
FACT: Learning Governing Abstractions Behind
Integer Sequences

Peter Belcak∗

ETH Zürich
8092 Zürich, Switzerland

belcak@ethz.ch

Ard Kastrati
ETH Zürich

8092 Zürich, Switzerland
kard@ethz.ch

Flavio Schenker
ETH Zürich

8092 Zürich, Switzerland
flaviosc@ethz.ch

Roger Wattenhofer
ETH Zürich

8092 Zürich, Switzerland
wattenhofer@ethz.ch

Abstract

Integer sequences are of central importance to the modeling of concepts admitting
complete finitary descriptions. We introduce a novel view on the learning of such
concepts and lay down a set of benchmarking tasks aimed at conceptual under-
standing by machine learning models. These tasks indirectly assess model ability
to abstract, and challenge them to reason both interpolatively and extrapolatively
from the knowledge gained by observing representative examples. To further aid
research in knowledge representation and reasoning, we present FACT, the Finitary
Abstraction Comprehension Toolkit. The toolkit surrounds a large dataset of in-
teger sequences comprising both organic and synthetic entries, a library for data
pre-processing and generation, a set of model performance evaluation tools, and a
collection of baseline model implementations, enabling the making of the future
advancements with ease.

1 Introduction

Ordered lists of integers are the natural representation form for all fundamentally discrete abstractions.
These arise when encountering evolutions of discrete-time phenomena, finite symmetries of visual
patterns, or algorithmic progressions, where they describe the development of consecutive states of a
system, automorphisms of R2, or program listings, respectively. Sequences of integers are also the
representation of choice when linearising structured information for analysis, data compression, and
communication, with often-appearing datapoints tending to be encoded in the simplest or shortest
form. Testifying to their utility to accurately represent abstractions, completion and extrapolation
tasks on integer sequences are a frequent part of general human intelligence and aptitude testing
([42, 31]).

It is the aim and the hope for machine learning models to identify straightforward universal abstrac-
tions explaining the training data, rather than to memorise a plethora of small classes of exemplars
and interpolate when given previously unseen input. The discovery and internalisation of governing
concepts, or simply the learning of underlying rules, thus sits at the centre of artificial intelligence
research.

We note that many concepts may be uniquely represented by a sequence of integers naturally (e.g. the
squares of the natural numbers determine the polynomial n2; 123, 312, 231, 132, 321, 213 encodes

∗The authors of this work are listed alphabetically.

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

Figure 1: An illustration of an example conceptual learning programme applied to four separate
instances: a toy recursive digit-counting sequence, the symmetries of an equilateral triangle, the
evolution of an idealised rabbit population as described in [34], and the electron configurations across
shells and sub-shells of an atom. In each instance, the raw data is comprehended in its original
modality and then turned into an integer sequence. Then, a prior for the rule that applies is formulated.
As more samples are observed, the rule is iteratively generalised until the governing abstraction has
been fully revealed.

the symmetries of a triangle), while others (such as the rotations of objects in scene) require a
continuous space for a proper, scalable description. We recognise integer sequences as a general
form for description of concepts completely representable with finite precision (finite in their nature;
finitary) and put them at the centre of our study.

To discern the learning and understanding of these discrete abstractions from the learning of their
representations in various modalities, we introduce a rich dataset of integer sequences together with a
compendium of corresponding tasks that are innately related to integer sequences and well-suited
to assess the levels of human-like understanding exhibited by machine learning models. Focusing
solely on integer sequences, we thus set the concepts being learned apart from virtually all complexity
stemming from the learning of a representation, making the learning process less resource-intensive
and the interpretation of evaluation results more straightforward. An example learning programme
making this distinction and proceeding to high-level abstractions is pictured in Figure 1.

Modern machine learning methods have been shown to posses the ability to comprehend (or at least
pattern-match) convoluted concepts appearing in various data modalities, especially by the means of
using deep learning to construct informative representations of the entities studied. In spite of working
with number sequences, we take a step away from symbolic regression (which has so far dominated
the notion of understanding in the area) and, tending to the trend, employ instead a multi-faceted
approach in which sequences are characterised by their properties and relations to other sequences,
rather than by explanatory symbolic formulas that are more readily interpretable by humans. We
expand on the relationship of our work to symbolic regression in Appendix F.

Aiming at the comprehension of abstractions behind concrete representations of finitary phenomena,
we unlock a new mode for evaluation of the quality of the abstractions learned. A guess, or an
estimate, of the rule behind an integer sequence, which further leads to correct predictions of the
sequence’s elements on previously unseen inputs, is arguably more desirable than an estimate that
describes the sequence well only for inputs known in training. The fundamentally algorithmic nature
of the problem of learning finitary abstractions thus makes the problem of extrapolative generalisation
well-defined, and allows us to consider extrapolative generalisation performance as a criterion for
model assessment.

2

Our contributions are:

• the introduction of a large dataset of integer sequences comprising data from both organic
and synthetic sources and curated for subsequent use in tasks challenging models to develop
understanding of the concepts determining the data (Section 2, [5]),

• complementing the above, a utility library (FACTLIB [6]) for integer sequence data process-
ing and generation,

• the introduction of a variety of tasks designed to evaluate the model comprehension of
conceptual patterns in integer sequences with a clearly established order of difficulty (Sec-
tion 3),

• a battery of evaluation metrics tailored to the above tasks to appropriately assess model
performance and track progress in this sub-area of knowledge representation and reasoning,
and

• a collection of baseline models, both classical and neural, implemented to facilitate seamless
experimentation (Section 4, [4]).

