 24α balls of radius 3/16 < 1/4. Including
v, the number of cluster leaders in B3(v) is therefore at most 24α.

As for the time complexity of a single iteration of the algorithm’s while-
loop, the dominating factor is the MIS computation in Line 5. Everything
else (computing the neighbors in Gr and informing neighbors about new
V) can be done in a constant number of rounds. The time complexity for
computing an MIS by a distributed algorithm depends on the maximum
degree ∆ of the graph. For small ∆, the fastest known algorithms are based
on coloring algorithms. Because a coloring with K colors is identical to a
(1,K)-decomposition, we know from Section 5.5 that a K-coloring can be
turned into an MIS in K rounds of communication. In other words, a graph
can be colored with K colors in t rounds, an MIS can be computed in t+K
rounds. In [58], Cole and Vishkin presented an elegant algorithm for coloring
a graph with 3∆ colors in time O(log∗n), resulting in an MIS algorithm with
time complexity O(log∗n+3∆). The algorithm was improved toO(log ∆(∆2+
log∗n)) by Goldberg, Plotkin, and Shannon in [108]. In [166], Linial shows
that any graph can be colored with O(∆2) colors in O(log∗n) rounds yielding
a time complexity for computing an MIS of O(∆2+log∗n). For our purposes,
the important thing is that for constant ∆, all three algorithms manage to
compute an MIS in O(log∗n) rounds. Lemma 8.16 bounds the maximum
degree of Gr.

Lemma 8.16. In each iteration of Algorithm 8.3, the maximum degree of
Gr is at most 22α.

Proof. Let ` be the length of the minimum distance between any two nodes
of Gr. Because the algorithm computes an independent set in each iteration,
we have ` > r/2. Therefore, every ball of radius r/4 contains only one node
in V. All neighbors of a node v ∈ V in Gr are located in the ball Br(v). By
the definition of the doubling dimension α, Br(v) can be covered by 22α balls
of radius r/4. Therefore, the number of nodes in Br(v) is at most 22α.

In combination with the above MIS algorithms for bounded degree graphs,
Lemma 8.16 implies the following corollary.

8.3. FASTER ALGORITHMS WITH DISTANCE INFORMATION 115

Input: coloring with colors {1, . . . ,K}
Output: coloring with colors {1, . . . ,∆ + 1}
1: for c := 1 to K do
2: send color(vi) to all neighbors;
3: if color(vi) = c then
4: color(vi) := minimal possible color
5: end if
6: end for

Algorithm 8.4: Color Reduction (node vi)

Corollary 8.17. The time complexity of a single iteration of the while-loop
of Algorithm 8.3 is O(log∗n+24α), that is, for constant doubling dimension,
the time complexity is O(log∗n).

Finally, consider the time complexity of Lines 9 and 10 of Algorithm 8.3.
By Lemma 8.15, each node has a cluster leader in its neighborhood. Line 9
can thus be computed in a single communication round. The time complexity
of Line 10 is more interesting. Similar to the construction of an MIS, a
distributed coloring algorithm which colors a graph with K colors in time
t can be turned into a coloring algorithm which colors a graph with ∆ + 1
colors in time t +K (∆ is the maximum degree). Algorithm 8.4 shows how
this can be achieved.

By Lemma 8.15, the maximum degree of the cluster graph is at most
24α − 1. Using the algorithm of [166] for computing the initial coloring, this
results in the following corollary.

Corollary 8.18. The time complexity of Line 10 of Algorithm 8.3 is O(log∗n+
28α), that is, for constant doubling dimension, the time complexity is O(log∗n).

Fast Implementation of the Basic Algorithm

Because each while-loop iteration has a time-complexity of O(log∗n) and
the number of while-loop iterations is blog(1/dmin)c, a straightforward dis-
tributed implementation of Algorithm 8.3 has time-complexity O(log∗n ·
log(1/dmin)) in doubling unit ball graphs. For dmin tending to 0, this is
unbounded. In this section, we will have a second look at the complexity of
Algorithm 8.3 resulting in significantly better result.

As described in the discussion of the LOCAL model in Section 4.2, every
distributed k-round algorithm can in principle formulated as follows.

1. Each node collects its complete k-neighborhood in k communication
rounds

2. Each node computes the output by locally simulating the relevant part
of the distributed algorithm (no communication needed)

With this locality-preserving transformation in mind, consider a single
iteration of the while-loop of Algorithm 8.3. All communication needed to

116CHAPTER 8. LOCALITY IN BOUNDED INDEPENDENCE GRAPHS

compute an iteration of the while-loop is between nodes in Gr. Hence, all
messages are sent on edges which have length at most r. If the number of
communication rounds in this iteration is k and if all messages of those k
rounds are on edges of length at most r, then every node can obtain infor-
mation from distance at most k · r. In other words, every node is able to
compute the outcome of the while-loop iteration locally after collecting the
complete neighborhood up to distance k · r (w.r.t. the metric). That is,
nodes have to collect all information which is accessible by paths of length at
most k · r. By the triangle inequality, it is possible to collect this information
in 2kr rounds. Applying this transformation to Algorithm 8.3 leads to the
following lemma.

Lemma 8.19. Algorithm 8.3 can be implemented with a time complexity
of O(log∗n + 28α). For constant doubling dimension, the algorithm requires
O(log∗n) communication rounds.

Proof. By Corollary 8.17, the number of rounds of an iteration of the while-
loop of Algorithm 8.3 is O(log∗ n+24α). In an iteration with radius r, nodes
therefore need to collect information from distance at most O(r · (log∗ n +
24α)). In order to locally compute the result of all blog(1/dmin)c iterations,
the distances from which information has to be collected must be summed up
over all iterations. However because r grows exponentially by a factor of 2 in
each iteration, we have a geometric series and can upper bound the sum by
taking 2 times the maximum summand. Therefore, every node can compute
the outcome of the entire while-loop with information from its O(log∗ n+24α)
neighborhood. In the LOCAL model, this can therefore be implemented in
O(log∗ n+24α) communication rounds. Together with Corollary 8.18, we get
the required result.

Note that when collecting the whole neighborhood, nodes do not need
to know the minimum distance dmin. As the radius grows exponentially, the
locality of the problem is independent of the starting radius. Specifically, each
node can use the minimum distance in the collected neighborhood in order
to locally simulate Algorithm 8.3. The complete algorithm to compute a
(O(1), O(1))-decomposition in doubling UBG’s can be summarized as follows.

1. exchange 1-hop distances with neighbors

2. locally compute the while-loop of Algorithm 8.3 beginning from radius
r ∈ O(1/(log∗n + 24α)) up to the radius for which it suffices to know
the 1-neighborhood.

3. collect O(log∗ n+24ρ)-neighborhood (it is sufficient to only collect data
about nodes which are still in V)

4. compute the remaining iterations of the while-loop

5. compute clusters and cluster coloring (Lines 9,10 of Algorithm 8.3)

8.3. FASTER ALGORITHMS WITH DISTANCE INFORMATION 117

Computing the solution for small radii first and then collecting the rest of the
neighborhood is done in order to obtain reasonable message sizes, as shown
in the following main theorem.

Theorem 8.20. In the unit ball graph model, the above algorithm computes
a (2, 24α)-decomposition in time O(log∗ n + 28α), where α is the doubling
dimension of the underlying metric. Given that all distances and node IDs
can be represented by K bits, the maximal message size is at most

O
([(

log∗n+ 24α
)O(α)

+ ∆
]
·K
)

bits. Hence, for constant α, the time complexity is O(log∗n) and largest

message requires at most O(((log∗n)O(1) + ∆)K) bits.

Proof. The time complexity follows from Lemma 8.19. For the correctness
of the algorithm, it remains to prove that only collecting information about
nodes in V for r ≥ O(1/(log∗ n+ 24α)) (steps 3 and 4) is sufficient. Because
all communication of Algorithm 8.3 is on G, this is however clear.

For the bound on the message size, we need to have a closer look at steps
1, 3, and 5 where messages are exchanged. In step 1, all nodes send at most
∆ distances and node IDs to their neighbors. This requires messages of size
O(∆·K). In step 3, a message can contain at most the entire R-neighborhood
of a node, where R := O(log∗ n + 24α). Let N be the maximum number of
nodes which such a R-neighborhood can contain. If r ∈ Θ(1/(log∗ n+ 24α))
denotes the largest radius for which the while-loop has been computed in
step 2, we know that for all pairs of nodes u, v ∈ V, we have d(u, v) > r.
Therefore, every ball of radius r/2 contains at most 1 such node. By the
definition of α, the maximum number of nodes in a ball of radius R is at
most

N ≤ (2α)(log2(R/r)+1) =

(
R

r

)α+1

.

The number of edges in the R-neighborhood is at most quadratic in N . The
theorem now follows from the definition of R and r.

Remark:
The results of this section can be regarded from a more information-theoretic
angle as well. Assume, for instance, that we are given a doubling metric
(X, d). All points in X have to provide their part of the solution of a global
problem. Thereby, each member x ∈ X has to base its decision on infor-
mation available in the ball Br(x) for some radius r. Theorem 8.20 shows
that choosing the radius r ∈ O(log∗n) suffices for obtaining a solution to
many natural problems. As a particular example, we might wish to con-
struct an ε-net, that is, we want to select a set of points S such that any two
selected points have distance at least ε and such that any point x ∈ X has a
point in S at distance less than ε. In algorithms for metric spaces, ε-nets are
a widely used structure (e.g. [121]). Theorem 8.20 proves that every node
can decide whether it is in the ε-net S based on information available in its
O(ε log∗n)-neighborhood only.

118CHAPTER 8. LOCALITY IN BOUNDED INDEPENDENCE GRAPHS

8.4 Local Approximation Schemes

As mention at the beginning of this chapter, many classical graph theory
problems are easy to approximate on UDGs. For instance, an MIS is a con-
stant approximation for MDS and a (∆ + 1)-coloring is a constant approxi-
mation for the minimum vertex coloring problem, which is well-known to be
notoriously hard in general graphs. Our MIS and decomposition algorithms
in Sections 8.2 and 8.3 therefore yield constant approximation algorithms to
these problems.

When it comes to centralized, sequential algorithms, however, even bet-
ter solutions are known for UDGs and more general geometric intersec-
tion graphs. Particularly, such graphs allow for polynomial approximation
schemes (PTAS) for various combinatorial optimization problems, including
MDS [127]. Typically, such polynomial approximation schemes exploit the
geometric representation of the graphs (i.e., the nodes’ coordinates in R2 in
UDGs), and then apply a so-called shifting strategy in order to achieve an
arbitrarily good approximation ratio [25, 124]. Among the numerous subse-
quent algorithms employing the shifting algorithms, we would like to point
out [82], in which a PTAS for the maximum independent set problem on
general disk graphs is described, and [41], which presents a nice PTAS for
the minimum connected dominating set problem.

Unfortunately, approaches based on the shifting strategy appear to be
inherently central and cannot efficiently be adapted to work in a distributed
context. In this strategy, the graph is partitioned into boxes or stripes, e.g.
for independent set construction by removing all vertices alongside designated
boundaries. Then, a candidate solution is created by solving each component
separately and combining the partial subsets. This is done for several dis-
junctive and exhaustive boundaries, and the best overall candidate solution
is returned as the desired solution. Clearly, such an approach requires some
sort of centralized control for gathering the partial solutions and deciding on
the best solution among these, and hence, the shifting strategy appears to
be unsuited for use in distributed computing.

Even when considering centralized approaches, however, the case where
the geometric representation of the underlying graph is not given is signifi-
cantly different: For unit disk graphs, it is known that given the graph, it is
NP-hard to computing its representation [37], or even a good approximation
thereof [38, 148]. Nonetheless, it turns out that the topological structure of
UDGs allows to devise a PTAS for MDS and related problems even in the ab-
sence of the graph’s geometric representation. Specifically, Nieberg, Hurink,
and Kern present beautiful PTAS’ for the maximum independent set problem
and MDS on unit disk graphs without a representation [185, 186].

Whereas approximation schemes for geometric intersection graphs have
thus been studied extensively in the centralized case, no similar results are
known in distributed settings, where each node has to base its decision on
information gathered in its local neighborhood via communication. In this
section, we address this by extending the work of [185, 186] to obtain the first
distributed approximation schemes for the minimum dominating set and the
maximum independent set problems in graphs with bounded independence.

8.4. LOCAL APPROXIMATION SCHEMES 119

Specifically, we present algorithms for the two problems that compute a (1+

ε)-approximate solution in time O(TMIS + log∗n/εO(1)), where ε > 0 can be
chosen arbitrarily and TMIS denotes the time for computing an MIS in the
network graph.

Locally Optimal Subsets

We begin by showing how a sequential algorithm can compute a maximum
independent set or a minimum dominating set in the bounded neighborhood
of a node, such that the local solution meets the desired approximation ratio
of 1 + ε, ε > 0.

Let v0 ∈ V be an arbitrary node in a f -bounded independence graph G,
where f(r) is polynomial in r. For the maximum independent set problem,
consider v0’s r-neighborhood Γr(v0) for increasing radii r = 0, 1, 2, . . . , and
compute a maximum independent set Ir ⊂ Γr(v0) as long as the condition

|Ir+1| > (1 + ε)|Ir|

holds. Let r̂ denote the smallest radius r for which the above criterion is
violated. For r̂, the following claim holds (an analogous lemma for unit disk
graphs was proven in [186]).

Lemma 8.21. (Maximum Independent Set) Let G = (V,E) be a graph
of polynomially bounded independence. There exists a constant c = c(ε) such
that r̂ ≤ c.

Proof. . Due to the structure of the graph G, we have |Ir| ≤ f(r). From the
definition of r̂, it holds that for every r < r̂ the following inequalities hold

f(r) ≥ |Ir| > (1 + ε)|Ir−1| > . . . > (1 + ε)r|I0| = (1 + ε)r.

Because (1 + ε)r exceeds any polynomial in r for a large enough constant r,
the claim follows.

The above lemma implies that the radius of the largest neighborhood of
v from which information is required by v0 is also bounded by a constant
r̂ that only depends on the desired approximation ratio. Furthermore, the

computations to be performed locally by v0 are bounded by nO(f(c)2).
For the MDS problem, vertex v0 computes for r = 0, 1, 2, . . . , a minimum

cardinality set Dr that dominates Γr(v0) as long as

|Dr+2| > (1 + ε)|Dr|

holds. Again, denote by r̂ the smallest r which violates the above.

Lemma 8.22. (Minimum Dominating Set) Let G = (V,E) be a graph
of polynomially bounded independence. There exists a constant c = c(ε) such
that r̂ ≤ c.

120CHAPTER 8. LOCALITY IN BOUNDED INDEPENDENCE GRAPHS

Proof. It follows from a similar argument as in Lemma 8.21 that for even
r < r̂, it is

f(r) ≥ |Ir| ≥ |Dr | > (1+ ε)|Dr−2| > . . . > (1+ ε)
r
2 |D0| = (

√
1 + ε)r.

For uneven r, the same chain of inequalities holds, and the claim follows.

Given Lemmas 8.21 and 8.22, a centralized PTAS for the maximum inde-
pendent set problem and for MDS can be obtained as follows (for the UDG
case, see [185, 186]): Select an arbitrary vertex v0 and compute a subset of its
bounded neighborhood Γr̂(v0) that meets the desired criterion. In the maxi-
mum independent set case, compute a locally optimal independent set Ir̂(v0)
for this neighborhood. When the expansion stops, remove the neighborhood
Γr̂+1(v0) from G, and combine Ir̂ with the partial solution obtained thus far.
Then, move on the next iteration with the remaining vertices of G. Because
in each iteration, the neighborhood removed is larger than the neighborhood
in which independent set nodes are selected, the resulting solution indeed
forms an independent set.

For the MDS case, we must account for the possibility of nodes outside
a subset being capable of dominating nodes inside this subset. Therefore,
locally optimal dominating sets are always created with respect to G. For
neighborhoods Γr(v0), it holds that Dr ⊆ Γr+1(v0). Therefore, we remove in
every iteration Γr̂+2(v0) from G, and add Dr̂+2 to the partial solution, before
again going on with the remaining graph. Again, the reason for considering
(r̂+2)-neighborhoods is that Dr ⊂ Γr(v0) may not hold, but Dr ⊂ Γr+1(v0)
must be satisfied.

8.4.1 Local Approximation Schemes

A straightforward way of turning the above PTAS into a distributed al-
gorithm is to distribute the greedy strategy for picking a new central vertex
v0. The problem is, however, that at any point in time, there may only be a
single point of activity in the graph, which yields (at least) a linear number
of rounds. In this section, we present fast distributed algorithms for this
problem.

The distributed approximation schemes are based on the idea of quickly
identifying nodes which are separated far enough so that their neighborhoods
do not overlap during the construction of the partial solutions. These nodes
then construct locally optimal solutions in parallel. In order to select these
initial node-set, we compute an MIS in the graph.

Maximum Independent Set

Algorithm 8.5 presents the details of the maximum independent set algo-
rithm. From Lemma 8.21, we know that each partial solution Ir̂(v0) is inside
a bounded neighborhood around the central node v0 ∈ V if G is polynomially
independence bounded. The radius c of the largest neighborhood is bounded
by a constant that only depends on the desired approximation guarantee ε,

8.4. LOCAL APPROXIMATION SCHEMES 121

Input: Graph G = (V, E) of polynomially bounded independence
ε > 0, c := c(ε) + 2 (Lemma 8.21)

Output: (1 + ε)-approximate maximum independent set I
1: Compute MIS S of G;
2: Construct auxiliary graph G = (S, E2c+1);
3: Color G using ∆G + 1 colors;
4: I := ∅;
5: for k = 1 to ∆G + 1 do
6: for every v ∈ S with color k do
7: while Γ(v) ∩ V 6= ∅ do
8: For some u ∈ Γ(v)∩V , compute maximum independent set Ir̂ for

neighborhood Γr̂(u) ∩ V such that |Ir̂+1| ≤ (1 + ε)|Ir̂|;
9: Inform vertices in Γc(v) about r̂ and Ir̂;

10: I := I ∪ Ir̂(u);
11: V := V \ Γr̂+1(u);
12: end while;
13: end for;
14: end for;

Algorithm 8.5: Local approximation scheme (Maximum Independent Set)

which is assumed to be known by all nodes. In the maximum independent set
approximation scheme, two partial solutions Ir̂(v1) and Ir̂(v2) do not interfere
if dG(v1, v2) ≥ r̂1 + r̂2 + 1 and hence, if dG(v1, v2) ≥ 2c+ 1. Non-interfering
nodes can add partial solutions to a global solution in parallel.

The sequence in which MIS nodes add partial solutions to the global
solution is determined by a coloring of these nodes. In particular, these
nodes are colored such that two nodes of the same color do not interfere.
Technically, the coloring is done using an auxiliary graph G = (S, E2c+1)
in which two nodes are connected if their distance in the original graph is
at most 2c + 1. Note that the maximum degree ∆G of G is bounded by
f(2c + 1) ∈ O(1) and that for every edge in E2c+1, the two endpoints can
communicate in the original graph in a constant number of communication
rounds.

There is one technicality that needs to be considered. So far, we have
considered only MIS nodes as possible centers of the partial solutions. For
each node in G, however, it needs to be ensure that it is considered during
the course of the algorithm when not participating in a partial solution of
another independent node. By the maximality of the MIS, every node is
adjacent to a node in S. In Line 7, if needed, we therefore not only consider
nodes in the MIS, but also nodes in the entire neighborhood Γ(v) of an MIS
node v ∈ S.

Each execution of the while-loop eliminates some vertices from V . Fur-
thermore, all vertices and thus the entire graph are considered in the algo-
rithm by the following lemma.

Lemma 8.23. Upon completion of Algorithm 8.5, it holds that V = ∅ and
the set I is independent.

122CHAPTER 8. LOCALITY IN BOUNDED INDEPENDENCE GRAPHS

Proof. As for termination, consider the inner while-loop (Line 7) and suppose
that a vertex v ∈ V has not been eliminated. Then, v cannot be adjacent
to a vertex in S, a contradiction to the independent set’s maximality. For
the independence of I , we look at Lines 10 and 11 of the algorithm. While
keeping Ir̂(u) ⊂ Γr̂(u) as partial solution, all nodes from Γr̂+1(u) are removed
from V . Since MIS nodes of different colors are not considered at the same
time, and because two MIS nodes with the same color have a distance of at
least 2c̃+ 1 the independence of I follows by the definition of G.

It remains to show that the independent set I satisfies the desired ap-
proximation ratio of 1 + ε.

Lemma 8.24. Let IOPT denote an optimal solution to the Maximum Inde-
pendent Set problem on G. Then, the solution I created by Algorithm 8.5
satisfies

(1 + ε)|I | ≥ |IOPT |.

Proof. As already discussed, the neighborhoods Γr̂(u), are either separated
due to the coloring of the auxiliary graph G or are constructed in sequence
when considering different colors or two vertices u, u′ ∈ Γ(v) for a fixed v ∈ S.
Also, every vertex in G is considered in the creation of the neighborhoods.
Let Γ̃r̂u+1(u) denote the respective neighborhoods Γû+1 ∩ V , where V is
considered with respect to previous steps of the algorithm, and u ∈ V are
the central vertices as chosen in Line 8. These adjusted sets Γ̃r̂u+1(u) form
a partition of G. Furthermore, the partition together with the criterion for
the creation of the neighborhoods, i.e., |Ir̂+1| ≤ (1 + ε)|Ir̂|, yields

|IOPT | =
∣∣∣
⋃

u

(
IOPT ∩ Γ̃r̂u+1(u)

)∣∣∣ =
∑

u

∣∣∣IOPT ∩ Γ̃r̂u+1(u)
∣∣∣

≤
∑

u
|Ir̂u+1(u)| ≤

∑
u
(1 + ε)|Ir̂u(u)|

= (1 + ε)|
⋃

u
Ir̂u(u)| = (1 + ε)|I |.

Note that the summation is over all central vertices u as chosen by the
algorithm.

What is the time complexity of Algorithm 8.5? Let TMIS denote the time
for computing a maximal independent set in the pre-processing phase. The
coloring of the G, due to its bounded degree, takes O(log∗n) rounds [58]. The
maximum degree of G depends on the constant c = c(ε) + 2. Since G has

polynomially bounded independence, it holds that ∆G ∈ O(1/εO(1)), where
the exponent of 1/ε depends on the polynomial bound of the graph G itself.

As for the second part of the algorithm, Line 6 can be done completely
in parallel by the respective MIS nodes of the same colors. For the local
neighborhoods of the cluster leaders, we have the following lemma.

Lemma 8.25. Consider Line 7 of Algorithm 8.5. The while-loop is executed
at most f(1) = O(1) times for any v ∈ S.

8.4. LOCAL APPROXIMATION SCHEMES 123

Input: Graph G = (V, E) of polynomially bounded independence
ε > 0, c := c(ε) + 2 (Lemma 8.22)

Output: (1 + ε)-approximate Min. Dominating Set D
1: Construct MIS S and colored auxiliary graph G = (S, E2c+7);
2: D := ∅;
3: for k = 1 to ∆G + 1 do
4: for every v ∈ S with color k do
5: if Γ(v) ∩ V 6= ∅ then
6: For some u ∈ Γ(v) ∩ V , compute minimum dominating set Dr̂ of

Γr̂(u) ∩ V such that |Dr̂+2| ≤ (1 + ε)|Dr̂|;
7: Inform Γc(v) about r̂ and Dr̂+2;
8: D := D ∪Dr̂+2(u);
9: V := V \ Γr̂+2(u);

10: end if ;
11: end for;
12: end for;

Algorithm 8.6: Local approximation scheme (Minimum Dominating Set)

Proof. In Γ(v), there are at most f(1) independent vertices, and in each
round, at least the first order neighborhood of the vertex u ∈ Γ(v) ∩ V is
eliminated from V .

Overall, we can therefore bound the number of communication rounds for
the second part of the algorithm by O(c · f(1) · ∆G) = O(1/εO(1)) for ε > 0.

Minimum Dominating Set

Devising a similar approximation scheme for the MDS problem now re-
quires only minimal adjustments (Algorithm 8.6). A locally optimal domi-
nating set is computed by the MIS nodes in S. This is done in such a way that
the combination of these local subsets dominate the whole graph G, while
also obeying the desired approximation ratio. The main difference is that
the auxiliary graph is defined with an edge-set E2c+7 in order to maintain
enough separation between partial solutions.

In analogy to Lemma 8.23 of the maximum independent set case, we can
prove the following lemma.

Lemma 8.26. Algorithm 8.6 terminates, and at the end, we have V = ∅.
Furthermore, the solution D dominates the graph G.

Proof. The proof is analogous to the proof of Lemma 8.23. Specifically, the
local set Dr̂+2(u) dominates Γr̂+2(u)∩V which is eliminated from V at every
step.

As for the cardinality of D created by the algorithm, the following lemma
establishes its approximation ratio.

124CHAPTER 8. LOCALITY IN BOUNDED INDEPENDENCE GRAPHS

Lemma 8.27. Let DOPT denote an optimal solution to the Minimum Dom-
inating Set problem on G. Then, the set D ⊂ V computed by Algorithm 8.6
satisfies

(1 + ε)|DOPT | ≥ |D|.

Proof. Again, let Γ̃r̂u(u) denote the neighborhoods with respect to V during
the execution of the algorithm. By induction over u ∈ Γ(v), v ∈ S, it can

be seen that the sets Γ̃r̂u+1(u) are mutually disjoint. Note in this context

that the sets Γ̃r̂u(u) created in parallel (Line 4) are non-overlapping and can
thus w.l.o.g. be considered in arbitrary order for central vertices of the same
color. Furthermore, Γ̃r̂u+1(u) ∩DOPT dominates Γ̃r̂u(u) in G. Hence,

|DOPT | ≥
∣∣∣
⋃

u

(
DOPT ∩ Γ̃r̂u+1(u)

)∣∣∣ =
∑

u

∣∣∣DOPT ∩ Γ̃r̂u+1(u)
∣∣∣

≥
∑

u
|Dr̂u(u)| ≥

∑
u

1

1 + ε
|Dr̂u+2(u)|

≥ 1

1 + ε

∣∣∣
⋃

u
Dr̂u+2(u)

∣∣∣ =
|D|

1 + ε
.

The number of rounds needed in the second part of Algorithm 8.6 is O(1)
for fixed ε > 0 by the same argument as in the maximum independent set
case. More precisely, we can summarize the results in the following theorem.

Theorem 8.28. Let G = (V,E) be a polynomially independence bounded
graph. For any ε > 0, there exist local, distributed (1 + ε)-approximation
algorithms, for the Maximum Independent Set and Minimum Dominating
Set problems on G. The number of communication rounds needed for the
respective construction of the subsets is O(TMIS + log∗n/εO(1)).

When combining this result with Theorems 8.13 and 8.20 of Sections 8.2
and 8.3, we obtain the following corollaries.

Corollary 8.29. Let G be a graph with polynomially bounded independence.
For any constant ε > 0, a (1 + ε)-approximation for MDS and the max-
imum independent set problem can be computed deterministically in time
O(log ∆ log∗n) in the LOCAL model.

Corollary 8.30. Let G be a doubling unit ball graph. If nodes know the
distances to their neighbors, for any constant ε > 0, a (1 + ε)-approximation
for MDS and the maximum independent set problem can be computed deter-
ministically in time O(log∗n) in the LOCAL model.

Chapter 9

Conclusions and Outlook

In view of ever growing distributed systems and global networks, it is be-
coming increasingly vital to understand distributed algorithms in which the
participating entities do not require full information about the state of the
network. In many large-scale networks, routing and infrastructure mainte-
nance tasks such as clustering or scheduling must instead be handled locally.
Furthermore, fast local algorithms are also desirable when coping with as-
pects such as dynamics, mobility, or churn, which are key characteristics of
peer-to-peer networks or mobile ad hoc networks. With this in mind, it can
be argued that in large-scale distributed systems, all efficient computation is
inherently local, which highlights the need to understanding the possibilities
and limitations of locality-sensitive approaches [196] and local computation.

Besides its practical importance in networking, the study of local compu-
tation also poses fascinating theoretical questions. As we have seen in this
part of the thesis, studying the locality of optimization problems sheds new
light into their combinatorial structure. The field of local computation is
thus strongly related to well-established areas of theoretical computing sci-
ence, including approximation theory, distributed computing, geometry, or
graph theory and discrete mathematics in general.

A particularly interesting relation exists between local computation and
the (economic) “value of information”. As we have seen, the LOCAL model
yields an equivalence between the time complexity of a distributed algo-
rithm and the amount of local information on which distributed decision
makers must base their decision. Local computation therefore corresponds
to a particularly important special case of distributed decision-making with
incomplete information as studied in [192, 193]. Our upper and lower bounds
on the amount of locality required to achieve a certain quality of a global
optimization in Chapters 6 and 7 almost tightly capture the value of informa-
tion of each additional increase if the neighborhood. Particularly our lower
bounds describe the degradation of distributed decisions caused by lack of
information between cooperating agents.

Quantifying the suboptimality of a global optimum due to lack of global

126 CHAPTER 9. CONCLUSIONS AND OUTLOOK

knowledge can also be regarded as studying the “price of locality”. The
notions of approximation ratio (approximation algorithms) and competitive
ratio (online algorithms) have long been used as a measure to quantify the
loss of efficiency due to lacking computational power and knowledge about
the future, respectively. More recently, researchers have investigated the so-
called “price of anarchy,” or coordination ratio, which captures the degree of
suboptimality resulting from selfish behavior [190, 208]. In a similar spirit,
our work on local computation sheds light on the “price of locality,” i.e.,
the degradation of a globally optimal solution if each individual’s knowledge
is restricted to its neighborhood or local environment. While approximation
and online algorithms have been thoroughly studied, and the price of anarchy
has recently received a lot of attention, much less is known about this price
of locality in comparison.

In this context, it is clear that deriving lower bounds on local computation
is of particular interest. So far, Linial’s Ω(log∗n) lower bound for computing
an MIS on a ring [166] has been standing as the major lower bound on
locality that resulted from locality restrictions only. With our lower bounds
of Chapter 7, we hope to have contributed to a better understanding of the
“price of locality”.

There are numerous directions for future research and there exists a bulk
of very recent work that deals with local computation for problems such as
MST [75, 76], spanners [66, 69], or coloring [152]. It is interesting to study
the locality nature of other network coordination problems that appear to
have some kind of local structure. One such problem is, for instance, the
maximum domatic partition problem [88]. In this problem, the goal is to se-
lect as many disjoint dominating sets as possible. A simple adaptation of the
randomized algorithm in [88] shows that in a constant number of communi-
cation rounds, an O(log n) approximation to the problem can be found. In
this sense, the maximum domatic partition problem is more local than, say,
the maximum matching or the MVC problem. Faster distributed algorithms
for the domatic partition problem in graphs of bounded independence and
doubling unit ball graphs have recently been presented in [198]. Nonethe-
less, the exact time-approximation trade-off of this problem is still to be
revealed. Other interesting local problems may include the maximum unique
coverage problem [68], various variants of facility location problems, and–of
course–coloring problems.

Beyond these specific open problems, the most intriguing distant goal of
this line of research is to divide distributed problems into complexity classes
according to the problems’ local nature. The existence of locality-preserving
reductions and the fact that several optimization problems exhibit similar
characteristics with regard to locality raises the hope for something like a
locality hierarchy of distributed problems. It would be particularly interesting
to establish ties between this distributed hierarchy of complexity classes and
the classic complexity classes originating in the Turing model of computation.

Besides classifying computational problems, studying local computation
may also help in gaining a more profound understanding of the relative
strengths of the underlying network models themselves. As we have seen
in Chapter 8, for instance, the vast family of unit ball graphs is—from a

127

distributed complexity point of view—equally hard as a simple ring network.
In both settings, an MIS or a decomposition can be computed in asymptot-
ically optimal time Θ(log∗n). On the other hand, our lower bounds prove
that general graphs are strictly harder, thus separating these computational
models with regard to their distributed complexity and locality.

The notion distributed approximation is of interest even beyond locality
in graphs. As already pointed out in our discussion of the CONGEST model,
for instance, many problems are hard to approximate in a distributed way
even in complete graphs or graphs with small diameter if message size is
limited. While there are some beautiful results in this model (most notably
the O(log log n)-time MST algorithm of [168]), there lacks a systematic un-
derstanding of the limiting factors in such very low-diameter graphs. While
locality or information-theoretic restrictions do not appear to be the decisive
bottlenecks in complete graphs, other aspects such as “coordination” become
increasingly important. Formally capturing these intuitive notions and devis-
ing corresponding lower bounds for such networks appears to be a challenging
task for the future. Notice that studying low-diameter (or even complete)
graphs is interesting from a networking point of view, because these graphs
can be regarded as abstracting the network on top of an overlay-network that
provides point-to-point connections between all pairs of nodes.

Finally, locality is only one characteristic of modern large-scale networks.
Another important aspect of many modern distributed systems is that the
participating entities are often selfish agents [190]. Part IV of this thesis
studies the impact of selfishness in networks in more detail and it would be
intriguing to explore connections between locality and selfishness.

128 CHAPTER 9. CONCLUSIONS AND OUTLOOK

Part II

Radio Networks

Chapter 10

Wireless Ad Hoc and Sensor

Networks

The advent of wireless communication in virtually all aspects of daily life has
not only spawned a multi-billion dollar market, but has also changed people’s
lifestyle. While heterogenous cellular networks have become omnipresent, a
novel, complementing network paradigm has been rapidly emerging in recent
years: Ad hoc and sensor networks. These networks are a manifestation of
the continuing miniaturization of electronics in general and wireless commu-
nication technology in particular. Ad hoc and sensor networks are formed of
autonomous (sometimes mobile) devices consisting of, among other compo-
nents, a processor, some memory, a radio communication unit, and a power
source, typically a battery. Sensor networks can be considered a specializa-
tion of ad hoc networks in which nodes are equipped with sensors measur-
ing certain physical values (humidity, vibration, acceleration, temperature,
brightness, etc...).

Ad hoc and sensor networks have been envisioned in various application
fields and there is a growing number of real (even commercial) systems being
built, ranging from environmental monitoring, surveillance, to medical appli-
cations, the observation of chemical and biological processes, disaster relief,
and community mesh networks. Besides these application scenarios, it must
also be mentioned that—inevitably—ad hoc and sensor network technology
also has the potential of finding military applications.

The characteristics of the often highly constrained ad hoc or sensor nodes
render the design of efficient and robust protocols for ad hoc and sensor net-
works particularly challenging. It is therefore not surprising that in the recent
networking literature, a plethora of protocols have been proposed for these
networks. Often, these new protocols have been of heuristic nature, typi-
cally evaluated by means of simulation. From an algorithmic point of view,
however, there remain numerous important and interesting unresolved ques-
tions. Principally, many of the well-known algorithmic paradigms and results

132 CHAPTER 10. WIRELESS AD HOC AND SENSOR NETWORKS

from traditional networking and distributed computing carry over directly to
wireless ad hoc and sensor networks. The specific wireless, infrastructure-less,
resource-limited, and potentially mobile nature of these networks, however,
also bring about algorithmic challenges that require novel solutions. This is
particularly the case when studying link layer or MAC layer issues in these
networks.

As mentioned above, one of the most challenging peculiarities of ad hoc
and sensor networks is their inherent lack of built-in a-priori infrastructure.
Typically, if two nodes are not within mutual transmission range, they can
communicate through intermediate nodes relaying their message. In other
words, the communication infrastructure must be provided and maintained
by the nodes themselves. During and shortly after the deployment of an ad
hoc or sensor network, there is no established pattern based on which nodes
could efficiently communicate. There is no reliable point-to-point abstraction
to higher-layer protocols and applications, messages may collide, and nodes
may not even be aware of their neighbors. Before the network can actually
start carrying out its intended task, nodes must establish an initial structure
or MAC layer, based on which more sophisticated protocols or applications
can be employed.

The quintessential task after a network’s deployment is therefore the self-
organized transition from an unstructured to a structured multi-hop radio
network, i.e., the network’s initialization. In practice, the initialization prob-
lem is important and current initialization procedures tend to be slow. Even
in a single-hop ad hoc network such as Bluetooth and for a small number of
devices, the time-consumption for establishing a reasonable communication
pattern is considerable. Clearly, the situation is even worse in a multi-hop
scenario with a large number of nodes.

Distributed algorithms for coloring and clustering appear to be tailor-
made for the purpose of bringing structure into a chaotic network and to
facilitate the effects of lacking a-priori infrastructure and missing knowledge.
The difficulty in applying these algorithms, however, is that any protocol that
aims at setting up an initial infrastructure must not rely on any previously
established structure. In this sense and in this setting, coloring and clustering
algorithms that have been studied in networking and distributed computing
typically suffer from one of the two shortcomings: Either the protocols are of
heuristic nature and evaluated by simulations only, or, when it comes to algo-
rithms with provable worst-case guarantees, the underlying communication
model abstracts away many of the harsh realities that crucially determine
the complexity of the task at hand.

Previously, the efficiency of distributed algorithms for computing struc-
tures (such as dominating sets, MIS, colorings, . . .) that could serve as an
initial infrastructure has often been studied in message passing models, or
under other strong model assumptions. For instance, it is frequently (and
sometimes implicitly) assumed that all nodes wake up and start the algo-
rithm at the same time or that every node knows its neighbors or 2-hop
neighbors at the outset. These and other often adopted model assumptions
are typically denounced by practitioners as unrealistic and oversimplifying.
Particularly during the deployment phase, it is the absence of coordination,

133

infrastructure, and knowledge that ultimately determines the complexity of
network coordination tasks. When abstracting away these aspects by assum-
ing too much a-priori knowledge or coordination, the obtained solutions have
rarely been directly applicable in practical settings.

Studying coloring and clustering algorithms in the message passing model
implicitly implies the existence of an established, underlying medium access
control (MAC) layer protocol that provides reliable point-to-point connec-
tions to higher-layer protocols and applications. Studying network coordina-
tion problems such as clustering or coloring in the absence of an established
MAC layer highlights the following chicken-and-egg problem: A MAC layer
(“chicken”) helps achieving a clustering/coloring (“egg”), and vice versa. The
problem is that in a newly deployed ad-hoc or sensor network, there is no
structure, i.e. there are neither “chickens” nor “eggs.”

In this part of the thesis, we aim at bridging or narrowing this gap between
theory and practice. Based on a novel unstructured radio network model—
which is an adaptation of the classic standard radio network model—we
evaluate the complexity of clustering and coloring tasks in newly deployed
unstructured networks. On the one hand, our model attempts to closely
capture the harsh conditions of real ad hoc and sensor systems. On the other
hand, we want the model to remain appealing to the theory of distributed
computing, i.e., the model should be concise enough to allow for stringent
proofs and reasoning, preventing simulations from being the only resort to
evaluate the algorithms’ performance.

The sequel of this part of the thesis is organized as follows. Chapter 11
introduces the unstructured radio network model, which captures many of
the characteristics of wireless ad hoc and sensor networks, particularly dur-
ing and immediately after their deployment. Chapters 12 explores the dis-
tributed complexity of coloring in unstructured radio networks. In subse-
quent Chapter 13, we extend these techniques in order to compute an MIS in
time O(log2n) with high probability, which is asymptotically optimal given a
lower bound for clear radio transmission in [86]. Having established the com-
plexity of network coordination structures in the unstructured radio network
model, we present an application of these initial structures in Chapter 14.
Specifically, in certain settings, employing initial structures can help in im-
proving the energy-latency trade-off during the deployment phase of wireless
sensor networks.

134 CHAPTER 10. WIRELESS AD HOC AND SENSOR NETWORKS

Chapter 11

Unstructured Radio Network

Model

In many ways, familiar distributed computing communication models such as
the message passing model do not describe the harsh conditions faced in wire-
less ad hoc and sensor networks closely enough, rendering results obtained in
these models bear little importance in practice. Ad hoc and sensor networks
are multi-hop radio networks and hence, messages being transmitted may in-
terfere with concurrent transmissions leading to collisions and packet losses.
Furthermore, all nodes sharing the same wireless communication medium
leads to an inherent broadcast nature of communication. A message sent by
a node can be received by all nodes in its transmission range. These aspects
of communication are modeled by the radio network model.

Based on the classic radio network model, we seek to model the following
characteristics.

• Ad hoc and sensor networks are multi-hop, that is, there exist nodes
that are not within their mutual transmission range. Therefore, it may
occur that some neighbors of a sending node receive a message, while
others experience interference from other senders and do not receive
the message.

• Nodes can wake up asynchronously at any time. In a wireless, multi-
hop environment, it is realistic to assume that some nodes wake up (e.g.
become deployed, or switched on) later than others. Because nodes do
not have access to a global clock, we do not assume local clocks to be
synchronized. Notice that in contrast to work on the wake-up problem
in radio network [104], nodes are not woken up by incoming messages.
That is, before its wake-up, a node does not participate in the network
in any way; it neither transmits nor receives any messages. See Section
11.2 for more details on the wake-up problem in radio networks.

136 CHAPTER 11. UNSTRUCTURED RADIO NETWORK MODEL

• Nodes do not necessarily feature a reliable collision detection mecha-
nism. This assumption is often realistic, considering that nodes may
be tiny sensors with equipment restricted to the minimum due to lim-
itations in energy consumption, weight, or cost. Moreover, the send-
ing node itself does not have a collision detection mechanism either.
Hence, a sender does not know how many (if any at all!) neighbors
have received its transmission correctly.

• At the time of their waking-up, nodes have only limited knowledge
about the total number of nodes in the network and no knowledge
about the nodes’ distribution or wake-up pattern. Particularly, they
have no a-priori information about the number of neighbors and when
waking up, they do not know how many neighbors have already started
executing the algorithm.

All these restrictions suggest that we deal with a particularly harsh model
of computation and naturally, algorithms for such uninitialized, chaotic net-
works have a different flavor compared to “traditional” algorithms that oper-
ate on a given network graph that is static and well-known (at least locally)
to all nodes.

11.1 Model and Notation

In the unstructured radio network model1, we consider multi-hop radio net-
works without collision detection. In this model, time is considered to be
divided into time slots and in every time slot, a node can either transmit or
not transmit a message. A node is able to correctly receive a message only
if exactly one of its neighbors transmitted in this time slot. If more than
one neighbor transmitted, a collision occurs and the message becomes gar-
bled. The absence of a collision detection mechanism means that nodes are
unable to distinguish between the situation in which two or more neighbors
are sending and the situation in which no neighbor is sending. For the sake
of simplicity, we assume time to be divided into discrete time slots that are
synchronized between all nodes. As long as the nodes’ internal clocks run
at the same speed, this idealistic assumption incurs only a constant-factor
overhead [222].

In contrast to previous radio network models, the unstructured radio net-
work model allows nodes to wake up asynchronously at any time, i.e., an
adversary may select the wake-up time of each node in a worst-case man-
ner. All nodes are initially assumed to be asleep (i.e., not yet deployed or
switched on). Once a node v is activated, it starts executing its protocol Q,
which among other things dictates in which time slots v transmits a mes-
sage. Thereby, the protocol Q can depend only on the local clock of v (the
number of time slots since its activation), and possibly additional informa-
tion received earlier from other nodes. In other words, there is no globally

1In a subsequent paper, an essentially equivalent model was dubbed weak sensor

model [85].

11.2. RELATED WORK 137

synchronized clock and upon waking up, a node has no information as to
whether it is the first to wake up, or whether other nodes have been running
the algorithm for a long time already. As for terminology, we call a node
sleeping or asleep before its wake-up, and awake thereafter.

The primary complexity measure we will consider is the time complexity
defined in the following.

Definition 11.1 (Time Complexity). The running time Tv of a node v
is defined as the number of time slots between v’s waking up and the time v
makes an irrevocable final decision on the outcome of its protocol. The time
complexity T (Q) of algorithm Q is defined as the maximum running time
over all nodes in the network, i.e., T (Q) := maxv∈V Tv.

We model the network as an undirected graph G = (V,E), where two
nodes u and v can communicate with each other if there is an edge (u, v) ∈ E.
In order to capture the wireless characteristics of ad hoc and sensor networks,
we again assume the bounded independence model (see Chapter 8) in which
there can be at most κ1 = f(1) mutually independent nodes in the 1-hop
neighborhood of any node. Similarly, there are at most κ2 = f(2) nodes in
the 2-hop neighborhood of any node. Note that due to asynchronous wake-
up, some nodes may still be asleep, while others are already transmitting.
Hence, at any time, there may be sleeping nodes which do not receive a
message in spite of there being a communication link between the two nodes.
In other words, nodes simply do not exist in the network until the time of
their wake-up.

When waking up, nodes have only scarce knowledge about the network
graph’s topology. In particular, a node has no information on the number of
nodes in its neighborhood. However, every node has estimates n and ∆ for
the number of nodes in the network and the maximum degree, respectively.
In reality, it may not be possible to foresee these global parameters precisely
by the time of the deployment, but it is usually possible to pre-estimate rough
bounds.

Every node has a unique identifier, but identifiers may not be in the range
1, . . . , n. Particularly, none of our algorithms performs explicit operations on
the node’s identifiers. Instead, IDs are merely used to let a receiver recognize
whether two messages were sent by the same sender.2 Finally, like in the
CONGEST model of Section 4.3, message size is restricted to O(log n) bits,
assuming that the identifier space is polynomial in n. That is, every message
may contain at most a constant number of node identifiers.

11.2 Related Work

The first communication network with the semantics of a (single-hop) radio
network appears to be the Alohanet system developed at the university of

2In some papers on wireless sensor networks, it is argued that sensor nodes do not
feature any kind of unique identification (such as a MAC number, for instance). Clearly,
in such a case, each node can obtain a unique ID by simply choosing a random number
from a large enough range, say [1 . . . n3], upon waking up.

138 CHAPTER 11. UNSTRUCTURED RADIO NETWORK MODEL

Hawaii in the 1970’s. This system brought about the well-known Aloha pro-
tocol for regulating access to the channel. Another famous conflict-resolution
protocol for a multiple access channel is the Ethernet protocol, whose conflict-
resolution scheme uses exponential backoff. Considering the importance of
these and other multiple access channels, it is not surprising that there ex-
ists a substantial work that analyzes capacity, throughput, and stability of
different protocols in a variety of models. For a thorough algorithmic survey
of these channel access protocols and their analysis, we refer to [47].

More recently, additional algorithmic problems have been studied in single-
hop radio networks including the so-called initialization problem—assigning
unique identities from 1 to n to a set of n identical anonymous nodes—[182],
approximating the number of participating stations n [137], or leader elec-
tion [183].

The model of multi-hop radio networks was introduced by Chlamtac and
Kutten [45] who considered sequential algorithms to find an efficient broad-
cast protocol for a given input network. Ever since, research on radio net-
works has flourished, rendering the model one of the most important models
in distributed computing. The first efficient distributed (probabilistic) broad-
cast protocol was presented in [30]. The broadcasting problem has remained
the most widely studied subject in the literature on radio networks and there
have been a number of efficient probabilistic and deterministic solutions to
the problem, e.g. [46, 48, 63]. Alon, Bar-Noy, Linial, and Peleg show that,
even for graphs with diameter 2, Ω(log2n) rounds may be necessary [10]. The
other well-known lower bound was given by Kushilevitz and Mansour, show-
ing that for every (possibly randomized) broadcast algorithm, there exists
a network of n nodes and diameter D, such that the expected broadcasting
time of the algorithm is Ω(D log(n/D)) [155]. Besides the broadcasting prob-
lem, there has also been extensive work on other communication primitives
such as all-to-all communication (called gossiping, e.g. [50]). Furthermore,
there have been results on the feasability of broadcast under the presence of
Byzantine or faulty processors in the network [142]

The above papers are typically based on the simplifying assumption that
all nodes wake up at the same time, i.e., every node is awake and ready to
receive a message at the outset of (and throughout) the algorithm. Note that
this implies the existence of a globally synchronous clock to which all nodes
have access. In many settings—especially in wireless or dynamic ones—
this assumption may be too idealistic. An important shift towards studying
settings with asynchronous wake-up has been initiated by Ga̧sieniec, Pelc,
and Peleg with their studying the so-called wake-up problem in radio net-
works [104]. In this problem, all nodes are initially assumed to be asleep.
Each node v in the network can either wake up spontaneously, or can be
activated by receiving a message from one of its neighbors. That is, in this
setting, messages act as wake-up signals. Once a node is activated, it starts
executing its wake-up protocol Q, which determines in which time slots v
transmits a message. In this model, there is no global clock. Instead, the
protocol Q depends only on the local clock of v (the number of time slots
since its activation), and possibly additional information received earlier from
other nodes.

11.2. RELATED WORK 139

There exists an important difference between the asynchronous wake-up
studied in the wake-up problem, and the one defined in the unstructured radio
network model. Specifically, in the wake-up problem, nodes are assumed to
be woken up externally by messages. Depending on the specific application,
either model may be more suitable. In the context of wireless ad hoc and
sensor networks, however, the wake-up problem setting implies that all nodes
are physically deployed at the same time. More importantly, the external
wake-up necessitates the existence of low power “trigger” circuits, which
operate continuously on small power budgets, and wake up more power-
hungry circuits only upon receipt of a suitable signal from a neighboring node.
Unfortunately, currently available standard hardware such as the Mica2 [123]
wireless sensor nodes do not offer this functionality.

In a single-hop radio network, the wake-up problem is solved—that is,
all nodes are woken up—as soon as one node was able to send successfully.
For the case when n is globally known, [104] presented a randomized al-
gorithm that, for any given ε > 0, completes the wake-up process in time
O(n log(1/ε)), with probability at least 1 − ε. This result has subsequently
been improved to O(log n log(1/ε)) by Jurdziński and Stachowiak [138]. In
the same paper, the authors additionally present a corresponding lower bound
of Ω(log n log(1/ε)/(log log n+log log(1/e))), a bound that has recently been
improved to Ω(log n log(1/e)) in [86]. This last result is particularly interest-
ing because it proves our MIS algorithm of Chapter 13 to be asymptotically
optimal. In the case of n being unknown to the nodes, [138] has proven an al-
most linear time lower bound of Ω(n/ log n), thus establishing an exponential
gap between these two models. The generalized wake-up problem in multi-
hop radio network was first studied in [52]. Finally, the study of deterministic
protocols for the wake-up problem has lead to efficient constructions of com-
binatorial structures called radio synchronizers [52, 104, 128] and universal
radio synchronizers [49, 51].

While communication primitives such as broadcast, wake-up, or gossip-
ing, have thus been extensively studied in the literature on radio networks in
both randomized and deterministic versions, much less is known about the
computation of local network coordination structures such as clusterings or
colorings in the radio network model. This is somewhat surprising consider-
ing the particular importance of such structures in multi-hop wireless ad hoc
and sensor networks. In fact, solving such problems in radio network models
was mainly investigated in the context of backbone formation in wireless ad
hoc and sensor networks, e.g. [99, 227]. However, these algorithms either
have linear running time [227], or are based on strong assumptions, e.g. that
nodes wake up at the same time, or that every node knows its one-hop or
even two-hop neighborhood when waking up [99].

In a complementing thread of research, the (centralized) off-line approx-
imability of computing short broadcast schedules has been studied. In this
setting, the network topology is the input to a sequential algorithm and the
goal is to come up with as short a feasible schedule as possible. This prob-
lem was shown to be NP-complete in [45] and—for Euclidean instances—
in [211]. Approximation algorithms with a multiplicative approximation ra-
tio of O(log2n) have first been presented in [30, 46]. In [80], Elkin and

140 CHAPTER 11. UNSTRUCTURED RADIO NETWORK MODEL

Kortsarz presented an efficient construction of a broadcast schedule with
additive approximation ratio O(log4n), a result that has recently been im-
proved to an additive O(log2n)-approximation by Ga̧sieniec, Peleg, and Xin
in [105]. As for lower bounds, Elkin and Kortsarz prove multiplicative
Ω(log n) [78] and additive Ω(log2n) [79] inapproximability, assuming that

NP * BPTIME(nO(log log n)). Finally, it was shown recently that under
reasonable complexity assumptions, it is impossible to approximate the max-
imal number of new nodes that can be reached in a single round of a radio
broadcast within a factor of Ω(logc n), for some constant 0 < c ≤ 1 [68].

Chapter 12

Coloring Unstructured Radio

Networks

In this chapter, we study the construction of an initial vertex coloring that is
useful for subsequent network organization tasks. A proper vertex coloring
of a graph G = (V, E) is an assignment of a color, denoted by colorv, to each
node v ∈ V , such that any two adjacent nodes have a different color. The
importance of such colorings in wireless ad hoc and sensor networks stems
from the fact that when associating different colors with different time slots
in a time-division multiple access (TDMA) scheme; a correct coloring corre-
sponds to a medium access control (MAC) layer without direct interference,
that is, no two neighboring nodes send at the same time. It is well known that
in order to guarantee an entirely collision-free schedule in wireless networks,
a correct vertex coloring is not sufficient. What is needed is a coloring of the
square of the graph, i.e., a valid distance 2-coloring [205]. However, besides
being a non-trivial first step towards obtaining a distance 2-coloring, a simple
vertex-coloring ensures a schedule in which a receiver can be disturbed by at
most (a small) constant number of interfering senders in a given time slot.

In the message passing model, there exists a long and rich body of work
that deals with the distributed complexity of coloring problems, e.g., [91, 108,
109, 110, 166, 188]. In single-hop radio networks, the coloring problem has
been studied in the form of the so-called initialization problem in which nodes
must be assigned identifiers 1 through n [182, 183]. Typically, results on this
problem are obtained in highly synchronized models in which each node has
access to a global clock. In comparison, much less is known about coloring
in multi-hop radio networks. In fact, the only previous algorithm for coloring
in multi-hop radio networks appears to be the algorithm by Gandhi and
Parthasarathy in [99]. This algorithm computes a correct distance-2 coloring
using O(∆) colors in time O(∆ log2n) in a model that assumes synchronous
wake-up.

In this chapter, we present and analyze an algorithm that computes a

142 CHAPTER 12. COLORING RADIO NETWORKS

vertex coloring in the unstructured radio network. Specifically, the algorithm
uses O(∆) colors and with high probability, every node can decide on a
color within time O(∆ log n) after its wake-up. Note that in a graph with
bounded independence (e.g., unit disk graph), any correct coloring requires
Ω(∆) colors. Also, the number of time slots required until every node can
send at least one message to some other node in the network (and thus make
its existence known to at least one node in the network) is at least Ω(∆),
even if sender and receiver pairs are selected optimally.

As we will see, asynchronous wake-up of nodes has a big impact on the de-
sign of algorithms because it renders the symmetry breaking task significantly
harder. It is easy to show that if every node transmits with a probability of
1/∆, the time until every node can transmit collision-free to all its neighbors
at least once is bounded by O(∆ log n) (cf Lemma 12.4 of Section 12.2). With
this observation, it is clear that any coloring algorithm in the message pass-
ing model can be transformed to a radio network model with synchronous
wake-up. Specifically, the above simulation transforms any time T coloring
algorithm in the message passing model into an O(T ·∆ log n) time algorithm
in a radio network model. In combination with the results presented in Chap-
ter 8, this immediately yields coloring algorithms for radio networks with a
running time of O(∆ log ∆ · log n log∗n) (or O(∆ log n log∗n), if distances can
be measured). Apart from improving the running time compared to these
simulations, the coloring algorithm presented in this chapter is capable of
dealing with asynchronous wake-up.

12.1 Algorithm

During the algorithm, each node can be in various states. At any point in
time, a node is in exactly one state, i.e., the sets of nodes induced by the
different states form a partition of V .

Z: Nodes before their waking up. Sleeping nodes do not take part
in the algorithm.

Ai: Nodes that are verifying (i.e., trying to decide on) color i.
R: Nodes that are requesting an intra-cluster color from their

leader.
Ci: Nodes that have already irrevocably decided on color i.

The state C0 plays a special role and nodes in state C0 are called leaders.
The algorithm itself is divided into three subroutines: Algorithm 12.1 for
nodes in states Ai, Algorithm 12.2 for nodes in state R, and Algorithm 12.3
for nodes in state Ci. The sequence of states that a node can be part of during
the course of the algorithm is shown in Figure 12.1. A solid arrow represents
the state transition a node makes when the event denoted by the arrow’s label
occurs. A dashed arrow between two states indicates the message type which
is significant for the communication between nodes in these two states. Note
that in our model, however, every neighbor of a sending node—regardless
of their current state—may actually receive the message or experience a
collision. Upon waking up, each node starts in state A0, without having any

12.1. ALGORITHM 143

cv > threshold

C0

cv > threshold

cv > threshold

CiAi

R

Ai+1

A0

Ci+1

M0
C(tcv)

MR

M0
A

M i+1
A

M i
A

Z

wake-up

M i
C

M i+1
C

tcv received

M i
C received

M0
C received

M i+1
C received

Figure 12.1: Sequence of states in the algorithm. Each color i is represented
by a state Ci, which a node enters at the moment it (irrevocably) selects
color i. Before deciding on i, a node first has to verify (or compete for) i in
state Ai. If the node does not prevail in this verification, it moves from Ai

to a new state Asuc, which corresponds to either the intermediate requesting
state R or the verification state of the next higher color Ai+1 (cf Lines 3 and
15 of Algorithm 12.1).

knowledge whether some of its neighbors have already started executing the
algorithm beforehand.

From a global point of view, the algorithm’s main idea can be described
easily: In a first stage, the nodes elect a set of mutually independent leaders
(nodes in state C0) among themselves and each non-leader associates itself
with a leader within its neighborhood. Since leaders are independent, they
can safely assign themselves color 0. The set of leaders naturally induces
clusters consisting of all nodes associated with the same leader. The task
of each leader is to assign a unique intra-cluster color tcv to every node v
within its cluster. Unfortunately, the coloring induced by these intra-cluster
colors may not form a valid coloring since two neighboring nodes in different
clusters may be assigned the same intra-cluster color.

On the other hand, if the set of leaders is really independent, there can
only be a small number of neighboring nodes with the same intra-cluster

144 CHAPTER 12. COLORING RADIO NETWORKS

color. The coloring induced by these intra-cluster colors thus represents a
first coarse structuring of the network that facilitates the subsequent task
of actually assigning colors to nodes. Technically, upon receiving an intra-
cluster color tcv from its leader, a node goes on to verify a specific color
tcv(κ2 + 1) against neighboring nodes from different clusters that may have
received the same intra-cluster color. This verification procedure must ensure
that no two neighboring nodes end up selecting this specific color.

The algorithmic difficulty of the above process stems from the fact that
nodes wake up asynchronously and do not have access to a global clock.
Therefore, the different phases (verification, requesting intra-cluster color,
etc...) of different nodes may be arbitrarily intertwined or shifted in time.
While some nodes may still compete for becoming leader in state A0, their
neighbors may already be much more advanced in their coloring process.
Moreover, messages may be lost due to collisions at any time. In view of
this harsh environment, the primary challenge is that the algorithm must
achieve two contradictory aims: symmetries between nodes must be broken
both correctly and rapidly. That is, no two neighboring nodes ever select the
same color and yet, every node can take its decision shortly after its wake-up
(i.e., there is no starvation).

A crucial part of reconciling these contradictory aims takes place in the
verification procedure. In order to ensure both correctness and fast progress
in all parts of the network with high probability, our algorithm uses a tech-
nique of counters, critical ranges, and local competitor lists. Roughly, the
idea is that every node v uses a local counter cv which it increments in every
time slot. Intuitively, this counter represents v’s progress towards deciding
on color i and v selects i as soon as cv reaches a certain threshold.