2 Dataset

As a part of FACT, we introduce a dataset consisting of over 3.6 million integer sequences. The
structure-giving starting point for the dataset was the data made available by the Online Encyclopedia
of Integer Sequences ([39]). The OEIS is an organically grown comprehensive reference on notewor-
thy sequences of integers, compiled over decades to aid work in mathematical sciences. We have
reviewed the OEIS4 data, set apart a suitable subset of 341,000 entries, and processed it specifically
for use in machine learning, in line with the license requirements. Each entry of the dataset is now
annotated by up to 18 features conveying the information about the nature, properties, and purpose of
the sequence. In Figure 4, we give an overview of the result of this processing step. A full discourse
on the extensive curation, refining, and automated annotation effort undertaken can be found in
Appendix A.

With the encyclopedia entries aimed at a human reader, we observed that many covered their respective
categories only very sparsely, relying on the associated natural language descriptions and the human
ability to abstract to make the categorical connection. Our initial experiments with the baseline
models (cf. Section 4) further confirmed that much of the data did not reach the critical mass of
information necessary for reliable use in machine learning applications. We hence systematically
extended the dataset by synthetically generated sequence branches while abiding by the structure and
nature of the stem encyclopedia entries and providing carefully engineered automatic annotations
wherever possible.

2.1 Synthetic Generation

Our principal inspirations were the notions of Kolmogorov complexity and Solomonoff probability
[33, 20, 41]. Starting on the level of categories (cf. Figure 4), we defined a context-free grammar Gc

for each category c, and then used Gc to generate ever longer formulas, which were in turn used to
generate the sequences. This was done abiding by the notion that the growing length of formulas
reflects itself in increasing complexity of rules and therefore generated sequences. An example
grammar, used for the production of polynomial formulas, is given in Figure 3.

For each category, a total of 500K synthetic sequences have been generated. The length of the
formulas used to generate these sequences was continuously increased following a logarithmic
schedule, thereby favouring shorter formulas while still ensuring the presence of sequences from
longer formulas. We give all details of our generation procedure for each sequence category in
Appendix B.

The combined result of the OEIS curation and the dataset extension process is therefore a large dataset
seamlessly integrated into FACT and easily extensible by FACTLIB, if required by more complex
tasks or larger applications.

3

Figure 2: The categories in the FACT dataset. It is composed of synthetic and OEIS entries. Each
group in the synthetic part consists of 500,000 sequences, whereas the sizes of the OEIS groups
vary. Dotted regions represent the main categories identified in the dataset. Ellipses define the
sub-categories from our processing step in OEIS. Red dots mark groups that are augmented with
synthetic data (and used in our benchmarking setup).

T → Var | Cons t
N → Add | Sub | Mult | Pow | NConst | T
Add → (N + N)
Sub → (N − N)
Mult → (N * N)
Pow → (N ** NConst)
NConst → (ConstPos NConst) | Cons t
Var → x
Cons t → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
ConstPos → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 3: The context-free grammar used for the synthesis of formulas used for the generation of
Polynomial sequences. NConst denotes a number constant, T denotes a term, and N denotes the
root non-terminal for the polynomial expression.

4

3 Benchmark

Based on the dataset of the previous section, we propose a set of benchmarking tasks and evaluation
metrics to assess a wide range of methods for their understanding of governing concepts behind
evolutions of integer sequences.

3.1 Motivation

Consider the initial segment 0, 2, 4, 6, 8, . . . of a sequence and assume we are tasked with proposing
reasonable candidates for the number that follows 8.

How could we go about evaluating the quality of our suggestions?

In the spirit of symbolic regression, we may choose to insist that there must be a single formula that
produces the members of the sequence in order. But, even under such condition, for every suggested
continuation integer there exists a degree-8 polynomial accommodating the continued sequence.
This is despite the fact that a human would intuitively be most likely to suggest 10 as a reasonable
continuation, perhaps even justifying it by the observation that the first 5 elements of the sequence
follow the pattern of (2n)n≥0.

As described in Section 2, we have therefore set the generation methods of the synthetic part of our
dataset to explicitly apply the parsimony principle by varying the length of generative formulas to
control the complexity of the resulting sequences. Data generated in this manner is guaranteed to
encompass sequences coming from rules of varying degrees of complexity by design, rather than by
chance.

The focus on preferring shorter rules over longer ones would, however, be too artificial if employed
alone. Consider the initial segment 1, 1, 2, 3, 5, While it is tempting to promptly claim that
the numbers come from the Fibonacci sequence and that 8 should follow, an answer arising more
naturally in the context of chemistry is 9, as the continued sequence represents the count of all
possible n-carbon alkanes.

Hence, striding ahead of the symbolic regression under Occam’s razor, we add a processed part of
the OEIS dataset into our evaluation procedures as an indicator of the sequences’ appeal across a
multitude of scientific disciplines. Note that this is an improvement made in addition rather than in
contrast to the principles for synthetic sequence generation, as many of the real-world sequences
collected in OEIS do indeed obey straightforward rules.

3.2 Structure

As motivated in Section 3.1, for each benchmarking task we provide two evaluation sets: one for
synthetic data and one for OEIS data. Our benchmark thus pushes for the design of machine learning
models that identify simple concepts and rules (evaluation on synthetic data) but still retains enough
of cross-domain generality to have practical impact in different disciplines (evaluation on OEIS).

Figure 4: Our tasks ordered by the level of difficulty over
two dimensions: type and scope.

The benchmark consists of tasks with
an established order of difficulty over
two dimensions: the task type and scope.
We distinguish between the tasks of se-
quence classification, sequence similar-
ity, next sequence part prediction, se-
quence continuation, and sequence un-
masking – each detailed below.

In addition, we perform each task to the
extent of two different scopes: within and
across categories. The case of perform-
ing the task within categories is the sim-
pler of the two setups, since the category
from which the sequence originates is
known in advance, and this information
is thus also available at the time models

5

are designed. Nevertheless, our baselines (cf. Section 4) are oblivious to this information and instead
treat the category scope as if nothing was known about the data.