In order to prevent two neighboring nodes from selecting the same color,
the algorithm must make sure that as soon as a node v selects its color, all
neighbors of v can be notified before their counter also reaches the threshold.
In view of collisions and message losses being always possible, there must
be a large enough time interval between two neighboring counters reaching
the threshold. A simple idea to achieve this correctness condition is to have
every node transmit its current counter with a certain sending probability.
Whenever a node receives a message with higher counter, it resets its own
counter. Unfortunately, this technique may lead to chains of cascading resets,
i.e., a node’s counter is reset by a more advanced node, which in turn is
reset by another node and so forth. While, eventually, one node will end
up selecting the color, this method does not prevent nodes from starving in
certain (local) parts of the network graph.

Our algorithm therefore employs a more subtle handling of the counters.
The general idea is that upon receiving a message from a neighbor, a node
only resets its counter if it is within a critical range of the received counter
(see Line 18 of Algorithm 12.1). On the one hand, this critical range is large
enough to ensure correctness with high probability. On the other hand, this
technique allows for much more parallelism in the network because many
nodes can simultaneously make progress towards deciding on the color. In
order to truly avoid cascading resets and achieve the claimed running time,
however, using only counters and critical ranges is insufficient. Specifically,

12.1. ALGORITHM 145

nodes should also be prevented from resetting their counter to a value within
the critical range of neighboring nodes and furthermore, all counters must
remain relatively close to the verification threshold even after a reset. For
this purpose, each node stores a local competitor list containing the current
counter values of neighboring nodes.

Unfortunately, in the unstructured radio network model, it is impossible
to constantly keep this competitor list and the corresponding locally stored
counters complete and correctly updated. Interestingly, we can prove in Sec-
tion 12.2 that in spite of this inevitable inconsistency, our technique of using
counters and critical ranges in combination with storing local competitor
lists avoids cascading resets and at the same time ensures the correctness
condition. That is, whenever a node v selects a color, the counters of all
neighboring competing nodes are far enough from the threshold so that v
has enough time to inform its neighbors with high probability.

upon entering state Ai: (when waking up, a node is initially in state A0)

1: Pv := ∅; {* v is passive *}
2: ζi :=

{
1 , i = 0
∆ , i > 0

3: Asuc :=

{
R , i = 0
Ai+1 , i > 0

4: for dα∆ log ne time slots do
5: for each w ∈ Pv do dv(w) := dv(w) + 1;
6: if M i

A(w, cw) received then Pv := Pv ∪ {w}; dv(w) := cw; end if
7: if M i

C(w) received then state := Asuc; L(v) := w; end if
8: end for
9: cv := χ(Pv), where χ(Pv) is the maximum value such that,
χ(Pv) ≤ 0 and χ(Pv) /∈ [cw − dγζi log ne, . . . , cw + dγζi log ne] for each
w ∈ Pv;

10: while state = Ai do {* v is active *}
11: cv = cv + 1;
12: for each w ∈ Pv do dv(w) := dv(w) + 1;
13: if cv ≥ dσ∆log ne then state := Ci; end if
14: transmit M i

A(v, cv) with probability 1/(κ2∆);
15: if M i

C(w) received then state := Asuc; L(v) := w; end if
16: if M i

A(w, cw) received then
17: Pv := Pv ∪ {w}; dv(w) := cw;
18: if |cv − cw | ≤ dγζi log ne then cv := χ(Pv); end if
19: end if
20: end while

Algorithm 12.1: Coloring Algorithm—Node v in state Ai

In more detail, the algorithm works as follows. Upon waking up, a node
enters state A0 and tries to become a leader. Generally, whenever a node
v enters a state Ai, for i ≥ 0, it first waits for dα∆ log ne time slots. As

146 CHAPTER 12. COLORING RADIO NETWORKS

upon entering state R:
1: while state = R do {* v is active *}
2: transmit MR(v, L(v)) with probability 1/(κ2∆);
3: if M0

C(L(v), v, tcv) received then
4: state := Atcv·(κ2+1);
5: end if
6: end while

Algorithm 12.2: Coloring Algorithm—Node v in state R

upon entering state Ci:
1: colorv := i; {* v is active *}
2: if i > 0 then
3: repeat forever transmit M i

C with probability 1/(κ2∆);
4: else if i = 0 then
5: tc := 0;
6: Q := ∅; {FIFO request queue }
7: repeat forever
8: if MR(w, v) received and w /∈ Q then add w to Q; end if
9: if Q is empty then

10: transmit M0
C (v) with probability 1/κ2;

11: else
12: tc := tc+ 1;
13: Let w be first element in Q;
14: for dβ log ne time slots do
15: transmit M0

C(v, w, tc) with probability 1/κ2;
16: end for
17: Remove w from Q;
18: end if
19: end repeat
20: end if

Algorithm 12.3: Coloring Algorithm—Node v in state Ci

soon as it receives a messages M i
C from a neighboring node that has already

joined Ci (Line 7 of Algorithm 12.1), v joins the succeeding state Asuc, which
corresponds to R in the case i = 0, and Ai+1, otherwise. If no such message
is received, v becomes active and starts competing for color i (Line 10).

In order to ensure with high probability that no two neighbors enter the
same state Ci, the following process is employed: In each time slot, an active
node v ∈ Ai increments its counter cv and transmits a message M i

A with
probability 1/(κ2∆) (Lines 11 and 14, respectively). Whenever v receives a
message M i

C from a neighbor w ∈ Ci, v knows that it cannot verify color i
anymore and consequently moves on to state Asuc.

When receiving a message M i
A(w, cw) from a neighboring competing node

w ∈ Ai, v adds neighbor w to its competitor list Pv and stores a local copy
of w’s counter cw denoted by dv(w) (Line 17). In each subsequent time
slot, these local copies dv(w) are incremented in order to keep track with

12.1. ALGORITHM 147

the real current counter of w as much as possible. Moreover, in Line 18, v
compares cw to its own counter cv. If the two counters are within the critical
range dγζi log ne of each other, v resets its own counter to χ(Pv). The value
χ(Pv) < 0 (Line 9) is defined such that the new counter is not within the
critical range dγζi log ne of any locally stored copy of neighboring counters.
Notice, however, that because counters may be reset in any time slot, a locally
stored copy dv(w) of cw may be outdated without v knowing it. For instance,
if w has to reset its counter due to receipt of a message M i

A(x, cx) from a
neighbor x, and if v does not receive this message (possibly due to a collision
or because x and v are not neighbors), it subsequently holds dv(w) 6= cw.
Hence, in spite of the definition of χ(Pv), a node’s counter may be within
the critical range of a neighboring counter after a reset.

If in the above process, a node succeeds in incrementing its counter up
to the threshold of dσ∆log ne (Line 13), it decides on color i and joins state
Ci. As mentioned before, the technique of using counters and critical ranges
guarantees that quick progress is made simultaneously in all parts of the
network. Specifically, this method ensures that after a limited (constant)
number of trials, at least one competing node in Ai can join Ci in every
region of the graph. At the same time, the method also guarantees with
high probability that no two neighboring nodes join Ci, i.e., the set of nodes
induces by Ci is independent.

A special role in the algorithm plays the state C0, the set of leaders. A
leader’s duty is to assign unique intra-cluster colors to each node in its clus-
ter. Specifically, each non-leader v in R assigned to leader w sends requests
MR(v, w) for an intra-cluster color to w. Upon receiving such a request mes-
sage from v, w transmits for dβ log ne time slots with probability 1/κ2 a mes-
sage M0

C (w, v, tc), where tc denotes the intra-cluster color assigned to v and is
incremented for each subsequent requesting node. If necessary, requests are
buffered in an internal queue Q, which helps in keeping all messages within
the size of O(log n) bits.

In state R, a non-leader node v requests an intra-cluster color from its
leader. As soon as v receives a message M0

C (w, v, tcv) from leader w contain-
ing its intra-cluster color tcv, v moves on to state Atcv(κ2+1), i.e., it attempts
to verify color c = tcv(κ2 + 1) next. If verifying color c is unsuccessful (i.e.,
if a neighbor of v selects color c earlier), a node joins the next higher state
Asuc = Atcv(κ2+1)+1, and so forth, until it manages to verify and decide on a
color. In Corollary 12.7 of Section 12.2, we show that every node is capable
of deciding on a color from tcv(κ2 + 1), tcv(κ2 + 1) + 1, . . . , tcv(κ2 + 1) + κ2

with high probability. Hence, the reason for a node to verify Atcv(κ2+1) upon
receiving tcv is that by doing so, two nodes with different intra-cluster colors
never compete for the same color. This turns out to be an important ingre-
dient when upper bounding the amount of time each node must maximally
wait before deciding on its color.

The algorithm’s four parameters, α, β, γ, and σ can be chosen as to trade-
off the running time and the probability of correctness. The higher the
parameters, the less likely the algorithm fails in producing a correct coloring.
In order to obtain the high probability result in Section 12.2, the parameters

148 CHAPTER 12. COLORING RADIO NETWORKS

are defined as α ≥ 2γκ2 + σ + 1, β ≥ γ, and

γ =
5κ2

[
1
e

(
1 − 1

κ2

)] κ1
κ2
[

1
e

(
1 − 1

κ2∆

)] 1
κ2

, σ =
10e2κ2(

1 − 1
κ2

)(
1 − 1

κ2∆

) ,

for ∆ ≥ 2. Specifically, these constants guarantee a correct coloring and
running time with probability at least 1 − O(n−1). Simulation results show
that in randomly distributed networks significantly smaller constants suffice,
yielding a practically efficient coloring algorithm.

12.2 Analysis

In this section, we prove that the algorithm of Section 12.1 is both correct
and complete with high probability. Correctness means that no two adjacent
nodes end up having the same color, completeness leaves no node without
a color. Furthermore, we show that every node decides on a color after at
most O(∆ log n) time slots for constant κ2. For clarity of exposition, we
omit ceiling signs in the analysis, i.e, we consider all non-integer values to
be implicitly rounded to the next higher integer value. Further, let cv(t) be
the value of the counter of node v at time t. We call a node in Ai covered if
either itself or one of its neighbors is in Ci.

For future reference, we begin with a simple lemma that bounds the
maximum number of nodes in the 2-hop neighborhood of any node.

Lemma 12.1. Let G = (V,E) be a graph with at most κ2 independent nodes
in the 2-hop neighborhood of any node. It follows that every node has at most
κ2∆ 2-hop neighbors.

Proof. Every node has at most κ2 mutually independent nodes in its 2-hop
neighborhood, and each such node has at most ∆ neighbors.

We now state two lemmas that give us probabilistic bounds on the amount
of time required until a message is correctly transmitted from a sender v to
an intended receiver u in the algorithm. Notice that both lemmas hold only
under the assumption that the set C0 of leaders forms a correct independent
set.

Lemma 12.2. Assume C0 forms an independent set. Consider two neigh-
boring nodes u and v and let I be a time interval of length γ∆ log n. If v
is active throughout the interval I, u receives at least one message from v
during I with probability 1 − n−5.

Proof. Let pv denote the transmission probability of v. Recall that nodes in
C0 transmit with a probability of 1/κ2, whereas the sending probability of

12.2. ANALYSIS 149

all other nodes is 1/(κ2∆). The probability Ps that v succeeds in sending a
message to u in a time slot t ∈ I is

Ps = pv

∏

i∈Γ(u)\{v}
(1 − pi) ≥ pv

∏

i∈Γ(u)∩C0

(1 − pi)
∏

j∈Γ(u)\C0

(1 − pj)

≥ pv

(
1 − 1

κ2

)κ1
(

1 − 1

κ2∆

)∆

> pv

[
1

e

(
1 − 1

κ2

)] κ1
κ2
[
1

e

(
1 − 1

κ2∆

)] 1
κ2

, (12.1)

where the last inequality follows from Fact 2.2 and κ2 ≥ κ1. Because v is
assumed to be active throughout the interval I and for every active node
pv ≥ 1/(κ2∆), the probability Pno that u does not receive a message from v
during I is

Pno = (1 − Ps)
|I|

<

(
1 − 1

κ2∆

[
1

e

(
1 − 1

κ2

)] κ1
κ2
[
1

e

(
1 − 1

κ2∆

)] 1
κ2

)γ∆ log n

≤
Fact 2.2

n
− γ

κ2

[
1
e

(
1− 1

κ2

)]κ1/κ2
[
1
e

(
1− 1

κ2∆

)]1/κ2

< n−5,

where the last inequality follows from the definition of γ.

Lemma 12.3. Assume C0 forms an independent set. Consider two neigh-
boring nodes u and v ∈ C0 and let I ′ be a time interval of length γ log n.
If v ∈ C0 throughout the interval I ′, u receives at least one message from v
during I ′ with probability 1 − n−5.

Proof. The proof is virtually identical to the previous one. In the case v ∈ C0,
it holds that pv = 1/κ2 and plugging this value into Inequality (12.1) and
applying Fact 2.2 yields

Pno = (1−Ps)
|I′| <

(
1− 1

κ2

[
1

e

(
1− 1

κ2

)] κ1
κ2
[
1

e

(
1− 1

κ2∆

)] 1
κ2

)γ log n

<
Fact 2.2

n−5.

For the next lemma, we first define the notion of a successful transmission.
A node v transmits successfully in a time slot t if all nodes u ∈ Γ(v) \ {v}
within the transmission range of v (i.e., in v’s 1-hop neighborhood) receive the
message without collision. In the following lemma, we show that with high
probability, at least one node in v’s neighborhood can transmit successfully
during any interval of length O(κ2∆log n).

150 CHAPTER 12. COLORING RADIO NETWORKS

Lemma 12.4. Assume C0 forms an independent set. Consider a node v ∈ Ai

for an arbitrary i. Further, let I be a time interval of length |I | = σ
2
∆log n

during which v ∈ Ai is active. With probability 1− n−5, there is at least one
time slot t ∈ I such that a node u ∈ Γ(v) ∩Ai transmits successfully.

Proof. By Lemma 12.1, there are at most κ2∆ nodes in the 2-neighborhood
of any node. If in a time slot, a node w is the only transmitting node in Γ2(w),
it is guaranteed that w transmits successfully because no node outside Γ2(w)
can cause a collision at a neighbor of w. Define Ps to be the probability that
a node w ∈ Γ(v) ∩ Ai transmits successfully in a given time slot t ∈ I . By
the above argument, Ps is lower bounded by

Ps ≥
∑

w∈Γ(v)∩Ai

pw ·

∏

u∈Γ2(w)
u 6=w

(1 − pu)

≥
∑

w∈Γ(v)∩Ai

pw ·
∏

u∈Γ2(w)\C0

(
1 − 1

κ2∆

)
·

∏

u∈Γ2(w)∩C0

(
1 − 1

κ2

)

≥
∑

w∈Γ(v)∩Ai

pw ·
(

1 − 1

κ2∆

)κ2∆(
1 − 1

κ2

)κ2

≥
Fact 2.2

1

e2κ2∆

(
1 − 1

κ2∆

)(
1 − 1

κ2

)

because
∑

w∈Γ(v)∩Ai
pw is at least 1/(κ2∆) for as long as v is active in Ai.

Finally, the probability Pno that no node in Γ(v) ∩ Ai manages to transmit
successfully within the interval I during which v is active in Ai is

Pno = (1 − Ps)
|I| ≤

(
1 − 1

e2κ2∆

(
1 − 1

κ2∆

)(
1 − 1

κ2

)) σ
2
∆ log n

≤
Fact 2.2

e
− σ

2e2κ2

κ2−1
κ2

κ2∆−1
κ2∆

log n
< n−5.

The last step follows from the definition of σ.

Lemmas 12.2, 12.3, and 12.4 are based on the assumption that the set
of leaders C0 forms an independent set. Therefore, in order to make full
use of these lemmas, we need to prove that this assumption holds for the
entire duration of the algorithm. Intuitively, the reason for our claim is
the following. By the definition of the algorithm, only nodes in state A0

can enter state C0. If such a candidate node v ∈ A0 transmits successfully,
all neighboring nodes w ∈ Γ(v) ∩ A0 having a counter value within the
critical range γζ0 log n = γ log n of v’s counter will reset their counter to
χ(Pw), which is by definition outside the critical range of v. Hence, once
node v was able to transmit successfully, no neighboring candidate node

12.2. ANALYSIS 151

w ∈ Γ(v) ∩ A0 can block v from incessantly incrementing its counter until
it reaches the threshold σ∆log n which enables to join C0. The only way v
can still be prevented from becoming a leader is if v receives a message M0

C
from a neighbor that has entered C0 before v’s counter reaches the threshold.
Moreover, the counters of neighboring nodes being outside the critical range,
it can be shown that upon becoming leader, v has enough time to inform all
neighbors of its having joined C0.

We formalize this intuition in Lemma 12.5 and its subsequent proof. More
precisely, the lemma proves the more general statement that every color class
Ci (i.e., not merely C0) forms an independent set at all times during the algo-
rithm’s execution with high probability. Notice that the lemma establishes
the algorithm’s correctness, because if all color classes form independent sets,
the resulting coloring is necessarily correct.

Lemma 12.5. For all i, the color class Ci forms an independent set through-
out the execution of the algorithm with probability at least 1 − 2n−3.

Proof. At the beginning, when the first node wakes up, the claim certainly
holds, because Ci = ∅ for all i. We will now show that with high probability
the claim continues to hold throughout the algorithm’s execution. For this
purpose, consider an arbitrary node v ∈ Ai and assume for contradiction
that v is the first node to violate the independence of Ci for an arbitrary
i ≥ 0. That is, we assume that v is the first node to enter Ci even though a
neighboring node w has entered Ci in the same or a previous time slot. Note
that if two or more nodes violate the independence of Ci simultaneously, we
consider each of them to be the first node. We prove in the sequel that
the probability of v being such a first node for a specific Ci is at most 2n−5.
Applying the union bound, we conclude that the probability that there exists
a node v ∈ V that violates the independence of some Ci is bounded by
n2 · 2n−5 = 2n−3.

Let t∗v be the time slot in which v enters state Ci, i ≥ 0. Since v is among
the first nodes to violate the independence of any Ci, and hence also C0, we
know that for all time slots t < t∗v, C0 is a correct independent set. That is,
if v is among the first nodes to create a violation, Lemmas 12.2, 12.3, and
12.4 can be applied until time slot t∗v − 1.

Let w be a neighbor of v that has joined Ci before v (or in the same time
slot as v), say at time t∗w ≤ t∗v. We consider two cases, t∗w < t∗v − γζi log n
and t∗w ≥ t∗v − γζi log n, and start with the former.

If t∗w < t∗v − γζi log n, then w entered state Ci at least γζi log n time slots
before v. By Lemma 12.2 (i > 0) or Lemma 12.3 (i = 0), the probability
that w manages to successfully send a message M i

C to v during these γζi log n
time slots (during which v must be in Ai if it joins Ci at time t∗v) is at least
1−n−5. By Line 15 of Algorithm 12.1, however, v leaves state Ai and moves
on to state Asuc upon receiving M i

C , i.e., it does not enter Ci.
For the second case, we compute the probability that v joins Ci within

γζi log n time slots after t∗w. Recall that by the definition of the algorithm,
it holds that cw = σ∆log n at time t∗w. Consider the time interval Iw of
length γ∆ log n before t∗w. Because in each time slot, counters of nodes in Ai

152 CHAPTER 12. COLORING RADIO NETWORKS

are either incremented by one or set to χ(Pv) ≤ 0 and because σ∆log n >
2γ∆ log n, it follows that cw was not reset during Iw. If it was, cw would
not have reached σ∆ log n by time t∗w. Similarly, if cv was reset during Iw,
t∗v could not be within γζi log n of t∗w. Hence, neither cw nor cv were reset
during the interval Iw and it holds that at time t∗w, cv ≥ σ∆ log n−γζi log n.
More generally, it holds that

|cw(t∗w − h) − cv(t∗w − h)| ≤ γζi logn

for each h = 0, . . . , γ∆ log n − 1. By Lemma 12.2, the probability that v
receives at least one message M i

A from w during these γ∆ log n time slots
in Iw is at least 1 − n−5. If it does receive such a M i

A, v resets its counter
(Line 18) and does not enter Ci within γζi log n time slots of t∗w.

Combining both cases, we know that with probability 1−n−5, v does not
enter Ci until γζi log n time slots after its first neighbor has joined Ci. And
with probability 1 − n−5, v does not enter Ci thereafter. Consequently, the
probability of v being a first node to violate the independence of a specific
Ci is at most 2n−5. Each state Ci thus remains independent throughout
the algorithm’s execution with probability at least 1 − 2n−4. Finally, we
can crudely upper bound the number of non-empty states Ci used in the
algorithm by n, because in Lines 7 and 15, a node changes its state only if
it has received a message M i

C from a node that has already decided on Ci.
The probability that all color classes form independent sets at all times is at
least 1 − 2n−3.

Lemma 12.5 proves that with high probability, all color classes are in-
dependent and hence, the algorithm eventually produces a correct coloring.
Particularly, notice that the lemma implies that the set of leaders C0 forms an
independent set with high probability and hence, we can use Lemmas 12.2,
12.3, and 12.4 without restriction. What remains to be shown are the bounds
on the running time as well as on the number of colors required. For this
purpose, we first prove a helper lemma that bounds the number of nodes v
that can simultaneously be in the same active state Ai.

Lemma 12.6. If the set of nodes in C0 is independent, then for any i > 0,
the number of nodes in any 1-hop neighborhood that ever join state Ai is at
most κ2.

Proof. A node v enters a state Ai, i > 0, for the first time when being in state
R and receiving a message M0

C (w, v, tcv) from its leader w = L(v). Consider
a leader w ∈ C0 and let Sw denote the set of nodes having w as their leader,
i.e., Sw = {v | L(v) = w}. Since the value tc is incremented for every new
node v in the queue Q, w assigns to each v ∈ Sw a unique intra-cluster color
tcv. While being unique within each cluster, these intra-cluster colors do not
constitute a legal coloring, because neighboring nodes belonging to different
clusters may be assigned the same intra-cluster color tcv by their respective
leaders. If the set of leaders w ∈ C0 forms an independent set, the maximum
number of leaders w ∈ C0 in any 2-hop neighborhood is κ2. Therefore, every

12.2. ANALYSIS 153

node can have at most κ2 1-hop neighbors (including itself!) with the same
intra-cluster color tcv.

In Line 4 of Algorithm 12.2, a node v with tcv enters state Atcv(κ2+1).
That is, two nodes with subsequent intra-cluster colors tcv and tcv + 1 enter
states Ai and Aj , where |i−j| = κ2 +1. By the definition of Algorithm 12.1,
the only way a node can move from state Ai to state Ai+1 is by receiving a
message M i

C from a neighboring node that has already entered Ci. Without
receiving M i

C a node will eventually join state Ci itself. Hence, whenever a
node v in Ai moves on to state Ai+1, at least one of its neighbors must have
joined Ci. From this, it follows that each of the at most κ2 neighbors of a
node v that are assigned the same intra-cluster color tcv will decide on a color
in the range tcv(κ2 +1), . . . , tcv(κ2 +1)+κ2. Notice that this range does not
overlap with the corresponding range of the next higher intra-cluster color
which starts with color (tcv + 1)(κ2 + 1) > tcv(κ2 + 1) + κ2. Consequently,
nodes assigned to different intra-cluster colors are never in the same state Ai

for any i > 0. And because at most κ2 nodes are assigned the same tcv in
the 1-hop neighborhood of any node v, the lemma follows.

The proof of Lemma 12.6 implicitly gives raise to the following corollary.

Corollary 12.7. While executing the algorithm, every node v is at most in
κ2 + 1 different states Ai, namely A0,Atcv(κ2+1), . . . ,Atcv(κ2+1)+κ2

. This
holds under the condition that the nodes in C0 are independent.

The next lemma gives a lower bound on the counters cv of any node
v ∈ Ai.

Lemma 12.8. Let cv be the counter of node v ∈ Ai. It holds throughout
the execution of the algorithm that cv ≥ −2γ∆ log n − 1, if i = 0, and cv ≥
−2κ2γ∆ log n− 1, otherwise. This holds under the condition that the nodes
in C0 are independent.

Proof. Consider a node v ∈ Ai. The only time v’s counter cv is set to
a negative value is when (re)setting cv to χ(Pv) in Lines 9 or 18 of Algo-
rithm 12.1. χ(Pv) is defined as the largest value such that χ(Pv) < 0 and
χ(Pv) /∈ [cu − γζi log n, . . . , cu + γζi log n] for each u ∈ Pv. Because the set
Pv contains only nodes that are also in state Ai, it follows from Lemma 12.6
that |Pv| ≤ κ2 for any i > 0, if the nodes in C0 form an independent set. In
the case i = 0, it trivially holds that |Pv| ≤ ∆.

The number of values that are prohibited for χ(Pv) is therefore at most
κ2 · 2γζi log n in the case i > 0 and ∆ · 2γζ0 log n if i = 0. Plugging in the
values for ζi, we can write

χ(Pv) ≥
{

−2γ∆ log n− 1 , i = 0
−2κ2γ∆ log n− 1 , i > 0

,

which concludes the proof.

154 CHAPTER 12. COLORING RADIO NETWORKS

Having the last two helper lemmas, we are now ready to analyze the
algorithm’s running time, that is, to bound the maximum amount of time
between a node’s waking up and its entering a color class Ci. We first obtain
a bound on the amount of progress achieved by nodes in a state Ai in every
part of the graph.

Lemma 12.9. Let T i
v denote the number of time slots a node v spends

in state Ai. With probability 1 − 3n−3, it holds for all v and i that T i
v ∈

O(κ3∆ log n).

Proof. By Lemma 12.5 implies that with probability 1 − 2n−3, the set of
nodes in state C0 forms an independent set. In the sequel of the proof, we
focus on this case and assume that all nodes in C0 are mutually independent.

Let tv denote the time slot in which node v ∈ Ai executes Line 9 of
Algorithm 12.1. Until tv, v spends exactly α∆ log n time slots in Ai. By
Lemma 12.4, we know that at least one node w ∈ Γ(v)∩Ai is able to transmit
successfully during the interval I = [tv, tv+ σ

2
∆ log n] with probability 1−n−5

(unless v leaves state Ai during that interval in which case Lemma 12.9
clearly holds). Say this happens at time tsw. According to Lines 6 and 17
of Algorithm 12.1, all nodes u ∈ Γ(w) ∩ Ai store a local copy du(w) of
w’s current counter cw upon receiving w’s message M i

A in time slot tsw. In
Lines 5 and 12, this local copy is incremented by one in each subsequent time
slot. That is, as long as w’s real counter is not reset to χ(Pw), every node
u ∈ Γ(w) ∩ Ai has a correct local copy du(w) of w’s current counter cw.

We now show that w’s counter cw cannot be reset by any node u ∈
Γ(w) ∩ Ai after tsw anymore. First, in Line 18, every node u ∈ Γ(w) ∩ Ai

whose counter cu(tsw) at time tsw is in the range

[cw(tsw) − γζi log n, . . . , cw(tsw) + γζi log n]

resets its own counter to χ(Pu) in time slot tsw. Recall that χ(Pu) is defined as
the maximum value such that χ(Pu) ≤ 0 and χ(Pu) /∈ [cx−γζi log n, . . . , cx +
γζi log n] for each x ∈ Pu. Specifically, because w transmitted successfully,
this means that χ(Pu) /∈ [cw−γζi log n, . . . , cw+γζi log n], and hence |cu(tsw+
1) − cw(tsw + 1)| > γζi log n. Clearly, the same inequality also holds for all
nodes u ∈ Γ(w) ∩ Ai whose counter was not in the critical range [cw(tsw) −
γζi log n, . . . , cw(tsw) + γζi log n] in the first place.

In summary, we have that in time slot tsw + 1, every node u ∈ Γ(w) ∩Ai

has a correct local copy du(w) of cw, and

|cu(tsw + 1) − cw(tsw + 1)| > γζi log n.

Because the counter of every neighbor in Ai thus differs by at least
γζi log n from cw, none of these nodes can cause w to reset its counter in
Line 18 of the algorithm. Node w can thus increment its counter in each
time slot and hence, all nodes u ∈ Γ(w) ∩ Ai continue to have a correct
local copy of cw after tsw. Consequently, even if a neighboring node u has to
reset its counter to χ(Pu), this cannot cause cu to come within γζi log n of

12.2. ANALYSIS 155

cw by the definition of χ(Pu). Thus, it follows by induction over the subse-
quent time slots that no node u ∈ Ai is able to reset w’s counter after its
successful transmission at time tsw. By Lemma 12.8, we know that for all
i, cw ≥ −2γκ2∆log n − 1 at time tsw. Hence, if w stays in Ai, it requires
at most (2γκ2 + σ)∆ log n + 1 time slots in order to reach the threshold
σ∆ log n, which enables to enter state Ci. Also, nodes that join Ai after tsw
do not transmit for at least α∆ log n time slots, and because α > 2γκ2+σ+1,
it follows that such nodes cannot interfere with w’s incrementing its counter
either. Hence, after a successful transmission, there remains only one way
to prevent w from incessantly incrementing its counter and entering Ci: if w
receives a message M i

C before its counter reaches σ∆log n.

In summary, we have that after a successful transmission, either w enters
Ci itself within (2γκ2 + σ)∆ log n+ 1 time slots or there must exist a neigh-
boring node x of w that joins Ci earlier (see Figure 12.2). In the first case,
v receives a message M i

C from w within γζi log n after w’s entering Ci with
probability at least 1 − n−5 (by Lemma 12.2 if i > 0 and by Lemma 12.3 if
i = 0). In the other case, node x (which, in this case, is not a direct neighbor
of v) must be a 2-hop neighbor of v. If v is not covered by x and remains
in Ai, at least one node w2 ∈ Γ(v) ∩ Ai can transmit successfully within
σ
2
∆log n time slots thereafter with high probability (Lemma 12.4), and the

argument repeats itself. That is, as long as v is active in Ai, at least one
node in v’s 2-hop neighborhood enters Ci per σ

2
∆ log n+(2γκ2+σ)∆ log n+1

time slots with probability 1 − n−5.

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

x

w
v

Figure 12.2: When v is active, some neighbor w can transmit successfully
within σ

2
∆ log n time slots. This node w can only be blocked from entering

Ci if one of its neighbors x joins Ci earlier.

It can be seen in Figure 12.2 that the number of times a node x ∈ Γ2(v)
can join Ci without covering v (and thus forcing v to leave state Ai) is by
definition at most κ2. Finally, once v becomes covered, an additional γζi log n
time slots in Ai may be required before, with probability 1 − n−5, its first
neighbor in Ci sends a message M i

C to v. As stated at the beginning of the
proof, our argument holds under the condition that the set of leaders C0 forms
an independent set which is true with probability 1 − 2n−3 by Lemma 12.5.

156 CHAPTER 12. COLORING RADIO NETWORKS

Therefore, with probability Pv, node v spends at most

T i
v ≤ α∆ log n+ κ2

(σ
2

∆ log n+ (2γκ2 + σ)∆ log n+ 1
)

+ γζi log n

∈ O(κ3
2∆ log n)

time slots in state Ai, where Pv is at least

Pv ≥ 1 − (κ2 · n−5 + n−5 + 2n−3) > 1 − 3n−3,

for large enough n because κ2 ≤ n and γ ∈ O(κ2). This concludes the
proof.

Next, we bound the time until a node v in the request state R receives its
intra-cluster color (via a message M0

C (w, v, tcv)) from its leader w upon which
it leaves state R (cf Line 4 of Algorithm 12.2). Specifically, the following
lemma shows that each node v spends at most time O(κ2∆ log n) in state R.

Lemma 12.10. Let TR
v denote the number of time slots a node v spends

in state R. With probability 1 − 3n−3 it holds for each v ∈ V that TR
v ≤

(γ + β)∆ log n.

Proof. The time TR
v denotes the time between v starting to request an intra-

cluster color from its leader L(v) ∈ C0 to the time this leader succeeds in
assigning the intra-cluster color tcv to v without collision. Let w be the leader
of v, i.e., w = L(v). We divide TR

v into two parts. First, by Lemma 12.2,
v is able to send its request MR(v, L(v)) to w within time γ∆ log n with
probability 1 − n−5. Upon receipt, w queues v’s request until it has served
all its other, previously received requests. In Line 15 of Algorithm 12.3, w
transmits a message M0

C with probability 1/κ2 to the currently considered
requesting node for β log n time slots, before moving on to the next request,
if available. Because β ≥ γ, Lemma 12.3 holds for w’s response to v with
probability 1 − n−5. Because w can have at most ∆ requesting nodes in its
queue, TR

v is at most

TR
v ≤ γ∆ log n+ ∆ · β log n = (γ + β)∆ log n

for each node v ∈ V with probability at least 1 − 2n−5. As the set C0 forms
an independent set with probability 1 − 2n−3, for large enough n the claim
holds with probability 1 − 2n−5 − 2n−3 ≥ 1 − 3n−3.

Lemmas 12.9 and 12.10 are the ingredients required to prove the following
lemma that bounds the algorithm’s running time, i.e., the amount of time
every node requires after its wake-up before deciding on a color.

Lemma 12.11. Every node decides on its color within time O(κ4
2∆ log n)

after its wake-up with probability 1 − 4n−1.

12.2. ANALYSIS 157

Proof. Let TY
v be the number of time slots a node v spends in state Y. For

each node v, we have

Tv =
∑

i≥0

TAi
v + TR

v .

Lemma 12.10 bounds TR
v by (γ + β)∆ log n with probability 1 − 3n−3 for

each v, and thus with probability 1 − 3n−2 for all nodes in V . Moreover,
when applying the union bound to the result of Lemma 12.9, it follows that
TAi

v ∈ O(κ3
2∆log n) for all v and i with probability 1−3n−1. Finally, because

every node is in at most κ2 + 1 different states (due to Corollary 12.7) Ai, it
follows that for some constant λ,

Tv = (κ2 + 1) · λκ3
2∆log n+ (γ + β)∆ log n ∈ O(κ4

2∆ log n)

with probability at least 1 − 4n−1, for large enough n.

The only thing remaining is a bound on the number of different colors
assigned by the algorithm. For practical purposes, the locality of the assign-
ment of colors to nodes plays a crucial role. Generally, the colors assigned to
each node should be as “low” as possible. If the vertex coloring in the graph
is used for setting up a time-division scheduling in a wireless network, for
instance, the bandwidth assigned to a node v is often inversely proportional
to the value of the highest color in its neighborhood. The highest color as-
signed to a neighbor of a node v by the algorithm in Section 12.1 is dependent
only on local graph properties. This allows nodes located in low density areas
of the network to send more frequently than nodes in dense and congested
parts.

Lemma 12.12. Let θv := maxw∈Γ2(v) δw be the maximum node degree in
Γ2(v) and let φv be the highest color assigned to a node in Γ(v). With prob-
ability at least 1 − 2n−3 the algorithm produces a coloring such that, for all
v ∈ V , φv ≤ κ2 · θv.

Proof. Let w ∈ C0 be a leader and let sw be the number of nodes v ∈
Γ(w) having w as their leader. Leader w assigns unique intra-cluster colors
1, 2, . . . , sw to these nodes. As shown in Corollary 12.7, if the set of leaders
forms a correct independent set, a non-leader node v assigned intra-cluster
color tcv ends up selecting a color from the range tcv(κ2 + 1), . . . , tcv(κ2 +
1) + κ2. Since sw ≤ δw and every node u ∈ Γ(v) is assigned to a leader
w ∈ Γ2(v), the lemma follows.

Finally, the following main theorem combines the results obtained in Lem-
mas 12.5, 12.11, and 12.12.

Theorem 12.13. In any network in which every node has at most κ2 mutu-
ally independent nodes in its two-hop neighborhood, the algorithm produces a
correct coloring with at most κ2∆ colors with probability 1 − 2n−3. Further-
more, with probability 1 − 4n−1 every node irrevocably decides on its color
O(κ4

2∆log n) time slots after its wake-up.

158 CHAPTER 12. COLORING RADIO NETWORKS

Chapter 13

Computing an MIS in Radio

Networks

In the previous chapter, we have presented an efficient algorithm for comput-
ing a coloring in an unstructured radio network. In this chapter, we return
to one of the core problems considered in Part I of this thesis, the maximal
independent set (MIS) problem. In particular, we seek to establish the com-
plexity of computing an MIS in the unstructured radio network model by
providing a probabilistic algorithm for the problem.

In comparison to the basic unstructured radio network model introduced
in Chapter 11, this section deals with a slightly adapted variant of the model.
Specifically, we change the model in two regards. First, we assume nodes to
be located in a metric space with low doubling dimension and study the
corresponding unit ball graph (cf Chapter 8). For simplicity, we actually
present the result as well as its analysis for the case of unit disk graphs only.
Secondly, in addition to the restrictions imposed by the unstructured radio
network model, we limit the amount of information stored on each node at
any given time to be strictly limited to O(log n) bits in this section. That
is, no node is capable of storing more than a constant number of integer
values, counters, or neighbor identifiers. Notice that this second restriction
adds to the harshness of the model and, for instance, the coloring algorithm
presented in Chapter 12 is not implementable in this model as it requires
nodes to store the competitor list, a list of neighboring counter values.

As already pointed out in Section 11.2, there exists only a small body of
related work that deals with the construction of network coordination struc-
tures in radio networks models. The two works most relevant to the MIS
algorithm presented in this chapter are [86] and [138]. The authors of [138]
have studied the wake-up problem in an unstructured radio network model
in the single-hop case in which all nodes are within mutual communication
range. The recent lower bound of [86] shows that even in a single-hop envi-
ronment, the number of time slots required until, with high probability, at

160 CHAPTER 13. COMPUTING AN MIS IN RADIO NETWORKS

least one node can transmit without collision is at least Ω(log2n), thereby
also placing a lower bound on the time complexity of any MIS algorithm in
this model.

13.1 Algorithm

This section presents the MIS algorithm. The general idea of the algorithm
is to combine methods used in the coloring algorithm of Chapter 12 with an
exponential increase of transmission probabilities similar to the one studied
in the single-hop case in [138]. In more detail, the procedure is described
in Algorithm 13.1. Every time slot corresponds to one iteration of the main
loop. The Receive Triggers are executed immediately after the receipt of a
message, regardless of the current state of the algorithm. In accordance to
the model, however, a node receives a message only if it does not send a
message itself in the same time slot.

At any time during the execution of Algorithm 13.1, a node can be in
one of five states. Upon waking up, a node is in the waiting state W in
which it only listens. If a node does not become covered by an MIS node
in this state already, it eventually becomes active. Active nodes are in state
A. An active node v tries to join the MIS by increasing its probability pv of
becoming a candidate. Eventually, some active nodes will become candidates
by entering state C, whereas others will restart the algorithm, returning to
the initial waiting state W. Finally, the MIS nodes are elected from among
the candidates. Nodes that have decided to be an MIS node end up in state
L, nodes that are covered become slaves and enter state S . Throughout
the paper, we use the expression W to denote both the state in which the
algorithm is currently in, as well as the subset of nodes v ∈ V that are
currently in the state W. The same holds for all other states/sets. The
implementation of the different states is described in more detail in the sequel.
In the waiting state W, a node listens for messages and increases the counter
step in each time slot. The purpose of state W is that newly awakening or
restarting nodes should not interfere with nodes that are actively competing
for becoming an MIS node.

Once the step counter of a node v ∈ W reaches the threshold 4µδ log2n
(Line 3), it proceeds to the active state A. Every active node has a sending
probability pv which is the probability that it transmits a message MA and
becomes a candidate in a given time slot (Lines 9-11). Starting from a small
initial probability pv, a node v ∈ A doubles pv every λ log n time slots,
thereby exponentially increasing its chance to become a candidate (Lines 6
and 7). If, however, an active node v ∈ A receives a message MA from
another active node, it returns to the start of the algorithm, i.e., it sets its
state to W and resets step to 0 (Receive Trigger 1). Such nodes may again
try to become a candidate subsequently. State A is designed to bound the
number of candidates simultaneously being in state C in a certain area of
the graph. This enables a quick election of MIS nodes among the limited
number of candidates. In other words, the purpose of state A is a first rough
selection on the way towards picking MIS nodes.

13.1. ALGORITHM 161

step := cv := 0; state := W;
upon wake-up do:
1: loop
2: case state do
3: W : if step ≥ 4µδ log2n then

4: state := A; step := 0; pv := 2−α−1

n
;

5: end if
6: A : if step ≥ λ log n then
7: pv := 2pv; step := 0;
8: else

9: s :=

{
1 with probability pv

0 with probability 1 − pv

10: if s = 1 then
11: transmit MA; state := C; step := 0;
12: end if
13: end if
14: C : if step > β log n then
15: cv := cv + 1;

16: s :=

{
1 with prob. qC = τ

2α log n

0 with prob. 1 − qC

17: if cv ≥ δ log2n then
18: state := L {∗ v joins MIS ∗}
19: else if s = 1 then
20: transmit MC(cv);
21: end if
22: end if
23: L : transmit ML with probability qL = 2−α

24: end case
25: step := step+ 1;
26: end loop

Receive Triggers (only when not sending):
1: upon receiving MA do:

if state = W or state = A then
state := W; step := 0

end if
2: upon receiving MC(cw) do:

∆c := |cw − cv |;
if state = C and ∆c ≤ β log n then
cv := 0; step := 0;

end if
3: upon receiving ML do:

state := S ; stop(); {∗ v becomes slave ∗}
Algorithm 13.1: MIS-Algorithm (Code of node v)

162 CHAPTER 13. COMPUTING AN MIS IN RADIO NETWORKS

Having bounded the number of candidates, it remains to select MIS nodes
from among the candidates. Basically, the idea is to use a method similar to
the one employed in the coloring algorithm presented in Chapter 12 restricted
to the selected candidates. That is, all candidates compete for joining the
MIS by increasing a counter cv and as soon as this counter reaches a certain
threshold, they are eligible to enter the MIS. However, due to the inability to
store a list of neighboring counter values in the adapted model, the method
employed in the coloring algorithm using competitor lists must be adjusted.
In particular, instead of maintaining the counters of all neighboring nodes,
each node that resets its counter must wait for some time before restarting to
increment its counter. This additional waiting period gives a node that was
able to transmit successfully enough time to increase its counter to a high
enough value, so that this candidate cannot be reset anymore by any other
candidate.1 From the point of view of the analysis, the additional waiting
period creates the problem that there may be time slots in which there is no
progress at all, i.e., no node increases its counter. The analysis in Section 13.2
shows, however, that the probability of there being a large number of such
bad time slots is small.

More precisely, the approach can be described as follows: Neighboring
candidates compete with each other such that no two neighboring nodes join
state L. They do so by means of a counter variable cv . Intuitively, the
current value of the cv describes a node’s progress towards joining the MIS.
In each time slot with step > β log n, a candidate v increases its cv value
and sends a message MC(cv) containing its current cv value with probability
qC . When receiving a message MA(cw) from another candidate, the receiver
compares the sender’s cw to its own. If the two values are within β log n of
each other, the receiver resets its own cv and step (Receive Trigger 2), and
thus, does not increase cv or transmit for the next β log n time slots. The
idea is that a candidate v resets its cv and step if the progress of v and w
are too close to one another. Note that if w transmits MC(cv) successfully to
all its neighbors (without collision) then its counter cannot be reset anymore
by another candidate, because at most β log n time slots later, it differs from
any other counter in its neighborhood by more than β log n. As shows in
Section 13.2, this method of comparing counters prevents two neighboring
nodes from joining the MIS shortly in succession and consequently ensures the
correctness of the resulting MIS. On the other hand, it also allows some nodes
to make fast progress in all parts of the network graph. Once a candidate’s
counter cv reaches the threshold δ log2n, it becomes an MIS node and enters
its final state L (Line 17). MIS nodes continue to transmit messages ML with
a probability qL in order to inform their neighbors that they are covered.
Regardless of its current state, if a node receives a messages ML during the
algorithm (Receive Trigger 3), it decides to become a slave.

The constants µ and α are defined as µ = 19 and α = 6.4, respectively.
The other constant parameters can again be chosen to fine-tune the trade-off
between running time and the probability of a correct execution. In order to

1Like in the previous chapter, we say that a node can transmit successfully if it
transmits and all its neighbors receive the message.

13.2. ANALYSIS 163

Di

Ei

��
��
��
��

2.5

iE
1.5

2.5

0.5

1.5

Figure 13.1: Circles Di, E
1.5
i , and E2.5

i

obtain the high probability results in Section 13.2, the constants can be set

as λ = 3 · 2α+24
9/4+3µ

2α ,

β =
8 · 2α

τ
· 4

6µ
2α and δ = 6β ·

(
1

e

(
1 − τ

2α+2

))− µ
2α

· 4
2µ
2α

and τ = 9000−1 .
Finally, note that like in Chapter 12, different nodes may be in different

states at the same time and no node has a-priori knowledge about the current
states of its (potential) neighbors.

13.2 Analysis

This section proves that Algorithm 13.1 computes a correct MIS in time
O(log2n) with high probability. We make use of an imaginary covering of
the plane by disks Di of radius 1/2 as shown in Figure 13.1. By placing
these disks on a hexagonal lattice, the entire Euclidean plane is covered. By
Er

i , we denote the disk with radius r centered at the center of Di. Observe
that all nodes within a disk Di can hear each other. On the other hand, a
node outside E1.5

i cannot cause a collision at a node v ∈ Di. The following
geometric facts can be proven by standard area arguments.

164 CHAPTER 13. COMPUTING AN MIS IN RADIO NETWORKS

Fact 13.1. Disks E1.5
i and E2.5

i can be fully covered by µ and 2µ smaller
disks Di, respectively, where µ = 19. Also, the number of independent nodes
in E1.5

i , and E2.5
i is at most µ and 2µ, respectively.

The main difficulty of the analysis is that nodes can unintentionally in-
terfere with neighbors in different states. For instance, an active node v may
cause a collision at a candidate node w in C. This results in w not receiving a
message MC or ML from a neighboring node, potentially causing a violation
of the MIS condition. Or, a collision caused by an MIS message ML may
cause that a node in A does not receive a message MA, which could lead to
too many candidates.

Throughout the proof, Ai and Ar
i denote the set of active nodes in Di

and Er
i , respectively. Wi, Ci, and the other sets are defined analogously. We

begin with a definition and a simple observation that follows directly from
Algorithm 13.1.

Definition 13.1. Let t be a time slot in which a message MA is transmitted
by a node v ∈ Ai and received without collision by all nodes w ∈ Di \ {v}.
We call t a clearance of Di. Two subsequent clearances are independent if
they are not caused by the same node.

Lemma 13.1. Consider a disk Di. After a clearance, no node v ∈ Di is
in state A for the next 4µδ log2n time slots. Consequently, two independent
clearances in the same disk Di must be at least 4µδ log2n time slots apart.

A critical ingredient of the analysis is to bootstrap the argument. In this
section, we show that with high probability the algorithm maintains three
properties (probabilistic invariants) throughout its execution. The proof then
works in the form of an induction over all three properties. The first property
states that the sum of sending probabilities by active nodes does never exceed
a certain constant. This helps to bound the “noise” caused by such nodes
when analyzing other aspects of the algorithm.

Property 13.1 (P1). For all disks Di and at any time slot t throughout the
execution of the algorithm, it holds that

∑
v∈Ai

pv(t) ≤ 2−α.

The second and third properties state that the number of simultaneous
candidates is bounded and that L forms a correct independent set, respec-
tively.

Property 13.2 (P2). For all disks Di and at any time slot t throughout the
execution of Algorithm 13.1, it holds that |Ci| ≤ τ−1 log n.

Property 13.3 (P3). Throughout the execution of the algorithm, the set L
forms a correct independent set.

The first technical lemma shows that MIS nodes are capable of quickly
informing their neighbors that they are covered. This is necessary to ensure
the independence of the resulting set L. For now, we can formalize this
intuition only under the assumption that all three Properties hold.

13.2. ANALYSIS 165

Lemma 13.2. Assume Properties 13.1, 13.2, and 13.3 hold. With probability
1− n−3, every node v ∈ V joins S and terminates the algorithm by the time
tv + β log n, where tv is the first time slot in which v becomes covered by an
MIS node w ∈ L ∩ Γ(v).

Proof. Consider a node v ∈ Di and let tv be the time slot defined in the
lemma. The probability P1 that in an arbitrary time slot t ∈ [tv +1, . . . , tv +
β log n] MIS node w ∈ L ∩ Γ(v) transmits and no other node in Γ(v) sends
(i.e., that v receives w’s message ML) is at least

P1 ≥ qL

∏

u∈Γ(v)

(1 − pu) ≥
Fact 2.1

1

2α

(
1

4

)∑
u∈Γ(v) pu

.

To bound
∑

u∈Γ(v) pu, we make use of the assumption that the three Prop-

erties hold and that nodes in W∪S do not transmit. It follows that the sum
of sending probabilities in Γ(v) is upper bounded by

∑

u∈Γ(v)

pu =
∑

u∈A∩Γ(v)

pu +
∑

u∈C∩Γ(v)

pu +
∑

u∈L∩Γ(v)

pu

≤
∑

Dj∈E1.5
i

∑

u∈Aj

pu +
∑

u∈Cj

qC +
∑

u∈Lj

qL

≤
∑

Dj∈E1.5
i

(
1

2α
+ τ−1 log n · τ

2α log n
+

1

2α

)

≤ µ

(
1

2α
+

log n

2α log n
+

1

2α

)
=

3µ

2α
,

where the second inequality is derived by replacing qC = τ
2α log n

and qL =

2−α as defined in Algorithm 13.1. The third inequality follows from Fact 13.1.

Plugging this in the expression for P1 yields P1 ≥ 2−α (1/4)
3µ
2α . The probabil-

ity Pno that none of the β log n time slots in the interval [tv+1, . . . , tv+β log n]
is successful is at most

Pno ≤
(

1 − 1

2α

(
1

4

) 3µ
2α
)β log n

≤ e−β log n· 1
2α (1/4)

3µ
2α

which is, by the definitions of α, µ, and β, Pno ∈ O(n−4). Finally, the argu-
ment is concluded by the observation that every node needs to be informed
about its being covered at most once. That is, the claim holds for all nodes
v ∈ V with probability 1 −O(n−3).

One difficulty when proving that the three Properties hold will be that
the results depend on arguments of the following kind: Before a particular
Property can be violated, there must exist some time-interval in which certain

166 CHAPTER 13. COMPUTING AN MIS IN RADIO NETWORKS

critical conditions hold. We can prove that after any interval exhibiting these
conditions, the Property will not be violated with high probability. However,
such an argument is useless if there can be infinitely many time-intervals with
these critical conditions. To bound the number of critical time-intervals, the
next lemma lower bounds the progress made by the algorithm in case all
three properties hold.

Lemma 13.3. Assume Properties 13.1, 13.2, and 13.3 hold. Let tc be a
time slot in which an uncovered node v ∈ Di is a candidate, i.e., v ∈ C. In
the interval [tc − β log n, . . . , tc + 2δ log2n], a new MIS node emerges in E2.5

i

with probability 1 −O(n−3).

Proof. We first show that unless all candidates in Di become covered by
an MIS node (in which case the lemma clearly holds), there is at least one
candidate that can send successfully in the interval I1 = [tc + 1, . . . , tc +
δ log2n]. Clearly, if a node w ∈ Γ(v) ∩ C sends and no other node in E2.5

i

sends, then w sends successfully.
We call a candidate active if its step is larger than β log n, that is, if it

is not waiting during the empty β log n time slots following a counter reset.
Active candidates transmit with probability qC . We name a time slot good
for a candidate v if there is at least one active candidate in Γ(v), possibly v
itself. Otherwise, the time slot is bad. In the proof, we independently bound
the number of good and bad time slots before a candidate w ∈ Γ(v) ∩ C
manages to send successfully.

For the good time slots, we use the fact that in every good time slot,
there is at least one candidate that has a non-zero sending probability. The
probability P1 that there is a candidate w ∈ Γ(v)∩ C sending successfully in
a good time slot t ∈ I1 is at least

P1 ≥
∑

w∈Γ(v)∩C

pw ·

∏

u∈E2.5
i \{w}

(1 − pu)

≥
∑

w∈Γ(v)∩C
pw ·

∏

u∈E2.5
i

(1 − pu)

≥
Fact 2.1

∑

w∈Γ(v)∩C
pw · (1/4)

∑
u∈E2.5

i
pu
.

Similar to the proof of Lemma 13.2, we can bound the sum in the exponent
as

∑

u∈E2.5
i

pu =
∑

u∈A2.5
i

pu +
∑

u∈C2.5
i

pu +
∑

u∈L2.5
i

pu

≤
∑

Dj∈E2.5
i

(
1

2α
+

τ log n

2ατ log n
+

1

2α

)
≤ 6µ

2α
.

Unless all candidates receive a message ML and join the set S in I1, the fact
that the time slot is good implies that there is at least one active candidate

13.2. ANALYSIS 167

node in Γ(v)∩C and therefore
∑

w∈Γ(v)∩C pw ≥ qC . Plugging these results into

the above expression for P1 yields P1 ≥ τ
(2α log n)

(1/4)
6µ
2α and the probability

Pno that during at least δ
2

log2n good time slots no candidate w ∈ Γ(v) ∩ C
transmits successfully is at most

Pno ≤
(

1 − τ

(2α log n)
·
(

1

4

) 6µ
2α
) δ

2
log2n

≤
Fact 2.2

e−
δ
2

log n· τ
2α (1/4)

6µ
2α ∈ O(n−3).

Therefore, with probability 1−O(n−3), the number of good time slots before
a candidate w ∈ Γ(v) ∩ C transmits successfully is bounded by δ

2
log2n.

Next, we bound the number of bad time slots before a candidate w ∈
Γ(v)∩C transmits successfully. The idea is to show that there cannot be too
many bad time slots without there being also some good time slots.

Let v be an arbitrary candidate. For a given time slot, let Suc be the event
that an active candidate in v’s neighborhood transmits successfully and let
Send be the event that there is an active candidate in v’s neighborhood that
transmits. The conditional probability that if a candidate transmits, it does
so successfully is given by

P [Suc | Send] =
P [Suc ∩ Send]

P [Send]
=

P [Suc]

P [Send]

The probability that a candidate in Γ(v)∩C transmits successfully in a given
time slot t is lower bounded by

P [Suc] ≥ h(t) · qC · (1 − qC)h(t)−1 ·
∏

w∈Γ(v)∩(A∪L)

(1 − pw),

where h(t) denotes the number of active candidates in Γ(v) during time slot
t. By Fact 2.1, it holds that

∏

w∈Γ(v)∩(A∪L)

(1 − pw) ≥
(

1

4

)∑
w∈Γ(v)∩(A∪L) pw

.

Similarly, as in the proof of Lemma 13.2 we obtain

∑

w∈Γ(v)∩(A∪L)

pw =
∑

u∈A∩Γ(v)

pu +
∑

u∈L∩Γ(v)

pu

≤
∑

Dj∈E1.5
i

(
1

2α
+

1

2α

)
≤ 2µ

2α
.

168 CHAPTER 13. COMPUTING AN MIS IN RADIO NETWORKS

Furthermore, under the assumption that Property 13.2 holds, h(t) ≤ µ
τ

log n
and thus

(1 − qC)h(t)−1 ≥
(

1 − τ

2α log n

) µ
τ

log n

=

(

1 − τ

2α log n

) 2α log n
τ

µ
2α

≥
Fact 2.2

(
1

e

(
1 − τ

2α log n

)) µ
2α

≥
(

1

e

(
1 − τ

2α+2

)) µ
2α

for n ≥ 16. Putting things together, we obtain

P [Suc | Send] ≥ (1 − qC)h(t)−1 ·
∏

w∈Γ(v)∩(A∪L)

(1 − pw)

≥
(

1

e

(
1 − τ

2α+2

)) µ
2α

·
(

1

4

) 2µ
2α

.

Hence, P [Suc | Send] ∈ Ω(1). This means that whenever a candidate in v’s
neighborhood transmits, it transmits successfully with constant probability.
Or turning this around, whenever node v receives a message and resets its
counter, the transmitting node has transmitted successfully with constant
probability.

Therefore, the probability that there are at least δ
2β

log n time slots with

non-successful transmissions that can reset v’s counter before at least one
candidate in Γ(v) sends successfully is at most

(
1 −

(
1

e

(
1 − τ

2α+2

)) µ
2α

·
(

1

4

) 2µ
2α
) δ

2β
log n

≤
Fact 2.2

e
− δ

2β
log n

(
1
e

(
1− τ

2α+2

)) µ
2α ·(1

4)
2µ
2α

∈ O(n−3).

Since every such reset can incur at most β log n bad time slots, the number
of bad time slots before a candidate node in Γ(v) transmits successfully is at
most δ

2β
log n · β log n = δ

2
log2n with probability 1 −O(n−3).

Altogether, the number of good or bad time slots before a candidate
node in Γ(v) transmits successfully is bounded by δ log2 n with probability
1 −O(n−3).

Finally, after a candidate node w ∈ Γ(v) transmits successfully, no other
neighboring candidate can reduce w’s counter anymore. While this is the
same argument as used in the coloring algorithm presented in Chapter 12,
the reason is actually a different one. In the coloring algorithm, every node
keeps a list of neighboring counters and—when transmitting or resetting—
increases its counter to a carefully selected value that lies outside the critical
range of any neighbor in this list. In Algorithm 13.1 on the other hand, this
method cannot be implemented as it requires too much memory. Instead,

13.2. ANALYSIS 169

counters are always reset to 0, but nodes do not increase their counters for
β log n time slots after a reset. Because of this, it is guaranteed that the
counters of neighboring candidates never come within the critical range of a
successful sender w.

That is, the only possible way for w to be stopped from joining L is if
it receives a message ML from a node x ∈ Γ(w) that has joined L before
w. Thus, w or one of its neighbors will join the MIS after 2δ log2 n with
probability 1 −O(n−3).

Having proven Lemma 13.3 allows us to derive that once a node becomes
a candidate, it either joins the MIS or becomes covered shortly thereafter, if
all three Properties hold.

Lemma 13.4. Assume Properties 13.1, 13.2, and 13.3 hold. Let t be an
arbitrary time slot. Every node v that is a candidate at time t, i.e., v ∈ C,
will either have joined L or be covered by time t+ 4µδ log2n with probability
1 −O(n−2).

Proof. Because all three Properties are assumed to be true, we can prove
the claim by repeatedly applying Lemma 13.3. Consider a node v ∈ Di

that is a candidate at time t. We know by Lemma 13.3 that there is at
least one MIS node in E2.5

i by t + 2δ log2n with probability 1 − O(n−3). If
v is covered by this new MIS node, the lemma holds. If not, v is still a
candidate and hence, again by Lemma 13.3, there is an MIS node emerging
in the interval [t+ 2δ log2n− β log n, . . . , t+ 4δ log2n] with high probability.
Thus applying Lemma 13.3 repeatedly yields that an MIS node emerges in
the interval [t + 2jδ log2n− β log n, . . . , t + 2(j + 1)δ log2n] with probability
1 −O(n−3) for every j ≥ 0, as long as v is uncovered. Since every emerging
MIS node can cover only two “adjacent” intervals, it holds with probability
(1−O(n−3))j that there are at least dj/2e new MIS nodes emerging in E2.5

i

if v is still uncovered by time t+2jδ log2n. Due to Property 13.3, we assume
the set L to be a correct independent set which means that there can be
at most 2µ MIS nodes in E2.5

i . Hence, it follows that with probability (1 −
O(n−3))2µ ∈ 1−O(n−3), v is covered by the time t+ 4µδ log2n. Since there
are at most n candidates, the Lemma holds for all nodes with probability
(1 −O(n−3))n ∈ 1 −O(n−2).

We now return to the notion of a clearance which will be crucial in proving
the validity of Properties 13.1 and 13.2. In particular, we use the two previous
lemmas to bound the number of clearances that can occur in a disk Di during
the execution of the algorithm.

Lemma 13.5. Assume Properties 13.1, 13.2, and 13.3 hold. For all disks
Di, there are no more than µ independent clearances in Di with probability
1 −O(n−2).

Proof. By Lemma 13.1, there can be at most one independent clearance
every 4µδ log2n time slots in a disk Di. Let tc be a clearance of Di. By
definition, exactly one active node v ∈ Ai transmits successfully in time

170 CHAPTER 13. COMPUTING AN MIS IN RADIO NETWORKS

slot tc. By definition of Algorithm 13.1, this node becomes a candidate
and by Lemma 13.3, there is a node w ∈ E2.5

i that joins the MIS in the
interval [tc − β log n, . . . , tc + 2δ log2n] with probability 1 − O(n−3). Hence,
after µ independent clearances, at least µ MIS nodes have emerged in E2.5

i

with probability (1 − O(n−3))µ ∈ 1 − O(n−3). By Fact 13.1 and under the
assumption of Property 13.3, these µ MIS nodes entirely cover E2.5

i and all
nodes located therein. Moreover, it follows from Lemma 13.2 that every such
node receives a message ML β log n time slots after its becoming covered with
probability 1 − n−3. That is, no node will be in the active state A once all
of E2.5

i is covered. With probability 1 − O(n−3), this is the case after µ
clearances.

All previous lemmas are derived under the condition that Properties 13.1,
13.2, and 13.3 hold. At the beginning of the algorithm—when the first node
wakes up—, all three properties are clearly satisfied. That is, if one of the
three properties is to be violated, there must be a time slot t, in which at
least one of the properties is violated, while for all t′ < t, all properties hold.
In the following sequence of Theorems 13.6, 13.7, and 13.9, we show that
with high probability none of the three properties is among the first to be
violated.

Theorem 13.6. Assume Property 13.1 is among the first properties to be
violated and let t1 be the first time slot in which the violation occurs. The
probability that there exists such a time slot t1 during the execution of Algo-
rithm 13.1 is at most Pfail ∈ O(n−1).

Proof. If t1 is the first time slot in which the violation occurs in a disk Di, it
holds

∑
v∈Ai

pv(t1 − 1) ≤ 2−α and
∑

v∈Ai
pv(t1) > 2−α. Consider the inter-

val I = [t1 −λ log n, . . . , t1 − 1]. By the definition of Algorithm 13.1 (Lines 6
and 7), every active node v ∈ Ai doubles its sending probability pv exactly
once during this interval I. Additionally, new nodes that were previously in
state Wi may join the set Ai during I, but these nodes’ combined sending

probability is at most n · 2−α−1

n
= 2−α−1, according to the definition of a

node’s initial sending probability. That is, the sum of sending probabilities
at time t1 − λ log n is at least

∑

v∈Ai

pv(t1 − λ log n) ≥ 1

2
(2−α − 2−α−1) = 2−α−2.

Consequently, if Property 13.1 is violated, there must be an interval I pre-
ceding the violation during which the sum of the sending probabilities is in
the range

2−α−2 ≤
∑

v∈Ai

pv(t) ≤ 2−α ∀t ∈ I. (13.1)

In all neighboring disks Dj ∈ E1.5
i , the sum of sending probabilities is

0 ≤
∑

v∈Aj

pv(t) ≤ 2−α ∀t ∈ I (13.2)

13.2. ANALYSIS 171

because t1 is the first time slot violating Property 13.1.
The proof is continued by showing that with high probability, a clearance

occurs in the interval I. For that purpose, let Pno be the probability that in
a given time slot t ∈ I no node in E1.5

i \Di transmits. By Pone we denote
the probability that exactly one node in Di transmits in t. The probability
Pclear of a clearance at time t is Pclear = Pone · Pno. Using Fact 2.1, the
probabilities Pone and Pno can be bounded as follows:

Pone =
∑

v∈Ai

pv

∏

w∈Di\{v}
(1 − pw)

 ≥

∑

v∈Ai

pv

∏

w∈Di

(1 − pw)

≥
Fact 2.1

∑

v∈Ai

pv(1/4)
∑

w∈Di
pw ≥

∑

v∈Ai

pv(1/4)
∑

w∈Ai
pw+ 1

2α−1 ,

where the last inequality holds because of
∑

w∈Ci
pw ≤ 1/2α and

∑
w∈Li

pw ≤
1/2α under the assumption that Properties 13.2 and 13.3 hold, which is the
case during I because t1 is the first time slot in which a property is violated.
Further,

Pno =
∏

v∈E1.5
i

(1 − pv) ≥
∏

Dj∈E1.5
i

∏

v∈Dj

(1 − pv)

≥
∏

Dj∈E1.5
i

(1/4)
∑

v∈Dj
pv

≥
[
(1/4)

∑
v∈Aj

pv+ 1
2α−1

]µ

≥ (1/4)
3µ
2α

where the last step follows from (13.2). The probability of t ∈ I being a
clearance is therefore at least

Pclear ≥
∑

v∈Ai

pv(1/4)
∑

w∈Ai
pw+ 1

2α−1 · (1/4)
3µ
2α .

For x ∈ [2−α−2, . . . , 2−α], the function x(1/4)
x+ 1

2α−1 is minimized for x =
2−α−2 and hence, when applying (13.1), we get

Pclear ≥ 2−α−2(1/4)
2−α−2+ 1

2α−1 · (1/4)
3µ
2α

= 2−α−2(1/4)
9
4
+3µ

2α .

The probability Px that none of the λ log n time slots t ∈ I is a clearance
is therefore at most Px ≥ (1 − Pclear)

λ log n ∈ O(n−3) by the definitions of
λ. Notice that the reason for defining α = 6.4 is that this value maximizes
Pclear.

Unfortunately, the argument that in every critical interval I a clearance
occurs with probability 1−O(n−3) is not sufficient. Potentially, the number

172 CHAPTER 13. COMPUTING AN MIS IN RADIO NETWORKS

of intervals I could be infinitely large, rendering the high probability result
useless. However, the probability that in the first µ intervals I in Di, there
is at least one without a clearance is at most O(n−3). By Lemma 13.5, there
are no more than µ clearances in Di with probability 1 −O(n−2) as long as
all properties hold. Thus, there is no time slot t1 in Di during the execution
of Algorithm 13.1 with probability at least 1 − O(n−2). Because the same
argument can be applied for all Di and because all v ∈ V are covered by at
most n disks, the claim holds for all disks with probability 1 −O(n−1).

We continue by showing that Property 13.2 holds under the assumption
that the two other Properties hold.

Theorem 13.7. Assume Property 13.2 is among the first properties to be
violated and let t2 be the first time slot in which the violation occurs. The
probability that there exists such a time slot t2 during the execution of Algo-
rithm 13.1 is at most Pfail ∈ O(n−1).

Before proving Theorem 13.7, we introduce some notation and establish a
key lemma. Assume that Tc is an interval either between a) two subsequent
independent clearances in a disk Di, or b) between a clearance and the end
of the algorithm, or c) between a clearance and time slot t2 (i.e., the first
violation of Property 13.2), depending on which comes first. Further, let
tc be the clearance that has initiated Tc. We show that the probability of
Property 13.2 being violated in this interval (i.e., t2 ∈ Tc) is 1 − O(n−3).
By Lemma 13.1, there is no new candidate emerging in Di in the interval
[tc, . . . , tc + 4µδ log2n]. We therefore need to analyze only the interval [tc +
4µδ log2n, . . . , tq], where tq is the time slot of a) the subsequent clearance, b)
the end of the algorithm, or c) time slot t2.

Let a failure be a time slot in which at least one new candidate in Di

emerges, but no clearance occurs. The next lemma bounds the number of
failures.

Lemma 13.8. There are no more than 1
6eτ

log n failures in Di in the interval

[tc + 4µδ log2n, . . . , tq] with probability 1 − n−3.

Proof. We prove that before 1
6eτ

log n failures can occur, there is at least one
clearance with high probability. The argument is completed by the fact that,
by definition, tq must take place before or at the time of such a clearance.

We define the following events. Ec(t) denotes the event of a clearance in
Di at time slot t and E0(t) is the event of no node in Ai transmitting in time
slot t. Observe that Ec(t) can only be true if E0(t) is false. In the sequel, we

want to find a bound on the probability P [Ec(t)|E0(t)]. Clearly, if in a time
slot exactly one node in Di sends and no other node in E1.5

i sends, then a
clearance occurs. Hence, P [Ec(t)|E0(t)] ≥ P [E1(t)|E0(t)] ·P [Ee(t)] where E1(t)
is the event of at most one node sending in Ai, and Ee(t) is the event of no
node sending in E1.5

i \Ai. It will be convenient to state the above expression

13.2. ANALYSIS 173

in terms of E+(t) which is the event that 2 or more nodes in Ai send. Thus,

P [Ec(t)|E0(t)] ≥ P [Ee(t)] · (1 − P [E1(t)|E0(t)])

= P [Ee(t)] · (1 − P [E+(t)|E0(t)])

= P [Ee(t)] ·
(

1 − P [E+(t)]

P [E0(t)]

)
,

because of P [E0(t)|E+(t)] = 1. By the definition of tq (which is t2 or earlier),
we can assume that in the interval [tc +4µδ log2n, . . . , tq], all three properties
hold. Thus, we are allowed to reuse some results that we have established
based on the assumption that all three properties hold. First, we need a
bound on P [Ee(t)] from the proof of Theorem 13.6:

P [Ee(t)] ≥
∏

v∈E1.5
i

(1 − pv) ≥ (1/4)
3µ
2α .

For succinctness, let XA =
∑

v∈Ai
pv. We obtain the following lower bound

for P [E0(t)],

P [E0(t)] = 1 −
∏

v∈Ai

(1 − pv(t))

≥ 1 − (1/e)
∑

v∈Ai
pv ≥ 1 − (1/e)XA .

Finally, we consider P [E+(t)],

P [E+(t)] ≤ P [E0(t)] −
∑

v∈Ai

pv

∏

w∈Ai\{v}
(1 − pw)

≤ 1 −
∏

v∈Ai

(1 − pv) −
∑

v∈Ai

pv · (1/4)
∑

v∈Ai
pv

≤ 1 − (1/4)
∑

v∈Ai
pv −

∑

v∈Ai

pv · (1/4)
∑

v∈Ai
pv

≤ 1 − (1 + XA) (1/4)XA .

Plugging everything together, the probability P [Ec(t)|E0(t)] that there is a

clearance if a new candidate emerges in Di is at least P [Ec(t)|E0(t)] ≥ Q
where Q is

Q = (1/4)
3µ
2α ·

(
1 − 1 − (1 + XA) (1/4)XA

1 − (1/e)XA

)
.

By Property 13.1, we know that the expression XA =
∑

v∈Ai
pv is in the

range [0, . . . , 2−α]. Under this condition, the above function is minimized

174 CHAPTER 13. COMPUTING AN MIS IN RADIO NETWORKS

for X = 2−α, hence P [Ec(t)|E0(t)] ≥ 0.23 · (1/4) 3µ
2α . Finally, if t2 ∈ Tc, the

probability Pf that there are more than 1
6eτ

log n failures in Di in the interval

[tc + 4µδ log2n, . . . , tq] is asymptotically in

Pf ≤ (1 − P [Ec(t)|E0(t)])
1

6eτ
log n ≤ O(n−3)

by the definition of τ .

That is, with probability 1 − O(n−3), if as many as 1
6eτ

log n failures
had occurred before tq, there would have been another clearance before tq,
contradicting the definition of tq.

Proof of Theorem 13.7. We begin by showing that in expectation, there are
only a constant number of new candidates emerging in Di per failure time
slot. We denote by C(t) the number of active nodes that send at time
t (new candidates) and write Ef (t) for the event of a failure. The condi-
tional expected value of C(t) given a failure is E[C(t)|Ef (t)] ≤ E[C(t)]+ 2 ≤∑

v∈Ai
pv + 2. Because we can assume Property 13.1 to hold, this is at most

E[C(t)|Ef (t)] ≤ 2−α + 2.

In the following, we bound the number of candidates C(TC) emerging dur-
ing TC in the case in which during the interval TC = [tc + 4µδ log2n, . . . , tq],
there are no more than 1

6eτ
log n failures. Observe that bounding C(TC) suf-

fices to prove the theorem because by Lemma 13.4, all candidates existing at
time tc are covered by the time tc +4µδ log2n with probability 1−n−2. Con-
sequently, we only need to bound the number of new emerging candidates
when analyzing the interval [tc + 4µδ log2n, . . . , t2].

The following random experiment allows to derive a high probability
bound on C(TC). Consider random variables Xij for i = 1 . . . n and j =
1 . . . |C|, where |C| is defined as the number of failures in TC , formally

|C| = |{t ∈ TC |Ef (t)}|. Further, we define X :=
∑|C|

j=1

∑
i∈Ai(tj)Xij as

the sum of all Xij . The semantic meaning of Xij is that Xij = 1, if node i
transmits (and becomes a candidate) in the jth failure of TC , and Xij = 0
otherwise. Therefore, X represents an upper bound on the number of new
candidates emerging in Di during TC . Considering the Xij as being inde-
pendently distributed Bernoulli trials is not precise because of dependencies
between differentXij . Specifically, Xij = 1 ⇒ Xij′ = 0, for all j′ > j because
when transmitting, an active node becomes a candidate. Note that these de-
pendencies cause X to be strictly smaller or equal as compared to the case in
which all Xij that are depending on previous events were chosen randomly
and independently with an arbitrary probability distribution. Thus, when
assuming all Xij to be independent Bernoulli trials, X is an upper bound for
C(TC).

We know from the above argument, that in expectation, at most 2−α + 2
active nodes transmit per failure. With our assumption that there are no

13.2. ANALYSIS 175

more than 1
6eτ

log n failures, we get

E[X] =

|C|∑

j=1

E

 ∑

i∈Ai(tj)

Xij

 =

|C|∑

j=1

E[C(tj)|Ef (tj)]

≤ (2−α + 2)
1

6eτ
log n <

1

(2e+ 1)τ
log n.

As mentioned before, assuming Xij to be randomly and independently dis-
tributed Bernoulli variables yields an upper bound on C(TC), i.e., E[C(TC)] ≤
E[X]. Hence, we can use the Chernoff bound with E[X] = log n

(2e+1)τ
. In par-

ticular, the probability Px that X is larger than (2e+ 1) log n
(2e+1)τ

= τ−1 log n

is at most

P [C(TC) > τ−1 log n] ≤
(

e2e

(2e+ 1)2e+1

) log n
(2e+1)τ

∈ O(n−2).

That is, if there are at most 1
6eτ

log n failures in TC , then at most τ−1 log n

candidates emerge in TC with probability 1−O(n−2). As shown, this bound
suffices to prove that Property 13.2 is not violated in TC with probability
1−O(n−2). On the other hand, we know by Lemma 13.8 that the probability
of having more than 1

6eτ
log n failures in TC is 1 − O(n−2). That is, the

probability that in an arbitrary interval TC after a clearance, Property 13.2
is indeed violated before the next clearance is at most 1 − 2 · O(n−2) =
1 −O(n−2).

Now, consider the first µ intervals TC in every disk Di. The probability
that there is at least one interval in which there are more than τ−1 log n
new candidates is at most nµ · O(n−2) ∈ O(n−1). That is, with probability
1 − O(n−1), Property 13.2 is not violated after the first µ intervals TC in
every disk Di. By Lemma 13.5, there are no more than µ clearances (and
hence inter-clearance intervals TC) per disk with probability 1−O(n−2) if all
three Properties hold, which is the case before t2. Thus, Property 13.2 is not
among the first Properties to be violated with probability 1 −O(n−1).

Finally, we prove the correctness of Property 13.3.

Theorem 13.9. Assume Property 13.3 is among the first properties to be vi-
olated and let t3 be the first time slot in which the violation occurs. The prob-
ability that there exists a time slot t3 during the execution of Algorithm 13.1
is at most Pfail ∈ O(n−2).

Proof. We show that if a node joins L, the counter values cv of all neighboring
candidates are at least β log n away from the threshold that enables to join
L. Applying Lemma 13.2 then concludes the proof.

Let vv be the node that violates Property 13.3 at time tv = t3 and let vm

be the neighbor of vv that has previously joined L, say at time tm ≤ tv. We

176 CHAPTER 13. COMPUTING AN MIS IN RADIO NETWORKS

claim that at time tm, the counter value cx of all neighbors vx ∈ Γ(vm) of
vm (including vv) is at most δ log2n− β log n.

By the definition of the algorithm, vm must have started increasing its
counter by the time tm−δ log2n. Similarly, every potential node vx that ends
up having a counter larger than δ log2n−β log n at time tm must have started
increasing its cx by the time tm − δ log2n+ β log n. By the definition of the
critical range β log n in Receive Trigger 2, such a node vx has not received a
message MC from vm in the interval [tm − δ log2n+ β log n, . . . , tm] because
if it had, it would have reset its counter cx.

The probability Pt that vx ∈ Di receives a message MC from vm in an
arbitrary time slot t in the interval [tm − δ log2n+ β log n, . . . , tm] is at least

Pt ≥ pm ·
∏

v∈E1.5
i

(1 − pv)

≥ qC

∏

Dj∈E1.5
i

(1/4)
∑

v∈Cj∪Aj
pv+

∑
v∈Lj

pv

≥
Properties 13.1, 13.2

τ

2α log n

[
(1/4)

1
2α−1 +

∑
v∈Lj

pv
]µ

.

Because vv is the first node violating Property 13.3, it holds that before
tm, the set L forms a correct independent set. Therefore, due to Fact 13.1,∑

v∈Lj
pv ≤ 1

2α , and hence Pt ≥ 2−ατ (logn)−1 (1/4)
3µ
2α . The probability

Pn that a node vx does not receive any message MC from vm during the
δ log2n− β log n remaining time slots before tm joins L is

Pn ≤
(

1 − τ

2α log n
(1/4)

3µ
2α

)δ log2n−β log n

≤
(

1 −
τ log n

2α

log2n
(1/4)

3µ
2α

) 1
2

δ log2n

≤ e−
1
2

β log n· τ
2α (1/4)

3µ
2α ∈ O(n−4).

Because there are n2 pairs of nodes (vm, vx) ∈ V ×V , the probability that the
“counter-difference” claim holds for all nodes vm and vx is at least 1−O(n−2).

We now have all ingredients to prove the theorem. Assume for contra-
diction that vv is the first node to violate the MIS condition (Property 13.3)
at time t3 and let vm be vv’s neighbor that has correctly joined L at time
tm ≤ t3. By definition of vv, Property 13.3 as well as the two other proper-
ties holds until t3 − 1. Therefore, we can apply the result obtained above.
In particular, with probability 1 − O(n−2), there are at least β log n time
slots between vm and any potential node vv causing the violation. Because
all properties hold before t3, it follows from Lemma 13.2 that vv receives a
message MC by vm ∈ L with probability 1−O(n−3). Hence, the probability
that there exists a time slot t3 is bounded by O(n−2).

13.2. ANALYSIS 177

When the first node wakes up, all three Properties are valid. Theo-
rems 13.6, 13.7, and 13.9 show that none of them is the first to be violated,
thus establishing the algorithm’s correctness. For the running-time, we show
that every node decides in time O(log2n) whether to become an MIS node
or a slave.

Theorem 13.10. In a unit disk graph G, Properties 13.1, 13.2, and 13.3
hold with probability 1 − O(n−1). Particularly, the set L as computed by
Algorithm 13.1 is a correct maximal independent set with probability 1 −
O(n−1).

Proof. By Theorem 13.6, Property 13.1 is not the first to be violated with
probability 1−O(n−1). Similarly, by Theorems 13.7 and 13.9, Properties 13.2
and 13.3 are not the first to be violated with probabilities 1−O(n−1) and 1−
O(n−2), respectively. Hence, with probability (1−O(n−1))2 · (1−O(n−2)) ∈
1 − O(n−1), none of the three properties is violated during the execution of
the algorithm. If all three Properties hold, Property 13.3 implies that with
probability 1 −O(n−1), the resulting set L forms a correct independent set.
The maximality of the independent set stems from the fact that a node joins
set S only upon receiving a message ML from a neighboring MIS node. That
is, every non-MIS node has at least one MIS node in its neighborhood.

Theorem 13.11. In a unit disk graph G, every node v ∈ V decides irrevo-
cably whether it joins set L or S within time O(log2n) after its wake-up with
probability 1 −O(n−1).

Proof. Consider an arbitrary node v ∈ Di and let TW , TA, and TC be the
total time node v spends in the corresponding state during its execution
of Algorithm 13.1. Assume that all three Properties hold. Once node v
becomes a candidate at time tv, it will decide to become an MIS node or a
slave within time tv +4µδ log2n by Lemma 13.4 with probability 1−O(n−2).
Hence, TC ≤ 4µδ log2n. It thus remains to bound the time that v spends in
states W and A.

If v does not receive a message MA from a neighboring node for 4µδ log2n
time slots after its wake-up (or after being reset to state W in Receive Trig-
ger 1), it becomes active and joins A. Unless it receives a message MA
thereafter, its sending probability reaches the value pv(t) = 2−α−2 at most
(log n−1) ·λ log n time slots after becoming active. This is because the send-
ing probability is initially 2−α−1/n and is doubled once per λ log n time slots.
So, either there is a node w ∈ Γ(v) whose message MA v has received and
who subsequently becomes a candidate, or the sending probability of v ∈ A
exceeds the value pv(t) = 2−α−2. If the latter is the case, conditions (13.1)
and (13.2) are fulfilled. It follows by the same argument as in the proof of
Theorem 13.6 that there is a clearance in the subsequent λ log n time slots
with probability 1 −O(n−3).

Putting things together, it holds that 4µδ log2n+ λ log2n time slots after
wake-up or a reset because of Receive Trigger 1, there exists a node w ∈ Γ(v)
that becomes a candidate, say at time tc. If w = v, we are done because
v joins C and TC ≤ 4µδ log2n. If w 6= v, a new MIS node appears in the

178 CHAPTER 13. COMPUTING AN MIS IN RADIO NETWORKS

interval [tc − β log n, . . . , tc + δ log2n] in E3.5
i with probability 1−O(n−2) by

Lemma 13.3. Because there can be at most 4µ MIS nodes in E3.5
i , the total

time spent by v in states W and A is bounded by

TW + TA ≤ 4µ · (4µδ + λ) log2n ∈ O(log2n)

Together with the above bound on TC, this shows that if all three Properties
hold, every node v decides within time O(log2n) upon its wake-up with prob-
ability (1−O(n−2))n ∈ 1 −O(n−1). By Theorem 13.10, all three properties
hold with probability 1 −O(n−1) which concludes the proof.

Theorems 13.10 and 13.11 show that with high probability, Algorithm 13.1
computes a correct maximal independent set in time O(log2n).

Chapter 14

Application: Deployment of

Sensor Networks

In this Chapter, we show how the primitives introduced in Chapters 12 and 13
can be applied to support energy-efficient deployment of wireless sensor net-
works. One of the key characteristics of sensor networks is that individual
sensor nodes have a limited, typically non-renewable power supply and, once
deployed, must work unattended. In view of the scarcity of energy, an eco-
nomical and frugal management of this resource is essential for prolonging
network lifetime and availability.

The search for energy-efficient solutions has lead to numerous algorithms
and protocols that strike for the goal of reducing the energy-consumption
of an operational sensor network. For instance, there have been various
proposals for energy-efficient medium access control (MAC) protocols [201,
214, 237, 240], routing algorithms [27, 42], topology control and clustering
[67, 122, 164, 231], broadcasting [176, 228], or data gathering/dissemination
[106, 225, 242]. The non-operational phase (i.e., the actual deployment) of
sensor networks, however, has not been studied with the same zeal, even
though in many applications, a crucial loss of energy occurs already before
the sensor network reaches its operational state.

Consider a water (or power, gas, etc.) metering network for an apartment
complex. Each apartment is equipped with a water metering sensor. At
midnight, all sensors wake up for a few seconds, the water consumption
of each apartment is sent to a base station in multi-hop fashion, and all
sensors go back to sleep for another 24 hours. In the operational phase
such a sensor network features a gargantuan sleep/awake ratio, allowing even
conventional batteries to last several years. In order to reach such a long
lifetime, the node’s duty cycle must be significantly below 1%. However,
the deployment of the sensor nodes might take days or weeks. With a naive
deployment protocol, say, when nodes stay awake until the entire system
is deployed, the battery of the node deployed first might be drained before

180 CHAPTER 14. DEPLOYMENT OF SENSOR NETWORKS

the network even becomes operational. This highlights a problem that is
particularly pronounced in settings in which the node’s duty cycle during
the operational phase is small, but the deployment takes long. Many other
applications featuring such a time-consuming deployment phase exist, e.g.
vehicle tracking, or monitoring large-scale industrial processes.

Generally, once all sensor nodes are fully deployed, the network should
make the transition from the deployment phase to the operational phase as
quickly as possible. In particular, we might like to externally trigger a net-
work discovery procedure that allows verifying the operability of the newly
deployed network (e.g. detect faulty sensor nodes). Clearly, simple solutions
to invoke such a system initialization would be to manually switch on all
nodes once the deployment phase is completed, or to set a timer when physi-
cally deploying each node. Unfortunately, in many practical settings, neither
of these hands-on solutions is practicable. First, nodes may be deployed in
remote or hostile environment in which switching on nodes manually after
all nodes are deployed may be impossible. Moreover, in application scenarios
featuring a time-consuming deployment phase, predicting the exact duration
of the deployment process is usually hard, hence ruling out the possibility of
employing a solution based on predefined timers.

So how can the information about the beginning of the operational phase
be distributed among the network nodes? Typically, this information is sup-
posed to be broadcasted by the nodes in a multi-hop way through the entire
network such that, eventually, every sensor node will know that the system
is now ready to start its operational phase. Specifically, one or several nodes
(in typical sensor network applications, this is usually the base station) are
triggered externally. These nodes then try to inform their neighbors, who in
turn inform their neighbors, and so forth. We call this externally triggered
event that sets off the information broadcast the launching point.

Ideally, each node should remain in some kind of energy-saving sleep mode
for the entire duration of the deployment phase preceding the launching point.
In sleep mode, nodes do neither send data packets nor listen for incoming
messages [215]. The problem is however that individual nodes do not know
the exact time of the launching point, or the duration of the deployment
phase. As a consequence, in order to learn about the arrival of the launching
point from neighbors, a node must periodically leave the sleep mode and listen
for incoming messages.1 This observation establishes a trade-off between the
energy consumption of nodes during the deployment phase and the rapidity
of the transition to the operational phase after the launching point. Neither
of the two extremes, always asleep and always awake during the deployment,
is satisfying; any decent protocol is in-between.

The delay vs. energy trade-off is important in sensor networks beyond the
deployment phase, especially in sensor networks that concentrate on discov-
ering rare events, e.g. sensor networks for seismic surveillance in earthquake

1Obviously, the problem could be elegantly solved using very low power “trigger”
circuits, which operate continuously on small power budgets, and wake up more power-
hungry circuits only upon receipt of a suitable signal from a neighboring node. Unfor-
tunately, currently available standard hardware such as the Mica2 [123] wireless sensor
nodes do not offer this functionality, and we therefore do not consider this option.

14.1. THE DEPLOYMENT PROBLEM 181

l(v)

TD TN

tw(v)

LP

tn(v)

t

Figure 14.1: The deployment phase is of length TD, the notification phase is
of length TN .

and rubble zones. The pronounced “event” character of such rare events
leads to exactly the deployment-problem trade-off. Namely, since events oc-
cur rarely, sensor nodes should be in sleep mode as often as possible to save
energy. These energy savings, however, come at the cost of a prolonged
reaction time once a rare event occurs.

In Section 14.1, we model the deployment problem in a way that allows
to compare different protocols, independent of application specific parame-
ters such as node distribution or deployment pattern. After evaluating the
performance of two simple entirely unstructured approaches in Section 14.2,
we present an improved “semi-structured” protocol, which is based on the
MIS algorithm of Chapter 13.

The communication model used for analyzing the various protocols is
again the unstructured radio network model introduced in Chapter 11. In
particular, nodes may wake up at any time without knowledge about their
neighborhood and without access to a global clock. Further, we assume that
all nodes are deployed at the time of the launching point, i.e., before the
transition to the operational phase.

14.1 The Deployment Problem

We divide the non-operational phase of a sensor network into two parts, the
deployment phase and notification phase as shown in Figure 14.1. In the
deployment phase, sensor nodes are physically positioned at their intended
locations. Once this is done for all sensor nodes, the notification phase is
triggered, in which the aim is to inform all nodes about the system being up
and running. The transition to this second phase is induced by an externally
triggered event—at the launching point LP—that is received by at least one
node in the network. During the notification phase, we call a node notified if
it has already received the notification message, and unaware otherwise. At
the launching point, at least 1 node is notified whereas at most n− 1 nodes
are unaware.

During the deployment phase, an algorithm may build an initial structure
which can help speeding up the notification process later on. On the other
hand, the building and maintenance (incorporating newly awakening nodes
into a tree, for example) of such a structure requires the nodes to stay awake
longer and thus spend more energy. In order to enable a fair comparison

182 CHAPTER 14. DEPLOYMENT OF SENSOR NETWORKS

between different algorithmic approaches, the problem definition has to be
general enough to account for these various possibilities.

The total energy consumption of a node v in a deployment algorithm A
can be divided into two parts, the initialization energy and the maintenance
energy. The initialization energy einit(v) is the total amount of energy used
by v to initially join a desired structure (e.g., decide whether it is a clus-
terhead or become a part of a tree). A node’s initialization energy accrues
only once, regardless of the length of the deployment phase. In contrast,
the maintenance energy em(v) denotes the total amount of energy used by
v once it has been properly initialized. Specifically, the maintenance energy
em(v) encompasses the node’s periodic wake-up necessary to learn about the
launching point. If em(v) is small, the node will require a long time before
learning about the LP , thus slowing down the notification phase. Depending
on the nature of the algorithm, em(v) may comprise additional aspects. Con-
sider, for instance, a protocol that is based on maintaining a tree-structure
which allows for rapid event dissemination during the notification phase. In
this case, already initialized nodes periodically send messages in order to
inform neighbors that may have woken up in the meantime, thus enabling
their integration into the tree.

Formally, let TD and TN be the length of the deployment phase and
notification phase, respectively. Further, tw(v) denotes the wake-up point of
node v. The time v is active before the launching point is `(v) = t(LP) −
tw(v). Since we consider asynchronous wake-up with an imaginary adversary
determining each node’s wake-up point (and hence `(v)), we must consider
the average maintenance energy am(v) = em(v)/`(v). This value describes
the maintenance energy used by a node v for a single time slot between its
wake-up and the LP . Note that am(v) is independent of a node’s tw(v), `(v),
or the time of the launching point, because am(v) considers only periodical
maintenance costs, i.e., no initialization costs.

We still have to come up with a measure for the algorithm’s energy effi-
ciency that takes into account both the maintenance and the initialization
costs, but remains independent of the specific wake-up pattern. For that, we
define the energy efficiency of an algorithm A with regard to a deployment
phase of length TD, denoted by E(A, TD), as the average energy of algorithm
A per node and per time slot. That is, an algorithm in which all nodes listen
in every time slot has energy efficiency equal to 1, whereas the algorithm that
lets all nodes sleep all the time has energy efficiency 0. With this definition,
the measure of an algorithm’s energy efficiency does not depend on the par-
ticular wake-up pattern of a given problem instance, capturing instead the
characteristic of the algorithm itself.

The two main quality measures of a deployment algorithm A are formally
defined as follows.

Definition 14.1. Let A be a deployment algorithm and let TD be the length of
the deployment phase before the launching point. Also, let f(n) be a minimal
function such that with probability at least 1 − 1/n, it holds that TN ≤ f(n).
The algorithm’s energy and time efficiency, E(A, TD) and T (A, TD), are

14.2. SIMPLE ALGORITHMS 183

defined as

E(A, TD) :=
1

n · TD

∑

v∈V

(einit(v) + TD · am(v)),

T (A, TD) := f(n).

Note that the definition of E(A, TD) corresponds to the intuitive notion
of energy efficiency given above. Particularly, the terms TD · am(v) and
einit(v) describe a node v’s maintenance and initialization energy during a
deployment phase of length TD, respectively. Adding up these values over
all nodes and dividing by 1

n·TD
, the number of nodes and time slots, leads

to the energy efficiency E(A, TD). As for the second measure, an algorithm
has time efficiency f(n) (for instance n2) if with high probability, all nodes
are notified f(n) time slots after the launching point.

Definition 14.1 allows us to compare deployment algorithms A1 and A2 in
two ways. First, we can fix the notification time f(n) and compare the algo-
rithm’s energy requirements. That is, we demand two algorithms to finish the
notification period within the same amount of time and then compare which
algorithm requires more energy during the deployment phase in order to en-
sure that all nodes are notified within f(n), i.e., TN ≤ f(n). Alternatively,
we can fix the energy consumption E(A1, TD) and E(A2, TD), respectively,
of both algorithms and then compare the resulting length of the notification
phase. Clearly, both comparison methodologies are two sides of the same
coin; they both describe the inherent trade-off between energy efficiency and
the rapidity of information dissemination.

14.2 Simple Algorithms

We begin by analyzing the trade-offs of two simple algorithms in our frame-
work. The first algorithm is the so-called birthday algorithm proposed in [174]
which, among other applications, can be used as an algorithm for the deploy-
ment of sensor networks. Originally, Abirth has been designed and analyzed
for neighborhood discovery, i.e., not for the deployment problem as consid-
ered in this paper. The second algorithm enhances the birthday algorithm
with a standard trick in order to achieve significantly better trade-offs.

Birthday Algorithm

The birthday algorithm Abirth proposed in [174] is conceptually simple: Dur-
ing the deployment phase, before being notified, a node v listens in each
time slot with probability pL and sleeps with probability 1− pL. Once v has
learned about the launching point, it transmits with probability pT := 1/n
and listens with probability pL.

What is the trade-off exhibited by Abirth with regard to the definitions
given in Section 14.1? Let f(n) be a function such that TN(Abirth) ≤ f(n)

184 CHAPTER 14. DEPLOYMENT OF SENSOR NETWORKS

with high probability. Given this constraint, we want to optimize the algo-
rithm’s energy efficiency. The achievable trade-off is expressed in the follow-
ing theorem.

Theorem 14.1. Let f(n) be a function such that the birthday algorithm
Abirth has time efficiency T (Abirth, TD) ≤ f(n). For general network graphs
and for arbitrary TD, Abirth’s energy efficiency is

E(Abirth, TD) ∈ Θ

(
n2

f(n)

)
.

Proof. The birthday algorithm does not require any initialization and there-
fore, einit(v) = 0, for all v ∈ V . The average maintenance energy for
each node corresponds directly to the listening probability, i.e., am(v) = pL.
Hence, the algorithm’s energy efficiency is

E(Abirth, TD) =
1

n · TD

∑

v∈V

(TD · pL) = pL.

Consider the network graph Gb = (Vb, Eb) consisting of nodes v1, . . . , vn

positioned in a line, i.e., vi is a neighbor of vj iff j = i + 1 and 1 < j ≤
n. Recall that in the unstructured radio network model, nodes have no
knowledge about the topology of the network. Finally, let v0 be the node
which is externally triggered at the launching point. By the construction of
Gb, the information about the arrival of the launching point has to traverse
the entire network in a hop-by-hop fashion. We call a time slot t successful,
if there is a notified node vi that transmits in t and its unaware neighboring
node vi+1 listens at the same time. In order to pass the notification through
the entire chain, a minimum of n− 1 successful time slots are required, and
the probability Psuc that a time slot t is successful is Psuc = pL · pT .

In total, the algorithm is allowed to use f(n) time slots and the broadcast
has to succeed with probability at least 1 − 1/n. Given these constraints,
we want to minimize pL thus optimizing E(Abirth, TD). In expectation, the
number of successful rounds is pLpT f(n). Since we want at least n − 1
successes, it follows that

pLf(n)

n
= n− 1 ⇒ pL ∈ Ω

(
n2

f(n)

)
.

Finally, we show that for a large enough constant c, pL = cn2/f(n) is
enough to obtain the high probability argument. Let X be the number of
successful rounds. The expected value of X is µ = pLf(n)/n. We bound the
probability of having less than n−1 successful rounds using Chernoff Bounds
as

P [X < n− 1] = P

[
X <

(
1 −

(
1 − n(n− 1)

pLf(n)

))
pLf(n)

n

]

< e
− pLf(n)

2n

(
1− n(n−1)

pLf(n)

)2

= e−
cn
2 (1− 1

c)2 ,

14.2. SIMPLE ALGORITHMS 185

Algorithm Auni

upon wake-up do:
1: listen with probability pL, otherwise sleep

upon notification do:
2: for i := dlog ne + 1 to 1 by −1 do
3: pT := 1/2i

4: for c(dlog ne+1)
pL

time slots do

5: transmit message with probability pT

6: end for
7: end for

which is smaller than 1/n for a suitably large constant c. Notice that setting
pL to a value strictly smaller, i.e., pL ∈ o(n2/f(n)) renders the exponent
positive thus not yielding the desired result.

Uniform Algorithm

The birthday algorithm does not maintain any structure and hence, features
no initialization cost. Using the idea of exponentially increasing transmission
probabilities already encountered in Chapter 13, the birthday algorithm’s
performance can be significantly improved. We call this improved version
of the birthday algorithm uniform algorithm Auni. Algorithm Auni has one
input parameter, the listening probability pL; c is a constant to be defined
later. In comparison with the birthday algorithm Abirth analyzed in Sec-
tion 14.2, Auni exhibits a strictly better performance trade-off as stated in
Theorem 14.2.

Theorem 14.2. Let f(n) be a function such that the uniform algorithm
Auni has time efficiency T (Auni, TD) ≤ f(n). In any unit disk graph G and
for arbitrary TD, Auni’s energy efficiency is at most

E(Auni, TD) ∈ O

(
n log2n

f(n)

)
.

Proof. Like Abirth, Auni does not require any initialization and all nodes are
treated uniformly. Therefore, by the same argument as in Section 14.2, we
have E(Auni, TD) = pL. The remainder of the proof follows along the same
lines as the proofs of the MIS algorithm in Chapter 13.

We define the listening probability pL to be pL := cn(dlog ne + 1)2/f(n)
and seek to show that for a constant c ≥ 12, the probability of the notification
message advancing at least one hop in time O(f(n)/n) is at least 1 − n−2.
Since the diameter of the network is at most n, the theorem follows from
applying the union bound.

Let Zv,t denote the event of node v hearing a notification message in time
slot t. Consider an unaware node v ∈ V and let t0 be the first time slot in
which at least one node in v’s neighborhood Γ(v) is notified. Starting from

186 CHAPTER 14. DEPLOYMENT OF SENSOR NETWORKS

this round, the sum of sending probabilities
∑

w∈Γ(v) pT (w) increases. Let

t∗ be the last time slot in which the sum of sending probabilities is smaller

than 1/2. Notice that it takes at most t∗ − t0 ≤ (dlog ne + 1) · c(dlog ne+1)
pL

time slots until t∗ is reached.
Now, consider the time interval I = [t∗ + 1, . . . , t∗ + c(dlog ne+1)

pL
]. During

this interval, notified nodes can at most double their pT and new nodes will
transmit with the initial sending probability pT = 1

2n
. At the end of this

interval, the sum of sending probabilities is therefore at most

∑

w∈Γ(v)

pT (w) ≤ 2 · 1

2
+

∑

w∈Γ(v)

1

2n
≤ 3

2
. (14.1)

Therefore, in each time slot t ∈ I, the sum of sending probabilities is at least
1/2 and at most 3/2. The probability P [Zv,t] that v receives the notification
message from one of its neighbors is

P [Zv,t] = pL

∑

w∈Γ(v)

pT (w) ·

∏

q∈Γ(v)
q 6=w

(1 − pT (q))

≥ pL

∑

w∈Γ(v)

pT (w) ·
∏

q∈Γ(v)

(1 − pT (q))

≥
Fact 2.1

pL

∑

w∈Γ(v)

pT (w) ·
(

1

4

)∑
q∈Γ(v) pT (q)

≥ 3pL

2
·
(

1

4

)3/2

>
pL

6
.

For large enough functions f(n) and pL = cn(dlog ne + 1)2/f(n), the proba-

bility that none of the c(dlog ne+1)
pL

time slots t ∈ I is successful is at most

P [∩t∈IZv,t] ≤
(
1 − pL

6

) c(dlog ne+1)
pL ≤

Fact 2.2
e−

c
6
(dlog ne+1) < n−2.

Therefore, with probability exceeding 1 − n−2, the notification message is
passed on at least by one hop in time

t∗ − t0 ≤ (dlog ne + 1) · cf(n)(dlog ne + 1)

cn(dlog ne + 1)2
=

f(n)

n
.

Consequently, the notification message reaches all n nodes within time f(n)
with probability at least 1 − n−1.

The trade-off obtained by Auni is strictly better than the one obtained
by the birthday algorithm in Section 14.2. Moreover, in the case pL = 1,
the algorithm allows a feasible solution for functions f(n) ∈ Ω(n log2 n) as
opposed to f(n) ∈ Ω(n2) for the birthday algorithm.

14.3. CLUSTER-BASED ALGORITHM 187

14.3 Cluster-Based Algorithm

In this section, we show that in certain network settings, employing a semi-
structure can render the notification of nodes during the notification phase
quicker. On the other hand, installing and maintaining the structure re-
quires additional energy during the deployment phase and hence, contrary
to the algorithms in Section 14.2, the cluster algorithm Aclu has non-zero
initialization costs einit(v). Algorithm Aclu is based on a more restricted
network model. We assume that nodes are located in a doubling unit ball
graph as defined in Chapter 8 (e.g., a unit disk graph). Each node is capable
of adapting its transmission power in such a way that its transmission range
is halved. Finally, we assume that the network’s density is reasonably high,
that is, there is at least one node in every disk of radius 1/4 in the convex
hull of the nodes.

The design of Aclu aims at mending the main dissipation of energy of
the two previous algorithms, the lack of synchronization. If neighboring
nodes had synchronized wake-up points, the notification phase would take
significantly less time. Consequently, when demanding the same notification
efficiency TN , the nodes could sleep longer, thus saving energy during the
deployment phase. The problem is that synchronization between neighboring
nodes incurs additional set-up and maintenance costs and the question is
whether these additional costs will equiponderate the gains stemming from
the above mentioned notification speed-up.

Our approach is based on grouping nodes into synchronized clusters.
Within a cluster, nodes wake-up at the same time. In particular, we consider
an MIS Q on a graph G′ in which two nodes are adjacent if their mutual
distance is at most 1/2. In other words, G′ is the ball graph in which every
node’s transmission range is set to 1/2. Let s(v) denote the leader of node v
and for u ∈ Q let S(u) refer to the set of nodes having u as their leader, i.e.,
S(u) = {v|u = s(v)} for all u ∈ Q. Notice that by the lower bound on the
network density dictated by the restricted model, it is guaranteed that the
set Q is connected if we consider all two-hop paths in G.

When constructing the MIS on G′, we employ a simple adaptation of
the algorithm presented in Chapter 13. In particular, the only change to
the algorithm is to increase its initial waiting time from O(log2n) time slots
to W time slots, where the exact value of W ∈ Ω(log2n) is to be decided
later. Hence, in total, every node needs to be awake for W + O(log2n)
time slots before deciding whether it becomes a leader (i.e., joins the MIS) or
not. Subsequently, leaders transmit with a sending probability of Θ(log n/W)
(instead of Θ(1) as in Algorithm 13.1 of Chapter 13) in order to inform newly
awakening nodes of their being covered. This prevents nodes that wake up
later from invalidating the MIS condition.

In Aclu each leader v ∈ Q coordinates the nodes in S(v) and is responsible
for their synchronized waking up. Specifically, a leader v decides on the
timing of the rendezvous windows for its cluster; a time window during which
the nodes w ∈ S(v) are simultaneously awake. Every node w ∈ S(v) learns
the timing of these rendezvous windows from its leader v. The idea is that a
notified leader can notify all nodes in its cluster at almost the same time.

188 CHAPTER 14. DEPLOYMENT OF SENSOR NETWORKS

Algorithm Aclu: Code for non-leader u

upon wake-up do:
1: perform MIS algorithm of length O(W +log2 n) → decide on leader s(u),

receive wake-up point r3
2: loop
3: sleep until next wake-up point r3
4: for η log n time slots listen for notification message Mn

5: r3 := r3 + I
6: end loop

upon notification do:
7: loop

8: upon receiving Ma(r2), wait until r2
}
S1

9: for i := dlog ne+1 to 1 by −1 do
10: for (γ+η)(dlogne+1) time slots do
11: transmit message with probability

pT = 1/2i

12: upon receiving Mr, quit for-loops
13: end for
14: end for

S2

15: end loop

O(log2n)O(logn)O(logn)

I

t

S2 S3S1

r1 r2 r3r3r2r1

rendezvous window

Figure 14.2: Rendezvous interval I and rendezvous window

Each rendezvous takes place in three steps as shown in Figure 14.2 and
during a rendezvous, nodes transmit using their full transmission range. In
the proclamation step S1, leader v announces the rendezvous interval to
neighboring nodes which do not belong to S(v). The reason is that once
a node is notified, it remains listening on the channel. Such a node must
be able to notify neighboring leaders, even if it is in a different cluster it-
self (otherwise, the notification message would not broadcast through the
network). In other words, the proclamation step is intended for announcing
the notification across cluster boundaries. The conveyance of the notifica-
tion message in the opposite direction is the aim of the second step, the
leader-notification step S2. In this step, already notified nodes try to notify
a neighboring unaware leader.

Finally, the rendezvous is concluded by the notification step S3. A notified
leader v attempts to notify all unaware nodes in S(v) during this step. Note
that this is the only time-interval during which an unaware non-leader node

14.3. CLUSTER-BASED ALGORITHM 189

Algorithm Aclu: Code for leader v

upon wake-up do:
1: perform MIS algorithm of length O(W + log2n) → become leader with

cluster S(v)
2: choose rendezvous point r1
3: r2 := r1 + ηdlog ne, r3 := r2 + (γ + η)dlog2ne
4: loop
5: sleep or transmit with probability

log n/W until next wake-up point r1

6: for η log n time slots transmit Ma(r2)
with probability pMIS ∈ Θ(1)

}
S1

7: for (γ + η)(dlog ne + 1)2 − η(dlog ne)
time slots listen for Mn

8: if Mn received then
9: transmit Mr for η log n time slots with

probability pMIS ∈ Θ(1)
10: end if

S2

11: sleep until r3

12: if notified then
13: for η log n time slots transmit Mn

with probability pMIS ∈ Θ(1)
14: become non-leader
15: end if

S3

16: r1 := r1 + I
17: r2 := r1 + ηdlog ne
18: r3 := r2 + (γ + η)dlog2ne
19: end loop

must be awake. Summarizing, the actions during the rendezvous window are
designed as to guarantee that a notification message in the neighborhood of a
leader v is, first, passed to v, and second, passed from v to all nodes in S(v).
After the rendezvous window, a notified leader becomes a non-leader node
in order to help informing other leaders located in its neighborhood. In the
following, we give a more precise description of algorithm Aclu as performed
by leaders and non-leaders, in which γ and η denote suitably large constants.

Consider a rendezvous window of leader v. In the proclamation step S1, v
transmits an announcement message Ma(r2) containing the starting time of
the second step of the rendezvous with a constant probability pMIS ∈ Θ(1).
Let u be a notified node with (u, v) ∈ E and u /∈ S(v). Notified nodes remain
listening in order to eavesdrop an announcement message of neighboring
leaders. If node u receives such a message Ma(r2) from v, it tries to notify
v during the subsequent leader-notification step. In the analysis, we will
show that with high probability every notified node in v’s neighborhood will

190 CHAPTER 14. DEPLOYMENT OF SENSOR NETWORKS

receive Ma(r2) from v.
In the leader-notification step S2 all notified neighbors of v try to send a

notification message Mn to v. Notice that if there are no notified neighbors
of v, nothing happens during the leader-notification step. The procedure of
informing a leader follows along the lines of the uniform algorithm presented
in Section 14.2. Starting with probability 1

2n
, notified nodes exponentially

increase their sending probability to speed up the notification. In order to
prevent too much “noise” (i.e., too many nodes sending with high probabil-
ity at the same time), v starts transmitting a reception message Mr with
probability pMIS as soon as it has received Mn, thereby eventually stopping
the increase in its cluster.

Finally, unaware nodes in S(v) are only awake in the notification step S3

starting from r3. They are listening during these time slots, waiting for a
possible notification message Mn from a potentially notified v.

Analysis Let Q := {s(u) | u ∈ Γ(v)} be the set of all leaders that lead at
least one node in v’s neighborhood. In a doubling unit ball graph, it holds
that |Q| ≤ κ1 for a constant κ1. Also, let the constant κ2 denote the maximal
number of independent leaders in a node v’s 2-hop neighborhood Γ2(v).

In the following, let pv(t) be the sending probability of node v in time
slot t. Further, let Φv(t) :=

∑
u∈Γ(v)\Q pu(t). In the next lemma, we show

that given an upper bound on Φv(t), η log n time slots are sufficient to let a
leader inform all its neighbors.

Lemma 14.3. Let v ∈ Q be a leader and consider a time interval J of
length η log n during which v transmits with probability pMIS . If Φv(t) ≤ χ,
for a constant χ ≤ 3κ2

2
, then all nodes w ∈ S(v) receive the message during

J with probability 1 − 2n−3.

Proof. As in the previous two chapters, we call a time slot successful if v
transmits, but no other node in Γ2(v) transmits. In a successful time slot, all
nodes in Γ(v) receive the message from v without collision. The probability
Psuc(t) that a single time slot t is successful is at least

Psuc(t) ≥ pMIS ·
∏

w∈Γ2(v)
w 6=v

(1 − pw(t))

≥ pMIS · (1 − pMIS)κ2−1
∏

w∈Γ2(v)\Q

(1 − pw(t))

≥ pMIS · (1 − pMIS)κ2−1

(
1

4

)κ2·χ
∈ Θ(1).

where the last inequality follows from Fact 2.1 and the assumption that
Φv(t) ≤ χ. Finally, the probability Pno that none of the η log n time slots is
successful is bounded by

Pno ≤
(

1 − pMIS(1 − pMIS)κ2−1

(
1

4

)κ2·χ)η log n

≤ 1

2n3

14.3. CLUSTER-BASED ALGORITHM 191

for a suitably large constant η.

Unfortunately, Lemma 14.3 holds only conditionally; based on the as-
sumption that Φv(t) ≤ χ. We now prove an upper bound on Φv(t) that
holds throughout the execution of the algorithm with high probability.

Lemma 14.4. With probability 1−n−2, it holds for all t and for all leaders
v ∈ Q that Φv(t) ≤ χ, where χ ≤ 3κ2

2
is a constant.

Proof. At the beginning, when the first node is notified, the claim clearly
holds. For the sake of contradiction, assume that the claim is first violated at
leader v. Further, notice that Φv can only increase if some of its neighboring
non-leader nodes are in the leader-notification step S2. The idea is that
as soon as v receives the notification message, it starts sending a reception
message Mr. We will show that the nodes in Γ(v) receive this message
and—by the definition of the algorithm—stop transmitting, which prevents
Φv from increasing too much.

We define time slots t∗v for a leader v, such that, Φv(t∗v) < 1/2 and Φv(t∗v +
1) ≥ 1/2. By the same argument as in the proof of Theorem 14.2 (cf.
Inequality (14.1)), we can bound Φv(t∗v + (γ + η)(dlog ne + 1)) ≤ 3/2. That
is, for all time slots t in the interval J = [t∗v +1, . . . , t∗v +(γ+η)(dlogne+1)],
it holds that 1/2 < Φv(t) ≤ 3/2. The probability Psuc(t) that v receives a
message without collision in an arbitrary time slot t ∈ J is at least

Psuc(t) ≥
∏

w∈Q∩Γ(v)

(1 − pw(t)) ·
∑

w∈Γ(v)\Q

pw(t) ·

∏

q∈Γ(v)\Q
q 6=w

(1 − pq(t))

≥ (1 − pMIS)κ2 · Φw(t)

(
1

4

)Φw(t)

≥ (1 − pMIS)κ2 · 3

2

(
1

4

)3/2

>
(1 − pMIS)κ2

6
.

The first γ(dlog ne + 1) time slots of J suffice such that v receives Mn.
Specifically, the probability Pno that none of these time slots is successful is

Pno ≤
(

1 − (1 − pMIS)κ2

6

)γ(dlog ne+1)

, (14.2)

which again can be made Pno ≤ n−3/2 for large enough constants γ. Once,
node v receives Mn, it will try to acknowledge by sending Mr. By the
assumption that v is the first leader to violate the claim, we know that
there are at least η(dlog ne + 1) time slots in J remaining during which
1/2 < Φv(t) ≤ 3/2 holds. Consequently, we can apply Lemma 14.3, that is,
with probability at least 1 − n−3, the message Mr will be received by all
nodes in Γ(v) within the η(dlog ne + 1) time slots. Hence, the probability
that v is the first node to violate the claim is bounded by 2 · n−3/2 for

192 CHAPTER 14. DEPLOYMENT OF SENSOR NETWORKS

suitably large constants γ and η. Because there are at most n leaders in the
network and every leader needs to be notified only once, the Lemma holds
with probability 1 − n−2.

The following Corollary is implicit in the proof of Lemma 14.4 (cf. In-
equality (14.2)).

Corollary 14.5. Consider a leader v ∈ Q and the leader-notification step
S2 of a notification window. If there exists a notified node in Γ(v) \Q, v will
be notified at the end of S2.

Based on Lemma 14.4, we can now state the main theorem of correctness.

Theorem 14.6. With probability at least 1 − 1/n, the algorithm works as
demanded: each leader v successfully announces to all its neighbors about the
proclamation step S1 for the entire duration of the notification phase. As soon
as there exists a notified non-leader in Γ(v), v will be notified in the following
leader-notification step S2. And finally, a notified leader v will inform all its
neighbors u ∈ Γ(v) in the notification-step S3 following v’s notification.

Proof. The steps S2 and S3 follow directly from Lemma 14.3, Corollary 14.5,
and the fact that there are at most n leaders, each of which is notified at most
once. By Lemma 14.3, every attempt of sending a Ma message is successful
with probability 1 − n−3. Each of the n nodes needs to send at most n
messages Ma during the notification phase. The proof is concluded because
the set of leaders is connected if we consider all two-hop paths in G.

Of particular interest is the energy efficiency and its comparison to the
two previous algorithms. Let m ≤ n be the number of leader nodes in the
network and let ξ denote the energy efficiency E(Aclu, TD). Clearly, the
ratio m/n depends on the density of the network. The following theorem
quantifies the achieved trade-off.

Theorem 14.7. Let f(n) be a function such that algorithm Aclu has time
efficiency T (Aclu, TD) ≤ f(n). Let m be the number of leaders chosen by
Aclu. In a unit disk graph G with high node density and for a given TD,
Aclu’s energy efficiency ξ = E(Aclu, TD) is bounded by

ξ ∈ O

(
f(n)

n log n
+ log2n

TD
+
n log n

f(n)
+
m log2n

f(n)

)
.

Proof. The choice of I ’s length determines the trade-off between energy-
efficiency and the speed of notification. We have to choose I such that with
high probability, the notification broadcast is finished within time f(n). We
do so by setting I to a value guaranteeing that the notification proceeds at
least one hop in time f(n)/n with high probability. That is, we set I :=
df(n)/ne.

Upon waking up, each node v has initialization costs einit(v) ∈ O(W +
log2n). For the maintenance costs during the deployment phase, we distin-
guish between leaders and non-leader nodes. Non-leaders are awake for the

14.3. CLUSTER-BASED ALGORITHM 193

duration of η log n during each rendezvous interval of length I . Thus, for
non-leaders, a(v) = ηdlog ne/I . Leaders must be awake longer in each ren-
dezvous interval, namely 2η log n+(γ+η)(dlogne+1)2 ∈ O(log2n) time slots.
Additionally, leaders need to transmit with probability log n/W in each time
slot.

Therefore, for appropriate constants α, δ > γ + η, and η the energy
efficiency E(Aclu, TD) of Aclu is at most

ξ =
1

nTD

[∑

v∈Q

α
(
W + log2n

)
+ TD

∑

v∈Q

(
log n

W
+
δ log2n

I

)

+
∑

v∈V \Q

(
α(W + log2n) +

TDη log n

I

)
 .

Setting I = df(n)/ne and W = I/ log n, we obtain

ξ =
α(W + log2n)

TD
+
m

n

(
log n

W
+
δ log2n

I

)
+
n−m

n
· η log n

I

≤
α
(

f(n)
n log n

+ log2n
)

TD
+
m

n
· (δ + 1)n log2n

f(n)
+
n−m

n
· ηn log n

f(n)

∈ O

(
f(n)

n log n
+ log2n

TD
+
m log2n

f(n)
+
n log n

f(n)

)
.

Observe that the first asymptotic term of Theorem 14.7 contains TD in
the denominator. This captures the fact that the amount of energy spent
on initializing a structure weighs more or less heavily, depending on the
respective length of the deployment phase. Specifically, this term can be
neglected if the deployment phase is long. As for the two remaining terms,
they express the energy efficiency of leaders and non-leaders, respectively.

Discussion

This section discusses the results obtained in Theorems 14.1, 14.2, and 14.7.
For the comparison, we demand all three algorithms to finish their notifica-
tion phase within a fixed amount of time f(n) ∈ Θ(n2), f(n) being the same
for all algorithms. This allows us to compare the energy efficiency E(A, TD)
each algorithm is required to invest in order to ensure that the notification
is finished within time f(n). As mentioned in Section 14.1, we obtain the
same results when asking the question the other way around, i.e., when fixing
the algorithm’s energy efficiency and comparing the resulting time efficiency
T (A, TD) = f(n). Table 14.1 shows the results derived from Theorems 14.1,

194 CHAPTER 14. DEPLOYMENT OF SENSOR NETWORKS

14.2, and 14.7 under the assumption that the length of the deployment phase
TD is long enough compared to f(n)2.

Algorithm A Energy Efficiency E(A, TD)
Abirth [174] Θ(1)

Auni Θ(log2 n
n

)

Aclu Θ(log n
n

+ m log2 n
n2)

Table 14.1: A comparison of the energy efficiency of the three algorithms for
a fixed T (A, TD) = f(n) ∈ Θ(n2) and large enough TD.

It is clear that both Aclu and Auni significantly outperform Abirth, re-
gardless of the network density or, generally, the ratio between leaders vs.
non-leaders. It is interesting to study the relative strengths of Aclu and Auni.
Asymptotically, the trade-off achieved by Aclu is strictly better than Auni if
m ∈ o(n), that is, if less than a constant fraction of the nodes are leaders. If,
for instance, m ∈ O(n/ log n), the resulting asymptotic energy-efficiency is
E(Aclu, TD) ∈ O(n log n/f(n)), which is better than Auni by an O(log n) fac-
tor. In case the number of leaders is a constant fraction of n, the asymptotic
energy efficiency is O(n log2n/f(n)), which equals the trade-off achieved by
Auni. Hence, depending on the network density and the resulting number
of leaders, the asymptotic energy efficiency of Aclu is either better than or
equal to that of Auni. That is, the higher the network density, the more
worthwhile it becomes to invest initial energy on obtaining a cluster-based
semi-structure.

2Note that f(n) ∈ Θ(n2) is the smallest value for f(n) so that Abirth is capable
of finishing its notification phase within f(n) in arbitrary networks. Similar results as
shown in Table 14.1 can be obtained for higher values of f(n) in a straightforward way.