In our particular benchmarking setup, our dataset is split into four parts, namely the training,
validation, synthetic test, and organic test sets. The training and validation sets consist of only
synthetic sequences. The size ratios between training, validation, synthetic testing, and OEIS testing
datasets are 9:1:1:1. For convenience and future reference, we make this divided-up data available
as separate datasets. Nevertheless, the FACT dataset is also available in one piece, allowing users
to choose their own splits or supplement their own data generated by FACTLIB, according to their
needs.

3.3 Task Types

In this section we present 5 types of tasks in order of difficulty, for which we take the upper bound
on the difficulty of the task instances comprising the given task. For example: Every instance of
sequence continuation belongs to the set of sequence unmasking instances. But, for every instance of
sequence continuation (except for the trivial one where we only begin with one number) there is an
instance of unmasking that is harder. Such an instance can be formed by further asking to unmask
a sequence element somewhere in the initial segment provided for continuation. Hence, the upper
bound on the difficulty of sequence unmasking is strictly higher than the upper bound on the difficulty
of sequence continuation.

3.3.1 Sequence Classification

The simplest task type in our benchmark is classifying in which category the sequence belongs. The
chief goal of this task is to evaluate whether models can distinguish and identify general patterns
in sequences, both across and within different categories. Note that category membership may not
necessarily be unique. For example, a sequence can be bounded, but also periodic. For this task we
use all categories that possess a synthetic counterpart within our dataset. Each sample consists of an
array of integer numbers for the given sequence class. We distinguish between two task sub-types
and give their objectives:

• One-vs-Rest (OvR). Obj. to identify whether the sequence belongs to a specified category
or not. For this case, we provide a balanced dataset in each category. This is a binary
classification task, and as such, we use accuracy as the evaluation metric.

• Multiclass classification. Obj. to predict, for every sequence, all categories to which it
belongs. The performance is measured with the macro average F1 score (i.e. the mean of
individual per-class F1 scores) due to inherent imbalances in our dataset.

3.3.2 Sequence Similarity

The similarity task aims to assess model ability to represent sequences in a way that reflects their
similarities in type (e.g. agreeing on category membership) or properties (such as being periodic
or unbounded) in the spirit of [24]. The objective is to embed sequences into an embedding space
such that sequences belonging to the same category are closer to one another than to sequences of
categories to whom they do not belong. We evaluate using

• the Recall@k score, where the k candidates for a sequence s are proposed by sampling
k sequences from each category and then ordering the category labels according to the
distance of the carrier points from s; and

• the top-k root mean squared error – the root mean squared error (RMSE) across the top k
similarity candidates. Given k predictions of a model {ŷi}i∈{1,...,k} and ground truth y, we
define the top-k RMSE as mini∈{1,...,k} RMSE(y, ŷi). In other words, given all generated
predictions we report the RMSE of the prediction closest to the ground truth.

Our choice of evaluation metrics is grounded in the observation that sequences generated from similar
simple rules often eventually diverge, and that to a large extent. This task generalises sequence
classification.

6

3.3.3 Next Sequence-Part Prediction

As seen in natural language processing [10], asking a model to decide whether two sentences follow
one another can be beneficial for testing of whether a model understands its inputs. Given two
contiguous sub-sequences s1 and s2, the objective of the next sequence-part prediction (NSPP) task is
to determine whether the sub-sequence s2 is a valid continuation of s1. We create a balanced dataset
for this task, by using all categories of our dataset that have a synthetic counterpart. NSPP is then
simply a binary classification task and the performance is measured by prediction accuracy. This task
is strictly more difficult than the similarity task, since it demands that the model not only understands
the key properties of the sequence but also possesses the ability to discern unlikely or unfeasible
combinations of sequence parts from the feasible ones.

3.3.4 Sequence Continuation

The fourth task type in our difficulty hierarchy is to suggest the next entry in a given sequence
s. This task is extrapolative in its nature, and is meant to challenge model understanding beyond
making a binary decision between externally provided suggestions. As such, this task demands
better understanding of the rules governing sequences than next sequence-part prediction – hence it’s
placement above NSPP in the difficulty hierarchy. We distinguish two sub-types of this task, namely
the single-shot and multi-shot continuations, differing only in the number of candidates the model is
expected to provide for the continuation. We use the root mean squared logarithmic error (RMSLE)
and top-k RMSE for each of the sub-types, respectively.

3.3.5 Sequence Element Unmasking

At the apex of our complexity hierarchy is the task of unmasking marked elements of a provided
sequence. The sequence continuation task can be viewed as a special case of unmasking, where only
the last element is masked. We consider only multi-shot unmasking and choose top-k RMSE as the
evaluation metric.

4 Baseline model performance

We run extensive experiments on the proposed benchmark as a starting point for further research. We
consider classical machine learning methods as well as large neural networks. The experiments in
this section highlight the feasibility of learning many different patterns in integer sequences, but also
some of the limitations of the existing methods.

4.1 Models

To provide baselines for model performance on the above tasks, we use a total of 24 different
models across our benchmarking tasks, namely 4 neural models (dense, recurrent, and convolutional
networks, and transformers), 9 classical classifiers (k-nearest neighbours, Gaussian naive Bayes,
linear support vector machine, decision tree, random forest, gradient boosting, AdaBoost, XG Boost,
dummy classifier), and 11 standard regressors (k-nearest neighbours, linear regressor, ridge regressor,
lasso regressor, Elastic Net, single decision tree, random forest, gradient boosting, AdaBoost, dummy
regressor).

We give details on their implementations and hyperparameter settings in Appendix C.

4.2 Results

A simple overview of the performance of the baseline models can be found in Table 1. A compre-
hensive, detailed listing of our results, including results of evaluations on the category level, can be
found in Appendix D.