Chapter 15

Conclusions and Outlook

Part II of this thesis studies the impact of the harsh physical conditions in
wireless ad hoc and sensor networks on the complexity of distributed coor-
dination tasks. Focusing particularly on the deployment and initialization
phase of these networks—when nodes may wake up asynchronously without
any knowledge about the network—we have devised efficient algorithms for
the important network coordination primitives colorings (Chapter 12) and
clustering (Chapter 13). Energy-efficiency is one of the most crucial aspects
in the design of wireless sensor networks. Based on the MIS algorithm, Chap-
ter 14 presented a method for improving the delay-energy trade-off during the
deployment of networks with high density. There appear to be applications
for our algorithms in unstructured radio networks even beyond the deploy-
ment problem. In [85], for instance, a protocol is presented which—based
on the MIS algorithm of Chapter 13—constructs an initial infrastructure in
wireless multi-hop network. It is conceivable, that the algorithm finds further
application in the future.

A common complaint within the networking community in general, and
the ad hoc and sensor networking community in particular, is that there exists
a wide chasm between theory and practice. In this sense, it is important and
interesting to study algorithms for wireless ad hoc and sensor networks in
models that capture more closely the harsh conditions under which they
ultimately have to operate. The unstructured radio network model makes a
step towards this direction, but remains concise enough to allow for stringent,
algorithmic analysis.

From a more theoretical point of view, numerous interesting questions re-
main unresolved. Besides devising efficient algorithms for other problems in
the unstructured ratio network model, one of the foremost question is the rel-
ative capabilities of deterministic versus randomized algorithms. In [30], Bar-
Yehuda, Goldreich and Itai established an exponential gap between deter-
ministic and randomized algorithms for the broadcast problems in constant-
diameter networks. Ever since, there has been an intensive effort to deter-
mine the exact deterministic time complexity of communication primitives

196 CHAPTER 15. CONCLUSIONS AND OUTLOOK

such as broadcasting or wake-up, e.g. [48, 49, 52, 63, 104, 128]. On the other
hand, nothing is known about the deterministic distributed complexity of
computing network coordination structures such as dominating sets, maxi-
mal independent sets, or colorings in the unstructured radio network model,
and it would be interesting to further investigate this direction. In particu-
lar, it is presumable that the algebraic structures obtained in the study of
the wake-up problem (radio-synchronizers and universal synchronizers) may
turn out to be useful tools for developing efficient deterministic solutions for
coloring or MIS in the unstructured radio network model. On the other hand,
the differences between the notion of asynchronous wake-up as imposed by
the unstructured radio network model and work on the wake-up problem,
respectively, may need to be addressed using novel techniques.

Another question that we have left unexplored is the value of having a
collision detection mechanism. Throughout Part II of this thesis, we have
assumed that nodes are unable to distinguish a collision from the case in
which no message arrives. But, what if radio modules are enhanced with
a collision detection mechanism that can give a ternary feedback (collision,
successful reception, or free medium), instead of a binary one? The Ω(log2n)
time lower bound for clear radio transmission in single-hop networks has
been derived only at the assumption that nodes have no collision detection
mechanism [86]. Moreover, the lower bound construction of [86] does not
seem to be easily extendible to the collision detection case. This raises hopes
that by making use of collision detection in a clever way, there may be an
MIS algorithm in the unstructured radio network with a better running time
than O(log2n). Inspecting our MIS algorithm reveals that the availability
of a collision detection mechanism cannot help improving its running time.
Hence, any algorithm that—based on the ability to detect collisions—achieves
a running time of o(log2n) must probably be based on a different algorithmic
approach.

It is interesting to relate our results of Part II of this thesis to their re-
spective counterparts in the synchronous message passing model established
in Part I. In particular, in combination with the Ω(log2n) lower bound, our
algorithm in Chapter 13 settles the exact (randomized) time complexity for
computing an MIS in the unstructured radio network as Θ(log2n). This is by
a logarithmic factor slower than Luby’s MIS algorithm for general graphs in
the synchronous message passing model. Moreover, we have shown in Chap-
ter 8 that in the message passing model, even more efficient solutions are pos-
sible for the MIS problem in graphs with bounded independence. Specifically,
in the CONGEST model, an MIS can be computed in time O(log ∆ log∗n).
In the LOCAL model with known distances, even O(log∗n) communication
rounds suffice for the computation of an MIS, which is asymptotically op-
timal. These results (almost precisely) quantity the loss of computational
efficiency caused by the harsh characteristics of the unstructured radio net-
work model as opposed to the synchronous message passing model. This
allows for an interesting comparison between these two models of distributed
computing.

Part III

Scheduling Complexity of

Wireless Networks

Chapter 16

Wireless Networks Beyond

Graph Models

Throughout Part I and II of this thesis, we have modeled wireless multi-hop
networks such as sensor, ad hoc, or mesh networks by means of graphs. In
fact, studying such networks on the abstraction layer of graphs has become
a quasi-standard in most of the algorithmic research in this field. In its most
general form, a graph model for wireless networks consists of two graphs:
A connectivity graph Gc = (V,Ec) and an interference graph Gi = (V,Ei).
Both graphs are based on the set of devices V . A receiver v successfully
decodes a message from a sender u, if and only if u and v are neighbors
in the connectivity graph, (u, v) ∈ Ec, and v does not have a concurrently
transmitting neighbor node in the interference graph Gi. In graph-based
models, a protocol designer must therefore take care that no neighbor in Gi is
transmitting simultaneously to a neighbor inGc, or at least, that this happens
rarely. It is therefore not surprising that in graph theory, interference-free
concurrent transmissions boil down to solving variants of independent set or
coloring problems (e.g. [205]).

It is clear that when modeling the wireless communication medium, the
concept of an edge is a stark oversimplification, as it is a binary representation
for continuous (non-binary!) physicals laws. In fact, a node barely outside
the interference range of a receiver v (that is, a node not connected by an
edge with v in Gi) might still cause enough interference such that receiver
v is not able to decode a message from a legitimate neighboring sender in
Gc. Moreover, the interference of several senders can cumulate and cause a
collision at an intended receiver, even though the interference generated by
each individual sender may be harmless by itself.

While in algorithmic research on wireless multi-hop networks, graph mod-
els have been studied almost exclusively, communication theorists have typ-
ically trusted graph-based models much less. In communication or informa-
tion theory, researchers are studying an arsenal of fading channel models, the

200CHAPTER 16. WIRELESS NETWORKS BEYOND GRAPH MODELS

simplest being the signal-to-interference-plus-noise ratio (SINR) model. In
the SINR model, the energy of a signal fades with the distance to the power
of the path-loss parameter α. If the signal strength received by a device di-
vided by the interfering strength of competitor transmitters (plus the noise)
is above some threshold β, the receiver can decode the message, otherwise
it cannot. This simple SINR model is unrealistic as well, mostly because
it is inherently geometric: In reality antennas are not perfectly isotropic,
and even more importantly the environment is obstructed by walls or plants
that shield or reflect the signal. Although some of these issues can be inte-
grated into the basic SINR model, these “SINR+” models are predisposed
to become complicated – essentially intractable from the point of view of a
protocol designer. Graph-based models such as the bounded-independence
graph (BIG) introduced in Chapter 8, on the other hand, are capable of au-
tomatically incorporating both imperfect (or even directional) antennas and
terrains with obstructions. As a consequence, SINR models have been con-
sidered almost exclusively by communication and information theorists when
studying fundamental scaling laws (e.g. the theoretical capacity of wireless
multi-hop networks [117]).

From an algorithmic point of view, however, SINR models have been
widely accepted as being too low-level and too intricate for thoroughly com-
prehending protocols, let alone analytically prove their correctness and/or
efficiency. Also, because of their cleaner abstraction layer, it seems that a
majority of classes, books, or tutorials therefore prefers to teach the higher-
layer algorithmic basics in wireless multi-hop networking in terms of graphs,
not in terms of physical SINR models.

As we will see in Chapters 17 and 18, there exist important physical
phenomena which graph-based models inherently fail to capture. This fact
by itself is of course neither new nor surprising (see for instance [33, 114]).
The more interesting question is whether the resulting inconsistencies are
small enough to be justified by the gained simplicity of the model. Or in
other words, the question is how drastic a change of the nature of wireless
communication is caused by exactly those physical phenomena that cannot be
modeled by graphs. In particular, do these inconsistencies render theoretical
boundaries and analytical proofs in graph-based models entirely inaccurate,
thus undermining their significance?

More specifically, we raise the question whether there are important ap-
plications or tasks in wireless multi-hop networks in which provably efficient
(possibly even theoretically optimal) graph-based algorithms perform inher-
ently worse than algorithms that are designed to make use of SINR aspects.
If there were no such examples, it would serve as a major justification for
studying networks on the clean abstraction layer of graphs. If, however, there
are examples in which the performance of any graph-based algorithm is sur-
passed by algorithms explicitly taking SINR into account, it would highlight
the need for a more physical-level oriented design and analysis of network
protocols.

In Part III of the thesis, we show that the inconsistencies created by graph-
based models can indeed be overwhelming, even for simple scheduling tasks.
In particular, scheduling algorithms and MAC layer protocols whose design

201

has been guided with graph-models in mind can perform sub-optimally as
compared to protocols that are explicitly defined for the SINR model. Specif-
ically, Chapter 17 exemplifies the difference between graph-based models and
SINR models. By means of simple calculations and practical measurements
using standard sensor nodes, it is shown how graph-based models are unable
to properly model simple scheduling problems in wireless networks.

These observations lead to interesting questions regarding the fundamen-
tal laws that governs scheduling in wireless networks. In particular, consider
a set of communication requests that need to be scheduled over a wireless
medium. In one time slot, only a subset of all the desired communication
links can be scheduled in parallel; and in every subsequent time slot, a subset
of the remaining unscheduled links may be scheduled, until finally all links
are scheduled. Against this background, it is clearly advantageous to find
a short schedule, ideally one with minimal length. This allows for higher
bandwidth and, ultimately, higher throughput. In Section 17.3, we define
the scheduling complexity as a measure for describing the minimal amount
of time required to physically establish a set of communication requests.

In the subsequent chapters, we study the scheduling complexity of var-
ious request patterns in the physical SINR model of wireless propagation.
Chapter 18 shows that simple and intuitive scheduling and power assignment
schemes inevitably result in highly sub-optimal schedules, even for simple re-
quest sequences. As a corollary, these results imply that the throughput
achieved by all currently employed MAC layer protocols for wireless multi-
hop networks can be by a factor of Ω(n) worse than the optimum.

Chapter 19 then shows that the inefficiency of the above MAC layer pro-
tocols is not unavoidable. In particular, we propose an algorithm that con-
structs a spanning tree, and assigns power levels and time slots to each link
of the tree such that in polylogarithmic time, all transmissions are received
correctly, i.e., without violating the signal-to-interference plus noise ratio at
any receiver. Our algorithm implies that even in worse-case networks, the
scheduling complexity of a strongly-connected topology is polylogarithmic in
n and such topologies can thus be scheduled efficiently. As shown in [117],
the theoretically achievable capacity of wireless networks increases asymptot-
ically as Θ(

√
n), which indicates a fundamental scaling problem in large-scale

wireless multi-hop networks. In contrast, our results show that there is no
comparable scalability problem when it comes to scheduling certain commu-
nication requests. The polylogarithmic scheduling algorithm further shows
that the remedy against slow scheduling is a highly non-linear assignment of
power levels. Particularly, many different power levels are required in order
to achieve an efficient schedule.

For more general topologies or communication requests, it may not be
insightful to bound the scheduling complexity as a function of n. Chap-
ter 20 therefore derives the scheduling complexity of arbitrary communi-
cation requests in terms of static, graph-based interference measures, thus
establishing—at the end of Part III—a relationship between SINR models
and graph-based models.

202CHAPTER 16. WIRELESS NETWORKS BEYOND GRAPH MODELS

Chapter 17

Models and Definitions

This chapter formally introduces the Physical model of wireless communica-
tion that is based on an explicit consideration of the Signal-to-Interference-
plus-Noise-Ratio (SINR).

17.1 SINR: Modeling Interference

We model a wireless network as a set of nodes V = {v1, . . . , vn} that are
arbitrarily located in the Euclidean plane. The Euclidean distance between
two nodes vi, vj ∈ V , is denoted by d(vi, vj). The ball B(vi, r) of radius
r around node vi contains all nodes vj ∈ V for which d(vi, vj) ≤ r. For
simplicity and without loss of generalization, we assume that the minimal
distance between any two nodes is 1.

The core aspect of the communication model underlying our analysis is
the description of the circumstances under which a message is correctly re-
ceived by its intended recipient. In the Signal-to-Interference-plus-Noise-
Ratio (SINR) model (also called Physical Model in [117]), the successful
reception of a transmission depends on the received signal strength, the in-
terference caused by simultaneously transmitting nodes, and the ambient
noise level. Let Pr be the received power of a signal sent to a node vr, and
denote by Ir the interference power generated by other nodes in the network.
Finally, let N be the ambient noise power level. Then, a node vr receives
a transmission if and only if Pr

N+Ir
≥ β, where β is the minimum signal-to-

interference-ratio that is required for a message to be successfully received
at vr.

1

In wireless networks, the value of the received signal power Pr of a signal
is a decreasing function of the distance d(vs, vr) between the transmitter
vs and the receiver vr. Theoretically, the received signal power Pr can be

1All results in Part III can be generalized such that every node vi has its own βi.

204 CHAPTER 17. MODELS AND DEFINITIONS

modeled as decaying with distance d(vs, vr) as

Pr =
Ps

d(vs, vr)α
,

where Ps is the sending power of the transmitting node. The so-called path-
loss exponent α is a constant between 2 and 6, whose exact value depends on
external conditions of the medium (humidity, obstacles, . . .), as well as the
exact sender-receiver distance. As common, we assume that α > 2 [117].

As for the notation in this paper, we occasionally use the formulation
Ir(vi) = Pr(vi) in order to emphasize that the signal power transmitted by a
node vi other than the intending sender is perceived at vr as interference. In
summary, if Pr(vs) and Ir(vi) are the received power levels sensed by node vr

in a specific time slot, a signal transmitted by a node vs ∈ V is successfully
received by vr if

Pr(vs)

N +
∑

vi∈V \{vs} Ir(vi)
=

Ps(vs)
d(vs,vr)α

N +
∑

vi∈V \{vs}
Ps(vi)

d(vi,vr)α

≥ β. (17.1)

Finally, the total interference Ir experienced by a receiver vr is the sum of
the interference power values created by all nodes in the network (except the
intending sender vs), that is, Ir :=

∑
vi∈V \{vs} Ir(vi).

Generalized Physical Model

In practice, the received signal power may deviate from the above theoretical
bound for various reasons. On the one hand, the signal-emitting characteris-
tics of antennas may not be perfectly omni-directional. Moreover, shadowing,
reflection, scattering, and diffraction caused by the presence of obstacles to
wireless signal propagation may have an impact on the signal power actually
sensed at the receiver.

In order to better account for some of these aspects of wireless com-
munication, we define and study the following slight generalization of the
physical model, which we call the generalized physical model. In this gener-
alized physical model with parameter θ, the received signal power (as well
as the interference caused by simultaneously transmitting nodes) can deviate
arbitrarily from the theoretically received power by a factor of θ. Formally,
if Pr(vs) is defined to be the actual received power of a signal transmitted by
node vs as sensed by the receiving node vr, the generalized physical model
states that Pr(vs) is in the range

1

θ
· Ps

d(vs, vr)α
≤ Pr(vs) ≤ θ · Ps

d(vs, vr)α
.

Note that the model leaves open the exact received signal power, and hence
algorithms working in the generalized physical model must be robust enough
to cope with arbitrary (even worst-case) deviations within the stated bounds.
Clearly, for θ = 1, the generalized physical model is equivalent to the standard
physical model.

17.2. GRAPHS VS. SINR: SIMPLE EXAMPLES 205

17.2 Graphs vs. SINR: Simple Examples

In order to exemplify the difference between graph models and SINR mod-
els, consider the simple network with 4 nodes illustrated in Figure 17.1. As
indicated by the arrows, nodes v1 and v3 want to send a message to the
corresponding receivers v2 and v4, respectively. A typical graph-based com-
munication model implies that scheduling both requests—regardless of the
transmission powers of the senders—requires at least two time slots, because
when being transmitted simultaneously, the two messages would collide at
v2. This is a classic example of the so-called Hidden-Terminal Problem.

v1 v2 v3 v4

1m 1m 1m

Figure 17.1: Four nodes placed equidistantly in a line.

Next, consider the example network of Figure 17.2, in which the two
sender-receiver pairs (v1, v2) and (v3, v4) are rearranging in such a way that
one pair is placed in the transmission line of the other. Node v4 being inside
the transmission range of sender v1, graph-based models again imply that
scheduling both messages simultaneously is impossible due to interference
(and a resulting collision) at v4.

v1 v3 v4

4m 1m

v2

2m

Figure 17.2: A more elaborate example with four nodes.

While graph-based models thus imply that simultaneous scheduling of
messages in the examples of Figures 17.1 and 17.2 is impossible, the reality
looks very different. In fact, the two requests can easily be transmitted in
parallel in both settings!

Using the physical SINR model, the feasibility of simultaneous trans-
mission in the example networks of Figures 17.1 and 17.2 can be derived
analytically. For a simple calculation, assume α = 3, β = 3, and back-
ground noise N = 10nW . Those values are realistic, even pessimistic,
for sensor networks [218]. In the example of Figure 17.1, let v1 and v3
send with power Pv1 = 0dBm2 and Pv3 = −7dBm, respectively. We get

the following SINR values: βv2 = 1000µW/(1m)3

0.01µW+(200µW/(1m)3)
≈ 5.00 and βv4 =

200µW/(1m)3

0.01µW+(1000µW/(3m)3)
≈ 5.40. Consequently, both receivers can correctly de-

code their corresponding message without problems. In the network shown
in Figure 17.2, too, both messages can be transmitted simultaneously. When

2The unit dBm is an abbreviation for the power ratio in decibel (dB) of the measured
power referenced to one milliwatt (mW). Zero dBm equals one milliwatt and in general,
x = 10 log10(P/1mW), where x and P are measured in dBm and mW, respectively.

206 CHAPTER 17. MODELS AND DEFINITIONS

v1 transmits with Pv1 = 1dBm and v3 with Pv3 = −15dBm, the SINR at v2
and v4 amounts to βv2 = 3.11 and βv4 = 3.13, respectively.

Practical Measurements

This section shows that the effects described above are not merely theoretical
gimmick, but can be verified using widely available standard sensor nodes.
Specifically, we employed mica2 sensor nodes running with TinyOS [123].
Each node is equipped with a 7.38 MHz Atmel processor, 128 kB of program
memory, and a ChipCon CC1000 radio transceiver configured to send at a
frequency of 868 MHz. The testbed consisted of two senders v1 and v3 and
two corresponding receivers v2 and v4 positioned in a line similar to the setup
shown in Figure 17.2. The distances between neighboring nodes were scaled
down to 100cm, 30cm, and 60cm, respectively.

On the sender side, the application tries to send 20000 messages in suc-
cession to the corresponding receiver. The receiver application simply counts
the number of messages received. For the success of this experiment, it was
crucial that the MAC layer allows parallel transmission of multiple messages.
Unfortunately, this is not possible with the built-in MAC layers available for
TinyOS because they are designed for a graph-based representation of sensor
networks and therefore try to prevent collisions. Consequently, the default
MAC layer used by TinyOS was replaced by an “SINR-MAC”, which we
tailored for our experiments:

• Sniffing the medium: Before sending a message, no check is performed
whether the medium is free. This allows simultaneous transmission of
several messages.

• Initial back-off: The initial back-off before transmitting a message is
removed. The default carrier sensing MAC layer protocol uses this
random delay to prevent simultaneous start of transmission by multiple
sensors.

• Output power: The sender v1 sends with output power 0dBm, v3 sends
with −10dBm.

Before presenting the measurement results, we calculate a theoretical
lower bound for the time required to transmit the 20000 messages when
assuming a graph-based communication model. A single packet consists of a
preamble (8 bytes), two synchronization bytes, a header of size 7 bytes (des-
tination address (2), message type (1), group ID (1), payload length (1), and
the CRC (2)), and the actual payload which is set to 6 bytes throughout the
experiments in this section. The sensors transmit with 38.4kbps using Manch-
ester Encoding which results in a data rate of 19.2kbps (2.4kBps). In addition
to the transmission, the radio module must switch from RX to TX mode and
back to RX mode for each message. This takes about 0.5ms according to [44].
Summed up, at least (23bytes/2.4kBps+ 0.5ms) ∗ 40000packets) ≈ 403s are
required when assuming a graph-based model in which parallel transmission

17.2. GRAPHS VS. SINR: SIMPLE EXAMPLES 207

is not possible. Note that this is a lower bound ignoring any software over-
head, e.g. for copying the message to the corresponding memory location.
Therefore, even stronger lower bounds could be proven with a more sophis-
ticated calculation.

The table below shows the average results of multiple runs of the same
experiment. The left column contains the measured values when using the
default TinyOS MAC layer protocol. On the right, the results of our adjusted
“SINR-MAC” are displayed.

Time required
standard MAC “SINR-MAC”

Node v1 603s 267s
Node v3 591s 268s

Messages received
standard MAC “SINR-MAC”

Node v2 19998 18668
Node v4 18852 19916

These results show that the examples analyzed in the previous section
can be implemented in practice. On the one hand, the time used by the
default MAC layer protocol exceeds the calculated lower bound by almost
50%. On the other hand, the “SINR-MAC” exploiting the interference phe-
nomena of the SINR model performs significantly better than this limit. This
highlights the inherent inability of graph-based models to represent certain
important physical aspects of wireless networks. More importantly, the ex-
periment indicates that protocols explicitly tailored for the SINR model—in
this case the adjusted “SINR-MAC” layer protocol—can often outperform
conventional graph-based protocols.

v1 v3 v5

270cm 120cm

v6

10cm

v2v4

90cm 200cm

Figure 17.3: Three interleaved sender-receiver pairs.

The question arises whether it is practically feasible to have three, four
or more senders transmitting messages in parallel when they are located in
a line. One constraint that ultimately limits the number of multiple simul-
taneous transmissions is the interval of possible output power levels of the
radio module. For example, the ChipCon CC1000 module integrated in the
mica2 sensors only allows power levels between −20dBm and +5dBm at a
frequency of 868MHz. Additionally, not every value in the output power
interval may be assigned. Our experiments indicated that—while still being
practically feasible—deploying multiple pairs of nodes in a line similar to
Figure 17.3 becomes increasingly difficult and failure-prone as the number
of pairs increases. However, using alternative sensor platforms with different
radio modules, it might be feasible to have more than three senders sharing
the medium in parallel.

208 CHAPTER 17. MODELS AND DEFINITIONS

17.3 The Scheduling Complexity

If too many devices transmit simultaneously in a wireless network, the in-
terference caused by these transmissions will prevent an intended receiver
from receiving the signal, i.e., the message is lost. On the other hand, if too
few nodes transmit at the same time, valuable bandwidth is wasted and the
overall throughput may suffer. Hence, the classic problem faced by any MAC
layer or scheduling protocol is that neither selecting too many nor too few
devices for concurrent transmission is acceptable.

In order to gain a more thorough understanding of the performance of
MAC layer protocols and in order to learn about the fundamental possibili-
ties and limitation of “optimal” scheduling protocols, we need a measure that
captures the achievable equilibrium between interference and simultaneous
transmissions. More concretely, assume that we are given a set of directed
links between pairs of nodes that indicate communication requests. How
much time is required to schedule all these requests in a wireless multi-hop
network? In the sequel, we define and study this scheduling complexity in
wireless networks. As we have seen in the examples of Section 17.2, un-
derstanding the scheduling complexity can yield intriguing insights into the
algorithmic structure of wireless communication beyond graph-based models.

Formally, we assume—as in Part II of this thesis—that transmissions are
slotted into synchronized slots of equal length. In each time slot t, a node v
can either transmit or not transmit. If it transmits, it chooses a power level
Pv > 0 that must be sufficiently large in order to reach the intended receiver.
A power assignment determines the power level chosen by each node in a
certain time slot. Formally, a power assignment φt is a function φt : V 7→ R+

which maps every node in the network to a power level. We denote by φt(vi)
the power level of node vi ∈ V in time slot t. If a node is not scheduled to
transmit in this time slot, then φt(vi) = 0. In case it is clear from the context
which time slot t is meant, we also use the notational short-cut Pi := φt(vi).
A schedule S = (φ1, . . . , φT (S)) is a sequence of T (S) power assignments,
where φt denotes the power assignment in time slot t. Finally, we call T (S)
the length of schedule S . That is, a schedule S of length T (S) determines
the power level Pi for every node vi ∈ V for T (S) consecutive time slots.

Let Λ be a set of communication requests λij . Each request λij denotes
a directed link (vi, vj) and indicates that node vi is supposed to success-
fully transmit a message to node vj . The task of a scheduling algorithm is
to schedule a set of communication requests Λ such that all messages are
successfully received.

Definition 17.1. Consider a time slot t and a power assignment φt. We
say that a directed link (vi, vj) is successfully scheduled in time slot t if
vj successfully receives a message from vi according to the SINR Inequality
(17.1).

Let Lt be the set of all successfully scheduled links in time slot t. The
goal is that after as few time slots as possible the union of all sets Lt equals
the set of requests Λ.

17.3. THE SCHEDULING COMPLEXITY 209

Definition 17.2. Let Λ be the set of communication requests. The scheduling
problem for Λ is to find a schedule S of minimal length T (S) such that the

union of all successfully transmitted links
⋃T (S)

t=1 Lt equals Λ.

Finally, we define the scheduling complexity of a topology, that is, of an
arbitrary set of communication requests Λ.

Definition 17.3. The scheduling complexity T (Λ) of a set of communica-
tion requests Λ is the minimal number of time slots T such that there exists
a valid schedule S of length T = T (S).

The scheduling complexity T (Λ) reflects how fast all requests in Λ can
theoretically be satisfied (that is, when scheduled by an optimal MAC layer
protocol).

Often, as in Chapters 18 and 19, we will be interested in the scheduling
complexity of a certain network property Ψ, rather than a specific set of
communication requests Λ. By a network property Ψ, we mean a desirable
network topology such as a strongly-connected subgraph, a spanner, a low-
degree topology, etc., depending on the specific requirements at hand.

Definition 17.4. The scheduling complexity of a network property Ψ is the
minimal number of time slots T , such that there exists a valid schedule S
of length T = T (S), such that the union of all successfully transmitted links

Σ =
⋃T (S)

t=1 Lt satisfies property Ψ.

For instance, the scheduling complexity of strong-connectivity (i.e., Ψ is
strong-connectivity) translates to finding a schedule S of minimal length in
which all successfully transmitted links connect the network, i.e., there exists
a path between all pairs of nodes. Finally, when talking about a specific
scheduling algorithm A, we refer to the scheduling complexity of A as the
number of time slots required by this algorithm in the worst-case to schedule
a specific set of requests.

Understanding the scheduling complexity of various network properties
as well as arbitrary sets of requests is of fundamental interest in wireless net-
works. It is a measure that indicates how quickly a desired network topology
can actually be established or how quickly communication requests can be
satisfied. In this sense, studying the scheduling complexity complements the
study of capacity in wireless networks [117]. While the notion of capacity
captures the amount of information that can be transmitted in a best-case
or average-case scenario (i.e., without assuming worst-case networks), the
scheduling-complexity of a wireless network describes how quickly informa-
tion can be transmitted in worst-case scenarios, i.e., in arbitrary networks.
Moreover, note that the scheduling complexity of a set of requests places a
lower bound on the theoretically achievable efficiency of any MAC layer or
scheduling protocol. As such, this measure provides a handle for theoreti-
cally analyzing the performance of MAC layer protocols from an algorithmic
worst-case perspective.

The computation of efficient schedules in the SINR model has been stud-
ied in previous work in various flavors. The work of [36] proposes a mathe-
matical programming formulation for deriving optimal schedules. However,

210 CHAPTER 17. MODELS AND DEFINITIONS

the resulting formulations are infeasible from a computational point of view.
The authors then propose a heuristic based on a so-called column generation
approach, which they show to produce fast schedules in practical scenarios.
Finally, it is shown in [36] that the problem of deriving optimal schedules is
NP-hard, even in a much more restricted model. The works of [34, 35, 131]
also derive mathematical programming formulations and investigates the im-
pact of power assignments to nodes on the achievable throughput capacity.

In [81, 112, 113], various protocols for scheduling in SINR-based models
have been proposed and evaluated under different traffic and random node
distribution models. These protocols being evaluated by means of simulation,
none of them provides theoretical bounds on the competitiveness in a worst-
case sense. The algorithms in [62, 73] study the problem of finding schedule
and power control policies that minimize the total average transmission power
in the wireless multi-hop network. The algorithm in [73], for instance, is
based on guaranteeing a certain “spatial reuse” distance between all pairs of
simultaneously transmitting nodes. As we will see in Chapter 18, such an
approach inherently cannot yield competitive results in worst-case networks.
For an exploration of spatial reuse TDMA in SINR-based models, we refer
to the thesis by Grönkvist [113]. That is, all currently known protocols
may produce schedules such that, in certain networks and for certain request
sequences, can be significantly worse than the optimal solution.

In summary, there has so far been no work that considers scheduling pro-
tocols in SINR-based models from an algorithmic point of view, i.e., with
provable guarantees on their competitiveness and the actual scheduling com-
plexity of natural properties and topologies in wireless networks has been
completely unresolved. All existing protocols do either not yield provable
worst-case guarantees or are based on solutions to complex optimization
problems that are computationally intractable even for small networks.

In the subsequent chapters, we are interested in obtaining scaling laws
that describe the asymptotic behavior of the scheduling complexity as the
network grows. We also seek to devise scheduling algorithms that achieve
good performance with regard to the scheduling complexity since such algo-
rithms would come close to being an “optimal” or at least competitive MAC
layer protocol. As it turns out, studying the scheduling complexity of differ-
ent protocols reveals previously unknown and practically important aspects
of communication in wireless networks.

Chapter 18

Inefficiency of Simple MAC

Layer Protocols

The task faced by any MAC layer or scheduling protocol is twofold. The
protocol not only decides which nodes transmit in which time slot, it also
assigns proper power levels. As it turns out, particularly the second task—
assigning transmission powers—is non-trivial. In this section, we prove a
striking deficiency of all protocols and power assignment schemes that have
been widely studied in the field of wireless networks (and that have also been
adopted by all standard MAC layer protocols). Specifically, the scheduling
complexity achieved by such protocols can be Θ(n) times worse than the
optimum, even for simple request sequences.

In order to derive this result, we ask the following seemingly simple ques-
tion: How much time is required until every node can successfully transmit
one message, when the receivers for each sender are selected best possible?
Or in other words, how much time is required until every node can commu-
nicate its identifier or even one bit of information to some other node in the
network? Technically speaking, we want to explore the scheduling complex-
ity of the following simple scheduling task Ψmin: Every node v ∈ V can send
at least one message successfully. Note again that Ψmin does not restrict to
which other node a node must send, i.e., every nodes can for instance select
its nearest neighbors as receiver. That is, all we want to know is the max-
imum number of time slots required in a wireless communication medium
until every node can send something to someone.

Because of its extreme simplicity, understanding the scheduling complex-
ity of this scheduling task Ψmin is fundamental: If a MAC protocol is not
efficient (competitive) for this simple task, it cannot possibly be efficient for
any realistic scheduling task where there may be traffic flows or routing re-
quirements. Moreover, achieving good solutions for Ψmin (i.e., an algorithm
with low scheduling complexity for Ψmin) appears to be easy and intuitively,
one would expect standard MAC layer protocols to achieve an excellent per-

212 CHAPTER 18. INEFFICIENCY OF SIMPLE PROTOCOLS

v1 v2 v3 v4 v5 v6

1 2 4 8 16

Figure 18.1: Example with nodes vi being located at position vi = 2i, i =
1, . . . , n.

formance for this problem.
Surprisingly, however, the opposite is true: All generally employed and

studied power assignment schemes are incapable of achieving a reasonable
scheduling complexity even for the simple scheduling task Ψmin. In the worst
case, these intuitive protocols can essentially be as slow as the trivial protocol
that schedules every single node individually, without taking advantage of
spatial reuse at all. In the sequel, we consider the two most common power
assignment policies: uniform and linear power assignment.

18.1 Uniform Power Assignment

Possibly the simplest way of assigning power levels in a radio network is to
let every node transmit at the same power. Such uniform power assignment
schemes have been widely studied (e.g. [116, 214]) and adopted in practi-
cal systems. Moreover, standard graph-based models such as the unit disk
graph implicitly assume uniform power assignment. The following theorem
states, however, that even for the simple scheduling task Ψmin, the schedul-
ing complexity of any uniform power assignment algorithm is linear in n.

Theorem 18.1. Assume that every node vi ∈ V has the same transmission
power. The scheduling complexity of Ψmin achieved by any protocol using
uniform power assignment is at least n · β

2α+β
∈ Ω(n), even in the absence of

ambient noise.

Proof. Consider the example network given in Figure 18.1, in which nodes
v0, . . . , vn−1 are placed on a straight line with exponentially increasing dis-
tances between them. We prove that in each time slot, at most 2α

β
+ 1

nodes can send successfully if the transmission power is uniform. Assume for
contradiction that there are L = 2α

β
+ 2 nodes sending successfully in the

same time slot, and let vs be the right-most of these transmitters. Further,
assume that vs’s transmission is successfully received by node vr. On an
exponential line, if vr is to the left of vs, it holds that d(vi, vr) ≤ d(vs, vr)
for each simultaneously transmitting node vi. If vr is on vs’s right, it holds
that d(vi, vr) ≤ 2d(vs, vr) for each such vi. Because all transmission powers
P are equal and vs is the right-most sender, the SINR at vr is hence at most

P
d(vs,vr)α

N + (L− 1) · P
(2d(vs,vr))α

≤ 2α

L− 1
=

2αβ

2α + β
< β,

18.2. LINEAR P ∼ Dα POWER ASSIGNMENT 213

which is not sufficiently high for a correct reception of the message at vr,
which yields the contradiction. Because at most 2α

β
+1 links can be simulta-

neously scheduled in any time slot, the algorithm requires at least n·(2α+β
β

)−1

time slots to schedule all nodes at least once, from which the theorem fol-
lows.

18.2 Linear P ∼ dα Power Assignment

The other intuitive and frequently adopted way of assigning power levels
when scheduling a set of wireless nodes is the following: Intended senders
transmit at a power level that is proportional to the minimal power required
for transmitting over the wireless link (e.g., [27, 178, 228, 234]). In other
words, for a pair of sender si and receiver ri, si sends with power Ps =
ρ·d(si, ri)

α, where ρ is an arbitrary constant which may depend on the values
of α, β, and the ambient noise N . Since d(si, ri)

α is the minimal amount
of power necessary to reach ri from si, it seems natural to let nodes send
with a power that is proportional to d(si, ri)

α, in order to avoid unnecessary
interference. We call such a power assignment linear, because the power
assigned to a node depends linearly on the minimal power required for its
link. Like in the uniform case, however, any protocol using linear power
assignment can perform badly even for the basic task Ψmin.

Linear power assignments have been assumed in many papers written
on topology control (e.g. [164, 204]), in papers proposing energy efficient
protocols for wireless networks (e.g. [27, 228, 234]), and in some MAC layer
protocols [178]. Moreover, linear power assignments have often implicitly
been assumed in theoretical studies regarding energy efficient network design,
for instance in the so-called minimum energy broadcast problem, e.g., [12,
56, 57].

Theorem 18.2. Assume that every node vi that intends to send a message
over a link of length `i transmits with power Ps = ρ · `αi , for an arbitrary
constant ρ which may depend on α, β, or N . The scheduling complexity
for Ψmin achieved by any protocol using such a linear power assignment is
n · min{1, β/2α} ∈ Ω(n), even in the absence of ambient noise.

Proof. Consider again the example given in Figure 18.1. Let vi be a trans-
mitting node in an arbitrary time slot t. In a linear power assignment, it
transmits with power Pi = ρ · d(vi, vi−1)

α, for some constant ρ. Conse-
quently, all nodes vj , j < i face an interference of at least

Ij(vi) ≥ ρ · d(vi, vi−1)
α

(2d(vi, vi−1))α
=

ρ

2α

because the distance d(vi, vj) is at most 2d(vi, vi−1) in the exponential line.
Because at least the same amount of interference is caused by all simultaneous
senders vi, a node vj faces a total interference of at least Ij ≥ R · ρ

2α , where
R is the number of sending nodes to the right of vj . Now, let vs be the

214 CHAPTER 18. INEFFICIENCY OF SIMPLE PROTOCOLS

left-most node that sends a message in time slot t, and let vr be its receiver.
Because the SINR at vr must be at least β, it must hold that

ρ·d(vs,vr)α

d(vs,vr)α

N +R · ρ
2α

≥ ρ2α

2αN + ρR

!

≥ β.

From this, it follows that the maximum number of simultaneous senders
Rmax can be at most Rmax ≤ 2α

β
and consequently, the algorithm requires

at least n · min{1, β/2α} time slots for scheduling all nodes. Note that this
result holds even if there is no noise N .

Discussion

In reality, both α and β are small constant values and therefore, Theo-
rems 18.1 and 18.2 show that even in the most basic scheduling problem
Ψmin, only a small constant number of links can be simultaneously sched-
uled when adopting uniform or linear power assignment schemes. For α = 4
and β = 7dB, for instance, at most 4 links can be scheduled in parallel. On
the other hand, it can be shown that there exist schedules of constant length
for successfully scheduling all links in the topology of Figure 18.1. It follows
that any MAC layer or scheduling protocol that assigns transmission powers
according to either of these two policies may perform by a factor Θ(n) times
worse than an optimal protocol. Specifically, the subsequent Chapter 19 will
show how the use of a highly non-linear power assignment yields much more
efficient, and provably competitive schedules. Like in the example discussed
in Section 17.2, the idea is to “over-power” nodes with small links in order
to guarantee a high degree of parallelism and spatial reuse.

The bad scheduling complexity achieved by uniform and linear power
assignments has practical relevance: It shows that in order to obtain a com-
petitively fast scheduling of sending requests in wireless networks, MAC layer
and scheduling protocols must adopt neither uniform nor linear power assign-
ment. Instead, the remedy against this loss of efficiency is a less intuitive,
highly non-linear assignment of power levels; a power scheme that lies “in
between” uniform and linear power assignment. Particularly, many different
power levels are required in order to achieve efficient schedules.

The lower bounds also challenge a common assumption made in the the-
oretical literature on wireless ad hoc and sensor networks. Specifically, it
is often argued that the energy required for transmitting a message over a
distance d is in the order of dα. Based on this fact, problems such as the min-
imum energy broadcast have been studied using a so-called energy-metric in
which the cost of each link of length d corresponds to dα [12, 56, 57, 164, 228].
While this analytical approach certainly leads to interesting concepts and in-
sights, one has to be aware that if nodes really transmitted using the power-
levels implied by the energy-metric, the resulting scheduling would be highly
sub-optimal. In this sense, abstracting away the aspect of scheduling when
studying energy-metrics in a static, graph-theoretical way is problematic.

Chapter 19

Polylogarithmic Scheduling

Complexity

In this section, we show that when using proper power assignment poli-
cies, much more efficient scheduling is possible even in worst-case networks.
Specifically, we present a protocol that achieves a scheduling complexity of
O(log2n) for the simple scheduling task Ψmin in arbitrary networks, thus ex-
ponentially improving on all protocols that employ uniform or linear power
assignment schemes. In fact, we show that even much more complex schedul-
ing tasks can be scheduled in polylogarithmic time in wireless networks. In
particular, we study the scheduling complexity of connectivity in wireless net-
works. That is, we seek to determine the minimum number of time slots re-
quired for successfully scheduling a strongly-connected topology. Section 19.1
shows that even in worst case networks, a strongly-connected topology can
be successfully scheduled in at most O(log3n) time slots.

The lower bounds in Chapter 18 imply that algorithms based on linear
and uniform power assignment schemes inherently have a scheduling com-
plexity of at least Ω(n). On the other hand, MAC layer protocols based
on standard power assignment strategies have the practical advantage that
their implementation is simple. We therefore examine a simple scheduling
algorithm that employs linear power assignments in Section 19.2.

19.1 The Complexity of Connectivity

In the previous chapter, we have seen that neither uniform nor linear power
assignment schemes achieve a polylogarithmic scheduling complexity. There-
fore, in order to obtain the claimed result, our algorithm employs a power-
assignment policy that favors short links over long links in the sense that
senders with short links transmit at a power level that is significantly higher
than required in the absence of interference.

216CHAPTER 19. POLYLOGARITHMIC SCHEDULING COMPLEXITY

2i
2i+6 2i+4 2i+22i+5 2i+3 2i+1

v1 v2 v4 v5 v6 v7 v8v3
785612 34 f ff f

Figure 19.1: An example in which scheduling many requests in parallel requires a
non-trivial power assignment policy.

Let the Euclidean diameter D be the largest distance between any two
nodes in the network and let `(fij) denote the length of a link fij from node
vi to vj .

In order to give a first intuitive insight into the power assignment used by
Algorithm 19.1, consider the instance depicted in Figure 19.1. For the fol-
lowing considerations we momentarily neglect the presence of ambient noise
N for simplicity. If any of the four links are to be scheduled individually,
setting the transmission power of the respective sender vi to β · `(fi,i+1)

α is
sufficient for the signal to be correctly received in the absence of interference.
Should more than one link be scheduled simultaneously, however, the situa-
tion becomes more intricate. If link f12 is scheduled successfully, the signal
power received by v2 is at least β, and hence the intended receivers of all
other links face an interference of at least β/2α. It follows that if we want
some of the smaller links to be scheduled simultaneously, every sender vi of
any one of these links must transmit at a power that is at least by a factor
β/2α greater than β · `(fi,i+1)

α. The problem is that the interference created
by long link cascades, that is, if all four links are scheduled in the same time
slot, the third and fourth senders (v5 and v7) must transmit with a power
of at least β3/22α · `(f5,6)

α and β4/23α · `(f7,8)
α, respectively, in order to

guarantee successful simultaneous reception.1 This observation weighs par-
ticularly heavily for the following reason: If we want fast, say, polylogarithmic
schedules, there must exist time slots in which at least n/ logcn nodes are
scheduled simultaneously for some constant c. The dependence of the cho-
sen transmission power on other simultaneously scheduled links—together
with the necessity to schedule relatively many links at the same time—shows
that every provably efficient scheduling protocol must inevitably employ a
complex and sophisticated power assignment strategy.

In Algorithm 19.1, the transmission power of a node vi transmitting over a
link fij is scaled by a factor of (3nβ)τ(fij), where τ (fij) is a value that reflects
the relative position of `(fij) in an ordering of all link lengths. Unfortunately,
scaling up the transmission powers of nodes with short links in turn entails
new problems. Since a node vi with a short link fij now transmits at a
power that is high relative to `(fij), vi may cause significant interference at
a receiver vh even if the distance d(vi, vh) is exponentially larger than `(fij).
In other words, the unavoidable scaling of transmission powers renders simple

1For our illustration we assume that β > 2α; otherwise the node distances can be
adapted to produce a similar situation in which the nodes’ transmission powers are dis-
proportionate compared to their radii.

19.1. THE COMPLEXITY OF CONNECTIVITY 217

geometric arguments based on reuse distances problematic.
With regard to our studies of locality in Part I of this thesis, it is inter-

esting to observe that this non-locality of interference in the SINR model
is in stark contrast to all generally studied graph-based interference models.
In fact, the above intuition shows that fast scheduling in the SINR model is
inherently a non-local task and simple local approaches that typically work
in graph-based models fail to produce reasonable solutions.

The Algorithm

In every, possibly worst-case network, Algorithm 19.1 computes a schedule
of length at most O(log3n) time slots in which all scheduled links combine
for a strongly-connected topology. The algorithm proceeds in phases, each
phase corresponding to an iteration of the outermost loop. The purpose of
this outer loop is to gradually reduce the number of active nodes vi ∈ A.
Initially, the set of active nodes A contains all nodes, and whenever a node
becomes passive (by being discarded from A), it does not transmit in any
subsequent time slot. At the outset of a phase p, every active node vi chooses
its closest active neighbor, say vj , and the directed link fij = (vi, vj) becomes
designated to be scheduled in phase p (Lines 6 and 7). After breaking cycles
of length 2 (i.e. two nodes that are mutually closest neighbors) in Line 7, Fp

is the set of all selected links that are to be scheduled in phase p. Fp forms
a nearest neighborhood forest consisting of a set of trees, from each of which
only the root remains active in the next phase p+1. This process is repeated
until there remains only a single active node. At this point, the scheduled
links form a directed tree towards a single node, which can then complete the
strong connectivity requirement in a single additional time slot.

The main challenge, however, is how to quickly schedule the forest Fp. In
the sequel, we describe the algorithm for efficiently scheduling Fp on a more
technical level. At the outset of the schedule() procedure of Algorithm 19.1,
the algorithm partitions the set of links Fp into at most blogDc+ 1 possibly
empty disjoint sets L = L0, . . . , LblogDc. Each such set Lh contains every

link fij ∈ Fp with length 2h ≤ `(fij) < 2h+1. If no such link exists, the
set Lh remains empty. In the next step, the algorithm removes all these
empty sets and renames the remaining non-empty sets such that Lh is the
hth non-empty set in decreasing order of the lengths of the contained links,
for h = 1, 2, . . . (see Figure 19.2). In the resulting partition, the lengths of all
links in the same set are still within a factor of 2, whereas the length of two
links in sets Lh and Lh+1 may differ by an arbitrarily large factor if many
empty sets were deleted between Lh and Lh+1.

The task of each of the dlog(3nβ)e iterations of the subsequent for-loop is
to schedule a subset of all the links. In particular, in the kth iteration of the
loop, links in sets Lmdlog(3nβ)e+k are scheduled for all integers m. All these

links form the set of links Fk that is to be scheduled in the kth iteration.
The reason for partitioning the entire set of links into dlog(3nβ)e subsets is
to guarantee (cf. Lemma 19.6) that two links scheduled in the same time
slot either have almost the same length (when they are in the same set of the

218CHAPTER 19. POLYLOGARITHMIC SCHEDULING COMPLEXITY

1: A := V ; t := 1; Define constants ν := 4N and µ := 3 + 2
7
α

+2 α

√
β(α−1)

α−2
;

2: while |A| > 1 do {∗ Phase p ∗}
3: Fp := ∅;
4: for each vi ∈ A do
5: choose vj ∈ A \ {vi} minimizing d(vi, vj);
6: fij := (vi, vj); `(fij) := d(vi, vj);
7: if fji /∈ Fp then Fp := Fp ∪ fij ; fi
8: end for
9: for each vi ∈ A with fij ∈ Fp do A := A \ {vi};

10: schedule(Fp);
11: end while
12: φt(vi) := Nβ · Dα for vi ∈ A
13: S := {φ1, . . . , φt−1};
schedule(Fp)
1: Partition Fp into sets L = L0, . . . , Lblog Dc such that Lh contains all links

fij with 2h ≤ `(fij) < 2h+1;
2: Delete all empty sets Lh ∈ L and rename L such that Lh is the hth

non-empty set in decreasing order of the lengths of the contained links;
3: for k = 1 to dlog(3nβ)e do
4: Let Fk be the union of all sets Lmdlog(3nβ)e+k ∈ L for m ∈ N0;
5: for each fij ∈ Fk do
6: τ (fij) := χ, where fij ∈ L` and L` is the χth set in Fk

(in decreasing order of lengths);
7: end for
8: while not all links in Fk have been scheduled do
9: Et := ∅;

10: Consider all links fij ∈ Fk in decreasing order of `(fij):
11: if allowed(fij , Et) then Et := Et ∪ {fij};
12: Schedule all fij ∈ Et in time slot t and assign vi a

transmission power of Pi = φt(vi) := ν(3nβ)τ(fij) · `(fij)
α;

13: Remove all scheduled links (Fk := Fk \ Et);
14: t := t+ 1;
15: end while
16: end for

allowed(fij,Et)
1: for each fab ∈ Et do
2: δia := τ (fij) − τ (fab);
3: if τ (fij) = τ (fab) and µ · `(fij) > d(vi, va) return false

4: else if `(fij) · (3nβ)(δia+1)/α > d(vi, vb) return false
5: end for
6: return true

Algorithm 19.1: Polylogarithmic Scheduling Algorithm

19.1. THE COMPLEXITY OF CONNECTIVITY 219

τ2
τ1τi

L0 L1 L2 L3 L4

Lp Lp−1 Lp−2 Lh Lh−1
L1

L Llog∆log∆−1

h−1= log(3nβ)

Figure 19.2: Naming of the sets in partition L. The uppermost row represents
the names given in Line 1 of the schedule() procedure, the second row reflects the
situation after the renaming in Line 2, and the τi at the bottom denotes the power
scaling factors assigned in Line 6.

partition L) or their lengths differ significantly. We will use this property in
the key Lemma 19.7.

It may not be possible to schedule all links in Fk in a single time slot.
Even scheduling the links of Fk alone turns out to be a challenging task, as
we show in the following. In Lines 5 and 6 of the schedule() procedure,
each link fij ∈ Fk designated to be scheduled in this iteration of the for-loop
determines its τ (fij) value. If link fij is in the set with the largest lengths of
the sets selected in Fk, τ (fij) is set to 1. Or generally speaking, if a link fij is
in set L` and L` is the χth set (still in decreasing order of lengths) of all sets
forming Fk, then τ (fij) := χ (cf. Figure 19.2). Intuitively, short links have
a large τ (fij), while long links have a small τ (fij). In other words, τ (fij) is a
power scaling factor reflecting the fact that—as illustrated in the example of
Figure 19.1—nodes with short links may have to send with disproportionately
high transmission powers compared to nodes with long links.

At the heart of Algorithm 19.1 is the subsequent while-loop which sched-
ules all nodes in Fk using essentially at most O(log n) time slots, as shown
later in Lemmas 19.5 and 19.7. The set of links scheduled in parallel in time
slot t is denoted by Et; at the end of each iteration, all links that were sched-
uled are removed from Fk (Line 13). The selection of links for Et proceeds as
follows. Links in Fk are considered one by one in decreasing order of `(fij).
When considering a link fij , the algorithm checks whether scheduling fij

conflicts with previously selected (longer) links in Et in the sub-procedure
allowed(fij,Et). This procedure returns true if and only if

1. Link fij can be successfully scheduled in spite of the interference cre-
ated by links already in Et.

2. All senders in Et can still successfully transmit in spite of the additional
interference caused by fij .

220CHAPTER 19. POLYLOGARITHMIC SCHEDULING COMPLEXITY

As shown in the analysis, these two properties can be guaranteed by requiring
that for all fab ∈ Et, it holds that d(vi, va) ≥ `(fij) · µ if τ (fij) = τ (fab) or

d(vi, vb) ≥ `(fij) · (3nβ)(δia+1)/α otherwise, where δia = τ (fij) − τ (fab) and
the constant µ is set to a large enough value as to ensure low interference.

Clearly, Algorithm 19.1 is not primarily intended for being employed as
a practical network protocol in its current form. Besides being rather com-
plex, the necessity that each node vi knows its corresponding (non-local)
value τ (fij) for the purpose of determining its own transmission power ren-
ders the algorithm non-trivial to implement in a distributed way. However,
the algorithm shows that, theoretically, complex requests can be scheduled
efficiently also in large-scale worst-case networks.

Analysis

The analysis of Algorithm 19.1 consists of two parts. First, we need to guar-
antee that the obtained schedule S is valid, that is, all links are successfully
received by the intended receivers. Second, we prove that the number of time
slots required in the worst case does not exceed O(log3n).

In order to guarantee that every link fij scheduled by the algorithm in a
time slot ts can be correctly received by the intended receiver vj , we bound
the total interference accrued at the receiver. For this purpose, we first
bound the interference created by simultaneously scheduled links fab that
are significantly longer.

Lemma 19.1. Consider a time slot ts in which the algorithm schedules a
link fij for transmission. It holds for the intended receiver vj and for any
simultaneously scheduled link fab ∈ Fk \ {fij} with τ (fab) < τ (fij) that

Ij(va) ≤ ν(3nβ)τ(fij)−1.

Proof. In Fk, every node has a link to its closest neighbor and hence, `(fab) ≤
d(vj , va) for all links fab. The interference at vj caused by va is therefore at
most

Ij(va) =
Pa

d(vj , va)α
≤ ν(3βn)τ(fab)`(fab)

α

`(fab)α

= ν(3βn)τ(fab) ≤ ν(3βn)τ(fij)−1.

In the following lemma we show that the interference caused by con-
currently scheduled links that are significantly shorter than fij is equally
bounded.

Lemma 19.2. Consider a time slot ts in which the algorithm schedules a
link fij for transmission. It holds for the intended receiver vj and for any
simultaneously scheduled link fab ∈ Fk \ {fij} with τ (fab) > τ (fij) that

Ij(va) ≤ ν(3nβ)τ(fij)−1.

19.1. THE COMPLEXITY OF CONNECTIVITY 221

Proof. The interference Ij(va) incurred by a node va at vj is at most

Ij(va) ≤ ν(3nβ)τ(fab) · `(fab)
α

d(va, vj)α
.

Assume for contradiction that there exists a link fab with τ (fab) > τ (fij)

and Ij(va) > ν(3nβ)τ(fij)−1. Then

ν(3nβ)τ(fab) · `(fab)
α

d(va, vj)α
> ν(3nβ)τ(fij)−1

holds and hence d(va, vj) <
α

√
(3nβ)τ(fab)−τ(fij)+1 · `(fab). Because it holds

by the triangle inequality that d(va, vi) ≤ d(va, vj) + `(fij),

d(va, vi) < α

√
(3nβ)τ(fab)−τ(fij)+1 · `(fab) + `(fij)

= `(fab) · (3nβ)
δai+1

α + `(fij)

follows. However, this contradicts the fact that va and vi are selected for
scheduling in the same time slot. Particularly, at the time allowed(fab,Et)
is invoked, fij is already in Et, and the procedure would evaluate to false.
Hence, fab and fij cannot be scheduled in the same time slot.

With these two lemmas, we can now establish that throughout the algo-
rithm, every scheduled link is successfully received by the intended receiver.

Lemma 19.3. For every k and for every link fij ∈ Fk, there exists a unique
time slot ts in which vj successfully receives a message from vi.

Proof. We begin by showing that every fij is scheduled exactly once during
the execution of Algorithm 19.1. Every fij belongs to a single set Lh and
each such set is considered in exactly one iteration of the outermost for-loop
(more precisely, set Lh is scheduled in iteration k in which h = m log(3βn)+k
for some integer m ≥ 0). Consider this iteration: As long as fij is not sched-
uled, it remains in Fk and the while-loop (Lines 8–15) does not terminate.
Termination of this while-loop is guaranteed, however, by the fact that in
every iteration at least the longest link in Fk is selected for scheduling in Et

and consequently removed from Fk. Because after at most n iterations the
set Fk is empty and the loop terminates, there must be a time slot in which
fij is scheduled. Further, note that since every fij ∈ Et is removed from Fk,
every link has a unique time slot ts in which it is scheduled.

Hence, we need to prove that in this time slot ts, the message is received
successfully by the intended receiver vj . For this purpose, we bound the total
interference Ij =

∑
va∈V \{vi} Ij(va) experienced by any such receiver.

By Lemmas 19.1 and 19.2 we know that for all fab with τ (fab) < τ (fij)

and τ (fab) > τ (fij), the interference Ij(va) is bounded by ν(3nβ)τ(fij)−1.

222CHAPTER 19. POLYLOGARITHMIC SCHEDULING COMPLEXITY

Hence, because there are at most n nodes in these sets, it holds that
∑

va:τ(fij) 6=τ(fab)

Ij(va) ≤ n · ν(3nβ)τ(fij)−1. (19.1)

What remains to be bound is the interference created by concurrently sched-
uled links fab for which τ (fab) = τ (fij), that is by nodes that are in the same
length class of the partition L.

Let T be the set of simultaneously scheduled links fab with τ (fij) =
τ (fab). Abusing notation, we also write va ∈ T to denote that node va is
an intended sender with link in T . By the definition of allowed(fab,Et) a
link fab ∈ T prevents all links fcd ∈ T for which µ · `(fcd) > d(va, vc) from
being added to T . Because the lengths of all links in T , including fij , differ
at most by a factor of 2, it follows that around each fab ∈ T there can be no
other scheduled sender vc in T within distance less than 1

2
µ · `(fab). Hence,

disks Di of radius 1
4
µ`(fab) centered at every sender va ∈ T do not overlap.

Consider rings Rλ of width µ`(fij) around vi, that is, Rλ contains all
intended transmitters va ∈ T for which (λ − 1

2
)µ`(fij) < d(vi, va) ≤ (λ +

1
2
)µ`(fij). Consider all transmitters va ∈ T ∩Rλ for some integer λ > 0. All

corresponding disks Di must be located entirely in an extended ring of area

A(R+
λ) =

[((
λ+

3

4

)
µ`(fij)

)2

−
((

λ− 3

4

)
µ`(fij)

)2
]
π

= 3λµ2`(fij)
2π.

The distance of a transmitter in Rλ to vj is at least ((λ− 1
2
)µ−1)`(fij), and

each such node transmits with a power of at most ν(3nβ)τ(fij) · (2`(fij))
α.

By applying a standard geometric area argument, we can bound the total
interference Iλ =

∑
va∈T ∩Rλ

Ij(va) incurred by nodes va ∈ T ∩ Rλ as

Iλ ≤ A(R+
λ)

A(Di)
· ν(3nβ)τ(fij) · (2`(fij))

α

(((λ− 1
2
)µ− 1)`(fij))α

<
3λµ2`(fij)

2π

(1
4
µ`(fij))2π

· ν(3nβ)τ(fij) · (2`(fij))
α

(1
2
λ(µ− 1)`(fij))α

=
48ν(3nβ)τ(fij)22α

λα−1(µ− 1)α
.

Summing up the interference over all rings Rλ, we obtain

∞∑

λ=1

Iλ ≤ 48ν(3nβ)τ(fij)22α

(µ− 1)α

∞∑

λ=1

1

λα−1

<
48ν(3nβ)τ(fij)22α

(µ− 1)α
· α− 1

α− 2

< ν · (3β)τ(fij)−1 · nτ(fij),

19.1. THE COMPLEXITY OF CONNECTIVITY 223

where the second-to-last inequality follows from a standard bound for Rie-
mann’s zeta-function and α > 2. The last inequality is derived by plugging
in the definition of µ.

Adding up the total interference created by senders va whose links satisfy
τ (fab) = τ (fij) and the total interference by all other nodes as bounded in
Inequality (19.1), we obtain

Ir ≤ ν(3β)τ(fij)−1 · nτ(fij) + ν(3β)τ(fij)−1 · nτ(fij)

=
2ν

3
· βτ(fij)−1 · (3n)τ(fij).

Finally, the SINR experienced at any intended receiver vj of a link fij is
therefore at least

SINRj ≥ ν(3nβ)τ(fij)

N + 2
3
νβτ(fij)−1 · (3n)τ(fij)

=
4(3nβ)τ(fij)

1 + 8
3
βτ(fij)−1 · (3n)τ(fij)

≥ 4(3nβ)τ(fij)

11
3
βτ(fij)−1 · (3n)τ(fij)

> β,

where the second inequality follows from the definition of ν and the third
inequality from the fact that n, β ≥ 1. Hence, all scheduled messages are
received correctly.

We now turn our attention to the second aspect of the analysis. Partic-
ularly, we prove that the number of time slots required by Algorithm 19.1 is
small, and hence, the scheduling complexity is low. We require the following
geometric lemma.

Lemma 19.4. Consider a disk C with radius rc, and disks Di with centers
si and radius ri, ri ≥ rc for all i. Let κ be the maximal number of such disks
Di such that both of the following properties hold:

• Every Di overlaps with C in at least one point.

• No disk Di contains a center cj for i 6= j.

Then, it holds that κ ≤ 36.

Proof. The proof follows a geometry argument. Assume for contradiction
that there are κ + 1 disks Di that fulfill the properties stated in the lemma
and consider the corresponding centers ci. There must be a cone of angle π

9
centered at rc that contains at least 3 such centers c1, c2, c3. Consider the
two senders that are closest to cr, say c1 and c2. Because the cone’s angle
is π

9
and ri ≥ rc for every disk, c3 must be closer to either c1 or c2 than

to any point in C. Hence, D3 violates either the lemma’s first or second
property.

224CHAPTER 19. POLYLOGARITHMIC SCHEDULING COMPLEXITY

The idea behind the proof about the schedule lengths produced by Al-
gorithm 19.1 is to upper-bound the number of links which can prevent a
link fij ∈ Fk from being selected for scheduling. Since in every iteration of
the while-loop at least one link is scheduled, the number of such preventing
links is an upper bound on the time slots used by the schedule() procedure
before fij ∈ Fk is finally scheduled. We say that a link fab blocks link fij

if the presence of fab in Et is the reason why allowed(fij,Et) evaluates to
false. In other words, a link fab blocks a shorter link fij if the schedule()
procedure of Algorithm 19.1 does not schedule fij simultaneously with fab.
In the sequel, we bound the number of such blocking links for each fij ∈ Fk.
We begin with a lemma that captures the number of blocking links fab for
which τ (fij) = τ (fab).

Lemma 19.5. Let B0 be the set of links fab ∈ Fk that block fij with τ (fab) =
τ (fij). For all fij , |B0| ≤ ηµ2 holds for some constant η < 18.

Proof. The proof is based on an area argument. Since all links fab ∈ B0

are in the same set of the partition L as fij , we know that `(fij) ≤ `(fab)
(every blocking link fab is considered before fij in the algorithm) and `(fij) ≥
1
2
`(fab). By the definition of the algorithm, a link fab is in B0 if and only

if µ`(fij) > d(vi, va). It follows that the senders of all blocking links for fij

must be located in a disk Ds of radius µ`(fij) around vi.
Since `(fab) ≥ `(fij) for all fab and because the links in Fk form a nearest

neighbor forest, we know that there can be at most one sender of a blocking
link in any disk D of diameter `(fij). Hence, the number of such disks
D required to cover the entire disk Ds constitutes an upper bound on the
number of blocking links in B0. All disks D intersecting Ds are completely
inside the disk D′

s, where D′
s has radius (µ+ 1

2
)`(fij). Furthermore, the disks

D can be tesselated in a grid such that the whole area of D′
s is covered while

no point in D′
s is covered by more than two disks D. Hence, defining ρ to be

the number of disks D required to cover D′
s, we can write

ρ ·
(

1

2
`(fij)

)2

π ≤ 2 ·
((

µ+
1

2

)
`(fij)

)2

π,

and by solving for ρ we obtain ρ ≤ 8 · (µ+ 1/2)2 ≤ ηµ2, which concludes the
proof.

The more intricate part of the analysis is to bound the number of blocking
links in other link classes of L. In particular, note that it can be relatively
easily shown that there are only a constant number of blocking links for fij

in each link class Lk ∈ L. However, this bound is not sufficient, as there may
be as many as Ω(n/ log n) different link classes that are considered in the
same outer for-loop iteration of the schedule() procedure. Hence, we need
a much stronger bound in order to guarantee the scheduling complexity as
claimed in Theorem 19.11. We start with a helper lemma that characterizes
the ratio between the lengths of two links.

19.1. THE COMPLEXITY OF CONNECTIVITY 225

xsys
f

f

f5

3

1

f2

f4

f6

Figure 19.3: Illustration of Algorithm 19.1. In the example, links f1, f2, and
f4 are blocking for the link between vi and vj . Note that f6 is not blocking
because its receiver is outside the critical ball, even though its sender is close
from vi.

Lemma 19.6. Let fij and fab be two links that are considered in the same
subroutine call, and let τ (fij) ≥ τ (fab). Then, the length of fab is at least

`(fab) ≥ 1
2
(3nβ)δia · `(fij).

Proof. By Line 5 of the schedule() procedure, only links in length classes
Lj , Llog(3βn)+j , L2 log(3βn)+j , . . . are considered in the same iteration of this
procedure’s outer for-loop. The value of δia denotes the number of length
classes that separate links fij and fab, each such separating length class
entails at least a doubling of the length. Taking into account that lengths
can differ by at most a factor of 2 within a length-class, it follows that `(fab)
is at least

`(fab) ≥ `(fij) · 2δia log(3βn)−1 = `(fij) · 1

2
(3nβ)δia .

The following key lemma bounds the number of blocking links in other
length classes.

Lemma 19.7. Let B+ be the set of links fab ∈ Fk that block fij , with
τ (fab) < τ (fij). It holds that for all fij , |B+| ≤ (logαn+ 2)κ, for κ ≤ 36.

Proof. Recall that the sending node of fij is vi and denote all links in B+ by
f1, . . . , fp. For all these links fp, it holds that τ (fij) > τ (fp), i.e., δpi > 0.
For each such link fp, sp and rp denote its intended sender and receiver,
respectively. The links fp are ordered according to the distance d(vi, rp),
where f1 is the link whose r1 is the closest intended receiver from vi.

First note that if a link fp ∈ B+ blocks fij and it holds that d(vi, rp) >

(3nβ)
ϕ
α · `(fij), then δip > ϕ− 1 must hold and consequently δip ≥ ϕ. This

226CHAPTER 19. POLYLOGARITHMIC SCHEDULING COMPLEXITY

is true because if δip < ϕ, it holds that (3nβ)
δip+1

α · `(fij) < d(vi, rp) and
consequently, by the definition of the algorithm, fp does not block fij . In
combination with Lemma 19.6, this yields the fact that for a dropped link
fp with

d(vi, rp) > (3βn)
ϕ
α `(fij), (19.2)

the length `(fp) of the link must be at least

`(fp) ≥ 1

2
(3nβ)ϕ · `(fij). (19.3)

In the following, consider an exponentially growing series of disks Ch,

h = 1, 2, . . . of radius rh = (3βn)
h
α `(fij) centered at vi. Furthermore, define

a ring Rh as the area Ch+1 \ Ch, i.e., it holds for every node v′ ∈ Rh that

(3βn)
h
α `(fij) < d(vi, v

′) ≤ (3βn)
h+1

α `(fij).

A key observation for the proof is that there cannot be many links dropped
from rings which are close to one another. This intuition is formalized using
two helper lemmas. Lemma 19.8 shows that there can only be a constant
number of receivers in the first three rings. In Lemma 19.9 we then prove
that if for an arbitrary p, the receiver rp is located in Rh, h ≥ 3, there cannot
be more than κ other intended receivers from dropped links in the subsequent
α(k − 1) − 1 rings.

Lemma 19.8. It holds that r2κ+1 is located outside of C3, i.e., at most 2κ
links with receiver in C3 are blocking for fij .

Proof. First, consider all links fp for which δpi = 1. Each such link has
length at least `(fp) ≥ 1

2
(3βn)`(fij). Since fp is blocking, its receiver must

be located within distance (3βn)2/α`(fij) of vi. For α > 2 and large enough

n, it holds that (3βn)2/α ≤ 1
2
(3βn). Assume for contradiction that κ+ 1 or

more links fi with δpi = 1 exist. Also, draw a disk C of radius (3βn)2/α`(fij)
around vi, and disks Dp of radius `(fp) around each corresponding sender
sp. Notice that there are at least κ+ 1 disks Dp each of which overlaps with
disk C in at least one point (where rp is located) and no disk Dp contains
the center of another disk Dp′ , because the links fp form a nearest neighbor
forest. However, the possibility of packing κ + 1 disks Di in such a way
contradicts Lemma 19.4 and hence, it follows that there can be at most κ
links fp with δpi = 1.

Next, we bound the remaining number of blocking links fp whose re-
ceivers rp are situated in C3. Each of these remaining links has length at
least 1

2
(3βn)2`(fij) because δpi ≥ 2. Moreover, all receivers are located in

C3, that is, d(vi, rp) ≤ (3βn)
3
α `(fij) <

1
2
(3βn)2`(fij). Again, it follows by

Lemma 19.4 that the number of blocking links with δpi ≥ 2 in C3 is upper-
bounded by κ.

19.1. THE COMPLEXITY OF CONNECTIVITY 227

as

bs

s

r

f

f

c

fa

a

b

b

c

rcr

d

RαRvi h (h−1)

π/9

Figure 19.4: Illustration of the proof of Lemma 19.9. Because the length of
links fa, fb, and fc is larger than the radius of the disk in which all receivers
must be located, at most κ such links can exist. In the example, the closest
neighbor of sc is sa and not rc, which yields the contradiction.

Lemma 19.9. It holds for all p that if rp ∈ Rh, h ≥ 3, then rp+κ ∈ Rh′ for
h′ > α(h− 1). That is, for any h ≥ 3, there can be at most κ blocking links
with receivers in rings Rh, . . . , Rα(h−1).

Proof. It follows from Equations (19.2), (19.3), and the definition of a ring,
that every blocking link with receiver in rings Rh, . . . , Rα(h−1) must be of

length at least 1
2
(3βn)h`(fij) (otherwise, it would not be blocking). On the

other hand, the distance between a receiver in these rings and vi is at most

d(vi, rp) ≤ (3βn)
α(h−1)+1

α `(fij) = (3βn)h−1+ 1
α `(fij)

<
1

2
(3βn)h`(fij) ≤ `(fp),

where the second-to-last inequality holds for β ≥ 1, α > 2, and h ≥ 3. It
follows that like in the proof of Lemma 19.8, we can draw a disk Dp with
radius `(fp) around each sender sp in rings Rh, . . . , Rα(h−1). Each of these

disks must overlap with the disk centered at vi of radius (3βn)h−1+ 1
α `(fij)

and no disk Dp contains the center of another disk. Hence, as illustrated in
Figure 19.4, it follows by Lemma 19.4 that there can be at most κ dropped
links with receiver in rings Rh, . . . , Rα(h−1).

Having proven Lemmas 19.8 and 19.9, we can now bound the total number
of blocking links in B+ and thus conclude the proof of Lemma 19.7. By

228CHAPTER 19. POLYLOGARITHMIC SCHEDULING COMPLEXITY

Lemma 19.8, we know that at most the first 2κ receivers r1, . . . , r2κ can be
located in C3. All other receivers must be located in a ring Rh for h ≥ 3. By
applying Lemma 19.9, it follows that the receiver r3κ+1 cannot be closer to
vi than in ring Rα(h−1) = R2α, receiver r4κ+1 cannot be closer than in ring
R2α2−α, and so forth. By thus recursively applying Lemma 19.9, it follows
that receiver r(p+2)κ+1 cannot be closer than in ring Rλp , where λp is

λp = 2αp −
p−1∑

h=1

αh < αp.

Because there are at most n different length classes, the last ring from which
a receiver (and its link) can be blocking for fij is Rn. Consequently, the total
number of links that can be blocking for fij is at most (pm + 2)κ, where

αpm (k − 2) ≤ n ⇒ pm ≤ logα

(
n

k − 2

)
≤ logαn,

which implies |B+| ≤ (logαn+ 2)κ.

Lemmas 19.5 and 19.7 provide us a lower bound on the amount of progress
achieved by the algorithm when scheduling the links selected in one phase.
In particular, it allows us to derive a bound on the time required to schedule
the nearest neighbor forest in this phase. However, we also need to bound
the number of phases that the algorithm executes before termination. This
is done in the following lemma.

Lemma 19.10. Let Ap denote the set of active nodes at the beginning of
phase p during the execution of Algorithm 19.1. For each p, it holds that
|Ap+1| ≤ |Ap|/2.

Proof. In Line 10 of Algorithm 19.1, all nodes that have an outgoing link (i.e.,
that need to transmit during this phase) will be removed from A. Consider
the connected components of forest Fp. In each such connected component,
there is at most 1 node that has no outgoing link, because each connected
component forms a directed tree with a unique sink. The claim follows
because each connected component consists of at least two nodes.

Finally, we are ready to prove the main theorem of this section containing
the claimed correctness and efficiency results of Algorithm 19.1.

Theorem 19.11. For every network, Algorithm 19.1 produces a correct
schedule S that induces a strongly-connected subgraph. Furthermore, the
length of the schedule is T (S) ∈ O(log3n).

Proof. As for the number of time slots, we start by showing that every call
of the schedule() subroutine requires at most O(log2n) time slots. By Lem-
mas 19.5 and 19.7, there are at most

B0 +B+ ≤ ηµ2 + (logαn+ 2)κ

19.2. A SIMPLE LINEAR-TIME ALGORITHM 229

blocking links for each link fij . Hence, after at most ηµ2 +(logαn+2)κ iter-
ations of the while-loop, all links that are considered in the same iteration of
the outer for-loop in the schedule() subroutine are scheduled for transmis-
sion. The number of for-loop iterations being dlog(3nβ)e, it follows that for
constant β the number of time slots used by Algorithm 19.1 for scheduling
each nearest neighbor forest Fp is O(log2n).2

All that remains to be done to derive the algorithm’s scheduling complex-
ity is to bound the number of phases. By Lemma 19.10, the number of active
nodes is at least halved in every phase. Therefore, at most log n phases are
required until there remains only a single active node upon which the al-
gorithm terminates. Putting everything together, the algorithm’s schedule
complexity is

T (S) ∈ O(log3n).

By Lemma 19.3, every transmitted message is successfully received. Fur-
thermore, observe that the union of all scheduled links Fp forms a directed
tree towards a single node (the one node that remains active at the end) in
the network. This node can then connect the network with a single trans-
mission in time slot t. Hence, the topology consisting of all scheduled links
is connected, i.e., there exists a path between all pairs of nodes.

Theorem 19.11 implies the following fundamental corollary that bounds
the scheduling complexity of connectivity in wireless networks.

Corollary 19.12. The scheduling complexity of a strong connectivity is
O(log3n) in every wireless network.

19.2 A Simple Linear-Time Algorithm

The lower bound of Section 18.2 for linear power assignment protocols as
well as the structure of Algorithm 19.1 indicate that scheduling is difficult
mainly in networks in which some communication links are exponentially
longer than others. This raises the question whether the performance of
linear power assignment approaches may also deteriorate as badly in case
the length of the communication link is less varied, for instance in randomly
deployed average-case networks.

In this section, we show that linear power assignment algorithms perform
poorly only in scenarios in which there are links belonging to many different
orders of magnitude. For simplicity of presentation, we again consider the
simple scheduling task Ψmin, i.e., we want that every node can transmit
successfully at least once. By applying a technique similar to the one in
Section 19.1, the algorithm can be turned into an algorithm for scheduling
the strong connectivity property at the cost of an additional O(log n) factor
in the scheduling complexity.

2Notice that this result implies that our algorithm is capable of scheduling the simple
scheduling task Ψmin studied in Chapter 18 in time O(log2n) in every network.

230CHAPTER 19. POLYLOGARITHMIC SCHEDULING COMPLEXITY

Input: An arbitrarily located set of nodes V
Output: A schedule S in which every node v ∈ V

can send successfully to its closest neighbor.
1: For each vi ∈ V , let fi be the link to its closest neighbor;
2: Let L = L0, . . . , LblogDc, where Lk is the set of links with 2k ≤ `(fi) <

2k+1;

3: µ = 6 α

√
2β(α−1)

α−2
; ρ > 4N ; t = 1;

4: for each Lk 6= ∅ do
5: Partition the plane in cells of width µ · 2k;
6: for j = 1 to 4 do
7: Select a maximal independent set of cells Cj (cf. Figure 19.5);
8: repeat
9: For each selected cell C, pick one unscheduled link fi ∈ Lk whose

intended sender vi is in C, if there exists such a link;
10: φt(vi) := ρ · `(fi)

α;
11: Delete fi from the set of unscheduled links;
12: t = t+ 1;
13: until there are no more unscheduled links in active cells;
14: end for
15: end for
16: S := {φ1, . . . , φt−1};

Algorithm 19.2: Linear Power Assignment Algorithm

The diversity g(V) of a set of nodes is the number of magnitudes of
distances [175]. Formally, g(V) is defined as

g(V) := |{m | ∃vi, vj ∈ V : blog(d(vi, vj))c = m}|.
In the example shown in Figure 18.1, for instance, the diversity is g(V) =
log (2n) = n. In our case, g(V) can also be considered as being the number
of non-empty length classes of the nearest neighbor forest. In the sequel,
we show that Algorithm 19.2 achieves a scheduling complexity of T (S) ∈
O(g(V)) for Ψmin.

The idea of Algorithm 19.2 is simple: simultaneously schedule links of
similar length, while guaranteeing a large enough spatial reuse distance be-
tween each pair of transmitting nodes. As before, fi denotes the link from vi

to its closest neighbor, and `(fi) is the length of this link. In each phase of
the algorithm, only links belonging to the same length class are scheduled.
In order to schedule one such phase for links of length 2k ≤ `(fi) < 2k+1, the
algorithm partitions the plane into grid-cells of width µ · 2k. In each time
slot, it chooses a maximal independent set of cells and selects one link in
each such cell for scheduling.

The following lemma’s proof follows exactly along the lines of the proof
of Lemma 19.3 (only using different constants).

Lemma 19.13. Every node can send successfully in the unique time slot t
in which φt(vi) > 0.

19.2. A SIMPLE LINEAR-TIME ALGORITHM 231

1 1

111

2

2 2

2 2

2

3 3 3

3 3 3

4

4 4

4 4

4

1

µ2

µ2

k

k

Figure 19.5: In Line 7 of Algorithm 19.2, the algorithm picks all cells num-
bered by j for some j = 1, . . . , 4. The example shows an inner-loop iteration
for length-class Lk and j = 3. The algorithm schedules one unscheduled
communication link from each selected cell (if there exists one).

Having Lemma 19.13, we obtain the following theorem.

Theorem 19.14. The schedule S obtained by Algorithm 19.2 has length at
most T (S) ∈ O(g(V)) and fulfills property Ψmin, i.e., each node can send
successfully at least once.

Proof. Correctness follows directly from Lemma 19.13 and from the obser-
vation that for every sender vi, there is a time slot t for which φt(vi) > 0.
As for the length of the schedule, observe that there are at most O(g(V))
non-empty length classes, i.e., iterations of the outermost loop. Hence, it
only remains to prove that a single phase requires only a constant number of
time slots.

Consider the phase in which length-class Lk is scheduled. We first show
that the number of potential transmitters in a cell can be at most a constant.
Because every transmitting node has a link to its closest neighbor, the disks
Di of radius 1

2
`(fi) ≥ 2k−1 around each transmitter vi do not overlap. Con-

sider all nodes located in a cell C. The disks Di belonging to these nodes are
completely contained in a square of side-length (µ+ 1) · 2k. Hence, it follows
from the standard area packing argument that the number of links in C is at
most 4(µ+1)2 ∈ O(1) in each cell. The proof is now concluded by observing
that in a grid, always one fourth of the cells can be scheduled independently
as shown in Figure 19.5.

In combination with the “growing component” technique used in Section
19.1, the following theorem can be derived.

Theorem 19.15. Algorithm 19.2 can be adapted the strong-connectivity
property with scheduling complexity O(min(n, g(V) · log n)).

Proof. If g(V) · log n < n, we combine Algorithm 19.2 with the technique
of merging clusters iteratively in each phase, as done in Algorithm 19.1.

232CHAPTER 19. POLYLOGARITHMIC SCHEDULING COMPLEXITY

Using Lemma 19.10, it requires at most O(log n) phases (each taking time
O(g(V))) until the scheduled links form a directed tree towards a single
node. If g(V) · log n ≥ n, the algorithm can simply schedule each node
individually.

Chapter 20

On the Complexity of

Arbitrary Topologies

In the previous chapters, we have studied the scheduling complexity of con-
nectivity and other specific request sequences. We have seen that the schedul-
ing complexity of connectivity can be expressed succinctly as a (polylogarith-
mic) function of the number of nodes n. Is it possible to derive similar results
for the scheduling complexity of more general request sequences or topolo-
gies? In particular, what can be said about the number of time slots required
for successfully scheduling an arbitrary set of communication requests γij in
a wireless network?

In general, this scheduling complexity of arbitrary topologies may not allow
for a concise expression as a function of n other than the trivial bound of
O(n), which is achieved if nodes are scheduled one after the other. In fact,
it is easy to construct examples—as the one depicted in Figure 20.1—with n
requests in which the scheduling complexity grows linearly, Ω(n), even if all
sender and receiver pairs are different.

n/2 n/2

S R

Figure 20.1: The scheduling complexity of the requests in this example is
n/2. In each time slot, at most one link can be scheduled successfully.

234CHAPTER 20. THE COMPLEXITY OF ARBITRARY TOPOLOGIES

In view of these trivial, existentially tight bounds, it is more interest-
ing to express the scheduling complexity of arbitrary topologies in terms of
additional properties besides n. With regard to our discussion of graph-
based models versus SINR-based models, it would be particularly intriguing
to derive the scheduling complexity of arbitrary requests in dependence of a
graph-theoretic measure that captures the inherent complexity of scheduling
in wireless multi-hop networks. If the scheduling complexity in wireless net-
works could be expressed by means of a simple, intuitive graph-theoretical
measure, this would serve as a legitimation for studying graphs when reason-
ing about scheduling in wireless networks. In a sense, such a correspondence
would thus help bridging the gap between communication and information
theoretical SINR models and algorithmic graph models.

One promising graph-theoretical measure for bounding the scheduling
complexity of arbitrary request sequences is derived from the field of topol-
ogy control. In a very general sense, topology control in wireless ad hoc and
sensor networks can be considered the task of—given a network connectiv-
ity graph—computing a subgraph with specific desired properties, such as
connectivity, short stretches, sparsity, low interference, or low node degree.
Accordingly, there has been considerable research effort towards achieving
and combining more and more of these properties [126, 161, 162, 163, 164,
206, 231, 232].

All these approaches have in common, that they model wireless networks
as static graphs, hence neglecting that, eventually, messages—or, more ex-
actly, radio signals—will have to be sent over these static links in the topolo-
gies selected by a topology control algorithm, that is, the static graph of
communication links must be scheduled on the physical layer. Nonetheless,
it turns out that there exists a relationship between a static interference no-
tion of topology control [224] and the scheduling complexity. Section 20.1
defines this and related measures.

20.1 Static Interference

The idea of modeling interference in wireless multi-hop networks by means
of a static, traffic-independent measure first appeared in [39]. The so-called
in-interference measure Iin of a set of communication requests (that is, a net-
work topology) was later defined in a graph-theoretic context in [224]. This
interference measure Iin is based on the question of how many other nodes
can potentially disturb a given node in the network.1 With the assumption
that nodes use perfectly omnidirectional antennas, the maximal disk Di of a
node vi represents the transmission range such that all intended receivers of
vi are reached, or, in other words, the disk covering all nodes that are poten-
tially affected by message transmission of vi to one of its intended receivers.

1Similar interference measures have been defined assuming in a sense an antipodal
perspective by asking how many other nodes a given node can disturb. It can be shown
that the results of the analysis in the remainder of this chapter asymptotically also hold
for such Iout-interference measures.

20.1. STATIC INTERFERENCE 235

Then the interference of a node vj is defined as the number of other nodes
that potentially affect message reception at node vj :

Definition 20.1. Given a network topology or a set of communication re-
quests Λ, the in-interference Iin(vj) of a node vj ∈ V is defined as

Iin(vj) = |{vi|vi ∈ V \ {vj}, vj ∈ Di)}|.

In other words, the interference Iin(vj) represents the number of nodes
covering vj with their disks induced by their transmission ranges set to a value
large enough to reach all their intended receivers. Note that the in-degree
of a node in a given topology Λ does not correspond to its in-interference;
the in-degree merely forms a lower bound for its in-interference since it can
be “covered” by disks of non-neighboring nodes. The node-level interference
defined so far is now extended to an interference measure for a topology or
a set of requests Λ:

Definition 20.2. Given a set of nodes V and a topology or a set of commu-
nication requests Λ, the in-interference of Λ is Iin(Λ) = maxvi∈V Iin(vi).

Algorithmically, there are many unresolved questions with regard to static
interference minimization problems. The problem is to assign transmission
ranges to nodes such that the network becomes connected, but the resulting
interference is minimized. In [224], an algorithm for one-dimensional line
networks with symmetric edges (i.e., an edge appears in the topology only if
both nodes have a large enough transmission range) is presented. In partic-
ular, the algorithm of [224] achieves an interference of at most O(

√
n). As

shown in [224], this is existentially optimal, in the sense that even in the
line, there are instances in which every solution generates an interference of
Ω(

√
n). In case of asymmetric, directed edges, the problem becomes some-

what easier. In this case, an algorithm proposed in [96] achieves connectivity
with an interference of O(log n), which is again existentially optimal. As far
as minimizing average interference with symmetric edges is concerned, an
O(log n)-approximation algorithm was proposed in [180], which was shown
to be asymptotically optimal in more general metric network instances. Fi-
nally, various other notions of interference have been studied in [135], [175],
and [177].

It is important to observe, however, that the definition of Iin is indepen-
dent of the SINR model and argues using circular transmission ranges, which
implicitly assumes a kind of linear P ∼ dα transmission power policy, which
we have proven to be inefficient for scheduling in Chapter 18. Moreover, it
has not been clear—neither from a theoretical nor a practical view—whether
the graph-theoretic measures of topology control really bear any significance
when it comes to actually scheduling messages in an SINR environment. In
this chapter, we demonstrate and prove the existence of fundamental theoret-
ical ties between topology control and the theoretically achievable efficiency
of scheduling protocols.

236CHAPTER 20. THE COMPLEXITY OF ARBITRARY TOPOLOGIES

20.2 Algorithm in the Generalized Model

This section proves the following bound on the scheduling complexity of
an arbitrary set of requests Λ. In particular, the bound is derived for the
generalized physical SINR model as introduced in Section 17.1.

Theorem 20.1. Given an arbitrary network and a set of communication
requests Λ with in-interference Iin, all requests γij ∈ Λ can be successfully

scheduled in time O(Iin · log(nθ2) · (θ
4
α + log n)). That is, the scheduling

complexity T (Λ) of a topology or a set of requests Λ with in-interference Iin

is
T (Λ) ∈ O(Iin · log(nθ2) · (θ 4

α + log n)).

We first define some useful notation. If Λ is the set of all communication
requests to be scheduled, Λi denotes the set of requests for which node vi

is the sender, formally Λi = {γij ∈ Λ}. The set of intended receivers to
which a node vi is supposed to successfully transmit is Ri = {vj | γij ∈ Λ}.
The Euclidean distance of a node vi to its most distant intended receiver
is called the radius ri of vi: ri = maxvj∈Ri d(vi, vj). In case there is no
communication request for which node vi is the sender, that is, if vi has no
intended receiver at all, we define ri = 0.

As it turns out, the scheduling algorithm for connectivity in Chapter 19
already contains most ingredients for the solution for general topologies. In
fact, Algorithm 20.1 is a generalization of Algorithm 19.1 in two directions:
general topologies and the generalized physical model. In analogy to the
connectivity algorithm, Algorithm 20.1 employs a power-assignment policy
that favors nodes with small radii over nodes with large radii.

The idea is that we do not schedule individual links as in the previous
chapter, but we compute the schedule at the level of nodes directly. In partic-
ular, the algorithm computes a schedule S in which every node vi establishes
links to all its intended receivers Ri in a single time slot by (successfully)
broadcasting within its radius ri. In other words, a node is only selected for
scheduling by Algorithm 20.1 if all its receivers can successfully decode the
message. As different outgoing links of a node vi may have various lengths,
but the required SINR ratio must be fulfilled at each receiver, the blocking
condition in the allowed(vi,Et) subroutine must be adequately adapted.
Moreover, it no longer makes sense to classify links into length classes as
done in Algorithm 19.1. Instead, the algorithm for general topologies par-
titions the node-set V into disjoint sets S := (S0, . . . , Sblog ∆c) according to
the nodes’ radii. The details of these adaptations as well as the necessary
alterations for incorporating the generalized physical model are presented in
Algorithm 20.1.

Analysis

The analysis proceeds along the lines of the analysis of the connectivity algo-
rithm in Chapter 19. However, the incorporation of the generalized physical
model and, particularly, the fact that we deal with general topologies (as

20.2. ALGORITHM IN THE GENERALIZED MODEL 237

Input: - An arbitrarily located set of nodes V
- A set of communication requests Λ

Output: A schedule S in which all requests γij ∈ Λ are scheduled
1: Define two constants ν and µ such that ν := 4N and µ := 1 +

2
8
α

+2 α

√
β(α−1)

α−2
; t := 1;

2: Partition V into sets S = S0, . . . , SblogDc such that Si contains all nodes

vj with 2i ≤ rj < 2i+1;
3: Delete all empty sets Si ∈ S and rename S such that Si is the ith non-

empty set in decreasing order of the radii of the contained nodes;
4: for k = 1 to dlog(3nβθ2)e do
5: Let Fk be the union of all sets Smdlog(3nβθ2)e+k ∈ S for m ∈ N0;
6: for each vi ∈ Fk do
7: τ (vi) := χ, where vi ∈ S` and S` is the χth set in Fk

(in decreasing order of radii);
8: end for
9: while not all links with intending sender in Fk have been scheduled

do
10: Et := ∅;
11: Consider all nodes vi ∈ Fk in decreasing order of ri:
12: if allowed(vi, Et) then Et := Et ∪ {vi};
13: Schedule all vi ∈ Et in time slot t, assigning vi

a transmission power of Pi = ν(3nβθ2)τ(vi) · rα
i ;

14: Remove all scheduled senders (Fk := Fk \ Et);
15: t := t+ 1;
16: end while
17: end for

allowed(vi,Et)
1: for each vj ∈ Et do
2: δij := τ (vi) − τ (vj);

3: if τ (vi) = τ (vj) and µθ
2
α · ri > d(vi, vj) return false

4: else if ri · (3nβθ2)
δij+1

α + rj > d(vi, vj) return false
5: end for
6: return true

Algorithm 20.1: Scheduling Algorithm for General Requests

opposed to nearest neighbor forests) raises several subtle details that need to
be addressed. In the sequel, those parts of the analysis are highlighted which
deviate from the algorithm in Chapter 19.

As in the proof of Algorithm 19.1, the algorithm consists of proving cor-
rectness and scheduling complexity. Consider a node vs that has been se-
lected by Algorithm 20.1 to transmit a message in a given time slot. In anal-
ogy to Lemma 19.1, we first bound the interference at an arbitrary receiver
vr ∈ Rs created by simultaneously transmitting nodes wi with significantly
larger radii. As the set of links to be scheduled is no longer a nearest neighbor

238CHAPTER 20. THE COMPLEXITY OF ARBITRARY TOPOLOGIES

forest as in Lemma 19.1, however, we require a somewhat different proof.

Lemma 20.2. Consider a time slot ts in which the algorithm schedules a
node vs for transmission. It holds for all intended receivers vr ∈ Rs and for
any simultaneously transmitting node wi ∈ V \ {vs} with τ (wi) < τ (vs) that

Ir(wi) ≤ νθ(3nβθ2)τ(vs)−1.

Proof. Because the radius of wi must be significantly larger than the radius
of vs, wi was already in Et at the time allowed(vs,Et) evaluated to true
and the algorithm selected node vs for scheduling. Consequently, the distance
d(vs, wi) must have been at least

d(vs, wi) ≥ rs · (3nβθ2)
δsi+1

α + ri > rs + ri,

where ri is wi’s radius, and therefore d(vr, wi) > ri. The interference caused
by wi at vr is consequently at most

Ir(wi) ≤ θ · Pi

d(vr, wi)α
≤ θν(3nβθ2)τ(wi)rα

i

rα
i

= νθ(3nβθ2)τ(wi) ≤ νθ(3nβθ2)τ(vs)−1,

which concludes the proof.

Next, we bound the interference created by transmitting nodes with
smaller radii. Recall that these nodes transmit at a (relatively speaking)
increased power level and can therefore disturb potential receivers that are
distant, relative to their own radius.

Lemma 20.3. Consider a time slot ts in which the algorithm schedules a
node vs for transmission. It holds for all intended receivers vr ∈ Rs and for
any simultaneously transmitting node wi ∈ V \ {vs} with τ (wi) > τ (vs) that

Ir(wi) ≤ νθ(3nβθ2)τ(vs)−1.

Proof-Sketch. The proof is analogous to the one given in Lemma 19.2 (albeit
for the adjusted version of the allowed(vi,Et) subroutine) and we therefore
limit ourselves to a sketch. The interference Ir(wi) incurred by a node wi at
vr is at most

Ir(wi) ≤ θ · ν(3nβθ
2)τ(wi) · rα

i

d(wi, vr)α
.

Assuming for contradiction that there exists a node wi with τ (wi) > τ (vs)

and Ir(wi) > νθ(3nβθ2)τ(vs)−1, it can be shown that the distance between

wi and vr is at most ri · α
√

(3nβθ2)τ(wi)−τ(vs)+1 and therefore

d(wi, vs) < α

√
(3nβθ2)τ(wi)−τ(vs)+1 · ri + rs

= ri · (3nβθ2)
δis+1

α + rs

must hold. This contradicts the fact that wi and vs are selected for scheduling
in the same time slot.

20.2. ALGORITHM IN THE GENERALIZED MODEL 239

Finally, it remains to prove a bound on the interference created by simul-
taneously sending nodes in the same set of the partition.

Lemma 20.4. Consider a time slot ts in which the algorithm schedules a
node vs for transmission. It holds for all intended receivers vr ∈ Rs and for
any simultaneously transmitting node wi ∈ V \ {vs} with τ (wi) = τ (vs) that

Ir(wi) ≤ νθ(3nβθ2)τ(vs)−1.

Proof. The proof is analogous to the one given in Lemma 19.3. Let T denote
the set of simultaneously transmitting nodes wi with τ (wi) = τ (vs). By the
definition of allowed(wj,Et) a node wi ∈ T prevents all nodes wj ∈ T for

which µθ
2
α · rj > d(wi, wj) from being added to T .

This allows us to set up the standard area argument. In particular, disks

Di of radius 1
4
µθ

2
α rs centered at every node wi ∈ T do not overlap. There-

fore, we can place rings Rλ of width µθ
2
α rs around vs and bound the cumu-

lated interference created by senders in given ring, individually. Formally,

let Rλ contain all nodes wi ∈ T for which (λ − 1
2
)µθ

2
α rs < d(vs, wi) ≤

(λ + 1
2
)µθ

2
α rs. All disks Di of transmitters in some ring Rλ are located

entirely in an extended ring of area

A(R+
λ) =

[((
λ+

3

4

)
µθ

2
α rs

)2

−
((

λ− 3

4

)
µθ

2
α rs

)2
]
π = 3λµ2θ

4
α r2sπ.

Each transmitter in Rλ to vr has a distance of at least ((λ − 1
2
)µθ

2
α − 1)rs

from vr. Moreover, the transmission power of each such node is no more
than ν(3nβθ2)τ(vs) · (2rs)

α. The total interference Iλ generated by nodes in
ring Rλ is therefore at most

Iλ ≤ A(R+
λ)

A(Di)
· θν(3nβθ

2)τ(vs) · (2rs)
α

(((λ− 1
2
)µθ

2
α − 1)rs)α

≤ 48ν(3nβθ2)τ(vs)22α

θλα−1(µ− 1)α
.

Summing up the interference over all rings Rλ, we obtain

∞∑

λ=1

Iλ ≤ 48ν(3nβθ2)τ(vs)22α

θ(µ− 1)α

∞∑

λ=1

1

λα−1

<
48ν(3nβθ2)τ(vs)22α

θ(µ− 1)α
· α− 1

α− 2

<
ν

θ
· (3β)τ(vs)−1 · (nθ2)τ(vs).

Based on Lemmas 20.2, 20.3, and 20.4, it is now easy to derive the cor-
rectness result.

240CHAPTER 20. THE COMPLEXITY OF ARBITRARY TOPOLOGIES

Theorem 20.5. For every request γsr ∈ Λ, there exists a unique time slot
ts in which vr successfully receives a message from vs.

Proof. Consider a node vs that is scheduled for transmission in a give time
slot ts. When summing up the total interference created by simultaneously
transmitting nodes bounded in Lemmas 20.2, 20.3, and 20.4, we obtain

Ir ≤ ν

θ
(3β)τ(vs)−1(nθ2)τ(vs) + νθ(3βθ2)τ(vs)−1nτ(vs)

=
2νθ

3
· (βθ2)τ(vs)−1 · (3n)τ(vs).

The SINR at any intended receiver vr ∈ Rs is therefore at least

SINRr ≥
ν
θ
(3nβθ2)τ(vs)

N + 2
3
νθ(βθ2)τ(vs)−1 · (3n)τ(vs)

,

which can be shown to be larger than β by plugging in the definitions of
ν and n, β ≥ 1. From this, it follows that if vs is scheduled in Line 13 of
Algorithm 20.1, all its receivers vr ∈ Rs receive the message from vs, i.e., vs

can correctly broadcast to all nodes within radius rs.
As in the proof of Lemma 19.3, the proof is concluded by observing that

there is a unique time slot for every node in which it can transmit.

When it comes to the actual time complexity of Algorithm 20.1, the proof
deviates from the corresponding part of Chapter 19, because we can no longer
argue solely about nearest neighbor forests. Instead, the following simple
lemma provides a relationship between the network’s geometric formation
and its in-interference.

Lemma 20.6. In any disk D of diameter d, there can be at most Iin + 1
nodes vi with ri ≥ d.

Proof. Assume for contradiction that there are Q > Iin +1 such nodes in the
disk. Since ri ≥ d for all vi, the disk of radius ri around each node covers
the entire disk D. Hence, the interference experienced by each node in D is
at least Q− 1, which contradicts the definition of Iin if Q > Iin + 1.

In the sequel, we bound the number of blocking nodes (analogous to the
notion of blocking links in Chapter 19) of a node vs.

Lemma 20.7. Let B0 be the set of nodes wi ∈ V that block vs with τ (wi) =

τ (vs). For all vs, |B0| ≤ ηµ2θ
4
α (Iin + 1) holds for some constant η < 18.

Proof-Sketch. The proof is again based on an area argument. Since all nodes
wi ∈ B0 are in the same set of the partition S as vs, it holds that 1

2
ri ≤

rs ≤ ri. Moreover, all blocking nodes for vs must be located in a disk Ds of

radius µθ
2
α rs around rs. By Lemma 20.6, we know that there can be at most

Iin + 1 blocking nodes in any disk D of diameter rs. Hence, the number of

20.2. ALGORITHM IN THE GENERALIZED MODEL 241

such disks D required to cover the entire disk Ds times (Iin + 1) constitutes
an upper bound on the number of blocking nodes in B0. The corresponding
calculation is equivalent to the one in the proof of Lemma 19.5.

For the purpose of bounding the number of blocking nodes with larger
radii, we have to establish a relationship between the radii of different nodes.
The next lemma therefore corresponds directly to Lemma 19.6 and the proof
is analogous.

Lemma 20.8. Let vi and vj be two nodes that are considered in the same
iteration of the for-loop, and let τ (vi) ≤ τ (vj). Then, for δij = τ (vi)− τ (vj),
it holds that ri ≥ 1

2
(3nβθ2)δij · rj.

For the next couple of lemmas, we need to introduce some additional
notation. Specifically, we define the reduced distance ζi

s of wi from vs to be
ζi

s = d(vs, wi) − ri. In words, the reduced distance is a lower bound on the
minimum possible distance between vs and an intended receiver of wi. Note
that in procedure allowed(vi,Et) node vs is blocked by a node wi ∈ Et,

τ (vs) > τ (wi), if and only if rs(3nβθ
2)

δsi+1
α > ζi

s.

Lemma 20.9. For any ϕ ≥ 2 and σ = 72, there can be at most σ(Iin + 1)
blocking nodes wi for a node vs with reduced distance

(3nβθ2)
ϕ
α · rs < ζi

s ≤ (3nβθ2)ϕ · rs.

Proof. Assume for contradiction that there exists a set of σ(Iin + 1) + 1 or
more nodes wi that are blocking vs with each ζi

s in the range specified in the
lemma. Denote this set of nodes by B ⊆ V . First note that if a node wi ∈ B
blocks vs and the reduced distance is ζi

s > (3nβθ2)
ϕ
α · rs, then δis > ϕ − 1

must hold and consequently δis ≥ ϕ. This is true because if δis < ϕ, it

holds that (3nβθ2)
δsi+1

α · rs < ζi
s and consequently, by the definition of the

algorithm, wi does not block vs. Hence, in combination with Lemma 20.8,
we know that all blocking nodes wi ∈ B have a radius of at least

ri ≥ 1

2
(3nβθ2)ϕ · rs. (20.1)

We now show that if |B| ≥ σ(Iin + 1) + 1, then there must be a node
that has in-interference at least Iin + 1, which leads to a contradiction. For
this purpose we consider a transformation B′ of the node set B which does
not increase Iin. We then show that in this transformed instance B′, in-
interference is too high.

Consider the following transformation of the node set B into a node set
B′: We replace each node wi ∈ B with radius ri by a node w′

i ∈ B′ with
radius r′i = 1

2
(3nβθ2)ϕ · rs. Specifically, node w′

i is located on the straight

line connecting vs and wi at distance ζi
s + 1

2
(3nβθ2)ϕ · rs from vs, as shown

in Figure 20.2. Note that the disk with radius r′i centered at w′
i is entirely

contained in the disk with radius ri around wi (cf. Inequality (20.1)); this

242CHAPTER 20. THE COMPLEXITY OF ARBITRARY TOPOLOGIES

r’i
sx

ri

R

Rϕ/α

ϕ

wi

w’i

Figure 20.2: Example for the transformation used in the proof of Lemma 20.9.

with Rϕ/α = (3nβθ2)
ϕ
α · rs and Rϕ = (3nβθ2)ϕ · rs, respectively. The disk with

center wi and radius ri is replaced by the smaller disk with center w′
i and radius

r′i, such that ζi
s = ζi′

s . The transformation does not increase Iin.

transformation cannot increase the in-interference of any node in the network.
Moreover, because d(vs, wi) and ri are reduced by the same amount, this
transformation does not change the value ζi

s for any transformed node, that

is, ζi
s = ζi′

s for any wi ∈ B and its transformation w′
i ∈ B′. Finally, note that

transforming B to B′ is always possible.
We now look at the in-interference of node set B′. According to the

second inequality of the Lemma to be proven, the reduced radius ζi
s of each

node w′
i ∈ B′ is at most (3nβθ2)ϕ · rs. All radii being r′i = 1

2
(3nβθ2)ϕ · rs, it

follows that all nodes w′
i ∈ B′ are located in a disk Dϕ

s of radius 3
2
(3nβθ2)ϕ ·rs

centered at vs.
Consider disks D of radius 1

4
(3nβθ2)ϕ ·rs. By the standard area argument

also applied in the proof of Lemma 19.5, the number of disks ρ required to
cover the entire disk Dϕ

s is at most

ρ ≤ 2 · (3
2
(3nβθ2)ϕrs)

2π

(1
4
(3nβθ2)ϕrs)2π

= σ.

Since by assumption there are at least σ(Iin + 1)+ 1 nodes in B′, there must
exist a disk D that contains at least Iin + 2 of these nodes. This, however,
establishes a contradiction because by Lemma 20.6 there can be at most
Iin + 1 nodes w′

i ∈ B′ in any disk D of diameter d = 1
2
(3nβθ2)ϕrs.

Lemmas 20.8 and 20.9 yield the following key lemma.

Lemma 20.10. Let B+ be the set of nodes wi ∈ V that block vs, with
τ (wi) < τ (vs). It holds that for all vs that |B+| ≤ (logα

n
α

+ 1)σ(Iin + 1), for
σ as defined in Lemma 20.9.

20.2. ALGORITHM IN THE GENERALIZED MODEL 243

Proof. By Lemma 20.9, we know that there can be at most σ(Iin+1) blocking
nodes wi for vs with reduced distance

(3nβθ2)
ϕ
α · rs < ζi

s ≤ (3nβθ2)ϕ · rs.

In particular, this means that there are at most σ(Iin + 1) blocking nodes

with reduced distance (3nβθ2)
1
α ·rs < ζi

s ≤ (3nβθ2) ·rs, at most 2σ(Iin +1)

such nodes with (3nβθ2)
1
α · rs < ζi

s ≤ (3nβθ2)α · rs, and so forth. More
generally, there are at most κσ(Iin + 1) blocking nodes with

(3nβθ2)
1
α · rs < ζi

s ≤ (3nβθ2)ακ−1 · rs.

Because the partition S consists of at most n non-empty sets Si, it holds that
τ (vs)− τ (wi) ≤ n for all wi. Therefore, the reduced distance of any blocking

node cannot exceed rs(3nβθ
2)

n
α . For κ = logα

n
α

+ 1, on the other hand, the

reduced distance is at most rs(3nβθ
2)α

logα
n
α = rs(3nβθ

2)
n
α . Hence, there

can be at most (logα
n
α

+ 1)σ(Iin + 1) blocking nodes for vs, from which the
lemma follows.

Finally, we can put everything together in the following theorem, which
implies Theorem 20.1.

Theorem 20.11. The number of time slots required by Algorithm 20.1 to

successfully schedule all links γij ∈ Λ is at most O
(
Iin · log(nθ2)(θ

4
α + log n)

)
.

Proof. By Lemmas 20.7 and 20.10, there are at most

B0 +B+ ≤ ηµ2θ
4
α (Iin + 1) + (logα

n

α
+ 1)σ(Iin + 1)

blocking nodes for each node vs. Hence, after at most ηµ2θ
4
α (Iin + 1) +

(logα
n
α

+ 1)σ(Iin + 1) + 1 iterations of the while-loop, all nodes that are
considered in the same iteration of the outer for-loop are scheduled for trans-
mission. The theorem follows because the number of for-loop iterations is
dlog(3nβθ2)e and β is a constant.

In the standard physical model (θ = 1) the scheduling complexity of
Algorithm 20.1 reduces to O(Iin · log2n).

Discussion

Having displayed the significance of static in-interference in the previous
section, it is interesting to more closely specify the value Iin for the most basic
network property, that is connectivity. In particular, we distinguish between
strong connectivity with directed links and connectivity with undirected links,
as it turns out that requesting links to be symmetric significantly complicates
the task of quickly scheduling communication requests.

244CHAPTER 20. THE COMPLEXITY OF ARBITRARY TOPOLOGIES

In the following, we first take a look at connected topologies with asym-
metric (also called directed or unidirectional) links. In particular, we consider
strongly connected topologies, meaning that there exists from every node vi

in the network to every other node vj a path containing only links oriented
from vi to vj . In [96], the following theorem has been proven.

Theorem 20.12 ([96]). Given an arbitrary set of nodes V , there exists
a strongly connected topology with asymmetric links having in-interference
Iin ∈ O(log n). On the other hand, there exist networks for which every
strongly connected topology with asymmetric links has interference Iin ∈
Ω(log n).

It is often argued that communication over asymmetric wireless links is
costly or in general unacceptably cumbersome; not even simple acknowl-
edgement of a transmitted packet is easily possible over an asymmetric link.
From a scheduling perspective, however, demanding communication links to
be symmetric does not come for free. Specifically, it has been shown in [224]
that the in-interference experienced at a node if links are required to be sym-
metric can be as high as Ω(

√
n). Notice that this is significantly higher than

the O(log n) interference bound that holds in the case where links can be
asymmetric.

Theorem 20.13 ([224]). Given an arbitrary set of nodes V , there exist
networks for which every connected topology with symmetric links exhibits an
in-interference of at least Iin ∈ Ω(

√
n).

On the other hand, we present a simple randomized algorithm that achieves
an in-interference of O(

√
n log n) in every network.

Theorem 20.14. Given an arbitrary set of nodes V , Algorithm 20.2 com-
putes a connected topology with symmetric links with in-interference at most
Iin ∈ Ω(

√
n log n).

Algorithm executed at every node v ∈ V :
1: Choose to become a hub randomly and independently with probability
ph =

√
log n/n;

2: if v has chosen itself to become a hub then
3: Set transmission range such that all nodes in V can be reached;
4: else
5: Set transmission range to the nearest hub;
6: end if

Algorithm 20.2: Low In-Interference with Symmetric Links

Proof. Since Algorithm 20.2 assigns transmission ranges instead of selecting
single links, we define the computed topology to contain all possible sym-
metric links that are realizable—in accordance with the definition of Iin—
with the assigned transmission ranges. In other words, every symmetric link

20.2. ALGORITHM IN THE GENERALIZED MODEL 245

(vi, vj) belongs to the resulting topology if the transmission radii of both vi

and vj are at least d(vi, vj). Consequently—since every hub covers all other
nodes—the hubs form a clique. And as every non-hub is connected with its
nearest hub (again via a symmetric link), the whole resulting topology is
connected.

As for the upper bound, consider an arbitrary node v ∈ V . Node v may
experience interference from all hub nodes. Using standard Chernoff bounds,
it can be shown that the total number of hubs elected in the network is at
most 2

√
n log n with probability greater than 1− 1

n2 . It remains to be shown

that the total interference induced by non-hubs is also at most O(
√
n log n)

with high probability. Assume for contradiction that node v is covered by
more than 12

√
n log n non-hub nodes. Partition the area around v into 6

cones of angle π/3 each (such that the border line between two cones is
defined to be part of its neighboring cone in positive rotational direction).
Since there are more than 12

√
n log n non-hubs interfering with v, there must

exist a cone C in which there are at least 2
√
n log n+ 1 of these nodes. Let

VC be the set of non-hubs interfering with v in cone C and let vmax be a node
in VC with maximal distance from v. By the definition Algorithm 20.2, the
transmission range of vmax reaches only to its nearest hub. Because the cone
angle is π/3, it holds that d(vmax, v) > d(vmax, w) for all w ∈ VC \ {vmax}.
Differently put, there are at least 2

√
n log n non-hubs closer to vmax than v.

If one of these non-hubs had become a hub, the transmission range of vmax

would not cover v. The probability Pnone that none of these 2
√
n log n nodes

becomes a hub is

Pnone =

(
1 −

√
log n

n

)2
√

n log n

≤ e−2 log n =
1

n2
.

The probability that any of the n nodes is covered by more than 12
√
n log n

non-hubs is therefore at most n · 1/n2, and the probability that this holds
for no node at all is consequently at least 1 − 1/n. Combining this with the
upper bound on the number of hubs, the theorem follows.

A comparative interpretation of Theorems 20.12 and 20.13 therefore leads
to the conclusion that the scheduling of a connected topology with exclusively
symmetric links is by its nature significantly more costly than the scheduling
of a connected topology using asymmetric links. In a sense, this forms an
antithesis to the often made assumption that the use of symmetric links
is mandatory for practical reasons. At least, this observation provides a
new argument to the discussion whether asymmetric edges are valid to be
considered for network forming or if they ought to be disregarded altogether.

246CHAPTER 20. THE COMPLEXITY OF ARBITRARY TOPOLOGIES

Chapter 21

Conclusions and Outlook

This part of the thesis was aimed at studying communication models that
more closely capture the nature of signal propagation in wireless networks.
When studying algorithmic aspects of scheduling in a SINR-based physical
model, it becomes obvious that even simple physical phenomena are not
adequately modeled by standard graph models. In fact, there are problem
settings in which graph models inevitably deviate from the physical reality
to such a large degree that theoretical bounds and results derived in graph
models become almost irrelevant for practical purposes.

It is therefore interesting to gain an understanding of the fundamental
possibilities and limitations of low-level network tasks such as scheduling in
more realistic wireless communication models. As it has turned out, studying
algorithmic aspects of scheduling in wireless networks on the level of physical
SINR models reveals previously unknown and practically relevant aspects of
wireless communication. Moreover, studying lower abstraction layers also
yields challenging algorithmic problems that demand for novel techniques
and methods. Because the constraints implied by the SINR model are inher-
ently non-linear, for instance, standard optimization techniques based on lin-
ear programs—which typically work in graph-based models, e.g. [154]—fail
when studying scheduling in physical models. Therefore, although looking
somewhat arduous as an algorithmic model, focusing on low-level aspects of
wireless networks turns out to be interesting and insightful from this point
of view.

In Chapter 18, we have shown that standard and frequently assumed
power assignment schemes cannot be competitive even when it comes to
simple communication requests. This sub-optimality of uniform and linear
P ∼ dα power assignment schemes may have an impact on the way certain
problems in wireless networks are modeled and analyzed. The inefficiency
of any scheduling protocol based on linear P ∼ dα power assignment, for
instance, affects a large body of theoretical work on energy-efficient wireless
network design. In particular, concepts such as minimum energy broadcast,
minimum energy paths, or in general energy-cost metrics may have to be

248 CHAPTER 21. CONCLUSIONS AND OUTLOOK

reconsidered, because if a protocol actually assigns power levels according to
such energy-costs, the resulting schedules would be inherently slow compared
to the optimum.

It is interesting to discuss the connections between our results on the
scheduling complexity and known bounds on the capacity of wireless net-
works [117]. The results on the capacity of wireless networks essentially give
a negative answer to the possibilities of wireless networks by limiting the
maximal throughput that can be achieved per node as the number of nodes
in the network grows. Specifically, the throughput per node decreases by a
factor of roughly 1/

√
n as n increases. In contrast, our result is of a more pos-

itive nature. Specifically, the algorithm of Chapter 19 demonstrates that by
using a proper power assignment scheme, complex communication requests
can theoretically be scheduled efficiently even in very large networks. This
implies that when it comes to actually scheduling transmissions in a wireless
network, there exists no fundamental scaling problem as exhibited in the
study of capacity.

There remains a wide range of directions for future research. Most obvi-
ously, one could investigate the scheduling complexity of other specific net-
work topologies. Possibly a more fundamental question, however, is related
to the question of lower bounds. Currently, no non-trivial lower bound on the
scheduling complexity in wireless networks is known. It would be interesting
if we could prove a lower bound of Ω(Iin) on the scheduling complexity of
arbitrary topologies, because this would imply that our algorithm in Chap-
ter 20 is competitive relative to an optimal scheduling algorithm. Coming
up with a non-constant general lower bound on the scheduling complexity in
the SINR model is challenging, because any algorithm in the SINR model in-
herently has “two degrees of freedom”: scheduling and power assignment. In
combination with the fact that SINR constraints are inherently non-linear,
this renders lower bound proofs difficult. One possible step towards gen-
eral lower bounds could be to generalize the lower bounds for uniform and
linear power assignment algorithms to a wider, yet still restricted class of
algorithms.

Another potential direction for future research is to study combined rout-
ing and scheduling problems in SINR models from a worst-case algorithmic
point of view. In this problem, we are given either a number of requests
of the form (si, di) consisting of source and destination pairs, or alterna-
tively, a number of paths pi, that have to be scheduled as quickly as possible.
Ideally, one could devise routing algorithms with a performance guarantee
relative to an optimal routing algorithm, or relative to (adequately adapted)
parameters dilation D and congestion C, as done in traditional work on rout-
ing [160]. In wireless networks, problems of this kind have been studied only
in (restricted) graph-based models. Considering the drastic inconsistencies
between graph-based and SINR-based models when it comes to scheduling,
however, these graph-based results may divert largely from the physically
achievable bounds. Again, the main algorithmic problem that must be over-
come is to bound the optimum (or, equivalently, the congestion C), that is,
to derive a lower bound on the scheduling complexity.

From a more practical point of view, it will be interesting to turn the

249

theoretical findings of the previous chapters into practical MAC layer and
scheduling protocols. Ultimately, the assignment of non-linear power levels
to nodes could help in developing more efficient network protocols. For a
simple example, consider a data gathering application with high throughput
requirements in heterogeneous wireless multi-hop networks. In such networks,
there are energy-restricted wireless nodes that gather data and locally dis-
tribute or forward this data for aggregation, as well as a few designated,
more powerful nodes. Eventually, the data has to be sent to a base station,
a task which is preferably done by the long-range nodes, instead of regu-
lar sensor nodes. In any graph-based model, local communication among
regular nodes and long-range communication among designated nodes must
be coordinated (either in the time or frequency space, or by using spatial
multiplexing). As in the four-node example of Figure 17.2, however, long-
range and short-range communication can coexist, that is, regular nodes can
communicate with each other while long-range nodes send data to the base
station. In other words, we could devise efficient data gathering applications
based on the fact that simultaneous short-range and long-range transmission
does not lead to collisions. This could result not only in higher throughput,
but also in a significantly smaller coordination overhead between different
regions of the networks.

Finally, the physical model and its generalized companion as introduced
in Chapter 17 are in many ways still highly idealized. On the one hand,
these models do not adequately account for obstacles, and on the other
hand, the physical model by itself represents a rather simple—some would
say “naive”—channel fading model. In the networking literature, much more
realistic channel models have been proposed and it would be interesting to
plunge deeper into the algorithmic nature of communication in these even
more realistic and physical models.

250 CHAPTER 21. CONCLUSIONS AND OUTLOOK

Part IV

Selfishness in Networks

Chapter 22

Selfishness in Networks

In Part I of this thesis, we have argued that the absence of global knowl-
edge and the resulting need for local computation are key challenges when
dealing with modern large-scale and highly decentralized distributed sys-
tems. As already pointed out in the conclusion of Part I, however, there is
another fundamental characteristic that distinguishes networks such as the
Internet, peer-to-peer networks or mobile ad hoc networks from traditional
distributed systems. The nodes of these computer systems are typically gov-
erned by socio-economic agents whose main interest is not the optimization
of the network’s entirety, but rather the maximization of their own bene-
fit. Moreover, there may not be a central authority that designs the system
and controls that every participating agent behaves in a benevolent, glob-
ally coordinated manner. In other words, many of today’s most interesting
and algorithmically most challenging large-scale networks are characterized
by the fact that each node or agent will—like companies in free economy—
strive for optimizing its own benefit or reduce its own cost, regardless of its
actions’ impact on the global social welfare.

In his influential survey [190], Papadimitriou has argued that the Inter-
net has surpassed the von Neumann computer as the most complex compu-
tational artifact of our time. In particular, he pointed out that the Inter-
net has a socio-economic complexity whose understanding crucially requires
techniques from mathematical economics and game theory. And indeed, by
modeling the players as utility-maximizing agents, the study of network prob-
lems using game theoretic techniques has provided great insights into selfish
behavior on all layers of distributed systems in recent years.

One of the most fundamental and frequently studied notions of rationality
is the so-called Nash equilibrium. Intuitively, a Nash equilibrium constitutes
a situation in a game in which no player has an incentive to change its current
strategy given that all other players remain with their strategy. In this sense,
a Nash equilibrium defines a point of stability in the system, because no
player can unilaterally improve its situation by changing its strategy. While
the social optimum (so far simply denoted by “the optimum” in this thesis)

254 CHAPTER 22. SELFISHNESS IN NETWORKS

is the outcome of a global optimization process, a Nash equilibrium may be
the outcome of a process in which selfish, rational agents try to optimize
their own individual utility.