4.3 Metric Interpretation

The macro-averaged F1-scores for the sequence classification task in Table 1 suggest that even the
best-performing models have an average score of little over 0.5. The F1 score of 0.5 can be achieved

7

Model Dataset Task

cl
as

sifi
ca

tio
n

ne
xt

pa
rt

pr
ed

.

co
nt

in
ua

tio
n

sim
ila

rit
y

un
m

as
ki

ng

[F1 score] [binary-accuracy] [RMSLE] [top-5-RMSE]

MLP oeis 0.33 0.733 0.597 0.301 2.918
synth 0.43 0.943 0.430 1.690 3.408

RNN oeis 0.37 0.869 0.603 0.383 2.944
synth 0.53 0.984 0.406 0.438 3.379

CNN oeis 0.22 0.551 0.733 0.428 2.440
synth 0.39 0.900 0.579 0.643 2.812

Transformer oeis 0.33 0.736 0.578 0.267 2.811
synth 0.44 0.938 0.395 0.270 3.091

k-Nearest Neighbours oeis 0.33 – 0.808 – –
synth 0.41 – 0.486 – –

Gaussian Naive Bayes oeis 0.23 – – – –
synth 0.37 – – – –

Support Vector Machine oeis 0.31 – – – –
synth 0.35 – – – –

Decision Tree oeis 0.36 – 0.730 – –
synth 0.49 – 0.427 – –

Random Forest oeis 0.34 – 0.730 – –
synth 0.51 – 0.427 – –

Grad.-Boosted Rand. Forest oeis 0.27 – 0.702 – –
synth 0.40 – 0.484 – –

AdaBoost oeis 0.31 – 0.842 – –
synth 0.38 – 0.662 – –

XGBoost oeis 0.37 – 0.719 – –
synth 0.51 – 0.433 – –

Elastic Net Regressor oeis – – 0.814 – –
synth – – 0.716 – –

Ridge Regressor oeis – – 0.797 – –
synth – – 0.682 – –

Lasso Regressor oeis – – 0.827 – –
synth – – 0.747 – –

Linear Regressor oeis – – 0.797 – –
synth – – 0.682 – –

Dummy oeis 0.50 – 0.923 – –
synth 0.50 – 0.877 – –

Table 1: An overview of the results for all tasks, evaluated across the whole dataset. MLP, RNN,
and CNN stand for multi-layer perceptron, recurrent neural network, and convolutional neural
network. Emphasis and emphasis mark the best performing models for the OEIS and synthetic data,
respectively. For F1 score and binary accuracy, higher is better. For RMSLE and top-5-RMSE, lower
is better.

in many ways, but would for example correspond to a precision-recall performance of 0.5 − 0.5.
In the next sequence-part prediction, the RNNs appear to be nearing the perfect accuracy score of
1.0, though some room for improvement remains to be seen in the case of the organic dataset. The
root mean squared logarithmic errors of 0.578 (best OEIS performance) and 0.395 (best synthetic
performance) that appear in the results for the continuation task correspond to uniform difference of
logarithms of the same magnitude. In contrast, the two respective worst performances among the
baselines models correspond to uniform difference between logarithms of 0.923, 0.877.

The top-5 root mean squared errors are more straightforward to interpret. One would arrive at RMSE
between initial sequence segments s1, s2 if s1 were larger or smaller than s2 by exactly 5 in every one
of its elements. Top-5-RMSEs of 0.267, 0.270 for the sequence similarity task therefore correspond to
mean uniform difference of the same magnitude in every element when comparing the true sequence
to the best fit from among the top 5 results of the similarity search. The same metric is used for the
unmasking task. In the light of the distribution of the elements of the sequences considered covering

8

values from 0 to several million, the performances of baseline models, especially in the similarity
task, appear to be remarkably strong.

4.4 Comparative Analysis

Reviewing the results of Table 1 and further Appendix D, we note that even just the performance
of baseline models on the synthetic dataset is often quite strong in absolute terms. We also notice a
general trend among all models to perform better on synthetic data than on the organic OEIS sets.
This is not unexpected, since the OEIS data is highly varied and comes from a large variety of sources,
whereas the synthetic data is generated according to a strict, uniform procedure, thus having a more
regular distribution. Nevertheless, we observe that training on synthetic data alone still yields solid
performance on the organic dataset across all models.

In the classification task, RNNs and random forests achieve the best results across all categories.
Unsurprisingly, RNNs very accurately identify bounded and increasing sequences, while random
forests lead for modulo, prime, exponential and trigonometric sets. RNNs also show a consistent lead
for the next sequence-part prediction. Transformers and CNNs dominate the results for similarity
under the top-k accuracy, with the exception of organic periodic functions, which are best handled by
recurrent networks. Transformers alone lead in the same task when evaluating by top-k RMSLE, and
likewise for convolutional networks in the unmaskingtask .

The best performances for the continuation task are almost evenly split between recurrent networks
and transformers, where RNNs lead for polynomial, exponential, trigonometric, and periodic se-
quences (transformers being the worst performers). Transformers yield the best results modulo, prime,
bounded, increasing, and all sequences together.

We lay out our expectations for model performance on this benchmark, also in relation to human
ability, in Appendix E.

5 Related Work

There has recently been a noticeable movement in neural network research towards understanding
how DNNs learn to abstract. On the side of investigation, traditional architectures were analysed
by [21] in terms of the emergence of knowledge across the network, a well-defined metric for
the generalisation ability of neural networks was introduced in [11], and a methodology to assess
knowledge representation in deep neural networks trained for object recognition in computer vision
was proposed in [18]. The increasing interest in the learning of abstractions also prompted the
incorporation of relevant inductive biases into deep neural architectures and training curricula, as
was seen in concept acquisition [46, 14], with the introduction of the neural state machine [16] in
computer vision, and causal abstraction analysis [2, 3, 13] in natural language inference. Further,
efforts have already begun to assess the capability of models to perform abstracting visual reasoning
[47, 1, 48, 7].

A common, classical, and still challenging instance of abstraction learning in the context of number
sequences is the task of symbolic regression. A number of genetic programming models and purpose-
specific datasets have been proposed in the field in its over 30 years of existence, and a systematising
benchmark, SRBench [22], was recently introduced. It combines 130 smaller numerical datasets, both
organically grown and synthetically generated, with the PMLB [26], and comes with an evaluation
of a range of symbolic regression models using a newly-proposed metric. The inherent focus of the
task on interpretability makes it suitable for industrial use but leads to challenges in identification of
prevailing generative concepts, as two sequences originating from two distinct instances of the same
rule may be best fitted by two formulas completely different in their nature.

Focusing on integer sequences, the Online Encyclopedia of Integer Sequences (OEIS) was presented
in [39]. The entries of the encyclopedia come from both individual human contributors and automated
mechanisms for the invention of “interesting” sequences [8]. It was used for sequence classification
combining heuristics and machine learning methods in [45], for the sequence continuation task by
fully-connected neural networks in [30], for digit-level sequence term regression to highlight the
computational limits of neural networks in [25], and for the learning of mathematical properties
of integers for use in natural language processing by training OEIS-sequence embeddings in [32].
The latest version, OEISv4, is the most comprehensive source of annotated information on integer

9

sequences, containing over 300,000 entries. The dataset has further seen use in the emergent sub-area
of deep symbolic regression [23, 29, 9, 19].

Our experience shows that the OEIS data is too sparse and too closely tailored to the needs of human
reader to be useful for training of machine learning models for integer sequence comprehension. It
can still, however, serve as an interesting proxy of “usefulness” (such as in [8]) in model evaluation
when appropriately filtered and pre-processed for that purpose.

6 Avenues for Future Work

The carrying advantage of the focus on integer sequences instead of other – potentially richer – input
modalities is that we can directly interpret the performance scores of individual models as their ability
to comprehend sequence-giving abstractions, and have the confidence that no model performance has
been hampered by its insufficient understanding of the input representation. Here, while the models
we evaluated appear to show some level of understanding of patterns underlying integer sequences,
there is still significant room for improvement, especially in multi-class classification, sequence
continuation across all classes, and sequence unmasking.

The results of Section 4 were all produced for a “static” mode of operation, in which all of the query
data (e.g. the sequence to classify or a sequence prefix to continue) was provided to the model upfront
and as a whole. A mode of operation occurring perhaps more naturally in most practical scenarios is
that in which the model is active in its learning and interacts with an oracle, polling for information
until it is confident that it can provide and answer. Such interactive variants can be readily formulated
for all tasks in Section 3.3, but require a more sophisticated set of evaluation metrics that takes into
consideration the amount of information the model requested before producing an answer. We believe
that this setup deserves attention as it can provide valuable insights into model reasoning, and we aim
to tackle it in our future work.

7 Conclusion

Integer sequences frequently arise as the natural representation form for finitary phenomena. Focusing
on integer sequences allows us to directly address the problem of learning abstractions and removes
the otherwise necessary overhead of learning modality-specific representations.

The benchmarking toolkit for integer sequences presented in this work is by design general in its
purpose, aimed at fundamental understanding due to its use of integers as primitive representations,
and hierarchically encompasses many of the tasks that have previously appeared isolated in the
literature.

It is our hope that our work will help attract attention to the challenges of designing models that
perceive logical relationships ruling over the training corpora and reason during inference, thus
helping to facilitate future advancements on the frontiers of general artificial intelligence.

References
[1] David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and Timothy Lillicrap. Measuring abstract

reasoning in neural networks. In International conference on machine learning, pages 511–520.
PMLR, 2018.

[2] Sander Beckers and Joseph Y Halpern. Abstracting causal models. In Proceedings of the aaai
conference on artificial intelligence, volume 33, pages 2678–2685, 2019.

[3] Sander Beckers, Frederick Eberhardt, and Joseph Y Halpern. Approximate causal abstractions.
In Uncertainty in Artificial Intelligence, pages 606–615. PMLR, 2020.

[4] Belcak, Peter, Kastrati, Ard, and Schenker, Flavio. Fact benchmarking - the benchmarking
baseline models of the finitary abstraction comprehension toolkit, 2022. URL https://doi.
org/10.3929/ethz-b-000565644.

[5] Belcak, Peter, Kastrati, Ard, and Schenker, Flavio. Fact dataset - the dataset of the
finitary abstraction comprehension toolkit, 2022. URL https://doi.org/10.3929/
ETHZ-B-000562705.

10

https://doi.org/10.3929/ethz-b-000565644
https://doi.org/10.3929/ethz-b-000565644
https://doi.org/10.3929/ETHZ-B-000562705
https://doi.org/10.3929/ETHZ-B-000562705

[6] Belcak, Peter, Kastrati, Ard, and Schenker, Flavio. Factlib - the library of the finitary abstraction
comprehension toolkit, 2022. URL https://doi.org/10.3929/ethz-b-000565638.

[7] François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

[8] Simon Colton, Alan Bundy, and Toby Walsh. Automatic invention of integer sequences. In
AAAI/IAAI, pages 558–563, 2000.

[9] Stéphane d’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and François Charton.
Deep symbolic regression for recurrent sequences. arXiv preprint arXiv:2201.04600, 2022.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[11] Alex Gain and Hava Siegelmann. Abstraction mechanisms predict generalization in deep neural
networks. In International Conference on Machine Learning, pages 3357–3366. PMLR, 2020.

[12] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna
Wallach, Hal Daumé III, and Kate Crawford. Datasheets for datasets. arXiv preprint
arXiv:1803.09010, 2018.

[13] Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural
networks. Advances in Neural Information Processing Systems, 34, 2021.

[14] Irina Higgins, Nicolas Sonnerat, Loic Matthey, Arka Pal, Christopher P Burgess, Matko
Bosnjak, Murray Shanahan, Matthew Botvinick, Demis Hassabis, and Alexander Lerchner.
Scan: Learning hierarchical compositional visual concepts. arXiv preprint arXiv:1707.03389,
2017.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9:
1735–80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

[16] Drew Hudson and Christopher D Manning. Learning by abstraction: The neural state machine.
Advances in Neural Information Processing Systems, 32, 2019.