A particularly exciting question concerns the so-called Price of Anarchy
[145, 190, 209]: How much better would the social welfare be if selfish players
collaborated instead of seeking to maximize their own benefit? Technically,
the Price of Anarchy is defined as the ratio between the social optimum and
the worst Nash equilibrium.1 In recent years, researchers have been fas-
cinated to study the inherent loss of efficiency caused to a system by the
participant’s selfishness. Consequently, the Price of Anarchy [145, 208] and
its complexity have been analyzed in various system settings, including the
Internet [60, 83], wireless ad-hoc networks [71], or peer-to-peer systems [53].
Enforcing a truthful behavior or a reasonable efficiency in systems with a po-
tentially high Price of Anarchy has been the goal of algorithmic mechanism
design, e.g. [89, 187]. From a practical point of view, studying a system’s
Price of Anarchy indicates to what degree the system must be externally
managed and controlled in order to maintain a satisfying global performance
or outcome. Specifically, if a system has a large Price of Anarchy, it is neces-
sary to design mechanisms (such as taxes, payment schemes, or coordination
mechanisms) that force players to collaborate more efficiently. On the other
hand, it may be feasible and reasonable to leave a system with a low Price of
Anarchy to itself, because the selfish agents—by virtue of being selfish—are
guaranteed to achieve an acceptable performance.

The first chapter of Part IV studies the Price of Anarchy and compu-
tational aspects of Nash equilibria in a specific peer-to-peer network set-
ting, thereby attempting to shed light on the impact of selfish behavior
in these networks. One of the key advantages of structured P2P networks
as opposed to unstructured P2P networks is their potential to incorporate
locality-awareness in their routing scheme. In this context, much theoret-
ical research on structured P2P networks has focused on optimizing the
degree-stretch trade-off at nodes and its efficient maintenance in view of
churn [1, 5, 199, 210, 243]. Nonetheless, the majority of popular peer-to-peer
systems currently used in reality are unstructured and each peer is (theoret-
ically) capable of selecting its own set of peers in the system. In this case,
what are the incentives to actually participate in a scheme?

Inspired by the work of Fabrikant et al. [83], we have studied what hap-
pens if nodes optimize their own locality by selecting preferable links. In
more technical terms, we study a game theoretic network design problem in
which peers are located in a metric space and every node can select directed
links to an arbitrary subset of neighbors. Every node can select these nodes
in such a way as to reduce its own costs, which are comprised of stretch-costs
and maintenance-costs. We present tight bounds on the Price of Anarchy
and also prove a complexity result on pure Nash equilibria of our game.

However, selfishness is not the only challenge to the performance of dis-
tributed systems. Frequently, systems have to cope with malicious Byzan-
tine adversaries who seek to degrade the utility of the entire system, to

1A game may have many Nash equilibria of different social cost.

255

attack correctness of certain computations or to cause instability. In view of
such threats, researchers—especially in the area of security and distributed
computing—have devised ingenious solutions to defend against such possible
attacks. But what is the impact of malicious players and Byzantine attacks
on a system consisting of selfish players?

In Chapter 24, we extend current research on game theoretic aspects of
networking by allowing some players to be malicious or Byzantine rather
than selfish. The question is: What is the impact of Byzantine players on
the system’s efficiency compared to purely selfish environments or compared
to the social optimum? In order to capture the efficiency degradation result-
ing from malicious Byzantine players, we introduce the notion of the Price
of Malice. Technically, the Price of Malice is the ratio between the (regular)
Nash equilibrium and a similarly defined so-called Byzantine Nash equilib-
rium which incorporates malicious players.

As a case study, we consider a simple virus-inoculation game, which mod-
els the containment of the spread of viruses. In this game, each node can
choose whether or not to install anti-virus software. Then, a virus starts from
a random node and iteratively infects all neighboring nodes which are not
inoculated. Intriguingly, we obtain the result that depending on the amount
of knowledge about the existence of malicious players in the system, the Price
of Malice may actually become smaller than 1. That is, in certain settings,
we can observe an actual improvement of overall system performance if ma-
licious players interact with selfish players, as opposed to a system consisting
of selfish players, only. This highlights a “fear-factor” that can also be ob-
served in real life settings. Chapter 24 upper bounds this fear-factor in the
virus inoculation game.

Before and during the time this thesis has been written, the field of al-
gorithmic game theory and mechanism design has been among the most
feverously studied topics in theoretical computer science. There have been
numerous outstanding results in the recent past that have shed light on
the fundamental nature of algorithmic game theory and its complexity, e.g.
[59, 84, 191]. In contrast to such achievements, our contribution in this part
of the thesis is of a smaller scale: We aim at providing insight into some spe-
cific game theoretic settings which are relevant in networking and distributed
computing.

256 CHAPTER 22. SELFISHNESS IN NETWORKS

Chapter 23

The Locality Game:

Topologies Formed by Selfish

Peers

The power of peer-to-peer (P2P) computing arises from the collaboration of
its numerous constituent parts, the peers. If all the participating peers con-
tribute some of their resources—for instance bandwidth, memory, or CPU
cycles—, highly scalable decentralized systems can be built which signifi-
cantly outperform existing server based solutions. Unfortunately, in reality,
many peers are selfish and strive for maximizing their own utility by ben-
efiting from the system without contributing much themselves. Hence the
performance—and thus its success in practice!—of a P2P system crucially
depends on its capability of dealing with selfishness. A well-known mech-
anism designed to cope with this freeriding problem is the tit-for-tat policy
which is for instance employed by the file-distribution tool BitTorrent.

However, selfish behavior in peer-to-peer networks may not be restricted
to the peer’s unwillingness to contribute bandwidth or memory. For example,
in unstructured P2P systems—the predominant P2P architectures in today’s
Internet—, a peer can select to which and to how many other peers in the
network it wants to connect. With a clever choice of neighbors, a peer can
attempt to optimize its lookup performance by minimizing the latencies—or
more precisely, the stretch—to the other peers in the network. Achieving
good stretches by itself is of course simple: A peer can establish links to
a large number of other peers in the system. Because the memory and
maintenance overhead of such a neighbor set is large, however, egoistic peers
try to keep stretches low, while avoiding to store too many neighbors. It
is this trade-off between the need to have small latencies and the desire to
reduce maintenance overhead that governs the decisions of selfish peers.

In order to analyze the impact of selfish neighbor selection on the quality
of the resulting network topologies, we take a game theoretic approach. In

258 CHAPTER 23. TOPOLOGIES FORMED BY SELFISH PEERS

particular, we study the Price of Anarchy of P2P overlay creation, which
is the ratio between an optimal solution obtained by perfectly collaborating
participants compared to a solution generated by peers that act in an ego-
istic manner, optimizing their individual benefit. The Price of Anarchy in
peer-to-peer systems quantifies the possible degradation caused by selfish-
ness. Therefore, the Price of Anarchy is a measure that helps explaining the
necessity (or non-necessity) of cooperation mechanisms in various aspects of
these systems.

Interestingly, it turns out that the topologies of selfish, unstructured
P2P systems can be much worse than in a scenario in which peers collab-
orate. More precisely, we show in Section 23.2 that the Price of Anarchy
is Θ(min(α, n)), where α is a parameter that captures the tradeoff between
lookup performance (low stretches) and the cost of neighbor maintenance,
and n is the number of peers in the system, respectively. Thereby, the upper
boundO(min(α, n)) holds for peers located in arbitrary metric spaces, includ-
ing the popular growth-bounded and doubling metrics. On the other hand,
this bound is tight even in such a simple metric space as the 1-dimensional
Euclidean space. As a second contribution, we prove in Section 23.3 that the
topology of a static peer-to-peer system consisting of selfish peers may never
converge to a stable state. That is, links may continuously change even in
environments without churn (causing the network to be inherently instable).
Furthermore, the problem of deciding whether a given peer-to-peer network
is stable or not is NP-hard.

Related Work

The lack of cooperation in traditional P2P file-sharing systems has been
well-documented over the last years [6, 239], and research on the causes
and possible counter-measures is very active, e.g., [13] and [136]. Most of the
current literature focuses on the issue of free resource consumption, freeriding.

Our game-theoretic model of network creation is inspired by the paper
by Fabrikant et al. [83] which studies networks created by selfish agents. In
particular, in the model of [83], agents correspond to nodes of a graph and
every agent is free to build links to other nodes. The goal of each agent is to
have a small (hop-)distance to all other nodes and to minimize its number of
links. The network creation game of [83] has spurred a number of subsequent
work in various settings, for instance [8, 14, 60, 71].

In contrast to these existing network creation games, our model takes into
account many of the intrinsic properties of P2P systems. For instance, nodes
are located in a metric space and the distances between nodes correspond
to latencies. Our optimization function captures the locality properties of
P2P systems, i.e., the desire to reduce latencies (expressed as the stretch)
experienced when performing look-up operations. Finally, the fact that a
peer can decide to which other peers it wishes to store pointers and thus
maintain links yields a scenario with directed links.

Building structured systems that explicitly exploit locality properties has
been a flourishing research area in networking and P2P computing (e.g. [1,

23.1. MODEL 259

210, 236]). In early literature on distributed hash tables (DHT), the major
measure of system quality has been the number of hops required for look-up
operations. While this hop-distance is certainly of importance, it has been
argued that the delay of communication (i.e., the stretch between pairs of
peers) is a more relevant quality measure. Based on results achieved in [199],
systems such as [1, 5, 210, 243] guarantee a provably bounded stretch with
a limited number of links per peer. All of these systems are structured and
peers are supposed to participate in a carefully predefined topology. In a
sense, we complement this line of research by analyzing topologies as they
are created by selfish peers, which are interested only in optimizing their
individual trade-off between locality and maintenance overhead.

23.1 Model

Our model adapts the basic network creation game of Fabrikant et al in [83]
in several ways. In particular, in our model, nodes are located in a metric
space, links are directed, and each node’s utility function includes the stretch
to other nodes.

More specifically, we model the peers of a P2P network as points in a
metric space M = (V, d), V = {v0, v1, . . . , vn−1}, where d : V × V → [0,∞)
is the distance function which describes the underlying latencies between all
pairs of peers. A peer vi ∈ V can choose to which subset of other peers
it wants to store pointers (IP addresses). Formally, the strategy space of a

peer vi is given by Si = 2V \{vi}, and we refer to the actually chosen links
as vi’s strategy si ∈ Si. We say that vi maintains or establishes a link to vj

if vj ∈ si. The combination of all peers’ strategies, i.e., s = (s0, ..., sn−1) ∈
S0 × · · · × Sn−1, yields a directed graph G[s] = (V,∪n−1

i=0 ({vi} × si)), which
describes the resulting P2P topology.

Selfish peers exploit locality in order to maximize their lookup perfor-
mance. Concretely, a peer aims at minimizing the stretch to all other peers.
As usual, the stretch between two peers vi and vj is the shortest distance
between vi and vj using the links of the resulting topology G divided by the
direct distance, i.e., for a topology G, stretchG(vi, vj) = dG(vi, vj)/d(vi, vj).
Clearly, it is desirable for a peer to have low stretches to other peers in order
to keep its latency small. However, storing and especially maintaining a large
number of links is expensive. For instance, the maintenance of a link may
involve periodic pings to verify whether the neighbor is still alive. There-
fore, the individual cost ci(s) incurred at a peer vi is composed not only of
the stretches to all other peers, but also of its degree, i.e., the number of its
neighbors:

ci(s) = α · |si| +
∑

i6=j

stretchG[s](vi, vj).

Note that this cost function captures the classic P2P trade-off between the
need to minimize latencies and the desire to store and maintain only few
links, as it has been addressed by many existing systems, for example Pas-
try [210]. Thereby, the relative importance of degree costs versus stretch

260 CHAPTER 23. TOPOLOGIES FORMED BY SELFISH PEERS

costs is expressed by the parameter α.
In order to evaluate the topologies constructed by selfish peers—and com-

pare them with the topologies achieved by collaborating peers—, we study
Nash equilibria. A topology constitutes a Nash equilibrium if no peer can
reduce its individual cost by changing its set of neighbors given that the con-
nections of all other peers remain the same. More formally, a (pure) Nash
equilibrium is a combination of strategies s such that, for each peer vi, and
for all alternative strategies s′ which differ only in the ith component (dif-
ferent neighbor sets for peer vi), ci(s) ≤ ci(s

′). This means that in a Nash
equilibrium, no peer has an incentive to change its current set of neighbors,
that is, Nash equilibria are stable.

While peers try to minimize their individual cost, the system designer is
interested in a good overall quality of the P2P network. The social cost is
the sum of all peers’ individual costs, i.e.,

C(G, s) =
∑

i

ci(s) = α|E| +
∑

i6=j

stretchG(vi, vj).

The Price of Anarchy is the ratio between the social cost of the worst Nash
equilibrium and the social cost of the optimal topology.

Determining the parameter α in real unstructured peer-to-peer networks
is an interesting field for study. As mentioned, αmeasures the relative impor-
tance of low stretches compared to the peers’ degrees, and thus depends on
the system or application: For example, in systems with many lookups where
good response times are crucial, α is smaller than in distributed archival stor-
age systems consisting mainly of large files. In the sequel, we denote the link
and stretch costs by CE(G) = α|E| and CS(G) =

∑
i6=j stretchG(vi, vj),

respectively.

23.2 Price of Anarchy

The Price of Anarchy is the ratio between the social cost of the worst Nash
equilibrium and the social cost of the optimal topology. It is a measure
that describes the degradation of a globally optimal solution caused by self-
ish individuals. In this section, we show that the topologies created by
selfish peers deteriorate more (compared to collaborative networks) as the
cost of maintaining links becomes more important (larger α). Concretely,
in Section 23.2.1 we prove that for arbitrary metric spaces—thus, including
the important and well-studied growth-bounded [139] and doubling (e.g. [40])
metrics—, the Price of Anarchy never exceeds O(min(α, n)). We then show
in Section 23.2.2 that this bound is tight even in the “simplest” metric space,
the 1-dimensional Euclidean space, where there exist Nash equilibria with a
Price of Anarchy of Ω(min(α, n)).

23.2.1 Upper Bound

Assume the most general setting where n peers are arbitrarily located in a
given metric space M, and consider a peer vi which has to find a suitable

23.2. PRICE OF ANARCHY 261

Figure 23.1: Example topology G where the Price of Anarchy is Θ(min (α, n)) for
3.4 ≤ α. The peers are arranged on a 1-dimensional Euclidean line, with exponen-
tially increasing distances. Even peers are only connected to the nearest peer on
the left, while odd peers additionally have a link to the second nearest peer on their
right. Observe that every peer has stretch 1 to all peers on the left.

neighbor set. Clearly, the maximal stretch from vi to any other peer vj in the
system is at most α+1: If stretch(vi, vj) > α+1, vi could establish a direct
link to vj , reducing the stretch from more than α+ 1 to 1, while incurring a
link cost of α. Therefore, in any Nash equilibrium, no stretch exceeds α+ 1.
Because there are at most n(n − 1) directed links (from each peer to all
remaining peers), the social cost of a Nash equilibrium is O(αn2 + αn2). In
the social optimum, on the other hand, all stretches are at least 1 and there
must be at least n − 1 links in order to keep the topology connected. This
lower bounds the social cost by Ω(αn+ n2) and yields the following result.

Theorem 23.1. For any metric space M, the Price of Anarchy is in the
order of O(min(α, n)).

Theorem 23.1 implies that if the relative importance of the peers’ stretch
is large, the Price of Anarchy is small. That is, for small α, the selfish
peers have an incentive to establish links to many other peers, while also the
optimal network is highly connected.

23.2.2 Lower Bound

We now show that there are P2P networks in which the Price of Anarchy is as
bad as Ω(min(α, n)), which implies that the upper bound of Section 23.2.1
is asymptotically tight. Intriguingly, the Price of Anarchy can deteriorate
to Θ(min(α, n)) even if the underlying latency metric describes a simple 1-
dimensional Euclidean space.

Consider the topology G in Figure 23.1 in which peers are located in
a line, and the distance (latency) between two consecutive peers increases
exponentially towards the right. Concretely, peer i is located at position
αi−1/2 if i is odd, and at position αi−1 if i is even. The peers of G maintain
links as follows: All peers have a link to their nearest neighbor on the left.
Odd peers additionally have a link to the second nearest peer on their right.
After proving that G constitutes a Nash equilibrium, we derive the lower
bound on the Price of Anarchy by computing the social cost of this topology.

Lemma 23.2. The topology G shown in Figure 23.1 forms a Nash equilib-
rium for α ≥ 3.4.

262 CHAPTER 23. TOPOLOGIES FORMED BY SELFISH PEERS

Proof. We distinguish between even and odd peers. For both cases, we show
that no peer has an incentive to deviate from its strategy.

Case even peers: Every even peer i needs to link to at least one peer on
its left, otherwise i cannot reach the peers j < i. A connection to peer i− 1
is optimal, as the stretch to all peers j < i becomes 1. Observe that every
alternative link to the left would imply a larger stretch to at least one peer
on the left without reducing the stretch to peers on the right. Furthermore,
i cannot reduce the distance to any—neither left nor right—peer by adding
further links to the left. Hence, it only remains to show that i cannot benefit
from adding more links to the right.

By adding a link to the right, peer i shortens the distance to all peers on
the right. However, we show that the cost reduction per peer decreases as
a geometric series, and any such link to the right would strictly increase i’s
costs. We consider two cases: i linking to an odd peer on the right, and i
linking to an even peer on the right.

Link to an odd peer: Consider the benefit of i adding a link to its odd
neighbor i+1. For an odd peer j > i, we define the benefit Bi,j as the stretch
cost reduction caused by the addition of the link (i, i+1). We have, for i ≥ 2,

Bi,j = stretchold(i, j) − stretchnew(i, j)

=
d(i, i− 1) + d(i− 1, j)

d(i, j)
− d(i, j)

d(i, j)

=
αi−1 − 1

2
αi−2 + 1

2
αj−1 − 1

2
αi−2

1
2
αj−1 − αi−1

− 1

=
1
2
αj−1 + αi−1 − αi−2

1
2
αj−1 − αi−1

−
1
2
αj−1 − αi−1

1
2
αj−1 − αi−1

=
2αi−1 − αi−2

1
2
αj−1 − αi−1

=
2 − 1

α
1
2
αj−i − 1

Similarly, the savings Bi,j for an even peer j > i and i ≥ 2 amount to

Bi,j = stretchold(i, j) − stretchnew(i, j)

=
d(i, i− 1) + d(i− 1, j + 1) + d(j + 1, j)

d(i, j)
− d(i, j + 1) + d(j + 1, j)

d(i, j)

=
αi−1 − αi−2 + αj − αj−1

αj−1 − αi−1
− αj − αi−1 − αj−1

αj−1 − αi−1

=
2αi−1 − αi−2

αj−1 − αi−1
=

2 − 1
α

αj−i − 1

23.2. PRICE OF ANARCHY 263

Hence, for all α ≥ 3.4, the total savings Bi for peer i are less than

Bi =
∑

odd j > i

Bi,j +
∑

even j > i

Bi,j

<

∞∑

δ=1

2 − 1
α

1
2
α2δ−1 − 1

+

∞∑

δ=1

2 − 1
α

α2δ − 1

≤
(α≥3)

(
2 − 1

α

) ∞∑

δ=1

(
1

1
2
α2δ−2

+
1

α2δ−1

)

=

(
2 − 1

α

)(
2α2

α2 − 1
+

α

α2 − 1

)

=
4α2 − 1

α2 − 1
<

(α≥3.4)
α+ 1

Therefore, the construction of link (i, i+ 1) would be of no avail (benefit
smaller than cost). The benefit of alternative or additional links to odd
neighbors on the right is even smaller.

Link to an even peer: A link to an even peer j > i entails a stretch 1
to the corresponding peer instead of stretchold(i, j) = (αj − αj−1 + αi−1 −
αi−2)/(αj−1−αi−1) < α+1 for α > 2. However, the stretch from i to all other
peers remains unchanged, since the path i (i−1) (i+1) is shorter than
i (i+2) (i+1): αi−1− 1

2
αi−2 + 1

2
αi− 1

2
αi−2 < αi+1−αi−1 +αi+1− 1

2
αi

for α > 1. Therefore, an even peer i has no incentive to build links to any
even peer on its right.

Case odd peers: An odd peer i needs to link to peer i − 1, otherwise
there is no connection to i − 1 and the stretch from i to i − 1 is infinite.
Moreover, if the link (i, i − 1) is established, stretch(i, j) = 1 for all j < 1.
Therefore, peer i does not profit from building additional or alternative links
to the left.

It remains to study links to the right. In order to reach all peers with a
finite stretch, peer i needs a link to some peer j ≥ i+ 2. In the following, we
first show that peer i can always benefit from a link (i, i+2), independently of
additional links to the right. Secondly, we prove that if i has a link (i, i+ 2),
it has no incentive to add further links.

Assume peer i has no direct link to peer i+ 2. Then, stretch(i, i + 2) ≥
(2αi+2 − 1

2
αi−1 − 1

2
αi+1)/(1

2
αi+1 − 1

2
αi−1) > α+ 1. Hence, no matter which

links it already has, peer i can benefit by additionally pointing to peer i+ 2.
On the other hand, if imaintains the link (i, i+2), any other links to the right
only reduce i’s gain. For odd peers, this is obvious, since the corresponding
stretches are already optimal. A link (i, j) to some even peer j > i only
improves the stretch to peer j itself, but not to other peers. The stretch to
peer j becomes 1 instead of stretchold(i, j) = (1

2
αj+1 − 1

2
αi−1 + 1

2
αj+1 −

αj)/(αj − 1
2
αi−1) = (αj+1 − αj − 1

2
αi−1)/(αj − 1

2
αi−1) < α + 1 for α > 0.

Thus, also this link would increase i’s costs.

264 CHAPTER 23. TOPOLOGIES FORMED BY SELFISH PEERS

Having verified that the topology of Figure 23.1 is a Nash equilibrium,
we compute its social cost.

Lemma 23.3. The social cost C(G) of the topology G shown in Figure 23.1
is

C(G) ∈ Θ(αn2).

Proof. The topology G has n − 1 links pointing to the left and bn/2c links
pointing to the right. Hence, the total link costs are

CE(G) = α [(n− 1) + bn/2c] ∈ Θ(αn).

It remains to compute the costs of the stretches. The stretch from an odd peer
i to an even peer j > i is stretch(i, j) = (αj−αj−1− 1

2
αi−1)/(αj−1− 1

2
αi−1) >

(1
2
αj− 1

2
αi−1)/(αj−1− 1

2
αi−1) > 1

2
α for α > 2. Thus, the sum of the stretches

of an odd peer i is

CS(i) =
∑

j<i

stretch(i, j) +
∑

j>i

stretch(i, j)

> (i− 1) +
1

2
α b(n− i− 1)/2c + b(n− i)/2c .

The stretch between two even peers i and j is stretch(i, j) = (αj −αj−1 +
αi−1 − αi−2)/(αj−1 − αi−1) > (1

2
αj − 1

2
αi−1)/(αj−1 − αi−1) > 1

2
α for j > i

and all α > 2. Thus, the stretch costs are at least

CS(i) > (i− 1) +
1

2
α (b(n− i− 1)/2c − 1) + b(n− i− 1)/2c .

Adding up the stretches of odd and even peers yields a lower bound on
the total stretch cost.

CS(G) =
∑

i even

CS(i) +
∑

i odd

CS(i)

>
n(n− 2)

2
+
α((n− 3)(n− 2) − n)

8
+

(n− 1)(n− 2)

4

∈ Ω(αn2).

Thus, in combination with Theorem 23.1, it follows that CS(G) ∈ Θ(αn2).
The proof is concluded by combining link and stretch costs,

C(G) = CE(G) + CS(G) ∈ Θ(αn2).

Theorem 23.4. The Price of Anarchy of the peer topology G shown in
Figure 23.1 is Θ(min(α, n)).

23.3. THE COMPLEXITY OF NASH EQUILIBRIUM 265

Π a

Π b Π c

Π 2Π 1
δ1a

2 2 2+δ

1

1a

 = 0.04
abδ = 0.14

ε > 0
δ > ε

2−δ

ab

ε/n

ε/n ε/n

ε /n ε/n
1−2δ

1+δ

Figure 23.2: Instance Ik has no pure Nash equilibrium when α = 0.6k, where
k = n/5. The number of peers in each cluster is k.

Proof. The upper bound follows directly from the result obtained in Theo-
rem 23.1. As for the lower bound, if α < 3.4, the theorem holds because
O(min(α, n)) = O(1) in this case and the Price of Anarchy is always at
least 1. By Lemma 23.2, the topology G constitutes a Nash equilibrium for
α ≥ 3.4. Moreover, by Lemma 23.3, the social cost of G is in Θ

(
αn2

)
. In

the following, we prove that the optimal social cost is upper bounded by
O(n2 +αn) from which the claim of the theorem follows by dividing the two
expressions.

Consider again the peer distribution shown in Figure 23.1, and assume
that there are no links. If every peer connects to the nearest peer to its
left and to the nearest peer to its right, there are 2(n − 1) links, and all

stretches are 1. Thus, the social cost of this resulting topology G̃ is C(G̃) =
α · 2(n− 1) + n(n− 1) ∈ O(n2 + αn). The optimal social cost is at most the

social cost of G̃.

23.3 The Complexity of Nash Equilibrium

In the original network creation game studied in [83], there always exists a
pure Nash equilibrium. Interestingly, this is not guaranteed in our locality
game; there may not exist a pure Nash equilibrium for certain P2P networks.
In other words, a system of selfish peers may never converge to a stable state,
even in the absence of churn, mobility, or other sources of dynamics.

Theorem 23.5. Regardless of the magnitude of α, there are metric spaces
M, for which there exists no pure Nash equilibrium, i.e. certain P2P net-
works cannot converge to a stable state. This is the case even if M is a
2-dimensional Euclidean space.

Instead of presenting the formal proof (which will be implicit in the proof
of Theorem 23.6), we attempt to highlight the main idea only. Assume

266 CHAPTER 23. TOPOLOGIES FORMED BY SELFISH PEERS

that the parameter α is a multiple of 0.6, i.e., αk = 0.6k for an arbitrary
integer k > 0. Given a specific k, the 2-dimensional Euclidean instance Ik

of Figure 23.2 has no pure Nash equilibrium. Specifically, Ik constitutes a
situation in which there are peers v1 ∈ Π1 and v2 ∈ Π2 that continue to
deviate to a better strategy ad infinitum, i.e., the system cannot converge.

The n peers of instance Ik are grouped into five clusters Π1, Π2, Πa, Πb,
and Πc, each containing k = n/5 peers. Within a cluster, peers are located
equidistantly in a line, and each cluster’s diameter is ε/n, where ε > 0 is an
arbitrarily small constant. The inter-cluster distance d(Πi,Πj) between Πi

and Πj is the minimal distance between any two peers in the two clusters.
Distances not explicitly defined in Figure 23.2 follow implicitly from the
constraints imposed by the underlying Euclidean plane.

The proof unfolds in a series of lemmas that characterize the structure of
the resulting topology G[s] if the strategies s form a Nash equilibrium in Ik.
First, it can be shown that in G[s], two peers in the same cluster are always
connected by a path that does not leave the cluster. Secondly, it can be
shown that there exists exactly one link in both directions between clusters
Πa and Πb, Πb and Πc, as well as between Π1 and Π2. A third structural
characteristic of any Nash equilibrium is that for every i and j, there is at
most one directed link from a cluster Πi to peers in a cluster Πj .

To preserve connectivity, some peers in Π1 and Π2 must have links to
top-peers. Based on the aforementioned observations, the set of possible
strategies can further be narrowed down as follows.

• Neither peers in Π1 nor Π2 select three links to top-peers.

• There exists a peer v1 ∈ Π1 that establishes a link to Πa.

• There is exactly one link from cluster Π2 to either cluster Πb or Πc,
but there is no link to Πa.

Correctness of all three properties is proven by verifying that there exists
some node v1 ∈ Π1 or v2 ∈ Π2 that has an incentive to change its strategy
in case the property is not satisfied. If, for instance, there are two peers
v2, v

′
2 ∈ Π2 that simultaneously maintain links to Πb and Πc, (e.g. v2 to

Πb and v′2 to Πc, thus violating case iii)), v′2 can lower its costs by drop-
ping its link to Πc. Intuitively, this holds because the sum of the stretches∑

vc∈Πc
stretch(v′2, vc) entailed by the indirection v′2 v2 Πb Πc does

not justify the additional cost α.
It can be shown that only the six structures depicted in Figure 23.3 re-

main valid candidates for Nash topologies. In each scenario, however, at least
one peer benefits from deviating from its current strategy.

Case 1: In this case, a peer v1 ∈ Π1 can reduce its cost by adding a link to
a peer in Πb.

Case 2: If the only outgoing link from Π1 to a top-cluster is to cluster Πa,
the peer v2 ∈ Π2 maintaining the link to Πc can be shown to profit from
switching its link from Πc to Πb.

Case 3: The availability of the link from Π1 to Πb changes the optimal

23.3. THE COMPLEXITY OF NASH EQUILIBRIUM 267

1

4 5 6

aΠ
cΠbΠ

aΠ
cΠbΠ

aΠ
cΠbΠ

1Π 2Π

1Π 2Π1Π 2Π

1Π 2Π

1Π 2Π

1Π 2Π

aΠ
cΠbΠ

aΠ
cΠbΠ

aΠ
cΠbΠ

2 3

Figure 23.3: Candidates for a Nash equilibrium.

choice of the above mentioned peer v2 ∈ Π2. Unlike in the previous case, v2
now prefers linking to Πc instead of Πb.

Case 4: Due to the existence of a link from a peer v2 ∈ Π2 to Πc, the peer
v1 ∈ Π1 with the link to Πb has an incentive to drop this link and instead
use the detours via Π2 and Πa to connect to Πc and Πb, respectively.

Case 5: In this case, the peer v1 ∈ Π1 having the link to Πc reduces its cost
by replacing this link with a link to a peer in Πb.

Case 6: Finally, this case is similar to Case 4 in the sense that v1 ∈ Π1 with
the link to Πb has an incentive to remove its link to Πc

These cases highlight how the system is ultimately trapped in an infinite
loop of strategy changes, without ever converging to a stable situation. There
is always at least one peer which can reduce its cost by changing its strategy.
For instance, the following sequence of topology changes could repeat forever
(cf. Figure 23.3): 1 3 4 2 1 3 . . . In other words, selfish peers
will not achieve a stable network topology.

The question is whether for a given P2P network, it can be determined
if it will eventually converge to a stable state or not. In the following, we
show that it is NP-hard to decide whether there exists a pure Nash equilib-
rium. This result establishes the complexity of stability in unstructured P2P
networks, showing that in general, it is impossible to determine whether a
peer-to-peer network consisting of selfish peers can stabilize or not.

Ever since Papadimitriou’s influential survey on game theoretic aspects
of the Internet [190], the complexity of Nash equilibria has become one of
the most active and fruitful areas in recent theoretical computer science re-
search. Numerous profound results on important families of games have been
presented for instance in [59, 84, 191]. In the sequel, we aim at a much more
humble result, namely, we want to show that it is NP-hard to decide whether
our locality game in a given P2P network has a pure Nash equilibrium.

268 CHAPTER 23. TOPOLOGIES FORMED BY SELFISH PEERS

1−2δ

1.96 δ2+

Π y Π z

Π c

Π 1
a

Π 2
a

Π 3
a

Π 4
a

Π 1
b

Π 4
b

Π 3
b

Π 2
b

Π 1
c

Π 2
c

Π 3
c

Π 4
c

Π 5
0Π 5

1Π 4
1 Π 4

0Π 3
0Π 2

0 Π 3
1Π 2

1Π 1
0Π 1

1
2.45

2 2

2.45

1.72

1.48

1.48

1.48

11.14

1 1 11

1.2

1.2

Literals

Clauses

Figure 23.4: The graph GI for instance I = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3 ∨ x4) ∧
(x1 ∨ x2 ∨ x5) ∧ (x3 ∨ x4 ∨ x5). Each cluster contains k peers with pairwise
distance of ε. The constant δ is an arbitrarily constant such that δ > ε > 0.

Theorem 23.6. Regardless of the magnitude of α, determining whether a
given P2P network represented by a metric space M has a pure Nash equi-
librium (and can therefore stabilize) is NP-hard.

The proof being rather technical, we begin by briefly describing its main
intuition. The proof is based on a reduction from an NP-complete special
form of 3-SAT in which each variable appears in at most 3 clauses [102]. For
any α a multiple of 0.6, i.e., αk = 0.6k for an arbitrary integer k > 0, we give
a polynomial time construction of a metric space Mk

I from an instance I of
3-SAT, such that the following holds: There exists a pure Nash equilibrium
in Mk

I if and only if I is satisfiable.
The reduction is illustrated in Figure 23.4, each rectangular box repre-

senting a cluster of k peers. Assume that the 3-SAT instance is given in
standard CNF normal form. For each clause Cj , we employ a gadget of three
clause-clusters Πa

j , Πb
j , and Πc

j . For every variable xi, the two literal-clusters

Π0
i and Π1

i represent the negative and positive literal of the variable, respec-
tively. Finally, the construction’s peer set is completed with three special
clusters Πc, Πy, and Πz. The pairwise distances between two peers in Mk

I

are determined by the undirected weighted graph Gk
I shown in Figure 23.4.

Two nodes within the same cluster have a distance of ε, for some arbitrarily
small ε < (k(2n+ 3m+ 3))−2, where m and n denote the number of clauses

and variables in I , respectively. An edge of Gk
I describes the cluster-distance

between two clusters. That is, the mutual distance between every pair of two
peers vi ∈ Πi and vj ∈ Πj in neighboring clusters Πi and Πj with cluster-
distance X is d(vi, vj) = X. All other distances are determined by the length
of the shortest path between the peers in Gk

I , i.e., Mk
I corresponds to the

shortest path metric induced by Gk
I . Note that while Mk

I cannot be embed-

23.3. THE COMPLEXITY OF NASH EQUILIBRIUM 269

ded in the Euclidean space, it still forms a valid metric space, i.e., it fulfils
symmetry, triangle inequality, and no two peers have the same location.

Consider an arbitrary clause Cj . Its clause-clusters Πa
j , Πb

j , and Πc
j in

combination with the two special clusters Πy and Πz form an instance similar
to Ik as used in the discussion of Theorem 23.5 (cf Figure 23.2). Hence,
intuitively, when considering such a clause-gadget by itself, it does not have
a pure Nash equilibrium. In order to make a clause-gadget stable, however,
literal clusters may be used. For this purpose, the cluster-distance between
each pair of corresponding literals is 1 and peers in Πz have a distance of 1.72
to all literal-peers. Furthermore, the distance between a clause-cluster Πc

j and
a literal-cluster depends on whether the corresponding literal appears in the
clause. Specifically, if the positive literal xi appears in clause Cj , xi ∈ Cj ,
the distance between Π1

i and Πc
j is small, i.e., only 1.48. Similarly, if xi ∈ Cj ,

then d(Π1
i ,Π

c
j) = 1.48. And finally, if neither literal is in Cj , then there exists

no short connection between the clusters, and the shortest distance between
peers in these clusters is via the central cluster Πc.

The proof comprises two ingredients. First, we prove that if the underly-
ing SAT instance I is not satisfiable, then there exists no Nash equilibrium.
Towards this end, we show that in any Nash equilibrium two “neighboring”
clusters (clusters connected by a short link in Gk

I , such as two clause-clusters
in the same clause, a literal-cluster Π1

i to a clause-cluster Πc
j if xi ∈ Cj , or Πc

to all clause-clusters and literal-clusters,. . .) always establish links in both
directions between them. Specifically, it can be shown that between such
close-by clusters, there are always exactly two links, one in each direction.
Furthermore, for every variable xi, there is exactly one peer vz ∈ Πz that
establishes a link to exactly either Π1

i or Π0
i (but not both!), while no other

peer in Πz links to these clusters.
From these lemmas, it then follows that because I is not satisfiable, there

must exist a clause Cj∗ for which the path from vz ∈ Πz to peers in Πc
j∗ via

any literal-peer has length at least d(Πz,Π
µ
i)+d(Πµ

i ,Π
1−µ
i)+d(Π1−µ

i ,Πc
j∗) =

4.2, for µ ∈ {0, 1}. This path being long, it follows that it is worthwhile for vz

to build an additional link directly to some peer in Πc
j∗ or even in Πb

j∗ instead.

Based on these observations, we show that the subset of Mk
I induced by peers

in Πy , Πz, and the clause-peers of Cj∗ behaves similarly as in instance Ik of
Figure 23.2. That is, peers in Πy and Πz continue to change their respective
strategies forever, thus preventing the system from stabilizing.

On the other hand, if the SAT instance I has a satisfying assignment
AI , we explicitly construct a set of pure strategies that constitute a Nash
equilibrium. In this strategy vector, one peer in Πz builds a direct link to
a peer in Π1

i if xi is set to true in AI and to a peer in Π0
i otherwise. Since

AI is a satisfying assignment, there must exist a path from Πz via a single
literal-cluster (i.e., without the additional detour of going from one literal-
cluster to the other) to peers in every cluster Πc

j . This path can be shown to
have length at most kε + d(Πz,Π

µ
i) + kε + d(Πµ

i ,Π
c
j) + kε = 3.2 + 3kε from

Πz via a literal-cluster to peers in every cluster Πc
j . It follows that in any

satisfied clause Cj , the achievable reduction in stretch costs at a peer in Πz

when connecting directly to clusters Πb
j or Πc

j is significantly smaller than in

270 CHAPTER 23. TOPOLOGIES FORMED BY SELFISH PEERS

an unsatisfied clause. Specifically, it can be shown that peers in Πy and Πz

are in a stable situation if one peer vy ∈ Πy connects to Πa
j and Πb

j of every
clause Cj , and no peer in Πz directly builds a link to any clause-peer. Since
AI is a satisfying assignment, peers in Πy and Πz are stable relative to all
clauses in the SAT instance.

Furthermore, we also prove that in our strategy vector, no other peer in
the network (i.e., peers in Πc, Πa

j , Πb
j , Πc

j , Π1
i , or Π0

i) has an incentive to
deviate from its strategy. For this final ingredient of the proof, the existence
of cluster Πc is essential, because it ensures that the various helper peers are
mutually connected by optimal paths.

Therefore, the P2P network induced by the metric space Mk
I has a pure

Nash equilibrium if and only if the underlying SAT instance I is satisfiable.
And hence, determining whether a given P2P network can ever stabilize is
NP-hard. In the sequel, we turn this intuition into a formal proof. We
begin in Section 23.3.1 by giving the construction of Gk

I (and consequently
its shortest path metric Mk

I) from the 3-SAT instance I . In Sections 23.3.2
and 23.3.3, we show that there exists a Nash equilibrium in Mk

I if and only
if I is satisfiable. Theorem 23.6 then follows from Lemmas 23.16 and 23.18,
as well as the NP-hardness of 3-SAT.

23.3.1 The Construction of Mk

I

Let I be an instance of 3-SAT expressed in conjunctive normal form (CNF),
in which each clause contains 3 literals. Without loss of generality, we can as-
sume that each variable in I appears in at most 3 clauses [102]. Furthermore,
we can restrict our attention to those instances of 3-SAT in which every vari-
able appears in most 2 positive and 2 negative literals, because otherwise, the
variable appears as a positive or negative literal only, which renders assign-
ing a feasible value to this variable trivial. The set of clauses and variables
of I is denoted by C and X , respectively. Further, we write m = |C| and
n = |X |. Given I , we construct an undirected weighted graph Gk

I = (VI , EI)
in which each node represents a peer of the underlying network. Nodes are
grouped into clusters of k peers and each cluster is illustrated as a rectangu-
lar box in Figure 23.4. Within each cluster, the pairwise distance between
two peers is ε < (k(2n+ 3m + 3))−2, and the distance between two peers in
neighboring clusters is described by the cluster-distance d(Πi,Πj) illustrated
in Figure 23.4. The P2P network is then characterized by Mk

I , which is in-
duced by the shortest path metric of Gk

I , i.e., the distance between two peers
corresponds to the length of the shortest path in Gk

I .
In more detail, Gk

I is defined as follows. The node-set VI consists of three
clusters of peers per clause Cj ∈ C, denoted as clause-clusters Πa

j , Πb
j , and Πc

j .

Also, we add a pair of literal-clusters Π0
i and Π1

i for each of the n variables,
with Π0

i representing the positive literal xi, and Π1
i representing the negative

literal xi. The set of clause-peers and literal-peers is denoted by CP and LP ,
respectively. Finally, there are three additional special clusters Πc, Πx, and
Πy. Call the union of Πc and all clusters in CP and LP top-layer clusters.
Peers in top-layer clusters are top-layer peers. The total number of peers N

23.3. THE COMPLEXITY OF NASH EQUILIBRIUM 271

in the network Mk
I is therefore N = k(2n + 3m + 3). Notice that N · ε is

smaller than (k(2n+ 3m+ 3))−1.
The pairwise distances between the peers in different clusters—as illus-

trated in Figure 23.4—are formally defined as

∀vc ∈ Πc,∀vw ∈ CP ∪ LP : d(vc, vw) = 1.2

∀Cj ∈ C : ∀vy ∈ Πy,∀va
j ∈ Πa

j : d(vy, v
a
j) = 1.96

∀Cj ∈ C : ∀vy ∈ Πy,∀vb
j ∈ Πb

j : d(vy, v
b
j) = 2

∀Cj ∈ C : ∀vy ∈ Πy,∀vc
j ∈ Πc

j : d(vy, v
c
j) = 2.45

∀Cj ∈ C : ∀vz ∈ Πz,∀va
j ∈ Πa

j : d(vz, v
a
j) = 2.45

∀Cj ∈ C : ∀vz ∈ Πz,∀vb
j ∈ Πb

j : d(vz, v
b
j) = 2

∀Cj ∈ C : ∀vz ∈ Πz,∀vc
j ∈ Πc

j : d(vz, v
c
j) = 2 + δ

∀Cj ∈ C : ∀va
j ∈ Πa

j ,∀vb
j ∈ Πb

j : d(va
j , v

b
j) = 1.14

∀Cj ∈ C : ∀vb
j ∈ Πb

j ,∀vc
j ∈ Πc

j : d(vb
j , v

c
j) = 1

∀xi ∈ X : ∀v0
i ∈ Π0

i ,∀v1
i ∈ Π1

i : d(v0
i , v

1
i) = 1

∀xi ∈ X : ∀vz ∈ Πz,∀vµ
i ∈ Πµ

i : d(vz, v
µ
i) = 1.72

∀Cj ∈ C, xi ∈ Cj : ∀v1
i ∈ Π1

i ,∀vc
j ∈ Πc

j : d(v1
i , v

c
j) = 1.48

∀Cj ∈ C, xi ∈ Cj : ∀v0
i ∈ Π0

i ,∀vc
j ∈ Πc

j : d(v0
i , v

c
j) = 1.48

∀vy ∈ Πy,∀vz ∈ Πz : d(vy, vz) = 1 − 2δ

for δ being an arbitrarily small constant with δ > 10kε, and µ ∈ {0, 1}. All
other distances not explicitly defined follow from the shortest path metric
induced by the above definitions.

Intuitively, the idea of the construction is the following. Each clause
Cj ∈ C is represented by a gadget consisting of the two clusters Πy , Πz,
as well as the clause-clusters Πa

j , Πb
j , and Πc

j . By itself, each such gadget
is reminiscent of the construction shown in Figure 23.2. Specifically, this
implies that the sub-network induced by each such clause-gadget does not
have a pure Nash equilibrium when considered independently from the rest
of the network.

In order to render a clause-gadget stable, literal-peers can be used. In
particular, it can be shown that for µ ∈ {0, 1}, the peers in every literal-
cluster Πµ

i construct links to those (at most two) clause-clusters Πc
j in whose

clause the literal occurs, that is, if xµ
i ∈ Cj . Based on this and other struc-

tural properties of Nash equilibria in Mk
I , it can further be shown that in a

Nash equilibrium, there is exactly one link from cluster Πz to each variable
xi ∈ X , i.e., one peer in Πz connects to a peer in either Π0

i or Π1
i for all

xi ∈ X .
Consider a clause Cj . If there is a peer vz ∈ Πz that connects to at least

one literal-cluster that is directly connected to Πc
j , the length of the path

from vz to peers in Πc
j via this literal-cluster is at most kε + d(Πz,Π

µ
i) +

kε + d(Πµ
i ,Π

c
j) + kε = 3.2 + 3kε. In this case, the detour from vz to Πc

j

via some “satisfying” literal-cluster Πµ
i —while being suboptimal compared

272 CHAPTER 23. TOPOLOGIES FORMED BY SELFISH PEERS

to the direct connection—is relatively small. Specifically, it is small enough
to ensure that no peer in Πz has an incentive to construct an additional
direct link to Πb

j or Πc
j . Once peers in Πz have no further need to establish

direct links to a clause-peer of Cj , the best possible strategy of peers in Πy

becomes fixed, too. In other words, this satisfying literal helps in stabilizing
the clause-gadget.

Conversely, if there is a clause Cj for which no peer in Πz connects to
a satisfying literal-cluster, there exists no efficient detour. Specifically, the
length of the path from vz ∈ Πz to vc

j ∈ Πc
j via a literal-cluster is at least

4.2, including the distance between the positive and negative literal-cluster of
the variable. The increased length of the detour renders the resulting stretch
from Πz to Πc

j too large, and it becomes worthwhile for vz ∈ Πz to construct

direct links to Πc
j , and even to Πb

j . That is, in a sense, the network induced
by the unsatisfied clause Cj becomes independent of the remainder of the
network and therefore does not stabilize.

Finally, the special cluster Πc ensures that the shortest path in Gk
I (and

hence the distance in Mk
I) between two top-layer peers is small. In fact, it can

be shown that there are links in both directions from every top-layer cluster
to Πc. This implies that all top-layer clusters are connected to one another
almost optimally in every Nash equilibrium, thus facilitating the proof that
such an equilibrium exists in case I is satisfiable. We end the section with a
series of lemmas that capture important structural properties of Mk

I .

Lemma 23.7. Consider two peers vg and v′g in an arbitrary cluster Πg. In
a Nash equilibrium, there exists a path from vg to v′g of length at most kε.

Proof. Because the distance between vg and v′g is ε, it is easy to see that
the shortest path between these two nodes must be located entirely in Πg.
Because the distance between each pair of peers in a cluster is ε and there
are k peers in the cluster, the claim follows.

Lemma 23.8. Consider two arbitrary clusters Πg and Πh. In a Nash equi-
librium, there is at most one peer vg ∈ Πg that has a link to a peer in Πh.

Proof. Assume for contradiction that there are two nodes vg and v′g that
maintain links to peers in Πh. Then, v′g can reduce its cost by dropping its
link. Doing so, the stretches to each node in the network can increase by at
most 2kε. By the definition of ε, it holds that 2Nkε < α and hence, dropping
the link is worthwhile.

Based on these two lemmas, we can go on to prove more elaborate prop-
erties.

Lemma 23.9. Let Πg and Πh be two clusters with cluster distance at most
d(Πg,Πh) ≤ 1.48. In any Nash equilibrium, there is exactly one peer vg ∈ Πg

that has a link to a peer in Πh.

23.3. THE COMPLEXITY OF NASH EQUILIBRIUM 273

Proof. By Lemma 23.8, there cannot be more than one peer in Πg that has
a link to Πh. It therefore remains to show that at least one link exists. We
divide the proof in two parts and begin by showing that the claim holds for all
pairs of clusters with cluster distance d(Πg,Πh) ≤ 1.2. In a second step, we
prove the claim for pairs of clusters with cluster distance d(Πg,Πh) = 1.48,
which suffices because there are no cluster distances between 1.2 and 1.48 in
Gk

I .
Consider any two clusters in the network Mk

I with cluster distance at most
1.2. It follows from the construction of Gk

I that the shortest path between
peers in these clusters via a third cluster has length at least 2.2 (e.g., from
Π0

i via Π1
i to Πc). In other words, if there is no direct connection between the

two clusters, vg has a stretch of at least 2.2/1.2 to each peer in Πh. Because
2.2k
1.2

> α+ k(1 + 2kε), it is beneficial for vg to establish a direct link to the
other cluster.

For the second part of the proof, consider pairs of clusters with cluster
distance d(Πg,Πh) = 1.48. Specifically, we need to show the existence of a
link in each direction between clusters Πc

j and Π1
i , if xi ∈ Cj , or between

Πc
j and Π0

i , if xi ∈ Cj . The shortest indirect connection between two such
clusters has length at least 2.4 (via cluster Πc) and hence, the cumulated
stretch to all peers in the respective cluster without a direct link is 2.4k

1.48
>

α+ k(1 + 2kε). That is, peers in both clusters decrease their cost by paying
for this direct link.

Notice that Lemma 23.9 implies that within a clause, neighboring clause-
clusters (i.e., Πa

j ↔ Πb
j and Πb

j ↔ Πc
j , respectively) are connected in both

directions in any Nash equilibrium. The same holds for corresponding literal-
cluster Π1

i and Π0
i , as well as for a literal-cluster Π1

i (or Π0
i) and a Πc

j if
xi ∈ Cj (or xi ∈ Cj). Also, there are links in both directions from any top-
layer (clause or literal) cluster to Πc and vice versa. All in all, this implies
that in a Nash equilibrium, every pair of top-layer peers is connected almost
optimally, i.e., with stretch of less than 1 + 2kε. The value ε being defined
to be smaller than (k(m + n + 3))−2, this stretch is virtually as good as
1. Finally, there are also links from Πy to Πz and vice versa in any Nash
equilibrium. In the sequel of the proof, we often implicitly use the fact that
these “short” links are available in any Nash equilibrium without particular
mention.

Lemma 23.10. In a Nash equilibrium, there is exactly one peer vy ∈ Πy

that has a link to a peer in Πa
j , for all Cj ∈ C, and vice versa.

Proof. Consider a specific Πa
j . If there exists no direct link from Πy to Πa

j ,

the stretch of a peer vy ∈ Πy to each peer in Πa
j is at least 3.14

1.96
. Because for

small enough ε, we have 3.14k
1.96

> α + k(1 + 2kε), it is always worthwhile for
some vy to build an additional link to Πa

j . Clearly, the argument also holds
for the opposite direction.

Lemma 23.11. Assume that there is a link between Πz and at least one
literal-cluster of every variable xi ∈ X and that there is a link between Πy

274 CHAPTER 23. TOPOLOGIES FORMED BY SELFISH PEERS

1−2δ

1.96 δ2+

Π y Π z

Π 1
a

Π 1
c

Π c

Π 1
b

Π m
a Π m

b Π m
c

1

1.72

1.48
1

1.14 1

2

1.2

P 1
0

P n
1

Figure 23.5: An example instance Gk
I with the topology resulting from strat-

egy s. Within each cluster, the peers are connected as a star. Directed
arrows between clusters indicate inter-cluster links between cluster-leaders.
Cluster-leader v̂z connects to those leaders of literal-peers that appear in the
satisfying assignment AI . In the example, AI sets x1 = 0 and xn = 1.

and Πa
j , for all Cj ∈ C. Assume further that there are links in both directions

between clusters with cluster distance at most 1.48. Finally, assume that
all peers are connected within their cluster with a path of length at most kε.
It holds for all j that the shortest path from a peer vy ∈ Πy to a peer in
V \ (Πa

j ∪ Πb
j ∪ Πc

j) is not via Πa
j , Πb

j, or Πc
j, even when directly connecting

to such a cluster. The same holds for vz ∈ Πz.

Proof. Recall that by assumption there exists a link from Πy to Πa
j (for every

Cj ∈ C) and Πz. Hence, connecting to Πb
j or Πc

j clearly cannot reduce the
stretch to peers in Πz, Πc, and any Πa

j′ , j 6= j′. Furthermore, the distance in

the topology to any clause-peer in Πb
j′ and Πc

j′ via Πa
j′ is at most 3.1 + 3kε

and 4.1 + 4kε, respectively, which is strictly smaller than 2 + 2 · 1.2 = 4.4,
which is the shortest achievable distance via Πb

j or Πc
j . Finally, the path

from vy ∈ Πy to any literal-peer in Πµ
i has length at most 3.72 − 2δ + 3kε.

This is because there exists a link between Πy and Πz, and between Π0
i and

Π1
i , and because there is a link from Πz to either Π0

i or Π1
i . On the other

hand, the path from vy ∈ Πy to a literal-peer via Πb
j or Πc

j has length at
least 2.45 + 1.48 = 3.93. Similar arguments show that the same holds for
vz ∈ Πz.

23.3.2 Satisfiable Instances

In this section, we show that if I has a satisfying assignment AI , then there
exists a Nash equilibrium in Mk

I . For this purpose, we explicitly construct a

23.3. THE COMPLEXITY OF NASH EQUILIBRIUM 275

set of strategies s, which we prove to constitute a Nash equilibrium. As for
notation, we define AI(xi) to be the assignment of xi in AI , i.e.,

AI(xi) :=

{
1 , xi is set to 1 in AI

0 , xi is set to 0 in AI .
(23.1)

Furthermore, we define in every cluster Πg a single leader peer, which we
denote by v̂g . The role of this leader-peer is to construct all inter-cluster
links going from this cluster to peers located in other clusters. The strategy
of the remaining non-leader peers v̌g ∈ Πg \ {v̂g} is to connect to the unique
leader peer within their cluster. Formally, the strategy sg for a non-leader
peer v̌g ∈ Πg \ {v̂g} is

sg := {v̂g}.

For each leader-peer, we define the set of strategies s as follows:

sy := Πy ∪ {v̂z} ∪
⋃

Cj∈C
{v̂a

j , v̂
b
j}

sz := Πz ∪ {v̂y} ∪
⋃

xi∈X
{v̂AI(xi)

i }

sc := Πc ∪
⋃

xi∈X
{v̂0

i ∪ v̂1
i } ∪

⋃

Cj∈C
{v̂a

j ∪ v̂b
j ∪ v̂c

j}

sa
j := Πa

j ∪ {v̂c, vy , v̂
b
j} ,∀Cj ∈ C

sb
j := Πb

j ∪ {v̂c, v̂
a
j , v̂

c
j} ,∀Cj ∈ C

sc
j := Πc

j ∪ {v̂c, v̂z , v̂
b
j} ∪

⋃

x
µ
i
∈Cj

{v̂µ
i } ,∀Cj ∈ C

sµ
i := Πµ

i ∪ {v̂c, v̂z , v̂
1−µ
i } ∪

⋃

x
µ
i ∈Cj

{v̂c
j} ,∀xi ∈ X

Strategy s is illustrated in Figure 5. Our goal is to show that s consti-
tutes a Nash equilibrium. The topology resulting from strategy s contains
all “short” links, i.e., links between cluster leaders of clusters that have a
distance of at most 1.48 (cf Lemma 23.9). Additionally, peer v̂y builds links

to clause-cluster leaders v̂a
j and v̂b

j for all Cj ∈ C. On the other hand, leaders
v̂a

j and v̂c
j have a link to v̂y and v̂z, respectively. Most importantly, however,

for every variable xi ∈ X , leader-peer v̂z maintains a link to the literal-peers

v̂
AI (xi)
i that are used in the satisfying assignment. Note that because in s,

peer v̂z has exactly one connection to a literal-peer of every variable, we can
apply Lemma 23.11. That is, no peer in clusters Πy and Πz can reduce its
stretch to any peer V \(Πa

j ∪Πb
j ∪Πc

j) by connecting to one of the clause-peers
of clause Cj . Finally, note that non-leaders are directly connected to their
cluster leader, and cluster leaders maintain direct links to each peer in their
cluster.

276 CHAPTER 23. TOPOLOGIES FORMED BY SELFISH PEERS

The next three lemmas prove that no node has an incentive to single-
handedly deviate from strategy s. In the proofs, we use the notation ∆i(ψ)
to denote the change in cost when peer vi changes its strategy according to
action ψ, ψ being clear from the context. Specifically, if ∆i(ψ) ≥ 0, peer
vi has no incentive to perform action ψ because doing so would increase its
cost.

We begin with a lemma that shows that no peer can unilaterally benefit
from changing its links within its own cluster.

Lemma 23.12. In s, no peer in an arbitrary cluster Πg has an incentive to
change its strategy within the cluster, i.e., to add, replace, or remove links to
peers in Πg.

Proof. The cluster leader v̂g cannot remove any link because the topology
would become disconnected without it. Next, consider a non-leader v̌g . If v̌g

removes its link to the cluster-leader, it disconnects itself from the network.
Adding one or more new link to a non-leader costs α per link, while the
resulting stretch reduction per link is 2ε

ε
− 1 = 1 only. Finally, replacing

the link to the leader with a link to another non-leader strictly increases the
stretch to all but one peer in the network and therefore cannot be beneficial.

Based on Lemma 23.12, we can consider the topology within each cluster
in s to be fixed. It remains to show that no peer has an incentive to add,
remove, or replace its inter-cluster links. The next lemma shows that peers
in Πy cannot unilaterally reduce their costs in s.

Lemma 23.13. No peer in Πy has an incentive to change its strategy, given
that all other peers follow strategy s.

Proof. By Lemma 23.12, no peer vy ∈ Πy has an incentive to change its
intra-cluster links. Furthermore, v̂y does not benefit from switching its link
from a leader peer to a non-leader peer, because this would only decrease
the stretch to that particular peer, while increasing the stretch to all other
peers (at least) in this cluster. It follows from Lemmas 23.10 and 23.9 that
v̂y must keep its links to v̂a

j and v̂z, and hence, we must only consider that
leader peers connect to leader peers.

We now show that no peer in Πy can reduce this cost by deviating from
its strategy in any other way.
Case 1: Some v̌y or v̂y adds one of more additional links:
In the topology resulting from s, every peer in Πy is connected with stretch
at most 1 + 2ε with all peers except from peers in Πc

j (for all Cj ∈ C) and
peers in those literal-clusters to which v̂z does not have a direct connection.
With any additional link, a peer in Πy can reduce its stretch to peers in
exactly one of these clusters only. Hence, for every additional link, it holds

that ∆y(+) ≥ − k(4.72+ε)
3.72

+α+k > 0. That is, adding additional links would
increase the peer’s cost.

Observe that because non-leader peers v̌y ∈ Πy do not have inter-cluster
links, Case 1 in combination with Lemma 23.12 implies that no v̌y can benefit

23.3. THE COMPLEXITY OF NASH EQUILIBRIUM 277

from changing its strategy.
Case 2: v̂y changes its link from v̂b

j to v̂c
j :

While the stretch to peers in Πc
j is reduced, the stretch to peers in Πb

j in-

creases. The relative cost difference is ∆y(v̂b
j → v̂c

j) ≥ − k(3+ε)
2.45

+ (1.96+1.14)k
2

>
0.
Case 3: v̂y removes its link from v̂b

j :
By removing such a link, v̂y can save the link’s cost α. On the other
hand, the stretch to both Πb

j and Πc
j increase. Specifically, the shortest

connection to peers in these clusters is now via v̂a
j and v̂b

j , i.e., ∆y(−v̂b
j) ≥

−α− k(1 + ε) − k(3+ε)
2.45

+ (1.96+1.14)k
2

+ (1.96+1.14+1)k
2.45

> 0.
The only other thing that could potentially lead to an advantage for

v̂y is to replace a link v̂b
j by some leader peer in Πµ

i to which v̂z is not
connected, formally µ 6= AI(xi). Doing so clearly increases the stretch to
peers in Πb

j and Πc
j , but like in Case 3, the shortest connection between v̂y

to peers in Πc
j is via v̂a

j and v̂b
j . In particular, this path has length at most

4.1 + ε, whereas the shortest path via a literal-cluster has length at least
1− 2δ+1.72+1.48 = 4.2− 2δ, which is larger. Hence, replacing one or more
links to v̂b

j by links to literal-peers reduces to Cases 1 and 3, respectively, and
therefore cannot be worthwhile. Finally, it can be seen that any combination
of the above cases cannot reduce the cost of any peer in Πy either.