[17] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

[18] Roman Ilin, Thomas Watson, and Robert Kozma. Abstraction hierarchy in deep learning neural
networks. In 2017 International Joint Conference on Neural Networks (IJCNN), pages 768–774.
IEEE, 2017.

[19] Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton.
End-to-end symbolic regression with transformers. arXiv preprint arXiv:2204.10532, 2022.

[20] Andrei N Kolmogorov. Three approaches to the quantitative definition of information’. Problems
of information transmission, 1(1):1–7, 1965.

[21] Robert Kozma, Roman Ilin, and Hava T Siegelmann. Evolution of abstraction across layers in
deep learning neural networks. Procedia computer science, 144:203–213, 2018.

[22] William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabrício Olivetti de França, Marco
Virgolin, Ying Jin, Michael Kommenda, and Jason H Moore. Contemporary symbolic regression
methods and their relative performance. arXiv preprint arXiv:2107.14351, 2021.

[23] Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv
preprint arXiv:1912.01412, 2019.

[24] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

11

https://doi.org/10.3929/ethz-b-000565638
http://doi.org/10.1162/neco.1997.9.8.1735

[25] Hyoungwook Nam, Segwang Kim, and Kyomin Jung. Number sequence prediction problems
for evaluating computational powers of neural networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 4626–4633, 2019.

[26] Randal S Olson, William La Cava, Patryk Orzechowski, Ryan J Urbanowicz, and Jason H
Moore. Pmlb: a large benchmark suite for machine learning evaluation and comparison.
BioData mining, 10(1):1–13, 2017.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[28] Roger Penrose. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of
Physics. Viking Penguin, 1990. ISBN 0140145346.

[29] Brenden K Petersen, Mikel Landajuela Larma, T Nathan Mundhenk, Claudio P Santiago, Soo K
Kim, and Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions
from data via risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

[30] Marco Ragni and Andreas Klein. Predicting numbers: an ai approach to solving number series.
In Annual Conference on Artificial Intelligence, pages 255–259. Springer, 2011.

[31] Kenneth A Russell and Philip J Carter. The Times book of IQ tests, volume 3. Kogan Page
Publishers, 2003.

[32] Maria Ryskina and Kevin Knight. Learning mathematical properties of integers. arXiv preprint
arXiv:2109.07230, 2021.

[33] Jürgen Schmidhuber. Discovering neural nets with low kolmogorov complexity and high
generalization capability. Neural Networks, 10(5):857–873, 1997. ISSN 0893-6080. doi:
https://doi.org/10.1016/S0893-6080(96)00127-X. URL https://www.sciencedirect.com/
science/article/pii/S089360809600127X.

[34] Laurence Sigler. Fibonacci’s Liber Abaci: a translation into modern English of Leonardo
Pisano’s book of calculation. Springer Science & Business Media, 2003.

[35] Neil J. A. Sloane. The on-line encyclopedia of integer sequences, . URL https://oeis.org/.

[36] Neil J. A. Sloane. Oeis keywords, . URL https://oeis.org/wiki/Keywords.

[37] Neil J. A. Sloane. Style sheet for contributers., . URL https://oeis.org/wiki/Style_
Sheet.

[38] Neil J. A. Sloane. A Handbook of Integer Sequences. Academic Press, 1973. ISBN 0-12-
648550-X.

[39] Neil J. A. Sloane. The on-line encyclopedia of integer sequences. In Towards mechanized
mathematical assistants, pages 130–130. Springer, 2007.

[40] Neil J. A. Sloane and S. Plouffe. The Encyclopedia of Integer Sequences. Academic Press,
1995. ISBN 0-12-558630-2.

[41] Ray Solomonoff. The application of algorithmic probability to problems in artificial in-
telligence. In Laveen N. KANAL and John F. LEMMER, editors, Uncertainty in Artifi-
cial Intelligence, volume 4 of Machine Intelligence and Pattern Recognition, pages 473–
491. North-Holland, 1986. doi: https://doi.org/10.1016/B978-0-444-70058-2.50040-1. URL
https://www.sciencedirect.com/science/article/pii/B9780444700582500401.

[42] Claes Strannegård, Mehrdad Amirghasemi, and Simon Ulfsbäcker. An anthropomorphic method
for number sequence problems. Cognitive Systems Research, 22:27–34, 2013.

[43] SymPy Development Team. Sympy. URL https://www.sympy.org/en/index.html.

12

http://doi.org/https://doi.org/10.1016/S0893-6080(96)00127-X
http://doi.org/https://doi.org/10.1016/S0893-6080(96)00127-X
https://www.sciencedirect.com/science/article/pii/S089360809600127X
https://www.sciencedirect.com/science/article/pii/S089360809600127X
https://oeis.org/
https://oeis.org/wiki/Keywords
https://oeis.org/wiki/Style_Sheet
https://oeis.org/wiki/Style_Sheet
http://doi.org/https://doi.org/10.1016/B978-0-444-70058-2.50040-1
https://www.sciencedirect.com/science/article/pii/B9780444700582500401
https://www.sympy.org/en/index.html

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
URL http://arxiv.org/abs/1706.03762.

[45] Chai Wah Wu. Can machine learning identify interesting mathematics? an exploration using
empirically observed laws. arXiv preprint arXiv:1805.07431, 2018.

[46] Qi Wu, Chunhua Shen, Lingqiao Liu, Anthony Dick, and Anton Van Den Hengel. What value
do explicit high level concepts have in vision to language problems? In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 203–212, 2016.

[47] Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for
relational and analogical visual reasoning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5317–5327, 2019.

[48] Wenhe Zhang, Chi Zhang, Yixin Zhu, and Song-Chun Zhu. Machine number sense: A dataset
of visual arithmetic problems for abstract and relational reasoning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 1332–1340, 2020.

13

http://arxiv.org/abs/1706.03762

Acknowledgments

We thank Emanuel Jampen. His work on initial processing of the OEIS dataset showed the feasibility
of this project. We also thank Neil Sloane for founding the OEIS project and sharing it in public
domain.

14

A OEIS Processing

The On-Line Encyclopedia of Integer Sequences[35], OEIS for short, is an online dataset of integer
sequences. Founded in 1996 by Neil Sloane the dataset was since then steadily expanded by amateur
and professional mathematicians as well. In 18 columns the dataset provides information about
various properties of those sequences. The 18 column names are briefly explained in Appendix A. We
worked with an offline version of the OEIS dataset which contains 342 304 sequences. On a content
level they range from well known like A000045, Fibonacci numbers: F (n) = F (n− 1) + F (n− 2)
with F (0) = 0 and F (1) = 1, over simple ones like, A000004: the zero sequence and complex ones
like A339123: number of 2-connected multigraphs with n edges and rooted at two indistinguishable
vertices and have no decomposition into parallel components rooted at the two distinguished vertices,
to quite creative ones like A001049: numbered stops in Manhattan on the Lexington Avenue subway.
A detailed summary can be found in [39].

Field Names In this section we give a brief explanation of the 18 fields in the OEIS dataset. This is
based on the style sheet provided by OEIS [37].

• oeis_id
A unique 6 digit number preceded by an "A". For example A005735

• identification
This refers to the ID the given sequence had in one of the books A Handbook of Integer Se-
quences[38] (M followed by a 4-digit number) or The Encyclopedia of Integer Sequences[40]
(N followed by a 4-digit number).

• value_list
A list of comma separated integers. The actual sequence of interest. Depending on the
sequence in question the length of this list can vary by some orders of magnitude. For
example A058445 contains only one element while the value list of A175320 has a length
of 1 578 727.

• name
A brief explanation of the sequence. Sometimes, when possible, this already contains an
easy-to-use formula to generate the sequence. For example A005843 has the name The
nonnegative even numbers: a(n) = 2n.

• comments
Further general details and side-notes about the sequence that would make the name too
long. Here we often can find alternative formulas to generate the sequence or different
places in all of mathematics where this sequence pops up. For example one of the comments
of sequence A000045, the Fibonacci Numbers, is "Also the number of independent vertex
sets and vertex covers in the (n-2)-path graph."

• detailed_references
References to journal papers and books that can not be linked in the "links" field.

• links
References to material which can be accessed online.

• formulas
Generating functions, closed formulas and other methods to calculate the sequence.

• examples
Examples of how to find a term of the sequence and how to interpret its value.

• maple_programs
Programs written in maple to generate elements of the sequence.

• mathematica_programs
Programs written in mathematica to generate elements of the sequence.

• other_programs
Programs written in programming languages other than maple or mathematica (for example
python) to generate elements of the sequence.

15

Field name Valid entries Invalid entries
oeis_id 342304 0
identification 5533 336771
value_list 341889 415
name 342304 0
comments 198198 144106
detailed_references 33687 308617
links 237038 105266
formulas 149606 192698
examples 163666 178638
maple_programs 53333 288971
mathematica_programs 168158 174146
other_programs 121276 221028
cross_references 245298 97006
keywords 342304 0
offset_a 341885 419
offset_b 340578 1726
author 340455 1849
extensions_and_errors 77949 264355

Table 2: Number of Valid and Invalid entries per field

• cross_reference
References to other sequences in the dataset which are related in some way.

• keywords
Keywords from a short set of possibilities. For example nonn is used for sequences that
have no negative values currently in their respective value_list field.

• offset_a
Index of the first element in the value_list. For example A005843, the aforementioned
sequence of "The nonnegative even numbers: a(n) = 2n.", has an offset_a of 0 because the
first element is calculated by a(0) = 2 ∗ 0, i.e. the index is 0.

• offset_b
Index of the first element that has an absolute value larger than 1.

• author
Name of the original contributor and date of first contribution.

• extensions_and_errors
Used to claim credit for additions to the entry that can’t be properly acknowledged in other
fields.

A.1 Characteristics

In this section, we introduce some other characteristics of the dataset that required preprocessing and
extensions.

• NULL Values
Not every sequence contains information in every of the 18 columns. Table 2 shows the
number of valid entries per column in the dataset. We say an entry is valid if it is not
NULL. When programming classification methods these invalid entries have to be taken into
consideration. Of course this can be a limitation for the meaningfulness of such classification
methods. For example we can not check whether the formulas field contains a Fibonacci-
Like formula when it is NULL. However, the fact that the field is NULL can also be a hint
that no known closed formula exists (otherwise someone would probably contribute it to the
OEIS).

• Sequence lengths
Since it is harder to calculate elements for some sequences than for others, the length of
the value_list shows a high variance. Figure 5 shows the distribution of sequence lengths

16

Keyword Occurrences
base 39097
bref 739
cofr 2866
cons 11454
core 178
dead 1684
dumb 99
easy 79148
eigen 430
fini 6594
frac 7050
full 5494
hard 7137
hear 162
less 2683
look 2829
more 20107
mult 2120
nice 6891
nonn 321805
obsc 120
sign 18480
tabf 6442
tabl 20248
unkn 32
walk 4285
word 749

Table 3: Number of occurrences of each keyword

over two different scales. As we can see there is a substantial number of sequences with
short sequence lengths (say less than 30). Short sequence lengths can pose a problem to
classification methods that need more elements for some mathematical calculations. For
example we can fit a polynomial of degree 20 to 21 datapoints, but then we can not validate
the result on additional datapoints.

Figure 5: Distribution of sequence lengths. Left. The horizontal axis corresponds to the sequence
length, while the vertical axis has logarithmic scale and gives the count of the sequences with such
length. Right. The same data as on the left but with the roles of axes exchanged.

• Keyword counts
Table 3 shows the number of occurrences of each of the 27 possible keywords. Again, for a
full description of what each keyword means see the corresponding Wiki page from OEIS
[36].