Lemma 23.14. No peer in Πz has an incentive to change its strategy, given
that all other peers follow strategy s.

Proof. Again, we discuss the various cases and show that none of them is
beneficial for a peer in Πz. Recall that by Lemma 23.11, connecting to
any clause-peer cannot improve the stretch to any other peer outside this
clause. Furthermore, because AI is a satisfying assignment, the topology of
s contains a path of length at most ε+ d(Πz,Π

µ
i) + d(Πµ

i ,Π
c
j) + ε = 3.2 + 2ε

between peers in Πz and peers in Πc
j , for every clause Cj ∈ C. Consequently,

connecting to a so far unconnected literal-peer cannot decrease the stretch
to any clause-peer vj ∈ CP in the system.

It follows from Lemma 23.12 that no peer vz ∈ Πz has an incentive to
change its intra-cluster links. Also, as shown in the proof of Lemma 23.13,
no peer can benefit from connecting to a non-leader peer in the network,
because this bears strictly higher costs than connecting to the corresponding
leader peer of the same cluster. Hence, we only need to verify the cases in
which peers in Πz connect to leader peers.

In the following, we discuss the various cases how peers in Πz could im-
prove their situation and derive that none of them is actually beneficial.
Case 1: Some peer in Πz adds an additional link to v̂b

j :

The reduction of the stretches to peers in Πb
j and Πc

j resulting from the addi-

tional link does not outweigh the link’s cost. Specifically, we have ∆z(+v̂
b
j) ≥

− k(3−2δ+2ε)
2

+ k − k(3.2+2ε)
2+δ

+ 3k
2+δ

+ α ≥ k(4δ + 2δ2) > 0. Notice that in the

second term, the stretch to each of the k peers in Πb
j is at least 1, and in the

third term, the distance 3.2+2ε holds because AI is a satisfying assignment.

278 CHAPTER 23. TOPOLOGIES FORMED BY SELFISH PEERS

Case 2: Some peer in Πz adds an additional link to v̂c
j :

Again, the stretches to Πb
j and Πc

j are not reduced enough to render the

additional link worthwhile. In fact, the stretch to peers in Πb
j is not re-

duced by the addition of this link, nor is the stretch to any other node
in the network except from peers in Πc

j (Lemma 23.11). It follows that

∆z(+v̂
c
j) ≥ − k(3.2+2ε)

2+δ
+ k + α = k(1.6δ − 2ε) > 0.

Case 3: Some peer in Πz adds an additional link to v̂a
j :

Clearly, this option is even worse than Cases 1 and 2.
Case 4: Some peer in Πz adds an additional link to v̂µ

i :
Adding a link to a literal-cluster that is not used in AI reduces the stretch
to peers in this cluster only, because there is already a short connection

from Πz to every Πc
j through the literal-clusters Π

AI(xi)
i . Hence, ∆z(+v̂

µ
i) ≥

− k(2.72+2ε)
1.72

+ k + α > 0.

Observe that because non-leader peers v̌z ∈ Πz do not have inter-cluster
links, Cases 1 to 4 in combination with Lemma 23.12 implies that no v̌z can
benefit from changing its strategy.

Case 5: v̂z replaces some v̂
AI (xi)
i by v̂

1−AI (xi)
i :

Again, the new link to a previously unconnected literal-cluster cannot de-
crease the stretch to any clause-peer, because AI is a satisfying assign-

ment and v̂z already had a path of length 3.2 to every v̂c
j via some v̂

AI(xi)
i .

Furthermore, by a symmetry argument, the stretch cost gained by adding

the link to v̂
1−AI(xi)
i is lost by removing the link to v̂

AI (xi)
i . Therefore,

∆y(v̂
AI(xi)
i → v̂

1−AI(xi)
i) ≥ 0.

Case 6: v̂z removes or replaces some v̂
AI (xi)
i :

If v̂z does not have a connection to any literal-cluster of a variable xi, the
resulting stretch to each peer in these two clusters is at least 3+δ+1.48

1.72
. Be-

cause k(4.48+δ)
1.72

> k(1 + 2ε) +α, it follows that v̂z must maintain at least one
link to such a peer.

Any other possible strategy deviation can either be reduced to one of the
above five cases or to Lemma 23.9, which concludes the proof.

Having showed that peers in Πy and Πz have no incentive to deviate from
s, it now remains to show that no other node can improve its situation either.

Lemma 23.15. No top-layer peer can benefit from changing its strategy,
given that all other peers follow s.

Proof. First, by Lemma 23.12, it holds that no peer can improve its situation
by adding, replacing, or removing a link within its cluster. Also, no node can
benefit from connecting to a non-leader, as opposed to the leader peer in the
same cluster. Both claims can be proven with exactly the same argument as
in the proof of Lemma 23.13.

It is important to observe that in s, all top-layer peers are almost opti-
mally connected with each other, either via the central cluster Πc or because
their respective clusters are neighbors in the graph. More specifically, the

23.3. THE COMPLEXITY OF NASH EQUILIBRIUM 279

stretch between any pair of top-layer peers in s is at most 1+2ε (via the own
cluster leader, v̂c, and the other cluster leader). Besides removing the final 2ε
from these small stretches, adding additional links can only help in reducing
the stretches to peers in Πy and Πz. By Lemma 23.9, no link between cluster
leaders whose clusters have a distance of less than 1.48 can be removed from
s. Hence, the possible strategy deviations by other nodes is actually limited.
Peers in Πa

j : A peer v̂a
j ’s link to v̂y cannot be removed by Lemma 23.10.

For every peer va
j ∈ Πa

j , it further holds that building an additional link to

v̂z is too costly, ∆a
j (+v̂z) ≥ − k(2.96−2δ+2ε)

2.45
+ k + α > 2kNε. Hence, even if

this additional link could reduce all other less than N stretches to top-level
peers by the remaining 2ε, the cost of an additional link would still be too
high.
Peers in Πb

j : Peer v̂b
j does not have a link longer than 1.48 in s and hence,

cannot remove any of them. We show that neither building a link to v̂y

nor to v̂z decreases the cost of any peer in Πb
j . In the first case, we have

∆b
j(+v̂y) ≥ − k(1.96+1.14+2ε)

2
+k− k(3+δ+2ε)

2
+ k(3−2δ)

2
+α > 2kNε. As for the

second case, ∆b
j(+v̂z) ≥ − k(1.96+1.14+2ε)

2
+ k(3−2δ)

2
− k(3+δ+2ε)

2
+k+α > 2kNε.

Clearly, building both links is even less worthwhile.
Peers in Πc

j : The potential strategy deviations that could decrease peer
v̂c

j ’s costs are to add a link to v̂y , to remove its link from v̂z, or to re-
place the link to v̂z by a link to v̂y . However, none of these alterations are
beneficial for v̂c

j (or for any non-leader peer in Πc
j in the case of link ad-

dition). First, it holds that ∆c
j(+v̂y) ≥ − k(3−δ+2ε)

2.45
+ k + α > 2kNε and

∆c
j(−v̂z) ≥ −α− k(1+2ε)− k(3−δ+2ε)

2.45
+ 3.2k

2+δ
+ 4.1k

2.45
> 2kNε. Also, switching

the link from v̂z to v̂y is not helpful, ∆c
j(v̂z → v̂y) ≥ 3.2k

2+δ
− k(3−δ+2ε)

2.45
> 2kNε.

Peers in Πµ
i : Each leader of a literal-cluster maintains a link to v̂z, and

we show that they (as well as any non-leader peer in these clusters) do not
have an incentive to change that strategy. It is clear that neither adding a
link to v̂y nor switching from v̂z to v̂y can be beneficial. In the first case,
the stretch is reduced by at most 2ε by the additional link, which does not
render the link cost α worthwhile. In the second case, the stretch is strictly
increased. If v̂µ

i removes its link to v̂z and connects via its neighboring
literal-cluster, the stretches to both Πy and Πz increase. Particularly, we

have ∆µ
i (−v̂z) ≥ −α− k(1 + 2ε) + 2.72k

1.72
+ k(3.72−2δ)

2.72−2δ
> 2kNε.

Peers in Πc: Finally, peers in Πc are connected with stretch at most 2ε to
all peers in the network. To top-clusters, the connection is via links shorter
than 1.48. As for the remaining two clusters, it is connected to v̂z via one of
the literal-clusters and to v̂y via some v̂a

j . By the definition of ε and α, it is
clear that no peer in Πc can improve its strategy.

By combining the three previous helper-lemmas, we can now state the
main claim of this section.

Lemma 23.16. If I is satisfiable, there exists a pure Nash equilibrium in
Mk

I .

280 CHAPTER 23. TOPOLOGIES FORMED BY SELFISH PEERS

Proof. The lemma follows from the fact that by Lemmas 23.13, 23.14, and
23.15, no peer in the network has an incentive to change its strategy. Hence,
s constitutes a pure Nash equilibrium.

23.3.3 Non-satisfiable Instances

It remains to prove the other direction, that is, there exists no pure Nash
equilibrium in the network if the underlying 3-SAT instance I has no satisfy-
ing assignment. We proceed by defining structural properties that any Nash
equilibrium must fulfil, and show that the intersection of all these properties
is empty. Besides the basic properties derived in Section 23.3.1, an important
characteristic of any Nash equilibrium is the fact that exactly one peer in Πz

connects to exactly one literal-peer (either in Π0
i or Π1

i) for every variable
xi ∈ X .

Lemma 23.17. In any Nash equilibrium, exactly one peer in Πz connects
to either a peer v1

i ∈ Π1
i or in v0

i ∈ Π0
i , for every xi ∈ X .

Proof. We have already shown in Lemma 23.14 (Case 6) that there must be
a peer vz ∈ Πz that has at least one link to a literal-peer of every variable.
Furthermore, we know by Lemma 23.8 that no other peer in Πz connects
to the same cluster as vz. Hence, we only need to show that in a Nash
equilibrium no two peers in Πz connect to both literal-clusters of the same
variable.

Assume for the sake of contradiction that peers vz and v′z (potentially
vz = v′z) maintain links to both Π0

i and Π1
i for some xi ∈ X . In this case, it

would be worthwhile for one of the two peers to remove its link and replace
it with a link to some peer in Πc

j (if this link is not there, already), such that
xi ∈ Cj . By the definition of our special 3-SAT instance and the construction
of GI , we know that of the two literal-clusters, one, say Πµ

i , has clause-

cluster Πc
j at distance 1.48, and the other literal-cluster, say Π1−µ

i , has two
such close-by clause-clusters. Let v′z be the peer that connects to cluster Πµ

i

(otherwise, replace vz for v′z for the remainder of the proof).
Assume for the first case that the length of the shortest path from v′z to

this Πc
j without the link via Πµ

i is 3.2 or longer. In this case, the change in
v′z’s costs when switching from its link to literal-cluster Πµ

i that has only a
single close-by clause-cluster Πc

j directly to a peer in Πc
j is ∆z(v

µ
i → vc

j) ≤
+ k(2.72+2kε)

1.72
− 3.2k

2+δ
+ k(2+δ+2kε)

2+δ
< 0. If the length of the path from vz to

Πc
j is strictly shorter than 3.2, then the link to Πµ

i can simply be dropped,

resulting in a gain of ∆z(−vµ
i) ≤ −α − k + k(1.72+2kε)

1.72
+ k(2.72+2kε)

1.72
< 0.

Hence, v′z is always better off not connecting to a literal-cluster if vz already
connects to a literal-cluster. From this, the claim follows.

Lemma 23.17 is an important ingredient for the remainder of the proof,
because it gives us a one-to-one correspondence between the connections of
Πz to literal-clusters, and an assignment of variables in the 3-SAT instance I .
Also, note that when combining Lemma 23.17 with Lemma 23.11, it follows

23.3. THE COMPLEXITY OF NASH EQUILIBRIUM 281

that in a Nash equilibrium, peers in Πy and Πz cannot reduce their stretch
to any peer in V \ {Πa

j ∪ Πb
j ∪ Πc

j} by connecting to one of the clause-peers
of clause Cj .

Lemma 23.18. If I is non-satisfiable, there exists no pure Nash equilibrium
in Mk

I .

Proof. By Lemma 23.17, exactly one peer in Πz connects to either the pos-
itive or negative literal-cluster of every variable xi. Because there exists no
satisfying assignment, it follows that regardless of how Πz is connected to the
literal-clusters, there must exist at least one clause Cj∗ that is “not satisfied”.
In the resulting topology, this means that the path from a peer in Πz to a
clause-peer in Πc

j∗ of this unsatisfied clause via any literal-cluster must be of

length at least d(Πz,Π
µ
i) + d(Πµ

i ,Π
1−µ
i) + d(Π1−µ

i ,Πc
j∗) = 4.2. Particularly,

every such path must include the additional distance of 1 between x1
i and

x0
i . In the sequel, we consider this unsatisfied clause Cj∗ in more detail.

First, we show that in a Nash equilibrium, no peer vy ∈ Πy establishes
a link to Πc

j∗ . We distinguish two cases. In the first case, if some peer in

Πy already has a link to Πb
j∗ , then the cost reduction for vy when omitting

its link to Πc
j∗ is ∆y(−vc

j∗) ≤ −α − k + k(3+2kε)
2.45

< 0. In the other case,

the cost reduction when switching the link from Πc
j∗ to a peer in Πb

j∗ is at

least ∆y(vc
j∗ → vb

j∗) ≤ − k(3−2δ)
2

+ k(3+2kε)
2.45

< 0. That is, in either case it is
beneficial for vy not to connect directly to Πc

j∗ .
For the next step, we establish that in any Nash equilibrium, exactly

one peer vz ∈ Πz connects to either a peer in Πb
j∗ or in Πc

j∗ . To see this,
assume that no peer in Πz establishes any links to peers in the two clusters.
In this case (because there is no link from Πy to Πc

j∗ , and because Cj∗ is

not satisfied), the sum of the stretches to peers in Πc
j∗ is at least k(4−2δ)

2+δ
>

k(1 + 2kε) + α. That is, vz ∈ Πz can reduce its cost by connecting to vc
j∗ .

It remains to show that no peer in Πz connects to Πa
j∗ , and particularly,

that no two peers in Πz simultaneously connect to both Πb
j∗ or Πc

j∗ . Because

there is at least one link from Πz to either Πb
j∗ or Πc

j∗ , it follows that a
link to Πa

j∗ can only reduce the stretch to peers in this particular cluster.
However, the incurred cost exceeds the savings due to the reduced stretch,

i.e., ∆z(+v
a
j∗) = − k(2.96−2δ+2kε)

2.45
+α+ k > 0. For the last case, assume that

two peers vz and v′z (potentially the same) connect to both Πb
j∗ and Πc

j∗ ,
respectively. Then, v′z has an incentive to drop its link to Πc

j∗ : ∆z(−vc
j∗) =

k(3+2kε)
2+δ

− k − α < 0. Hence, in any Nash equilibrium, there is exactly one

link from Πz to either Πb
j∗ or Πc

j∗ , but not to both.
Studying the above rules, it can be observed that there remain only four

possible sets of strategies for peers in Πy and Πz that could potentially result
in a pure Nash equilibrium. The four cases can be distinguished by whether
or not a peer in Πy directly connects to Πb

j∗ , and by whether a peer in Πz

connects to Πb
j∗ or Πc

j∗ . In the sequel, we analyze the four cases independently
and show that none of them is actually a Nash equilibrium.

282 CHAPTER 23. TOPOLOGIES FORMED BY SELFISH PEERS

Case 1: Some peer vz ∈ Πz connects to vb
j∗ :

In this case, some peer vy ∈ Πy has an incentive to add a link to a peer
in Πb

j∗ , because this significantly reduces its stretches to peers in Πb
j∗ and

Πc
j∗ . Specifically, vy could reduce its cost by at least ∆y(+vb

j∗) ≤ − k(3−2δ)
2

−
k(4−2δ)

2.45
+ α+ k(1 + 2kε) + k(3+2kε)

2.45
< 0.

Case 2: Peers vz ∈ Πz and vy ∈ Πy connect to Πb
j∗ :

In this case, the peer vz can profit from switching its link to a peer in Πc
j∗ .

Specifically, it holds that ∆z(v
b
j∗ →vc

j∗) ≤ − 3k
2+δ

+ k(3−2δ+2kε)
2

< 0.
Case 3: Some peer vz ∈ Πz connects to Πc

j∗ :
Unlike in the previous case, vz prefers switching its link from Πc

j∗ to a peer

in Πb
j∗ in the absence of a link from Πy to Πb

j∗ . By doing so, it can reduce

its cost by ∆z(v
c
j∗ →vb

j∗) ≤ k(3+2kε)
2+δ

− k(3+δ)
2

= k(−5δ − δ2 + 4kε) < 0.

Case 4: Some peer vz ∈ Πz connects to Πc
j∗ and some peer vy ∈ Πy connects

to Πb
j∗ :

In this configuration, peer vy benefits from removing its link to Πb
j∗ . The

decrease of its costs is ∆y(−vb
j∗) < −α− k + k(3.1+2kε)

2
< 0.

Finally, since none of these four cases is a Nash equilibrium, the proof is
concluded.

Chapter 24

When Selfish Meets Evil:

Byzantine Players among

Selfish Agents

The previous chapter has explored the impact of selfishness on a system’s
efficiency and stability. But what happens if not every node is selfish? A
system consisting of selfish utility-optimizing agents may also have to cope
with malicious Byzantine adversaries who seek—independently of their own
cost—to degrade the utility of the entire system, to attack correctness of
certain computations, or to cause endless changes which render the system
instable.

In this chapter, we aim at combining selfishness and Byzantine behavior.
In particular, we consider a system of selfish individuals whose only goal is to
optimize their own benefit, and add malicious players who attack the system
in order to deteriorate its overall performance. Or asked succinctly: What is
the impact of the Byzantine players on a selfish system’s efficiency?

The question of Byzantine threats in system consisting of selfish agents
appears to be of actuality in many research fields. Examples in computer
science include Internet viruses or Denial of Service attacks where some play-
ers aim at destructing systems which otherwise typically consist of utility-
maximizing players. However, such phenomena might also arise in economic
or sociological environments. For instance, one can imagine a set of com-
panies competing on a market, selfishly seeking to maximize their personal
gains. However, there might be one or two companies run by “terrorists”
whose goal is to destabilize the economic system.

In order to capture these questions formally, Section 24.3 introduces the
Price of Malice of selfish systems. The Price of Malice is a ratio that expresses
how much the presence of malicious players deteriorates the social welfare of
a system consisting of selfish players. More technically, the Price of Malice
is the ratio between the social welfare or performance achieved by a selfish

284CHAPTER 24. BYZANTINE PLAYERS AMONG SELFISH AGENTS

system containing a number of Byzantine players, and the social welfare
achieved by an entirely selfish society.

It is interesting to compare the Price of Malice with the notion of the
Price of Anarchy. The Price of Anarchy captures the degradation of a so-
cially optimal performance of a system due to selfish behavior of its users or
participants. That is, the Price of Anarchy relates the social welfare gener-
ated by players acting in an egoistic manner to an optimal solution obtained
by perfectly collaborating participants. The Price of Malice’s reference point,
on the other hand, is not a socially optimal welfare, but the welfare achieved
by an entirely selfish system.

The Price of Anarchy and the Price of Malice can therefore be considered
as two orthogonal measures that describe properties of distributed, socio-
economic systems. Specifically, a system may have a small Price of Anarchy,
but a large Price of Malice, and vice versa. The fact that a system has a
large Price of Anarchy indicates that it is necessary to design mechanisms
(such as taxes, payment schemes, or coordination mechanisms) that forces
players to collaborate more efficiently. However, it is much more difficult to
improve (or repair) systems having a large Price of Malice, since Byzantine
players may not respond to any rules or (financial) incentives. Often, the
only solution is to defend the system against malicious intruders, or at least
to ensure that the number of malicious players in the system remains small.

The Price of Malice crucially depends on the amount of information the
selfish players have about the presence and behavior of the Byzantine players,
and how they respond to this information. In other words, the utility func-
tion which finally defines the selfish players’ reaction depends on how they
subjectively perceive and judge the threat of Byzantine players. That is, the
utility of selfish players is computed using the perceived expected cost rather
than the unknown actual cost. Interestingly, it can be shown that if players
are risk-averse, the presence of Byzantine players may actually improve the
social welfare compared to a situation where there are no Byzantine players
at all. In other words, there are situations in which the selfish players’ in-
creased willingness to collaborate in the view of higher risks outweighs the
cost caused by malicious, Byzantine players.

In this chapter, we investigate a concrete example where selfish and
Byzantine players interact. In this simple game, which was inspired by [15],
there is a network of nodes, where each node can choose between paying for
inoculation, or risking to get infected by a virus. After the nodes have made
their choices, a virus starts at some random node and propagates iteratively
to all neighboring nodes which are not inoculated. For this virus inoculation
game, Section 24.4 presents bounds on the Price of Malice for different types
of selfish nodes.

From a strictly game theoretical point of view, Byzantine players can be
regarded as a special species of selfish players whose valuation is negatively
correlated to the social welfare of the entire system. Strictly speaking, study-
ing Byzantine players in selfish games can therefore be accomplished within
the classic game theoretic framework. However, given a specific game setting,
the semantic meaning or purpose of such Byzantine players is different from
regular selfish players.

24.1. RELATED WORK 285

24.1 Related Work

Security and robustness of distributed systems against Byzantine faults have
been of prime importance and an active field of research for many years. Pos-
sibly the most well-known problem in this context has been that of reaching
consensus among distributed parties. Possibility and impossibility results on
the Byzantine consensus problem have been achieved in a variety of models
and settings. Classic work in the synchronous and asynchronous case includes
[70, 92, 157, 213]. In addition to the consensus problem, the distributed com-
puting community has come up with results and solutions for a wide variety
of other problems with Byzantine faults. Examples are clock synchroniza-
tion [233], broadcast [142, 219], or quorum systems [172]. All of the above
works assume that non-Byzantine players (or processes) are benevolent and
attempt to reach a common goal. Finally, Byzantine behavior is subject to
intensive research in cryptography.

By combining this thread of research with selfishness, the content of this
chapter is related to the notions of fault tolerant implementation introduced
by Eliaz [74] and of BAR fault tolerance introduced by Aiyer et al. [7]. In [74],
implementation problems are investigated where there are k faulty players
in the population, but neither their number nor their identity is known. A
planner’s objective then is to design an equilibrium where the non-faulty play-
ers act according to his rules. In [7], the authors describe an asynchronous
state machine replication protocol which tolerates Byzantine, Altruistic, and
Rational behavior. Interestingly, they find that the presence of Byzantine
players can simplify the design of protocols if players are risk-averse.

There exists other work on game theoretic systems in which not every
participating agent acts in a rational and selfish way. In Stackelberg the-
ory [226], for instance, the model consists of a set of selfish players, but a
certain fraction of the entire population (or in routing games: a certain frac-
tion of the entire flow) is controlled by a global leader. The rest of the users
acts selfishly and the resulting equilibrium consisting of leader-controlled and
selfish players is called the Stackelberg equilibrium. The goal of the global
leader is to devise a strategy that induces an optimal or near optimal Stack-
elberg equilibrium. Stackelberg equilibria in network related settings have
for instance been studied in [143, 153, 207].

24.2 Virus Inoculation Game

In [15], Aspnes, Chang and Yampolskiy model virus inoculation as a game
with n strategic players each of which corresponds to a node in graph G. In
our case, we focus on the topology of an undirected grid G[r, c] consisting of
r rows and c columns.1 Henceforth, we refer to the upper left corner of the
grid as G[0, 0], i.e., indices start with 0.

Each node vi has two choices: either do nothing and risk infection by
a virus, or inoculate itself by installing anti-virus software. For a node, in-

1Our results can be generalized to other highly regular, low-dimensional graphs such
as the two-dimensional torus, i.e., a grid that wraps around at the boundaries.

286CHAPTER 24. BYZANTINE PLAYERS AMONG SELFISH AGENTS

stalling the anti-virus software has the obvious advantage that it becomes
immune against infection. On the other hand, the process of installing the
software entails a cost in terms of money and/or time. Hence, a strategic
player may or may not opt for inoculation depending on which choice maxi-
mizes its own utility.

The nodes’ choices can be summarized by a strategy profile −→a ∈ {0, 1}n,
where ai = 1 signifies that node vi installs the anti-virus software, and ai = 0
that it does not install it. We call nodes vi with ai = 1 secure, and denote
the set of secure nodes as I−→a . After the nodes have made their choices,
the adversary picks some node uniformly at random as a starting point for
infection. Infection then propagates through the network graph and infects
all non-secure nodes that are in the same non-secure connected component
as the starting point for infection. Technically, we associate an attack graph
G−→a = G \ I−→a with −→a . It is essentially the network graph in which all secure
nodes and their incident edges are removed.

The associated costs are as follows: installing anti-virus software on a
selfish node entails an inoculation cost of 1 at this node. If a selfish node does
not inoculate and becomes infected, it suffers a loss equal to L. Therefore,
the cost of a selfish node vi can be summarized as follows:

costi(
−→a) = ai + (1 − ai) · L · ki

n
, (24.1)

where ki/n is the probability that node vi is infected, conditioned on the
event that it does not install the anti-virus software. Thereby, ki is the size
of the connected component containing vi in G−→a . Finally, the social cost
of a strategy profile −→a is the sum of all individual costs, i.e., Cost(−→a) =∑

vj∈S costj(
−→a), where S denotes the set of all selfish players. When the

strategy profile −→a is clear from the context, we sometimes use abbreviations
costi and Cost to denote individual cost and social cost, respectively.

In [15], several results on the virus inoculation game have been proven.
Specifically, [15] provides a characterization of Nash equilibria and establishes
that the problem of finding either the most or least expensive equilibrium is
NP-hard. Finally, [15] also studies the centralized optimization problem in-
duced by the virus inoculation game and presents an O(log2n) approximation
algorithm for this problem.

24.3 Byzantine Game Theoretic Model

In order to analyze the impact of malicious players on the selfish system,
we enrich the virus inoculation game of the previous section with malicious
Byzantine players. Formally, there are n nodes in the network. Of these
n nodes, b are malicious Byzantine nodes that do not strive for minimizing
their own costs. Instead, the goal of these Byzantine nodes is to deteriorate
the overall system performance as much as possible, i.e., to maximize the
resulting social cost of the solution. The remaining s := n − b nodes are
selfish and aim at maximizing their own utility. The sets of Byzantine and

24.3. BYZANTINE GAME THEORETIC MODEL 287

selfish players are denoted by B and S, respectively. It holds that b := |B|,
s := |S|, and n = s+ b.

While selfish nodes behave as discussed in Section 24.2, we assume that
the Byzantine nodes pursue the following strategy: they claim to be inocu-
lated (i.e., they proclaim their strategy to be ai = 1), but actually they are
not. In order to emphasize that Byzantine nodes are only seemingly secure,
we denote the set of really inoculated and secure selfish nodes by Iself

−→a . The

attack graph resulting from strategy profile −→a is then G−→a = G− Iself
−→a . This

is the network graph without secure, selfish nodes, but including all Byzan-
tine nodes. We can therefore define the individual cost incurred at a selfish
node vi ∈ S as follows.

Definition 24.1 (Actual Individual Cost). The (actual) individual cost
costi(

−→a) of a node vi ∈ S is defined as

costi(
−→a) := ai + (1 − ai) · L · ki

n
,

where ki is the size of the connected component of node vi in the attack graph
G−→a .

Notice that in spite of its being equivalent to the corresponding definition
in Section 24.2, we call this cost actual individual cost. This is to emphasize
the fact that selfish players may not know about the existence of Byzantine
players, and therefore, they are unable to compute their actual individual
cost. Even if they are aware of the malicious players’ existence, they might
not know the Byzantine players’ exact locations or strategies. In other words,
with the addition of Byzantine players, selfish nodes no longer have a perfect
knowledge about the network and its nodes’ choices.

In case of imperfect information, a node might deal with its uncertainty
in different ways. For example, a node might be risk averse and act in a
conservative manner. These observations imply that before the location and
strategies of Byzantine players are revealed (i.e., before the virus infection

occurs), a selfish player vi experiences a perceived individual cost ĉosti(
−→a).

This perceived cost can differ from the actual individual cost costi(
−→a) a node

eventually has to pay.

Definition 24.2 (Perceived Individual Cost). Assume a selfish game
with Byzantine players in which selfish players have imperfect knowledge
about the existence, location, or the strategy of Byzantine players. In this
case, the perceived individual cost ĉosti(

−→a) of a selfish player vi captures
the cost expected by player vi given its knowledge about the Byzantine play-
ers. This cost depends on the underlying model.

The strategic decisions of selfish players can only be based on the perceived
cost (not on their actual individual costs), because the actual individual cost
can only be computed once the locations and strategies of Byzantine players
are revealed. In the sequel, we study the following two basic models.

288CHAPTER 24. BYZANTINE PLAYERS AMONG SELFISH AGENTS

Definition 24.3 (Oblivious Model). In the oblivious model, selfish play-
ers are not aware of the existence of Byzantine players. That is, selfish
players assume that all other players in the system are selfish as well.

Definition 24.4 (Non-Oblivious Model). In the non-oblivious model,
selfish players know about the existence of Byzantine players. Specifically, we
assume that every selfish player knows b, the number of Byzantine players
in the system, but it does not know about these players’ exact locations or
strategies. Moreover, we assume that selfish players are highly risk-averse in
the sense that they aim at minimizing their maximal individual cost.2 Let D
be the set of possible distributions of Byzantine players among all players. A
selfish player vi experiences a perceived individual cost of

ĉosti(
−→a) := max

d∈D
{costi(−→a , d)},

where costi(
−→a , d) denotes the actual costs of vi if the Byzantine players are

distributed according to d ∈ D.

In the virus inoculation game, and in an oblivious model, the perceived
cost is typically smaller than the actual cost: A node vi ∈ S does not take
into consideration Byzantine nodes which may increase the size of vi’s attack
components. In the non-oblivious risk-averse model, on the other hand, a
node actually overestimates its expected actual cost by considering a worst-
case scenario: A selfish player assumes that the Byzantine nodes are—from
its individual point of view—distributed in a worst-case fashion among all
players. Therefore, the perceived individual cost may be larger than the
actual cost.

Since our goal is to understand the impact of malicious behavior on a
system of selfish players, the cost of Byzantine players is not included in the
social cost. If it was, it would in general be easy for Byzantine players to
arbitrarily deteriorate the social welfare of a system by simply increasing its
own cost as much as possible. Moreover, as Byzantine players are malicious
anyway, there is no particular reason why the overall system should care
about these players’ costs.

Formally, the total social cost Cost(−→a) of a strategy is defined as the sum
of the (actual) individual costs of all selfish players. Since each node in the
same connected component of G−→a has the same probability of infection, the
li selfish nodes in the i-th attack component face a loss of li · (Lki/n) if the
component is infected.

Definition 24.5 (Social Cost). The social cost is given by the sum of the
actual individual costs of selfish players

Cost(−→a) =
∑

j∈S
costj(

−→a) = |Iself
−→a |
︸ ︷︷ ︸

inoculation cost

+
L

n

l∑

i=1

kili

︸ ︷︷ ︸
infection cost

,

2Numerous other models would also be interesting. For instance, one could study
a non-oblivious risk-friendly model in which every selfish player computes its perceived
cost by assuming a random distribution of the b Byzantine players in the system.

24.3. BYZANTINE GAME THEORETIC MODEL 289

where k1, k2, . . . , kl are the sizes of the components in G−→a , and l1, l2, . . . , ll
are the sizes of the same components without counting the Byzantine nodes.
We refer to the cost due to inoculation as the inoculation cost Costinoc, and
to the cost due to the virus infections as the infection cost Costinf .

As customary, the social cost of a setting where all nodes perfectly col-
laborate, i.e., where there are neither selfish nor Byzantine nodes, is called
the social optimum.

Definition 24.6 (Optimal Social Cost). The optimal social cost CostOPT

is the sum of all the players’ actual individual costs in case of perfect collab-
oration.

The classic Nash equilibrium describes a situation where no selfish node
has an incentive to unilaterally change its strategy. This definition can be
extended to incorporate Byzantine nodes as follows. The Byzantine Nash
equilibrium (BNE) describes a configuration where no selfish player can re-
duce its perceived cost by changing its strategy, given the strategies of all
other players are fixed.3

Definition 24.7 (Byzantine Nash Equilibrium (BNE)). Let −→a [i|x] be
the strategy vector that is identical to −→a except for the i-th component ai

which is replaced by x. In a Byzantine Nash equilibrium, no selfish player
vi ∈ S has an incentive to change its strategy if the strategies of all other
selfish players are fixed, i.e.,

∀vi ∈ S : ĉosti(
−→a) ≤ ĉosti(

−→a [i|a′i]),
for every possible strategy a′i.

While the Byzantine Nash equilibrium must be defined by the perceived
individual costs, the resulting social cost is determined by the actual costs.
After all, it is the actual individual costs that players will eventually have to
pay. The social cost of the worst Byzantine Nash Equilibrium of a problem
instance I with b Byzantine players is denoted by CostBNE(I, b).

It is well-known that selfish and Byzantine players often interact in a
manner that yields suboptimal solutions. The degree of degradation result-
ing from selfish and Byzantine players compared to the social optimum is
captured by the Price of Byzantine Anarchy.

Definition 24.8 (Price of Byzantine Anarchy PoB(b)). The Price of
Byzantine Anarchy captures how much worse a Byzantine Nash equilibrium
can be compared to a collaborative optimal solution. More formally, in a
scenario with b Byzantine players, the Price of Byzantine Anarchy PoB(b) is
the ratio between the worst-case social cost of a Byzantine Nash equilibrium
divided by the minimal social cost, i.e., for all problem instances I,

PoB(b) = max
I

CostBNE(I, b)

CostOPT (I)
.

3Notice that the Byzantine Nash equilibrium cannot be defined with actual individual
costs, because these are not known to the players.

290CHAPTER 24. BYZANTINE PLAYERS AMONG SELFISH AGENTS

Note that in the absence of any Byzantine players—i.e., if the system
consists of purely selfish players only—, the Price of Byzantine Anarchy
is equivalent to the Price of Anarchy (PoA). Specifically, we have PoA =
PoB(0).

With these definitions, we are finally ready to define the Price of Malice,
which describes the degree of sub-optimality resulting from malicious Byzan-
tine players in an otherwise selfish system. A high Price of Malice indicates
that an economic system is particularly vulnerable to malicious or terrorist
attacks. On the other hand, if the Price of Malice is low, the system con-
sisting of selfish players is stable enough to tolerate malicious participants.
Clearly, the degree of degradation may depend on the number of Byzantine
players in the game. Hence, the Price of Malice is a function of b.

Definition 24.9 (Price of Malice PoM(b)). The Price of Malice captures
the ratio between the worst Byzantine Nash Equilibrium with b malicious
players and the Price of Anarchy in a purely selfish system. Formally,

PoM(b) =
PoB(b)

PoB(0)
.

As we discuss in Section 24.4.4, the inverse of the Price of Malice may also
be considered as the game’s Fear Factor Ψ(b). That is, Ψ(b) := 1/PoM(b).

24.4 Price of Malice

In order to derive results on the Price of Malice, we first establish structural
properties of Nash equilibria and the social optimum in the virus inoculation
game. We begin with a simple characterization of Nash equilibria when there
are no Byzantine nodes. The proof of the following lemma follows from the
analogous lemma in [15].

Lemma 24.1. In a pure Nash equilibrium −→a , it holds that (a) Every compo-
nent in the attack graph G−→a has size at most n/L. (b) Inserting any secure
node into G−→a yields a component size of at least n/L.

Lemma 24.1 implies that if L ≥ n, all nodes will inoculate in the Nash
equilibrium. In the following, it is therefore assumed that L < n.

24.4.1 Social Optimum

If the inoculation strategies of the individual nodes are planned by a benev-
olent centralized coordinator, the welfare of the system can be maximized.
Throughout this section, perceived costs equal actual costs because when
studying the social optimum, there are no Byzantine players, i.e., b = 0 and
therefore s = n.

Theorem 24.2. The optimal social cost if all players in S act altruistically
is CostOPT ∈ Θ(s2/3L1/3). More specifically,

1

3

√
π · s2/3L1/3 ≤ CostOPT ≤ 4s2/3L1/3.

24.4. PRICE OF MALICE 291

Proof. We prove the upper and lower bound in turn.
Lower Bound: If all nodes collaborate to achieve the optimal solution,

it holds that li = ki and hence, the social cost is given by

Cost = |I−→a | + L

n

l∑

i=1

k2
i ,

where |I−→a | is the number of inoculated nodes, and the ki’s are the sizes of
the components in the attack graph. This sum is minimized when all ki are
of equal size, say size K. While each secure node has a cost of 1, every other
node has an expected cost of L ·K/n. Hence, setting γ := |I−→a | and because
s = n, the optimal social cost is

CostOPT ≥ γ + (s− γ)

(
LK

s

)
. (24.2)

A relationship between γ and K follows from a simple geometric argument:
If a component in the attack graph is of size K, the number of inoculated

nodes at the components border must be at least 2π
√

K
π

= 2
√
πK, because

this is the circumference of a disk with volume K. As the total number of
such components is at least s−γ

K
and each inoculated node can be on the

border of at most 2 components, γ can be expressed as

γ ≥ s− γ

K
· 2

√
πK · 1

2
= (s− γ)

√
π

K
.

When solving this inequality for γ, it follows that γ ≥ s ·
√

π/K

1+
√

π/K
. On the

other hand, it can be observed that in the optimal solution, for s > L, no
node is inoculated if all its four neighbors are inoculated. From this, it can
be derived that in an optimal solution, γ ≤ s

2
. Plugging these two bounds

into Inequality (24.2), the optimal social cost is at least

CostOPT ≥ s ·
√
π/K

1 +
√
π/K

+
LK

2
.

The first term of the above expression is monotonously decreasing in K in the
range 0, . . . , s, whereas the second one is monotonously increasing. Therefore,
taking the minimum of the two terms for a specific K yields a lower bound
on CostOPT . When setting

K :=
2

3

√
π ·
(s
L

)2/3

,

the second term yields 1
3

√
π·s2/3L1/3. The first term evaluates to

√
3/2· 4√π

1+
√

3/2· 4√π
·

s2/3L1/3 > 1
3

√
π · s2/3L1/3. Consequently, we obtain the following lower

292CHAPTER 24. BYZANTINE PLAYERS AMONG SELFISH AGENTS

bound on the cost of the social optimum:

CostOPT ≥ 1

3

√
π · s2/3L1/3 ∈ Ω(s2/3L1/3).

Upper Bound: We construct a solution that is asymptotically optimal and
proves tightness of the above lower bound. Given an arbitrary grid G[r, c],

we inoculate the nodes as follows. Let K := (s/L)2/3. We secure all nodes in

the columns G[·, i
√
K] for i ∈ {1, ..., bc/(

√
K + 1)c} and rows G[i

√
K, ·] for

i ∈ {1, ..., br/(
√
K + 1)c}. Consequently, all attack components are of size

at most
√
K ×

√
K = K as illustrated in Figure 24.1 (left). Hence, the total

infection cost is at most L · (s− |I−→a |)K
s
< LK = s2/3L1/3.

It remains to bound the inoculation cost. In an ideal setting where the
components perfectly fit into G[r, c] without leftovers, it holds that for each

component of sizeK in the attack graph, there are exactly 2
√
K+1 inoculated

nodes. Let X denote the number of components. It holds that X · (K +

2
√
K + 1) = s and therefore, when plugging in the definition of K, X =

s/[(s
L

)2/3 + 2(s
L

)1/3 + 1]. The number of inoculated nodes γ is at most

γ ≤ X · (2
√
K + 1) ≤ s(2

√
K + 1)

(
s
L

)2/3
+ 2

(
s
L

)1/3
+ 1

< s1/3L2/3 ·
(

2
(s
L

)1/3

+ 1

)
= 2s2/3L1/3 + s1/3L2/3

≤ 3s2/3L1/3.

Combining the infection and inoculation costs, we can bound the optimal
social cost by

CostOPT < s2/3L1/3 + 3s2/3L1/3 = 4s2/3L1/3.

24.4.2 Price of Anarchy

The Price of Anarchy compares the social cost of the worst Nash equilib-
rium (without Byzantine nodes) to the minimal social cost. In the upcoming
section, we will first compute CostNE , which is the maximal cost of any
Nash equilibrium. Together with the bound for the social optimum in Sec-
tion 24.4.1, the Price of Anarchy will follow.

Lemma 24.3. The social cost of the worst Nash equilibrium is CostNE =
Θ(s).

Proof. First, we show that CostNE = Ω(s). Consider a grid G[s/L, L] con-
sisting of an even number of L rows of size s/L. Assume that columns
G[·, 2i] for i ∈ {0, 1, ..., L/2 − 1} consist of insecure nodes only, while all

24.4. PRICE OF MALICE 293

n/L

L

2b
√

K

√
K

Figure 24.1: Left: Upper bound for social optimum. White nodes are in-
secure, black nodes are secure. Right: Byzantine Nash equilibrium for
G[n/L, L] for the oblivious model. Insecure Byzantine nodes are denoted
by white triangles. They are located in a way that may yield an attack
component of size (b+ 1)n/L + b.

nodes in the remaining rows are secure. Since all attack components have
size s/L, according to Lemma 24.1, this situation constitutes a Nash equi-
librium. Observe that every second row is inoculated, engendering an inoc-
ulation cost of s/2. Moreover, with probability 1/2, the virus starts at an
insecure node, yielding infection cost s/L · L. The social cost is therefore
CostNE = s/2 + 1/2 · s/L · L = s.

It remains to show that O(s) is an upper bound for any Nash equilibrium.
Since at most each of the s = n nodes can be inoculated, the inoculation cost
cannot exceed s. By Lemma 24.1, we also know that the infected component’s
size is at most s/L, entailing a total infection cost of at most s as well. Hence,
CostNE ≤ 2s, and the claim holds.

By Theorem 24.2 and Lemma 24.3, we get the following result.

Theorem 24.4. For the Price of Anarchy (PoA), it holds that

1

4
·
(s
L

)1/3

≤ PoA ≤ 6√
π
·
(s
L

)1/3

Proof. As for the upper bound, it holds that

PoA =
CostNE

CostOPT
≤ 2s

1
3

√
π · s2/3L1/3

≤ 6s1/3

√
π · L1/3

and as for the lower bound, we have PoA ≥ s

4·s2/3L1/3 .

24.4.3 Oblivious Model

We begin our study of the Price of Malice in the oblivious model in which
players are clueless about the existence of Byzantine players in the system.

294CHAPTER 24. BYZANTINE PLAYERS AMONG SELFISH AGENTS

As nodes consequently underestimate the attack components’ sizes, it follows
that the nodes’ perceived individual costs are smaller than the actual indi-
vidual costs. Not surprisingly, the social costs increase with the number of
Byzantine nodes.

Lemma 24.5. In the oblivious model, the social cost is at least CostBNE ∈
Ω(s+ nb2

L
) for b < L

2
− 1, and CostBNE ∈ Ω(sL) otherwise.

Proof. Consider again a grid G[n/L, L] with n/L rows and L columns, where
every second column consists of secure nodes only. For simplicity, let L be
even. Suppose that in the first b secure columns there is one Byzantine node
each, see Figure 24.1 (middle). In case b ≥ L

2
− 1, every secure column that

separates two insecure columns contains one Byzantine node. The remaining
Byzantine nodes can be placed at arbitrary places in the secure columns.
Because selfish nodes are not aware of the existence of Byzantine nodes in
the network, the perceived cost is ĉosti = 1 for inoculated nodes, and ĉosti =
n/L

n
· L = 1 for the other selfish nodes. Hence, the situation constitutes a

Byzantine Nash equilibrium.
For computing the social costs of this Byzantine Nash equilibrium, we

distinguish two cases, depending on whether the number of Byzantine nodes
is smaller than L

2
−1 or not. For the first case, assume that b ≥ L

2
−1. Because

there is at least one Byzantine node in every secure column that separates
two insecure columns has least one Byzantine node, all selfish and Byzantine
players form one large attack component. Consequently, each insecure selfish
node i ∈ S is infected with probability 1 and therefore CostBNE ≥ s · L.

For the second case, assume that b < L
2
− 1. Each of the first secure

columns contains exactly one Byzantine node. Since L is even, there are s/2−
b secure nodes, and hence the inoculation cost is s/2 − b. With probability
((b+1)n/L+ b)/n, the infection starts at an insecure or a Byzantine node of
an attack component of size (b+1) ·n/L, yielding a cost of (b+1) ·n/L ·L =
n(b+1). Moreover, with probability (s/2−(b+1)n/L)/n, an insecure column
of size n/L is hit. Thus, for b < L

2
− 1, we get the following lower bound on

the social cost:

CostBNE =
(s

2
− b
)

+
(b+1)n

L
+ b

n
· n(b+ 1) +

s
2
− (b+ 1) n

L

n
· n
L

· L

= s+
nb2

L
+
nb

L
+ b2 ∈ Ω

(
s+

nb2

L

)
.

Lemma 24.6. In the oblivious model, the social cost is at most CostBNE ∈
O
(
min{sL, s+ b2n

L
}
)
.

Proof. Since at most every selfish node can be inoculated, it is clear that
Costinoc = O(s). It remains to study the infection cost. The infection cost
of a node in some component i is L times the probability of this component

24.4. PRICE OF MALICE 295

being hit by the virus, i.e., L · ki/n. Hence, the total infection cost is given
by

Costinf =
∑

i

li · ki

n
· L =

L

n

∑

i

li · ki,

where ki is the size of the attack components (including Byzantine nodes),
and li is the number of selfish nodes in this component. In order to upper
bound Costinf , let SByz denote the set of components in the attack graph
which contain at least one Byzantine node, and let SByz be the remaining
components. We can rewrite the equation above as

Costinf =
L

n
·

 ∑

i∈SByz

li · ki +
∑

i∈S
Byz

li · ki

 ,

that is, we consider the infection cost of components with at least one Byzan-
tine node separately from the remaining “Byzantine-free” components. In the
following, let

CostByz
inf :=

L

n

∑

i∈SByz

liki CostByz
inf :=

L

n

∑

i∈S
Byz

liki.

We have to prove that neither CostByz
inf nor CostByz

inf exceeds O(s+ b2n
L

).
As we have shown in the proof of Lemma 24.3 in Section 24.4.2, the total

infection cost of a network consisting only of selfish nodes cannot exceed
s. Because in our case nodes are oblivious about the existence of Byzantine
nodes, attack components without Byzantine nodes behave like in an entirely

selfish environment. Therefore, CostByz
inf ∈ O(s).

It remains to compute the infection cost of those attack components which
include at least one Byzantine node. Let bi be the number of Byzantine nodes
in the i-th component in SByz, and note that

∑
i bi = b. By Lemma 24.1,

we know that in the absence of Byzantine nodes, the size of an attack com-
ponent is at most ki ≤ n/L. Therefore, one Byzantine node can increase a
component by at most n/L nodes plus itself. From this it follows that the
size of an attack component i is bounded by

ki ≤ (bi + 1) · n
L

+ bi, and li ≤ (bi + 1) · n
L
.

Using this relationship between bi and the size of the attack component, we
can bound CostByz

inf as

CostByz
inf =

L

n

∑

i∈SByz

li · ki ≤ L

n

∑

i∈SByz

[
(bi + 1) · n

L
·
(
(bi + 1) · n

L
+ bi

)]

=
∑

i∈SByz

[
(bi + 1)2

n

L
+ bi(bi + 1)

]
<

∑

i∈SByz

[
(bi + 1)2

(n
L

+ 1
)]

=
(n
L

+ 1
)
·
∑

i∈SByz

(bi + 1)2.

296CHAPTER 24. BYZANTINE PLAYERS AMONG SELFISH AGENTS

Given the constraint that bi ≥ 1 for every bi, and because
∑

i bi = b, the
above convex function assumes its maximum for a single positive bi = b.
Consequently,

CostByz
inf ≤

(n
L

+ 1
)
·
∑

i∈SByz

(bi + 1)2 ≤
(n
L

+ 1
)
· (b+ 1)2 ∈ O

(
b2n

L

)
.

On the other hand, it clearly holds that at most every selfish node can be

infected and hence, CostByz
inf + CostByz

inf ≤ sL. The proof is concluded by

adding the upper bounds for Costinoc, Cost
Byz
inf , and CostByz

inf .

Combining Lemmas 24.5 and 24.6 leads to the following theorem that
captures the social cost in the virus inoculation game in the presence of b
Byzantine players among selfish, oblivious nodes.

Theorem 24.7. The social cost in a Byzantine Nash equilibrium with b

Byzantine nodes in the oblivious model is CostBNE ∈ Θ(s + b2n
L

), for b <
L
2
− 1, and CostBNE ∈ Θ(sL), otherwise.

Proof. In both cases, the lower bound follows from Lemma 24.5. As for the
upper bound, note that for b < L

2
−1 and due to L ≤ n = s+ b, it holds that

b < s+b
2

and therefore, b < s. Then, the term s+ b2n
L

asymptotically cannot
exceed the term sL and therefore, the claim follows. As for the second case,
note that for b ≥ L

2
− 1, the term sL is asymptotically smaller or equal to

s+ b2n
L

.

Finally, we can derive tight bounds on the The Price of Byzantine Anarchy
and the Price of Malice by bringing together the results of Theorems 24.2,
24.4, and 24.7.

Theorem 24.8. In the virus inoculation game with b Byzantine nodes among
selfish, oblivious nodes, the Price of Byzantine Anarchy and the Price of
Malice are

PoB(b) ∈ Θ

((s
L

)1/3
(

1 +
b2

L
+
b3

sL

))
and PoM(b) ∈ Θ

(
1 +

b2

L
+
b3

sL

)

for b < L
2
− 1. Otherwise, it holds that

PoB(b) ∈ Θ
(
s1/3L2/3

)
and PoM(b) ∈ Θ(L) .

Proof. Consider the case b < L
2
− 1. For the Price of Byzantine Anarchy,

we have PoB(b) = CostBNE
CostOP T

=
Θ(s+

b2(b+s)
L

)

Θ(s2/3L1/3)
∈ Θ

((
s
L

)1/3 ·
(
1 + b2

L
+ b3

sL

))
.

From this, the Price of Malice is computed as follows PoM(b) = PoB(b)
PoA

∈
Θ
(
1 + b2

L
+ b3

sL

)
. The case b ≥ L

2
−1 follows along the same lines by plugging

in the corresponding expressions of Theorem 24.7.

24.4. PRICE OF MALICE 297

These results on the Price of Malice in the oblivious case support the
intuition that in the absence of knowledge about the existence of Byzantine
players, the quality of the global solution (i.e., the resulting social cost)
deteriorates as the number of malicious players increases. In the next section,
we show that the situation may change as soon as selfish players are aware
of the existence of Byzantine players.

24.4.4 Non-oblivious Model

Having studied the oblivious model, we now turn our attention to the non-
oblivious case in which selfish players know about the existence of Byzantine
players. If selfish players knew about the exact locations of Byzantine nodes,
they would be able to compute their optimal choice exactly. If they only
know the number of Byzantine nodes in the system, however, the optimal
strategy of a player becomes more complex. Specifically, it turns out that in
this non-oblivious case, the “Fear Factor” may actually encourage players to
act less selfishly and cooperate more. In fact, there may even be settings in
which the existence of Byzantine players actually helps to improve the global
social cost, rendering the Price of Malice to become less than 1.

Observe that in the non-oblivious case, every selfish node inoculates if
b ≥ n

L
, implying a social cost of s. If b < n

L
, the resulting social costs are

bounded by the following lemma.

Lemma 24.9. For b < n
2L

, the social cost in a Byzantine Nash equilibrium
in case of non-oblivious, risk-averse players with b Byzantine nodes is at least

CostBNE ≥ s

2
+
bL

4
.

For all values of b, it holds that CostBNE ≥ s
2
.

Proof. We start with the more interesting case b < n
2L

. Consider a grid
with L columns each containing n/L nodes. All nodes in columns 2i + 1

for i = 0, 1, . . . , L
2
− 1 and all nodes in rows j · n/L−b

b+1
for j = 1, 2, . . . , b are

inoculated. That is, as illustrated in Figure 24.2, each component of insecure

selfish nodes is of size n/L−b
b+1

.

First, we show that this configuration constitutes a Byzantine Nash equi-
librium in the risk-averse, non-oblivious case with b Byzantine nodes. Con-
sider an insecure node in some column i. If all b secure nodes in this column
are Byzantine, the size of the resulting attack component is (n/L − b)/(b +
1) · (b+ 1) + b = n/L. Hence, i’s perceived infection cost is

ĉosti = L · (n/L− b)/(b+ 1) · (b+ 1) + b

n
= 1,

which equals the cost of inoculation. Next, consider an inoculated selfish
node i and distinguish two cases. In the first case, i separates two components
consisting of insecure selfish players and a change of i’s strategy would merge

298CHAPTER 24. BYZANTINE PLAYERS AMONG SELFISH AGENTS

L

n
L
−b

b+1

n/L

Figure 24.2: Example with large social cost for the non-oblivious, risk-averse
model. White nodes are insecure, black nodes are secure, and white triangles
denote Byzantine nodes.

two components of size (n/L−b)/(b+1) into a single connected component of
insecure selfish nodes. Every Byzantine node can connect another component
of size (n/L−b)/(b+1) (and itself) to the component containing i. Therefore,

the size of the resulting attack component can be as large as
(
2 ·

n
L
−b

b+1
+ 1
)

+
(
b ·

n
L
−b

b+1
+ b
)

= b+2
b+1

(
n
L
− b
)

+ b + 1 > n
L

+ 1
b+1

. The perceived cost of i

without inoculation is therefore

ĉosti > L ·
n
L

+ 1
b+1

n
= 1 +

L

n(b + 1)
> 1.

In the second case, we consider a “crossing” node i that is located in the
crossing of a secure row and column. Consider the column to the right (or
to the left) of i. If all inoculated nodes in this column are Byzantine, the
entire column plus node i becomes one large attack component. Hence, the
perceived cost of i is

ĉosti > L ·
n
L

+ 1

n
> 1.

In other words, no selfish node has an incentive to change its strategy and
the situation in Figure 24.2 constitutes a Byzantine Nash equilibrium. In the
sequel, we lower bound the social cost of this equilibrium under the assump-
tion that all b Byzantine nodes are in column 1. Note that our construction
guarantees that this is always possible if b < n

2L
.

We start with the sum of the infection costs Cost0inf of insecure nodes in
column 0. The number of insecure, selfish nodes in this component is n

L
− b.

Hence, the expected sum of infection costs is

Cost0inf =
(n
L

− b
)
·

n
L
− b+ b

n
· L =

n

L
− b.

24.4. PRICE OF MALICE 299

Let µ be the number of insecure nodes in columns 3, 5, etc. The sum of the
infection costs Costrinf of the remaining attack components (each being of

size n/L−b
b+1

) is

Costrinf = µ ·
n
L
− b

n(b+ 1)
· L > µ ·

(
1

b+ 1
− L

n

)
.

Because the number of insecure nodes in these small attack components is
µ = L−1

2
·
(

n
L
− b
)
, it follows that

Costrinf >
L− 1

2
·
(n
L

− b
)
·
(

1

b+ 1
− L

n

)

>
1

2(b+ 1)

(
n− n

L
− bL+ b

)
− L

2
.

Finally, we also need to calculate the total inoculation cost of this topology.
Clearly, all s/2 nodes in even columns are secure. (Recall that column and
row indices start with 0.) Furthermore, b nodes in each odd column (ex-
cept for the first column) are also inoculated. Hence, the total inoculation
Costinoc cost becomes

Costinoc =
s

2
+
bL

2
− b =

s

2
+ b

(
L

2
− 1

)
.

Adding up all costs, the social cost of the Byzantine Nash equilibrium is

CostBNE(b) ≥ s

2
+ b

(
L

2
− 1

)
+
n

L
− b+

1

2(b+ 1)

(
n− n

L
− bL+ b

)
− L

2

≥ s

2
+
bL

4

for b ≤ n
2L

and b ≥ 3.
Finally, note that if b ≥ n

2L
, at least half of the selfish nodes inoculate

and hence, CostBNE(b) ≥ s/2.

With this lower bound on the social cost of a Byzantine Nash equilibrium,
we can now derive the Price of Byzantine Anarchy as well as the Price of
Malice for the non-oblivious, risk-averse model.

Theorem 24.10. In the non-oblivious, risk-averse model with b Byzantine
nodes, the Price of Byzantine Anarchy is at least

PoB(b) ≥ 1

8

((s
L

)1/3

+
b

2

(
L

s

)2/3
)

for b < n
2L

. For all b, it holds that PoB(b) ≥ 1
8
(s

L
)1/3.

300CHAPTER 24. BYZANTINE PLAYERS AMONG SELFISH AGENTS

Proof. Lemma 24.9 gives us a lower bound on the social cost of a Byzantine
Nash equilibrium in the non-oblivious, risk-averse model with b malicious
nodes. On the other hand, we have seen in Lemma 24.2, that the optimal
social cost is at most 4s2/3L1/3. Hence,

PoB(b) ≥
s
2

+ bL
4

4s2/3L1/3
=

1

8

(
s1/3

L1/3
+
bL2/3

2s2/3

)
.

The second lower bound follows analogously.

Theorem 24.11. In the non-oblivious, risk-averse model with b Byzantine
nodes, the Price of Malice is

PoM(b) ≥
√
π

48

(
1 +

bL

2s

)

for b < n
2L

. For all b, it holds that PoM(b) ≥
√

π
48

.

Proof. In order to derive the Price of Malice, we can apply our bound from
Theorem 24.10 and the upper bound on the Price of Anarchy established in
Theorem 24.4. Specifically,

PoM(b) =
PoB(b)

PoA
≥

1
8

((
s
L

)1/3
+ b

2

(
L
s

)2/3
)

6s1/3
√

π·L1/3

.

The theorem then follows from arithmetic simplifications. Again, the second
lower bound follows in an analogous way.

Discussion: From a technical point of view, this result shows that the
Price of Malice may potentially be less than 1 in the non-oblivious model
of the virus inoculation game. Intuitively, it is clear that in the presence of
Byzantine players, nodes may be more willing to pay for inoculation. How-
ever, it is interesting that the selfish players’ awareness of the existence of
malicious Byzantine players may lead to an improvement of the overall sys-
tem behavior, i.e., the social welfare. Specifically, the existence (or even the
threat!) of malicious Byzantine players can render it worthwhile for nodes
to enhance their cooperation to an extent which actually improves overall
system performance as compared to a purely selfish system.

This highlights the existence of a Fear Factor, which describes the gain of
the overall social efficiency in a system if selfish players are afraid of malicious,
Byzantine individuals among them. This Fear Factor is determined by the
ratio between the social cost of the worst Byzantine Nash equilibrium and
the worst (regular) Nash equilibrium. Technically, we can define the Fear
Factor Ψ as the inverse of the Price of Malice, i.e.,

Ψ(b) :=
1

PoM(b)
.

24.4. PRICE OF MALICE 301

In other words, the Fear Factor Ψ quantifies how much the threat of a com-
mon enemy can unite selfish individuals, and to what degree the global social
performance is improved.

In the virus inoculation game, the Fear Factor may be both negative and
positive. What is interesting to note, however, is that it cannot be arbitrarily
large, regardless of the number of Byzantine players b in the system. Instead,

the Price of Malice can never drop below the constant
√

π
48

and hence, the

Fear Factor is upper-bounded by Ψ ≤ 48√
π
. That is, the social welfare or

efficiency gained due to the Fear Factor cannot exceed a factor of Ψ ≤ 48√
π
.

The existence of a Fear Factor has been documented in various economic
and social models. The novel aspect brought about in this chapter is that by
enhancing a game theoretic framework with the notion of Byzantine agents
from distributed computing and cryptography, a system’s Fear Factor Ψ can
be analytically quantified.

302CHAPTER 24. BYZANTINE PLAYERS AMONG SELFISH AGENTS

Chapter 25

Conclusions and Outlook

The advent of the Internet and peer-to-peer systems has brought the notion
of selfishness to the focus of theoretical computer science. As a result, the
introduction of micro-economic models in computer science has led to fas-
cinating insights into the reality of today’s distributed systems such as the
Internet. Over the last years, many aspects of distributed systems have been
studied from a game-theoretic point of view. A particularly exciting question
concerns the so-called Price of Anarchy : How much better would the social
welfare be if selfish players collaborated instead of seeking to maximize their
own benefit?

In Part IV of the thesis, we focused on two specific settings related to
networking in which selfishness plays a crucial role. First, Chapter 23 has
dealt with the example of locality-aware peer-to-peer systems in which the
selfish nature of the participating peers may lead to inefficient and even
instable topologies. In this game as well as in network creation games in
general, there remain numerous open problems and directions for future work,
many of which have already been pointed out in the original network creation
paper [83]. For instance, it would be interesting to incorporate the notion
of congestion into the framework or study games in which nodes arrive one-
by-one and the network is developed in stages, each stage constituting an
equilibrium.

One possible improvement that is specific to the peer-to-peer game studied
in Chapter 23 is related to the node’s cost function. It particular, it can be
argued that minimizing the sum of the node’s stretches may not be the most
natural cost function. Instead, nodes may be more interested to minimize
their total latency or their maximum stretch. Moreover, it may actually
not be necessary for a node to be connected to every other node in the
network. The motivation for studying the specific cost function defined in
Chapter 23 is twofold. First, this cost function—while possibly not being the
most realistic or intuitive one—does capture the classic peer-to-peer trade-
off between latency on the one hand and maintenance overhead on the other
hand. And secondly, the definition of the costs gives raise to an algorithmic

304 CHAPTER 25. CONCLUSIONS AND OUTLOOK

problem with manageable complexity and interesting results. This second
reason is important because many other natural cost functions turn out to
be analytically intricate or even intractable. Nonetheless, it will certainly be
interesting to study versions of the locality game with different cost functions.

What happens if not every participant of a system is benevolent or (at
least) acts according to its selfish interests? Chapter 24 advocates the study
of distributed, potentially economic or social systems consisting of interact-
ing players which can be selfish or malicious. Using a game-theoretic model
that incorporates Byzantine players, we have derived bounds on the Price
of Malice in oblivious and non-oblivious systems. Moreover, these results
have lead to a quantification of the Fear Factor, which is the gain in sys-
tem efficiency arising from the increased willingness of selfish individuals to
cooperate in the view of malicious players.

The technical part of Chapter 24 focuses on a simple virus inoculation
game on a restricted family of graphs. In this sense, these results may only
scratch the surface and, generally, studying game theoretic settings with
both selfish and Byzantine participants appears to open a multiplicity of
algorithmically interesting questions and problems. For example: What is
the Price of Malice in a virus inoculation game on a small-world graph? What
is the Price of Malice of other games? It seems, for instance, that in certain
routing games, a single node can attract a lot of traffic by announcing short
distances to all other nodes resulting in a large Price of Malice. In congestions
games, on the other hand, the impact of Byzantine players may be much
smaller. Another direction for future work is to study the impact of knowledge
on the resulting Fear Factor in non-oblivious models. Specifically, one could
assume that players are not only aware of the existence of Byzantine players,
but also of their approximate whereabouts or their statistical distribution.
Intuitively, such additional knowledge should decrease the selfish players’
incentive for collaboration and thus lower the Fear Factor.

Finally—if we are willing to let our minds wander even more freely at
the conclusion of this thesis—modeling and studying the notions of Price
of Malice and Fear Factor may lead to new insights in areas beyond those
typically found in computer science and networking. Potentially, such game
theoretic frameworks could provide tools for analytically capturing socio-
economic artefacts arising in entirely different fields, including for example
economics or sociology.

Bibliography

[1] I. Abraham, A. Badola, D. Bickson, D. Malkhi, S. Maloo, and S. Ron.
Practical Locality-Awareness for Large Scale Information Sharing. In
Proc. of the 4 th Intl. Workshop on Peer-to-Peer Systems (IPTPS),
pages 173–181, 2005.

[2] I. Abraham, D. Dolev, and D. Malkhi. LLS: A Locality Aware Location
Service for Mobile Ad Hoc Networks. In Proc. of 2nd Joint Workshop
on Foundations of Mobile Computing (DIALM-POMC), pages 75–84,
2004.

[3] I. Abraham, C. Gavoille, A. V. Goldberg, and D. Malkhi. Routing in
Networks with Low Doubling Dimension. In Proceedings of the 26nd

International Conference on Distributed Computing Systems (ICDCS),
2006.

[4] I. Abraham, C. Gavoille, and D. Malkhi. Routing with Improved
Communication-Space Trade-Off. In Proc. of the 18 th Annual Con-
ference on Distributed Computing (DISC), pages 305–319, 2004.

[5] I. Abraham, D. Malkhi, and O. Dobzinski. LAND: Stretch (1 + e)
Locality Aware Networks for DHTs. In Proc. of the 15 th ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 550–559, 2004.

[6] E. Adar and B. Huberman. Free Riding on Gnutella. First Monday,
5(10), 2000.

[7] A. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth.
BAR Fault Tolerance for Cooperative Services. In Proc. of the 20 th

ACM Symposium on Operating Systems Principles (SOSP), pages 45–
58, 2005.

[8] S. Albers, S. Eilts, E. Even-Dar, Y. Mansour, and L. Roditty. On Nash
Equilibria for a Network Creation Game. In Proc. of the 17 th ACM
Symposium on Discrete Algorithms (SODA), Miami, USA, 2006.

[9] N. Alon, L. Babai, and A. Itai. A Fast and Simple Randomized Par-
allel Algorithm for the Maximal Independent Set Problem. Journal of
Algorithms, 7(4):567–583, 1986.

305

306 BIBLIOGRAPHY

[10] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A Lower Bound for
Radio Broadcast. Journal of Computer and System Sciences, 43:290–
298, 1991.

[11] K. Alzoubi, P.-J. Wan, and O. Frieder. Message-Optimal Connected

Dominating Sets in Mobile Ad Hoc Networks. In Proc. of the 3 rd

ACM Int. Symposium on Mobile Ad Hoc Networking and Computing
(MOBIHOC), pages 157–164, 2002.

[12] C. Ambühl, A. E. F. Clementi, M. D. Ianni, N. Lev-Tov, A. Monti,
D. Peleg, G. Rossi, and R. Silvestri. Efficient Algorithms for Low-
Energy Bounded-Hop Broadcast in Ad-Hoc Wireless Networks. In
Proc. of the 21 th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS), pages 418–427, 2004.

[13] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu. In-
fluences on Cooperation in BitTorrent Communities. In Proc. of the
2005 ACM SIGCOMM on Economics of Peer-to-Peer Systems, pages
111–115, 2005.

[14] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and
T. Roughgarden. The Price of Stability for Network Design with Fair
Cost Allocation. In Proc. of the 45 th Symposium on Foundations of
Computer Science (FOCS), pages 295–304, 2004.

[15] J. Aspnes, K. Chang, and A. Yampolskiy. Inoculation Strategies for
Victims of Viruses and the Sum-of-Squares Partition Problem. In Proc.
of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 43–52, 2005.

[16] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simu-
lations and Advanced Topics. McGraw-Hill, 1998.

[17] B. Awerbuch. Complexity of Network Synchronization. Journal of the
ACM, 32(4):804–823, 1985.

[18] B. Awerbuch. Optimal Distributed Algorithms for Minimum Weight
Spanning Tree, Counting, Leader Election and Related Problems. In
Proc. of the 19 th ACM Symposium on Theory of Computing (STOC),
pages 230–240, 1987.

[19] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Low-Diameter Graph
Decomposition is in NC. Random Structures and Algorithms, 5(3):441–
452, 1994.

[20] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Fast Network Decom-
positions and Covers. Journal of Parallel and Distributed Computing,
39(2):105–114, 1996.

BIBLIOGRAPHY 307

[21] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network
Decomposition and Locality in Distributed Computation. In Proc. of
the 30 th Symp. on Foundations of Computer Science (FOCS), pages
364–369, 1989.

[22] B. Awerbuch and D. Peleg. Network Synchronization with Polyloga-
rithmic Overhead. In Proc. of the 31 th Symposium on Foundations of
Computer Science (FOCS), pages 514–522, 1990.

[23] B. Awerbuch and D. Peleg. Sparse Partitions. In Proc. of the 31 th

Symposium on Foundations of Computer Science (FOCS), pages 503–
513, 1990.

[24] B. Awerbuch and D. Peleg. Routing with Polynomial Communication-
Space Trade-Off. SIAM Journal on Discrete Mathematics, 5:151–162,
1992.

[25] B. Baker. Approximation Algorithms for NP-complete problems on
Planar Graphs. Journal of the ACM, 41(1):153–180, 1994.

[26] M. L. Balinski. On Finding Integer Solutions to Linear Programs. In
Proc. of the IBM Scientific Computing Symposium on Combinatorial
Problems, pages 225–248, 1966.

[27] S. Banerjee and A. Misra. Minimum Energy Paths for Reliable Com-
munication in Multi-Hop Wireless Networks. In Proceedings of the 3 rd

ACM International Symposium on Mobile Ad Hoc Networking & Com-
puting (MOBIHOC), pages 146–156, 2002.

[28] J. Bar-Ilan, G. Kortsarz, and D. Peleg. How to Allocate Network
Centers. Journal of Algorithms, 15(3):385–415, 1993.

[29] J. Bar-Ilan, G. Kortsarz, and D. Peleg. Generalized Submodular Cover
Problems and Applications. Theoretical Computer Science, 250:179–
200, 2001.

[30] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the Time-Complexity of
Broadcast in Radio Networks: An Exponential Gap Between Determin-
ism and Randomization. In Proceedings of the 6 th ACM Symposium
on Principles of Distributed Computing (PODC), pages 98–108, 1987.

[31] Y. Bartal, J. W. Byers, and D. Raz. Global Optimization Using Local

Information with Applications to Flow Control. In Proc. of the 38 th

Symposium on Foundations of Computer Science (FOCS), pages 303–
312, 1997.

[32] Y. Bartal, J. W. Byers, and D. Raz. Global Optimization Using Local
Information with Applications to Flow Control. In Proc. of the 38 th

Symposium on Foundations of Computer Science (FOCS), pages 303–
312, 1997.

308 BIBLIOGRAPHY

[33] A. Behzad and I. Rubin. On the Performance of Graph-based Schedul-
ing Algorithms for Packet Radio Networks. In Proc. of the IEEE
Global Telecommunications Conference (GLOBECOM), pages 3432–
3436, 2003.

[34] A. Behzad and I. Rubin. Impact of Power Control on the Performance
of Ad Hoc Wireless Networks. In Proc. of the 24 th Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM),
2005.

[35] A. Behzad, I. Rubin, and A. Mojibi-Yazdi. Distributed Power Con-
trolled Medium Access Control for Ad-Hoc Wireless Networks. In
Proc. of the 18 th IEEE Annual Workshop on Computer Communi-
cations (CCW), pages 47–53, 2003.

[36] P. Björklund, P. Värbrand, and D. Yuan. Resource Optimization of
Spatial TDMA in Ad Hoc Radio Networks: A Column Generation
Approach. In Proc. of the 22 th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), 2003.

[37] H. Breu and D. G. Kirkpatrick. Unit Disk Graph Recognition is NP-
hard. Computational Geometry. Theory and Applications, 9(1-2):3–24,
1998.

[38] J. Bruck, J. Gao, and A. Jiang. Localization and Routing in Sen-
sor Networks by Local Angle Information. In Proc. of the 6 th In-
ternational Symposium on Mobile Ad Hoc Networking and Computing
(MOBIHOC), pages 181–192, 2005.

[39] M. Burkhart, P. von Rickenbach, R. Wattenhofer, and A. Zollinger.
Does Topology Control Reduce Interference? In Proceedings of the
5 th ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MOBIHOC), pages 9–19, 2004.

[40] H. T.-H. Chan, A. Gupta, B. M. Maggs, and S. Zhou. On Hierarchical

Routing in Doubling Metrics. In Proc. of the 16 th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 762–771, 2005.

[41] X. Cheng, X. Huang, D. Li, W. Wu, and D.-Z. Du. A Polynomial-Time
Approximation Scheme for the Minimum-Connected Dominating Set
in Ad Hoc Wireless Networks. Networks, 42(4):202–208, 2003.

[42] C.-F. Chiasserini and R. R. Rao. Routing Protocols to Maximize Bat-
tery Efficiency. In IEEE Milcom 2000, 2000.

[43] F. Chin and H. F. Ting. An Almost Linear Time and O(n log n + ε)
Messages Distributed Algorithm for Minimum-Weight Spanning Trees.
In Proc. of the 26 th ACM Symposium on Foundations of Computer
Science (FOCS), pages 257–266, 1985.

BIBLIOGRAPHY 309

[44] ChipCon AS. SmartRF CC1000 Datasheet (rev. 2.2). http://www.
chipcon.com/files/CC1000_Data_Sheet_2_2.pdf.

[45] I. Chlamtac and S. Kutten. On Broadcasting in Radio Networks -
Problem Analysis and Protocol Design. IEEE Transactions on Com-
munication, 33:1240–1246, 1985.

[46] I. Chlamtac and O. Weinstein. The Wave Expansion Approach to
Broadcasting in Multi-Hop Radio Networks. IEEE Transactions on
Communication, 39, 1991.

[47] B. S. Chlebus. Handbook of Randomized Computing, chapter Ran-
domized Communication in Radio Networks, pages 401–456. Kluwer
Academic, 2001.

[48] B. S. Chlebus, L. Ga̧sieniec, A. Gibbons, A. Pelc, and W. Rytter.
Deterministic Broadcasting in Unknown Radio Networks. Distributed
Computing, 15(8), 2002.

[49] B. S. Chlebus, L. Ga̧sieniec, D. Kowalski, and T. Radzik. On the Wake-
Up Problem in Radio Networks. In Proc. of the 32 rd International Col-
loquium on Automata, Languages and Programming (ICALP), pages
347–359, 2005.

[50] B. S. Chlebus, L. Ga̧sieniec, A. Lingas, and A. Pagourtzis. Oblivi-
ous Gossiping in Ad-Hoc Radio Networks. In Proc. of Workshop on
Discrete Algorithms and Methods for Mobile Computing and Commu-
nications (DIAL-M), pages 44–51, 2001.

[51] B. S. Chlebus and D. Kowalski. A better Wake-Up in Radio Networks.
In Proc. of the 23 rd ACM Symposium on the Principles of Distributed
Computing (PODC), pages 266–274, 2004.

[52] M. Chrobak, L. Ga̧sieniec, and D. Kowalski. The Wake-Up Problem
in Multi-Hop Radio Networks. In Proc. of the 15 th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 992–1000, 2004.

[53] B.-G. Chun, K. Chaudhuri, H. Wee, M. Barreno, C. H. Papadimitriou,
and J. Kubiatowicz. Selfish Caching in Distributed Systems: A Game-
Theoretic Analysis. In Proc. of the 23th Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 21–30, 2004.

[54] V. Chvátal. A Greedy Heuristic for the Set-Covering Problem. Math-
ematics of Operations Research, 4(3), 1979.

[55] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit Disk Graphs.
Discrete Mathematics, 86(1-3):165–177, 1990.

[56] A. E. F. Clementi, P. Penna, and R. Silvestri. The Power Range As-
signment Problem in Radio Networks on the Plane. In Proc. of the
17 th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), pages 651–660, 2000.

310 BIBLIOGRAPHY

[57] A. E. F. Clementi, P. Penna, and R. Silvestri. On the Power Assign-
ment Problem in Radio Networks. Mobile Networks and Applications,
9(2):125–140, 2004.

[58] R. Cole and U. Vishkin. Deterministic Coin Tossing with Applications
to Optimal Parallel List Ranking. Information and Control, 70(1):32–
53, 1986.

[59] V. Conitzer and T. Sandholm. Complexity Results about Nash Equi-

libria. In Proc. of the 18 th International Joint Conference on Artificial
Intelligence (IJCAI), pages 765–771, 2003.

[60] J. Corbo and D. C. Parkes. The Price of Selfish Behavior in Bilateral
Network Formation. In Proc. of the 24 th ACM Symp. on Principles
of Distributed Computing (PODC), pages 99–107, Las Vegas, Nevada,
USA, 2005.

[61] G. Cornuejols, G. Nemhauser, and L. Wolsey. Discrete Location The-
ory, chapter The Uncapacitated Facility Location Problem, pages 119–
171. Wiley, 1990.

[62] R. L. Cruz and A. V. Santhanam. Optimal Routing, Link Scheduling
and Power Control in Multi-hop Wireless Networks. In Proc. of the
22 th Annual Joint Conference of the IEEE Computer and Communi-
cations Societies (INFOCOM), 2003.

[63] A. Czumaj and W. Rytter. Broadcasting Algorithms in Radio Networks
with Unknown Topology. In Proc. of the 44 th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 492–501. IEEE
Computer Society, 2003.

[64] A. Czygrinow, M. Hańćkoviak, and E. Szymańska. A Fast Distributed
Algorithm for Approximating the Maximum Matching. In Proc. of the
12 th European Symposium on Algorithms (ESA), pages 252–263, 2004.

[65] F. Dai and J. Wu. An Extended Localized Algorithm for Connected
Dominating Set Formation in Ad Hoc Wireless Networks. IEEE Trans-
actions on Parallel and Distributed Systems, 15(10):902–920, 2004.

[66] M. Damian, S. Pandit, and S. Pemmaraju. Local Approximation

Schemes for Topology Control. In Proc. of the 25 th ACM Symposium
on Principles of Distributed Computing (PODC), 2006.

[67] B. Deb and B. Nath. On the Node-Scheduling Approach to Topology
Control in Ad Hoc Networks. In Proc. of the 6nd ACM Int. Symposium
on Mobile Ad Hoc Networking & Computing (MOBIHOC), pages 14–
26, 2005.

[68] E. D. Demaine, U. Feige, M. T. Hajiaghayi, and M. R. Salavatipour.
Combination Can Be Hard: Approximability of the Unique Coverage
Problem. In Proc. of the 17th ACM-SIAM Symposium on Discrete
Algorithm (SODA), pages 162–171, 2006.

BIBLIOGRAPHY 311

[69] I. Derbel and C. Gavoille. Fast Deterministic Distributed Algorithms
for Sparse Spanners. In Proc. of the 13 th Colloquium on Structural
Information and Communication Complexity (SIROCCO), 2006.

[70] D. Dolev. The Byzantine Generals Stike Again. J. of Algorithms,
3(1):14–30, 1982.

[71] S. Eidenbenz, V. Kumar, and S. Zust. Equilibria in Topology Control
Games for Ad Hoc Networks. In Proc. of the Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications
(DIAL-M), pages 2–11, 2003.

[72] F. Eisenbrand, S. Funke, N. Garg, and J. Könemann. A Combina-
torial Algorithm for Computing a Maximum Independent Set in a t-
perfect Graph. In Proc. of the 14 th Symposium on Discrete Algorithms
(SODA), pages 517–522, 2003.

[73] T. ElBatt and A. Ephremides. Joint Scheduling and Power Control
for Wireless Ad-hoc Networks. In Proc. of the 21 th Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM),
2002.

[74] K. Eliaz. Fault Tolerant Implementation. Review of Economic Studies,
69:589–610, 2002.

[75] M. Elkin. A Faster Distributed Protocol for Constructing Minimum
Spanning Tree. In Proc. of the 15 th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 352–361, 2004.

[76] M. Elkin. An Unconditional Lower Bound on the Hardness of Approx-
imation of Distributed Minimum Spanning Tree Problem. In Proc. of
the 36 th ACM Symposium on Theory of Computing (STOC), pages
331–340, 2004.

[77] M. Elkin. Distributed Approximation - A Survey. ACM SIGACT News
- Distributed Computing Column, 35(4), 2004.

[78] M. Elkin and G. Kortsarz. Combinatorial Logarithmic Approximation
Algorithm for Directed Telephone Broadcast Problem. In Proc. of the
34 th ACM Symposium on Theory of Computing (STOC), pages 438–
447, 2002.

[79] M. Elkin and G. Kortsarz. Polylogarithmic Inapproximability of the

Radio Broadcast Problem. In Proc. of the 7 th International Workshop
on Approximation Algorithms for Combinatorial Optimization Prob-
lems (APPROX), pages 105–116, 2004.

[80] M. Elkin and G. Kortsarz. Improved Broadcast Schedule for Radio
Networks. In Proc. of the 16 th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 222–231, 2005.

312 BIBLIOGRAPHY

[81] A. Ephremides and T. Truong. Scheduling Broadcasts in Multihop
Radio Networks. IEEE Transactions on Communications, 38:456–460,
1990.

[82] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-Time Approxima-
tion Schemes for Geometric Graphs. In Proc. of the 12 th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 671–679, 2001.

[83] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and
S. Shenker. On a Network Creation Game. In Proc. of the 22nd ACM
Symposium on Principles of Distributed Computing (PODC), pages
347–351, 2003.

[84] A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The Complexity of
Pure Nash Equilibria. In Proc. of the 36 th ACM Symposium on Theory
of Computing (STOC), pages 604–612, 2004.

[85] M. Farach-Colton, R. J. Fernandes, and M. A. Mosteiro. Bootstrapping
a Hop-Optimal Network in the Weak Sensor Model. In Proc. of the 13 th

European Symposium on Algorithms (ESA), pages 827–838, 2005.

[86] M. Farach-Colton, R. J. Fernandes, and M. A. Mosteiro. Lower Bounds

for Clear Transmissions in Radio Networks. In Proc. of the 7 th Latin
American Symposium on Theoretical Informatics (LATIN), pages 447–
454, 2006.

[87] U. Feige. A Threshold of lnn for Approximating Set Cover. Journal
of the ACM, 45(4):634–652, 1998.

[88] U. Feige, M. M. Halldórsson, G. Kortsarz, and A. Srinivasan. Approxi-
mating the Domatic Number. SIAM Journal on Computing, 32(1):172–
195, 2003.

[89] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker. A BGP-
based Mechanism for Lowest-Cost Routing. In Proc. of the 21st Annual
ACM Symposium on Principles of Distributed Computing (PODC),
pages 173–182, 2002.

[90] F. Fich and E. Ruppert. Hundreds of Impossibility Results for Dis-
tributed Computing. Distributed Computing, 16(2-3):121–163, 2003.

[91] I. Finocchi, A. Panconesi, and R. Silvestri. Experimental Analysis of
Simple, Distributed Vertex Coloring Algorithms. In Proceedings of the
13 th ACM-SIAM symposium on Discrete algorithms (SODA), pages
606–615, 2002.

[92] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of Dis-
tributed Consensus With One Faulty Process. Journal of the ACM,
32(2):374–382, 1985.

BIBLIOGRAPHY 313

[93] L. Fleischer. Approximating Fractional Multicommodity Flow Inde-
pendent of the Number of Commodities. SIAM Journal on Discrete
Mathematics, 13(4):505–520, 2000.

[94] L. Fleischer. A Fast Approximation Scheme for Fractional Covering
Problems with Variable Upper Bounds. In Proc. of the 15 th Symposium
on Discrete Algorithms (SODA), 2004.

[95] S. Funke, A. Kesselman, U.Meyer, and M.Segal. A Simple Improved
Distributed Algorithm for Minimum CDS in Unit Disk Graphs. In Proc.
of the 1 st Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), 2005.

[96] M. Fussen, R. Wattenhofer, and A. Zollinger. Interference Arises at the
Receiver. In Proc. of the International Conference on Wireless Net-
works, Communications, and Mobile Computing (WirelessCom), 2005.

[97] E. Gafni. Improvements in the Time Complexity of Two Message-

Optimal Election Algorithms. In Proc. of the 4 th Symposium on Prin-
ciples of Distributed Computing (PODC), pages 175–185, 1985.

[98] R. G. Gallager, P. A. Humblet, and P. M. Spira. A Distributed Al-
gorithm for Minimum-Weight Spanning Trees. ACM Transactions on
Programming Languages and Systems, 5:66–77, 1983.

[99] R. Gandhi and S. Parthasarathy. Distributed Algorithms for Color-
ing and Connected Domination in Wireless Ad Hoc Networks. In
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), pages 447–459, 2004.

[100] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Discrete
Mobile Centers. In Proc. of the 17 th Symposium on Computational
Geometry (SCG), pages 188–196, 2001.

[101] J. Garay, S. Kutten, and D. Peleg. A Sub-Linear Time Distributed
Algorithm for Minimum-Weight Spanning Trees. SIAM Journal on
Computing, 27:302–316, 1998.

[102] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company,
1979.

[103] N. Garg and J. Koenemann. Faster and Simpler Algorithms for Mul-
ticommodity Flow and other Fractional Packing Problems. In Proc.
of the 39 th Annual Symposium on Foundations of Computer Science
(FOCS), 1998.

[104] L. Ga̧sieniec, A. Pelc, and D. Peleg. The Wakeup Problem in Syn-
chronous Broadcast Systems (Extended Abstract). In Proc. of the 19 th

ACM Symposium on Principles of Distributed Computing (PODC),
pages 113–121, 2000.

314 BIBLIOGRAPHY

[105] L. Ga̧sieniec, D. Peleg, and Q. Xin. Faster Communication in Known
Topology Radio Networks. In Proc. of the 24 th ACM Symp. on Prin-
ciples of Distributed Computing (PODC), pages 129–137, 2005.

[106] A. Goel and D. Estrin. Simultaneous Optimization for Concave Costs:
Single Sink Aggregation or Single Source Buy-at-Bulk. In Proc. of the
14 th Symposium on Discrete Algorithms (SODA), 2003.

[107] M. X. Goemans and D. P. Williamson. A General Approximation Tech-
nique for Constrained Forest Problems. SIAM Journal on Computing,
24(2):296–317, 1995.

[108] A. Goldberg, S. Plotkin, and G. Shannon. Parallel Symmetry-Breaking
in Sparse Graphs. SIAM Journal on Discrete Mathematics, 1(4):434–
446, 1988.

[109] A. V. Goldberg and S. A. Plotkin. Parallel (∆ + 1)-Coloring of
Constant-degree Graphs. Information Processing Letters, 25:241–245,
1987.

[110] D. A. Grable and A. Panconesi. Fast Distributed Algorithms for
Brooks-Vizing Colourings. In Proc. of the 9 th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 473–480, 1998.

[111] F. Grandoni, J. Krönemann, A. Panconesi, and M. Sozio. Primal-
Dual Based Distributed Algorithms for Vertex Cover with Semi-Hard
Capacities. In Proc. of the 24 th Annual ACM Symposium on Principles
of Distributed Computing (PODC), pages 118–125, 2005.

[112] J. Grönkvist. Assignment methods for Spatial Reuse TDMA. In Proc.
of the 1 st ACM International Symposium on Mobile Ad Hoc Network-
ing & Computing (MOBIHOC), 2000.

[113] J. Grönkvist. Interference-Based Scheduling in Spatial Reuse TDMA.
Doctoral thesis, 2005.

[114] J. Grönkvist and A. Hansson. Comparison Between Graph-Based and

Interference-Based STDMA Scheduling. In Proc. of the 2nd ACM In-
ternational Symposium on Mobile Ad Hoc Networking & Computing
(MOBIHOC), pages 255–258, 2001.

[115] A. Gupta, R. Krauthgamer, and J. Lee. Bounded Geometries, Fractals,
and Low-Distortion Embeddings. In Proc. of the 44th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 534–543, 2003.

[116] P. Gupta and P. R. Kumar. Critical Power for Asymptotic Connectivity
in Wireless Networks. Stochastic Analysis, Control, Optimization and
Applications: A Volume in Honor of W. H. Fleming (March 1998),
pages 547–566, 1998.

BIBLIOGRAPHY 315

[117] P. Gupta and P. R. Kumar. The Capacity of Wireless Networks. IEEE
Trans. Information Theory, 46(2):388–404, 2000.

[118] M. T. Hajiaghayi, M. Mahdian, and V. S. Mirrokni. The Facility Lo-
cation Problem with General Cost Functions. Networks, 42(1):42–47,
2003.

[119] M. Hańćkoviak, M. Karoński, and A. Panconesi. On the Distributed
Complexity of Computing Maximal Matchings. In Proc. of the 9 th

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 219–
225, 1998.

[120] M. Hańćkoviak, M. Karoński, and A. Panconesi. A faster Distributed
Algorithm for Computing Maximal Matchings Deterministically. In
Proc. of the 18 th ACM Symposium on Principles of Distributed Com-
puting (PODC), pages 219–228, 1999.

[121] J. Heinonen. Lectures on Analysis of Metric Spaces. Springer-Verlag,
2001.

[122] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-
Efficient Communication Protocol for Wireless Microsensor Networks.
In Proc. of the 33 rd Annual Hawaii International Conference on Sys-
tem Sciences, pages 3005–3014, 2000.

[123] J. Hill and D. Culler. Mica: A Wireless Platform for Deeply Embedded
Networks. IEEE Micro, 22(6):12–24, 2002.

[124] D. Hochbaum and W. Maass. Approximation Schemes for Covering
and Packing Problems. Journal of the ACM, 32(1):130–136, 1985.

[125] D. S. Hochbaum. Heuristics for the Fixed Cost Median Problem. Math.
Programming, 22:148–162, 1982.

[126] L. Hu. Topology Control for Multihop Packet Radio Networks. IEEE
Trans. on Communications, 41(10), 1993.

[127] H. Hunt, M. Marathe, V. Radhakrishnan, S. Ravi, D. Rosenkrantz,
and R. Stearns. NC-Approximation Schemes for NP- and PSPACE-
Hard Problems for Geometric Graphs. ALGORITHMS: Journal of
Algorithms, 26, 1998.

[128] P. Indyk. Explicit Constructions of Selectors and Related Combinato-
rial Structures, with Applications. In Proc. of the 13 rd ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 697–704, 2002.

[129] A. Israeli and A. Itai. A Fast and Simple Randomized Parallel Algo-
rithm for Maximal Matching. Information Processing Letters, 22:77–80,
1986.

316 BIBLIOGRAPHY

[130] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani.
Greedy Facility Location Algorithms analyzed using Dual Fitting with
Factor-Revealing LP. Journal of the ACM, 50(6):795–824, 2003.

[131] K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu. Impact of Interfer-
ence on Multi-hop Wireless Network Performance. In Proc. of the 9 th

Annual International Conference on Mobile Computing and Network-
ing (MOBICOM), 2003.

[132] K. Jain and V. V. Vazirani. Primal-Dual Approximation Algorithms
for Metric Facility Location and k-Median Problems. In Proc. of the
40 th Annual Symposium on Foundations of Computer Science (FOCS),
1999.

[133] L. Jia, G. Lin, G. Noubir, R. Rajaraman, and R. Sundaram. Universal
Approximations for TSP, Steiner Tree, and Set Cover. In Proc. of
the 37 th Annual ACM Symposium on Theory of Computing (STOC),
pages 386–395, 2005.

[134] L. Jia, R. Rajaraman, and R. Suel. An Efficient Distributed Algorithm

for Constructing Small Dominating Sets. In Proc. of the 20 th ACM
Symposium on Principles of Distributed Computing (PODC), pages
33–42, 2001.

[135] T. Johansson and L. Carr-Motyčkovà. Reducing Interference in Ad Hoc
Networks through Topology Control. In Proc. of the ACM Joint Work-
shop on Foundations of Mobile Computing (DIALM-POMC), pages
17–23, 2005.

[136] S. Jun and M. Ahamad. Incentives in BitTorrent Induce Free Riding.
In Proc. of the 2005 ACM SIGCOMM on Economics of Peer-to-Peer
Systems, pages 116–121, 2005.

[137] T. Jurdzinski, M. Kutylowski, and J. Zatopianski. Energy-Efficient
Size Approximation of Radio Networks with No Collision Detection.
In Proc. of the 8 th Annual International Conference on Computing
and Combinatorics (COCOON), pages 279–289, 2002.

[138] T. Jurdziński and G. Stachowiak. Probabilistic Algorithms for the
Wakeup Problem in Single-Hop Radio Networks. In Proc. of the
13 th Annual International Symposium on Algorithms and Computa-
tion (ISAAC), pages 535–549, 2002.

[139] D. R. Karger and M. Ruhl. Finding Nearest Neighbors in Growth-

Restricted Metrics. In Proc. of the 34 th Annual ACM Symposium on
Theory of Computing (STOC), pages 741–750, 2002.

[140] R. M. Karp. Reducibility Among Combinatorial Problems. In Proc.
of a Symposium on the Complexity of Computer Computations, pages
85–103, 1972.

BIBLIOGRAPHY 317

[141] S. Kolliopoulos and N. Young. Tight Approximation Results for Gen-
eral Covering Integer Programs. In Proc. of the 42nd IEEE Symposium
on Foundations of Computer Science (FOCS), 2001.

[142] C.-Y. Koo. Broadcast in Radio Networks Tolerating Byzantine Adver-
sarial Behavior. In Proc. of the 23 rd ACM Symposium on the Principles
of Distributed Computing (PODC), pages 275–282, 2004.

[143] Y. A. Korilis, A. A. Lazar, and A. Orda. Achieving Network Optima
using Stackelberg Routing. Transactions on Networking, 1997.

[144] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a Local
Search Heuristic for Facility Location Problems. In Proc. of the 9 th

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1–10,
1998.

[145] E. Koutsoupias and C. Papadimitriou. Worst-Case Equilibria. In Proc.
of the 16th Annual Symposium on Theoretical Aspects of Computer
Science (STACS), pages 404–413, 1999.

[146] R. Krauthgamer and J. Lee. Navigating Nets: Simple Algorithms for
Proximity Search. In Proc. of 15th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2004.

[147] F. Kuhn. The Price of Locality: Exploring the Complexity of Dis-
tributed Coordination Primitives. Doctoral thesis, eth zurich, 2005.

[148] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Unit Disk Graph Ap-
proximation. In Proc. of Workshop on Discrete Algorithms and Meth-
ods for Mobile Computing and Communications (DIAL-M), pages 17–
23, 2004.

[149] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Fault-Tolerant Clus-
tering in Ad Hoc and Sensor Networks. In Proceedings of the 26nd

International Conference on Distributed Computing Systems (ICDCS),
2006.

[150] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The Price of Being
Near-Sighted. In Proc. of the 17 th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2006.

[151] F. Kuhn and R. Wattenhofer. Constant-Time Distributed Dominat-
ing Set Approximation. In Proc. of the 22nd Annual ACM Symp. on
Principles of Distributed Computing (PODC), pages 25–32, 2003.

[152] F. Kuhn and R. Wattenhofer. On the Complexity of Distributed Graph
Coloring. In Proc. of the 25 th ACM Symposium on Principles of Dis-
tributed Computing (PODC), 2006.

318 BIBLIOGRAPHY

[153] V. S. A. Kumar and M. V. Marathe. Improved Results for Stackelberg
Scheduling Strategies. In Proc. of the 29 rd International Colloquium
on Automata, Languages and Programming (ICALP), pages 776–787,
2002.

[154] V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan.
Algorithmic Aspects of Capacity in Wireless Networks. In Proc. Inter-
national Conference on Measurement and Modeling of Computer Sys-
tems (SIGMETRICS), pages 133–144, 2005.

[155] E. Kushilevitz and Y. Mansour. An Ω(D log(N/D)) Lower Bound for
Broadcast in Radio Networks. SIAM Journal on Computing, 27:702–
712, 1998.

[156] S. Kutten and D. Peleg. Fast Distributed Construction of Small k-
Dominating Sets and Applications. Journal of Algorithms, 28:40–66,
1998.

[157] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Prob-
lem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[158] F. Lazebnik and V. A. Ustimenko. Explicit Construction of Graphs
with an Arbitrary Large Girth and of Large Size. Discrete Applied
Mathematics, 60(1-3).

[159] F. Lazebnik, V. A. Ustimenko, and A. J. Woldar. A New Series of
Dense Graphs of High Girth. Bulletin of the American Mathematical
Society (N.S.), 32(1):73–79, 1995.

[160] T. Leighton, B. Maggs, and S. Rao. Scheduling in
O(Congestion+Dilation) Steps. Combinatorica, 14(2):167–180,
1994.

[161] N. Li, C.-J. Hou, and L. Sha. Design and Analysis of an MST-Based

Topology Control Algorithm. In Proc. of the 22nd Annual Joint Con-
ference of the IEEE Computer and Communications Societies (INFO-
COM), 2003.

[162] N. Li and J. Hou. Topology Control in Heterogenous Wireless Net-
works: Problems and Solutinos. In Proc. of the 23 rd Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM),
2004.

[163] X.-Y. Li, G. Calinescu, and P.-J. Wan. Distributed Construction of
Planar Spanner and Routing for Ad Hoc Wireless Networks. In Proc.
of the 21 st Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM), 2002.

[164] X.-Y. Li, W.-Z. Song, and W. Wang. A Unified Energy Efficient Topol-
ogy for Unicast and Broadcast. In Proc. of the 11 th International
Conference on Mobile Computing and Networking (MOBICOM), pages
1–15, 2005.

BIBLIOGRAPHY 319

[165] J.-H. Lin and J. S. Vitter. ε-Approximations with Minimum Packing
Constraint Violation. In Proc. of the 24 th ACM Symposium on Theory
of Computing (STOC), pages 771–782, 1992.

[166] N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal
on Computing, 21(1):193–201, 1992.

[167] N. Linial and M. Saks. Low Diameter Graph Decompositions. Combi-
natorica, 13(4):441–454, 1993.

[168] Z. Lotker, E. Pavlov, B. Patt-Shamir, and D. Peleg. MST Construction

in O(log log n) Communication Rounds. In Proc. of the 15 th Sympo-
sium on Parallel Algorithms and Architectures (SPAA), pages 94–100,
2003.

[169] M. Luby. A Simple Parallel Algorithm for the Maximal Independent
Set Problem. SIAM Journal on Computing, 15:1036–1053, 1986.

[170] M. Luby and N. Nisan. A Parallel Approximation Algorithm for Pos-
itive Linear Programming. In Proc. of the 25 th ACM Symposium on
Theory of Computing (STOC), pages 448–457, 1993.

[171] C. Lund and M. Yannakakis. On the Hardness of Approximating Min-
imization Problems. Journal of the ACM, 41(5):960–981, 1994.

[172] D. Malkhi and M. Reiter. Byzantine Quorum Systems. Journal of
Distributed Computing, 11(4):203–213, 1998.

[173] M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J.
Rosenkrantz. Simple Heuristics for Unit Disk Graphs. Networks, 25:59–
68, 1995.

[174] M. J. McGlynn and S. A. Borbash. Birthday Protocols for Low Energy
Deployment and Flexible Neighborhood Discovery in Ad Hoc Wireless
Networks. In Proc. of the 2nd ACM Int. Symposium on Mobile Ad Hoc
Networking & Computing (MOBIHOC), 2001.

[175] F. Meyer auf der Heide, C. Schindelhauer, K. Volbert, and
M. Grünewald. Energy, Congestion and Dilation in Radio Networks.
In Proc. of the 14 th ACM Symposium on Parallel Algorithms and Ar-
chitectures (SPAA), pages 230–237, 2002.

[176] M. J. Miller, C. Sengul, and I. Gupta. Exploring the Energy-Latency
Trade-off for Broadcasts in Energy-Saving Sensor Networks. In Proc.
of the 25 th IEEE International Conference on Distributed Computing
Systems (ICDCS), 2005.

[177] K. Moaveni-Nejad and X.-Y. Li. Low-Interference Topology Control
for Wireless Ad Hoc Networks. In Proc. of the 2nd IEEE Communica-
tions Society Conference on Sensor and Ad Hoc Communications and
Networks (SECON), Santa Clara, California, USA, 2005.

320 BIBLIOGRAPHY

[178] P. Monks, V. Bharghavan, and W. W. Hwu. A Power Controlled Mul-
tiple Access Protocol for Wireless Packet Networks. In Proceedings of
the 20 th Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), pages 1567–1576, 2001.

[179] T. Moscibroda and R. Wattenhofer. Maximizing the Lifetime of Domi-

nating Sets. In Proceedings of the 5 th International Workshop on Algo-
rithms for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN),
2005.

[180] T. Moscibroda and R. Wattenhofer. Minimizing Interference in Ad
Hoc and Sensor Networks. In Proc. of the ACM Joint Workshop on
Foundations of Mobile Computing (DIALM-POMC), 2005.

[181] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[182] K. Nakano and S. Olariu. Energy-Efficient Initialization Protocols for
Single-Hop Radio Networks with no Collision Detection. IEEE Trans-
actions on Parallel and Distributed Systems, 11(8), 2000.

[183] K. Nakano and S. Olariu. A Survey on Leader Election Protocols
for Radio Networks. In Proc. of the 6 th International Symposium on
Parallel Architectures, Algorithms, and Networks (ISPAN), pages 71–
78, 2002.

[184] M. Naor and L. Stockmeyer. What Can Be Computed Locally? SIAM
Journal on Computing, 24(6):1259–1277, 1995.

[185] T. Nieberg and J. Hurink. A PTAS for the Minimum Dominating

Set Problem in Unit Disk Graphs. In Proc. of the 3 rd Workshop on
Approximation and Online Algorithms (WAOA), 2005.

[186] T. Nieberg, J. Hurink, and W. Kern. A Robust PTAS for Maximum

Independent Sets in Unit Disk Graphs. In Proc. of the 30 th Workshop
on Graph Theoretic Concepts in Computer Science (WG), pages 214–
221, 2004.

[187] N. Nisan and A. Ronen. Algorithmic Mechanism Design. In Proc.
of the 31rd ACM Symposium on Theory of Computing (STOC), pages
129–140, 1999.

[188] A. Panconesi and R. Rizzi. Some Simple Distributed Algorithms for
Sparse Networks. Distributed Computing, 14(2):97–100, 2001.

[189] A. Panconesi and A. Srinivasan. Improved Distributed Algorithms for
Coloring and Network Decomposition Problems. In Proc. of the 24 th

annual ACM symposium on Theory of computing (STOC), pages 581–
592, 1992.

BIBLIOGRAPHY 321

[190] C. H. Papadimitriou. Algorithms, Games, and the Internet. In Proc.
of the 33rd ACM Symposium on Theory of Computing (STOC), pages
749–753, 2001.

[191] C. H. Papadimitriou. Computing Correlated Equilibria in Multi-Player
Games. In Proc. of the 37 th ACM Symposium on Theory of Computing
(STOC), pages 49–56, 2005.

[192] C. H. Papadimitriou and M. Yannakakis. On the Value of Information
in Distributed Decision Making. In Proc. of the 10 th ACM Symposium
on Principles of Distributed Computing (PODC), pages 61–64, 1991.

[193] C. H. Papadimitriou and M. Yannakakis. Linear Programming With-
out the Matrix. In Proc. of the 25 th ACM Symposium on Theory of
Computing (STOC), pages 121–129, 1993.

[194] D. Peleg. Sparse Graph Partitions. Technical Report CS89-01, The
Weizmann Institute of Science, 1989.

[195] D. Peleg. Distance-Dependent Distributed Directories. Information
and Communication, 103:270–298, 1993.

[196] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM
Monographs on Discrete Mathematics and Applications, 2000.

[197] D. Peleg and V. Rubinovich. A Near-Tight Lower Bound on the Time
Complexity of Distributed Minimum-Weight Spanning Tree Construc-
tion. SIAM Journal on Computing, 30(5):1427–1442, 2001.

[198] S. Pemmaraju and I. Pirwani. Energy-Conservation in Wireless Sensor
Networks via Domatic Partitions. In Proc. of the 7 th International
Symposium on Mobile Ad Hoc Networking and Computing (MOBI-
HOC), 2006.

[199] C. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies
of Replicated Objects in a Distributed Environment. In Proc. of the 9 th

ACM Symposium on Parallel Algorithms and Architectures (SPAA),
pages 311–320, 1997.

[200] S. Plotkin, D. Shmoys, and E. Tardos. Fast Approximation Algorithms
for Fractional Packing and Covering Problems. Mathematics of Oper-
ations Research, 20:257–301, 1995.

[201] J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media Access
for Wireless Sensor Networks. In Proc. of the 2nd Int. Conference on
Embedded Networked Sensor Systems (SENSYS), pages 95–107, 2004.

[202] S. Rajagopalan and V. Vazirani. Primal-Dual RNC Approximation Al-
gorithms for Set Cover and Covering Integer Programs. SIAM Journal
on Computing, 28:525–540, 1998.

322 BIBLIOGRAPHY

[203] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves. Energy-
Efficient Collision-Free Medium Access Control for Wireless Sensor
Networks. In Proceedings of the 1 st International Conference on Em-
bedded Networked Sensor Systems (SENSYS), pages 181–192, 2003.

[204] R. Ramanathan and R. Rosales-Hain. Topology Control of Multihop
Wireless Networks Using Transmit Power Adjustment. In Proceedings
of the 19 th Joint Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM), 2000.

[205] S. Ramanathan and E. L. Lloyd. Scheduling Algorithms for Multi-
Hhop Radio Networks. In Proc. of the Conference on Communications
Architectures & Protocols (SIGCOMM), pages 211–222, 1992.

[206] V. Rodoplu and T. H. Meng. Minimum Energy Mobile Wireless Net-
works. IEEE J. Selected Areas in Communications, 17(8), 1999.

[207] T. Roughgarden. Stackelberg Scheduling Strategies. In Proc. of the

33rd ACM Symposium on Theory of Computing (STOC), pages 104–
113, 2001.

[208] T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press,
2005.

[209] T. Roughgarden and E. Tardos. How Bad is Selfish Routing? Journal
of the ACM, 49(2), 2002.

[210] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Lo-
cation and Routing for Large-Scale Peer-to-Peer Systems. In Proc. of
the IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware), pages 329–350, 2001.

[211] A. Sen and M. L. Huson. A new Model for Scheduling Packet Radio
Networks. In Proc. of the 15 th Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), pages 1116–1124, 1996.

[212] D. B. Shmoys, E. Tardos, and K. I. Aardal. Approximation Algorithms
for Facility Location Problems. In Proc. of the 29 th ACM Symposium
on Theory of Computing (STOC), pages 265–274, 1997.

[213] R. Shostak, M. Pease, and L. Lamport. Reaching Agreement in the
Presence of Faults. J. of the ACM, 27(2):228–234, 1980.

[214] S. Singh and C. S. Raghavendra. PAMAS - Power Aware Multi-Access
Protocol with Signalling for Ad Hoc Networks. SIGCOMM Comput.
Commun. Rev., 28(3):5–26, 1998.

[215] A. Sinha and A. Chandrakasan. Dynamic Power Management in Wire-
less Sensor Networks. IEEE Design and Test, 18(2):62–74, 2001.

BIBLIOGRAPHY 323

[216] P. Sinha, R. Sivakumar, and V. Bharghavan. Enhancing Ad Hoc Rout-
ing with Dynamic Virtual Infrastructures. In Proc. of the 20 th Joint
Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), pages 1763–1772, 2001.

[217] A. Slivkins. Distance Estimation and Object Location via Rings of
Neighbors. In Proc. of the 24th ACM Symposium on Principles of
Distributed Computing (PODC), pages 41–50, 2005.

[218] D. Son, B. Krishnamachari, and J. Heidemann. Experimental Analysis
of Concurrent Packet Transmissions in Low-Power Wireless Networks.
Technical report, Viterbi School of Engineering, University of Southern
California, 2005.

[219] T. K. Srikant and S. Toueg. Simulating Authenticated Broadcasts
to Derive Simple Fault-Tolerant Algorithms. Journal of Distributed
Computing, 2(2):80–94, 1987.

[220] C. Swamy and D. B. Shmoys. Fault-Tolerant Facility Location. In Proc.
of the 14 th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 735–736. Society for Industrial and Applied Mathematics, 2003.

[221] K. Talwar. Bypassing the Embedding: Approximation Schemes and
Compact Representations for Low Dimensional Metrics. In Proc. of
36th ACM Symposium on Theory of Computing (STOC), 2004.

[222] F. A. Tobagi and L. Kleinrock. Packet Switching in Radio Channels:
Part II - The Hidden Terminal Problem in Carrier Sense Multiple Ac-
cess and the Busy Tone Solution. COM-23(12):1417–1433, 1975.

[223] V. V. Vazirani. Approximation Algorithms. Springer, Berlin, 2001.

[224] P. von Rickenbach, S. Schmid, R. Wattenhofer, and A. Zollinger. A
Robust Interference Model for Wireless Ad-Hoc Networks. In Proc. of
the 5 th Int. Workshop on Algorithms for Wireless, Mobile, Ad Hoc and
Sensor Networks (WMAN), Denver, Colorado, USA, 2005.

[225] P. von Rickenbach and R. Wattenhofer. Gathering Correlated Data in
Sensor Networks. In Proc. of the ACM Joint Workshop on Foundations
of Mobile Computing (DIALM-POMC), 2004.

[226] H. von Stackelberg. Marktform und Gleichgewicht. Springer-Verlag,
1934.

[227] P. Wan, K. Alzoubi, and O. Frieder. Distributed Construction of Con-
nected Dominating Set in Wireless Ad Hoc Networks. In Proc. of the
21 th Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), 2002.

324 BIBLIOGRAPHY

[228] P.-J. Wan, G. Calinescu, X.-Y. Li, and O. Frieder. Minimum-Energy
Broadcast Routing in Static Ad Hoc Wireless Networks. In Proc. of
the 20 th Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM), 2001.

[229] Y. Wang, W. Wang, and X.-Y. Li. Distributed Low-Cost Backbone For-
mation for Wireless Ad Hoc Networks. In Proceedings of the 6 th ACM
International Symposium on Mobile Ad Hoc Networking and Comput-
ing (MOBIHOC), pages 2–13, 2005.

[230] M. Wattenhofer and R. Wattenhofer. Distributed Weighted Match-
ing. In Proc. of the 18 th Annual Conference on Distributed Computing
(DISC), pages 335–348, 2004.

[231] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang. Distributed Topology
Control for Power Efficient Operation in Multihop Wireless Ad Hoc
Networks. In Proc. of the 20 th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), 2001.

[232] R. Wattenhofer and A. Zollinger. XTC: A Practical Topology Con-
trol Algorithm for Ad-Hoc Networks. In Proc. of the 4 th Int. Work-
shop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks
(WMAN), Santa Fe, New Mexico, USA, 2004.

[233] J. L. Welch and N. Lynch. A New Fault-Tolerant for Clock-
Synchronization. Information and Communication, 77:1–36, 1988.

[234] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. Energy-Efficient
Broadcast and Multicast Trees in Wireless Networks. Mobile Networks
and Applications (MONET), 7(6):481–492, 2002.

[235] D. P. Williamson, M. X. Goemans, M. Mihail, and V. V. Vazirani.
A Primal-Dual Approximation Algorithm for Generalized Steiner Net-
work Problems. In Proc. of the 25 th ACM Symposium on Theory of
Computing (STOC), pages 708–717. ACM Press, 1993.

[236] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A Lightweight
Network Location Service without Virtual Coordinates. In Proc. of
the Conference on Communications Architectures & Protocols (SIG-
COMM), 2005.

[237] A. Woo and D.-E. Culler. A Transmission Control Scheme for Media

Access in Sensor Networks. In Proc. of the 7 th Annual International
Conference on Mobile Computing and Networking (MOBIHOC), pages
221–235. ACM Press, 2001.

[238] J. Wu and H. Li. On Calculating Connected Dominating Set for Effi-
cient Routing in Ad Hoc Wireless Networks. In Proc. of the 3 rd Int.
Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications (DIALM), pages 7–14, 1999.

BIBLIOGRAPHY 325

[239] M. Yang, Z. Zhang, X. Li, and Y. Dai. An Empirical Study of Free-
Riding Behavior in the Maze P2P File Sharing System. In Proc. of the
4 th Intl. Workshop on Peer-to-Peer Systems (IPTPS), 2005.

[240] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC proto-

col for Wireless Sensor Networks. In Proc. of the 22 th Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM),
pages 1567–1576, 2002.

[241] N. Young. Sequential and Parallel Algorithms for Mixed Packing and
Covering. In Proc. of the 42nd IEEE Symposium on Foundations of
Computer Science (FOCS), pages 538–546, 2001.

[242] Y. Yu, B. Krishnamachari, and V. K. Prasanna. Energy-Latency
Tradeoffs for Data Gathering in Wireless Sensor Networks. In Proc. of
the 23 st Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM), 2004.

[243] B. Y. Zhao, L. Huang, J. Stribling, A. D. Joseph, and J. D. Kubiatow-
icz. Tapestry: A Resilient Global-scale Overlay for Service Deployment.
IEEE Journal on Selected Areas in Communications, 22(1), 2004.

326 BIBLIOGRAPHY

Curriculum Vitae

September 11, 1979 Born in Lucerne, Switzerland

1985–1999 Primary, secondary, and high schools in Malters and
Reussbühl, Switzerland

1999–2004 Studies in computer science, ETH Zurich, Switzerland

April 2004 M.Sc. in computer science, ETH Zurich, Switzerland

2004–2006 Ph.D. student, research and teaching assistant, Dis-
tributed Computing Group, Prof. Roger Watten-
hofer, ETH Zurich, Switzerland

July 2006 Ph.D. degree, Distributed Computing Group, ETH
Zurich, Switzerland
Advisor: Prof. Roger Wattenhofer
Co-examiners: Prof. Christos H. Papadimitriou

UC Berkeley, California, USA
Prof. David Peleg
Weizmann Institute of Science, Israel

328 BIBLIOGRAPHY

Publications

The following lists all publications written during the two and a half years
of my being Ph.D. student at ETH Zurich.

1. When Selfish Meets Evil: Byzantine Players in a Virus Inoculation
Game. Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer.
25th ACM Symposium on the Principles of Distributed Computing
(PODC), Denver, Colorado, USA, July 2006.

2. On the Topologies Formed by Selfish Peers. Thomas Moscibroda, Ste-
fan Schmid, and Roger Wattenhofer. 25th ACM Symposium on the
Principles of Distributed Computing (PODC), Denver, Colorado, USA,
July 2006.

Bibinfo: A preliminary version of the paper was also accepted for pre-
sentation at the 5th International Workshop on Peer-to-Peer Systems
(IPTPS), Santa Barbara, California, USA, February 2006.

3. Fault-Tolerant Clustering in Ad Hoc and Sensor Networks. Fabian
Kuhn, Thomas Moscibroda, and Roger Wattenhofer. 26th Interna-
tional Conference on Distributed Computing Systems (ICDCS), Lis-
bon, Portugal, July 2006.

4. Topology Control Meets SINR: The Scheduling Complexity of Arbi-
trary Topologies. Thomas Moscibroda, Roger Wattenhofer, and Aaron
Zollinger. 7th ACM International Symposium on Mobile Ad Hoc Net-
working and Computing (MOBIHOC), Florence, Italy, May 2006.

5. The Complexity of Connectivity in Wireless Networks. Thomas Mosci-
broda and Roger Wattenhofer. 25th Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM), Barcelona,
Spain, April 2006.

6. Analyzing the Energy-Latency Trade-off during the Deployment of Sen-
sor Networks. Thomas Moscibroda, Pascal von Rickenbach, and Roger
Wattenhofer. 25th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), Barcelona, Spain, April
2006.

330 BIBLIOGRAPHY

7. The Price of Being Near-Sighted. Fabian Kuhn, Thomas Moscibroda,
and Roger Wattenhofer. 17th ACM-SIAM Symposium on Discrete
Algorithms (SODA), Miami, Florida, USA, January 2006.

8. Fast Deterministic Distributed Maximal Independent Set Computation
on Growth-Bounded Graphs. Fabian Kuhn, Thomas Moscibroda, Tim
Nieberg, and Roger Wattenhofer. 19th International Symposium on
Distributed Computing (DISC), Cracow, Poland, September 2005.

9. Minimizing Interference in Ad Hoc and Sensor Networks. Thomas
Moscibroda and Roger Wattenhofer. 3rd ACM Joint Workshop on
Foundations of Mobile Computing (DIALM-POMC), Cologne, Ger-
many, September 2005.

10. Local Approximation Schemes for Ad Hoc and Sensor Networks. Fabian
Kuhn, Thomas Moscibroda, Tim Nieberg, and Roger Wattenhofer. 3rd
ACM Joint Workshop on Foundations of Mobile Computing (DIALM-
POMC), Cologne, Germany, September 2005.

11. Coloring Unstructured Radio Networks. Thomas Moscibroda and Roger
Wattenhofer. 17th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), Las Vegas, Nevada, USA, July 2005.

12. Maximal Independent Sets in Radio Networks. Thomas Moscibroda
and Roger Wattenhofer. 24th ACM Symposium on the Principles of
Distributed Computing (PODC), Las Vegas, Nevada, USA, July 2005.

13. On the Locality of Bounded Growth. Fabian Kuhn, Thomas Mosci-
broda, and Roger Wattenhofer. 24th ACM Symposium on the Prin-
ciples of Distributed Computing (PODC), Las Vegas, Nevada, USA,
July 2005.

14. Facility Location: Distributed Approximation. Thomas Moscibroda
and Roger Wattenhofer. 24th ACM Symposium on the Principles of
Distributed Computing (PODC), Las Vegas, Nevada, USA, July 2005.

15. Maximizing the Lifetime of Dominating Sets. Thomas Moscibroda and
Roger Wattenhofer. 5th International Workshop on Algorithms for
Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN), Denver,
Colorado, April 2005.

16. Efficient Computation of Maximal Independent Sets in Unstructured
Multi-Hop Radio Networks. Thomas Moscibroda and Roger Watten-
hofer. 1st IEEE International Conference on Mobile Ad-hoc and Sensor
Systems (MASS), Fort Lauderdale, Florida, USA, October 2004.

17. Unit Disk Graph Approximation. Fabian Kuhn, Thomas Moscibroda,
and Roger Wattenhofer. ACM Joint Workshop on Foundations of Mo-
bile Computing (DIALM-POMC), Philadelphia, Pennsylvania, USA,
October 2004.

BIBLIOGRAPHY 331

18. Virtual Coordinates for Ad hoc and Sensor Networks. Thomas Mosci-
broda, Regina O’Dell, Mirjam Wattenhofer, and Roger Wattenhofer.
ACM Joint Workshop on Foundations of Mobile Computing (DIALM-
POMC), Philadelphia, Pennsylvania, USA, October 2004.

19. Initializing Newly Deployed Ad Hoc and Sensor Networks. Fabian
Kuhn, Thomas Moscibroda, and Roger Wattenhofer
10th Annual International Conference on Mobile Computing and Net-
working (MOBICOM), Philadelphia, USA, September 2004.

20. Radio Network Clustering from Scratch. Fabian Kuhn, Thomas Mosci-
broda, and Roger Wattenhofer. 12nd Annual European Symposium on
Algorithms (ESA), Bergen, Norway, September 2004.

21. Brief Announcement: Efficient Clustering in Unstructured Radio Net-
works. Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer.
23rd ACM Symposium on the Principles of Distributed Computing
(PODC), St. John’s, Newfoundland, Canada, July 2004.

22. What Cannot Be Computed Locally! Fabian Kuhn, Thomas Mosci-
broda, and Roger Wattenhofer. 23rd ACM Symposium on the Prin-
ciples of Distributed Computing (PODC), St. John’s, Newfoundland,
Canada, July 2004.