17

Figure 6: Structure of the Annotator Class with multiple Classification Methods and an Aggregator

A.2 Processing methods

In order to group similar sequences from OEIS together we create categories and decide for each
sequence whether they belong into this category or not. Since for some sequences it is not immediately
clear whether they belong to a given category or not, we relaxed the requirement of this binary
classification to a finer graduated classification. To this end, we have 5 different levels of membership,
represented by integers 0 through 4. These values indicate how confident our classification is, as seen
in the following table:

0 Does likely not belong in this category
1 More likely than not does not belong in this category
2 Inconclusive
3 More likely than not belongs in this category
4 Does likely belong in this category

In this chapter we introduce and explain methods we used to define categories and create the associated
labels for membership. Neither our selection of categories nor the different Classification Methods
are exhaustive, therefore we implemented an easy to use framework which enables a fast creation of
new categories. This framework is explained in the following Section A.3.

A.3 The Annotator Class

We implemented the Annotator Class which lets a user create new categories of sequences. Each
instance of the Annotator Class is responsible for one category. As depicted in Figure 6 each
Annotator is linked to an Aggregator and one or more Classification Methods (see Sections A.4 and
A.5 below). The Annotator is responsible for running all its Classification Methods for each sequence,
providing the Aggregator with results and storing the 5-Level membership results for future use.

A.4 Aggregator

An Aggregator, as the name suggests, aggregates the results from the Classification Methods and
returns a 5-Level membership value.

A.5 Classification Methods

Classification Methods are functions which take all the information about a sequence (i.e. all the
fields described in Section A) as an input and return results of some test which are then further
processed by the Aggregator.

Note, all Classification Methods have to check whether the fields which have to be accessed by the
test do exist for the given sequence, i.e. the field is not empty or NULL.

As we will see in the following subsections, a Classification Method can be something as simple as
searching for a given word in the name of the sequence or more complex like doing some advanced
calculations based on the value. However, Classification Methods should be designed to have a rather
short runtime per sequence since the same function has to run on all sequences in the dataset. As a
rule of thumb, when a test takes one second per sequence the total runtime on the current dataset will
be about 4 days.

18

Mathematical We used Mathematical Tests to check for properties of the values of the sequences.
These methods bear some limitations one needs to be aware off. Some tests require a minimal number
of values to return meaningful results. For example a sequence with only 5 given values is not suitable
for fitting a polynomial of degree 10 to it. On the other hand if the sequence truly would have a
polynomial form then elements would be easy to calculate and there would probably be more values
provided. Following are descriptions of the mathematical Classification Methods we used.

• Newton’s Divided Difference We used Newton’s Divided Difference Method to calculate
the degree a polynomial would have to have in order to fit to the values of the sequence.
Intuitively this is the discrete signal analog of repeatedly taking the derivative of a polynomial
until we end up with the constant 0 function. By counting the number of iterations, we get
the degree a fitting polynomial would need to have, which we can then use for Polynomial
Interpolation.

• Polynomial Interpolation
We used the SymPy[43] library to perform symbolic polynomial interpolation with the degree
calculated by Newton’s Divided Difference Method. This allows us to fit a polynomial of
degree n to the first n+ 1 values of the sequence and use the remaining values to calculate
the error between the fitted polynomial and the actual values. Of course we need to assert
that there are enough values, which were not used during interpolation, to be able to calculate
a meaningful error. In cases where the error between the fitted polynomial and the actual
values is 0 and we have enough values, we conclude that the sequence in question indeed
has a polynomial form.

• Exponentials
To detect exponential sequences, such as A000244, Powers of 3, or A007689, a(n) =
2n + 3n, directly from their values ai we first calculate the sequence of quotients q. Each
element of q is the quotient of two subsequent elements of the original sequence:

qi = ai/ai+1 (1)
Purely exponential sequences, like Powers of 3, produce a constant-valued q. In our example
qi = 1/3 for all i. Such sequences pass this test immediately.
Sequences that are dominated by an exponential like A006127, a(n) = 2n + n, produce a
sequence of quotient that approaches a constant value. In this example we get

lim
i→∞

qi = lim
i→∞

2i + i

2i+1 + i+ 1
=

1

2
(2)

We approximate the limit of q by checking the very last values of it that can be calculated
from the given data. If the last 30 elements are all within some threshold range of the final
value we conclude that the sequence probably is dominated by an exponential function.

• Primality
Using SymPy again, we tested which sequences can be interpreted as the application of the
above classes of functions to prime numbers. The way we implemented this test was limited
to numbers smaller than 264 (or about 1019).

• Boundedness
Testing the absolute values of the sequence elements for boundedness by different values, is
an easy but insightful series of tests.

• Palindrome
This test checks whether all elements in a sequence are palindromic, i.e. if all values are
numbers that are the same when read from left to right as well as from right to left. Trivially
this is true for all sequences that contain only values smaller than 10 since all single-digit
numbers are palindromic (i.e. 7 is the same number when read from either direction).
The results from this test depend on the base of the number system used to display the
values of the sequence. For example 12321 is palindromic in base 10 but in base 2 it is not:
1232110 = 110000001000012.

• Periodicity
We tested whether a sequence has a repeating part up to a maximal period length of 10 000
elements. To pass the test a sequence needs to have at least 3 full periods in the value_list.

19

String Search Since most of the fields in the dataset are populated by plain text, one of the easiest
methods to get information about a sequence is the search for specific words or strings within a given
fields. This method can be a reliable indicator whether a sequence does belong to a category, for
example performing a string search of the word prime on the name of A098682, Smallest prime
larger than nn, can serve as a good indicator that A098682 indeed is at least in some way related to
prime numbers. However, the opposite conclusion is harder to draw, is a sequence truly unrelated to
prime numbers just because it is not mentioned in the name or comments?

Regular Expressions Regular Expressions served as a powerful tool to check for patterns in the
data. For example we created the regular expression

a\(n\)=[0-9]**?a\(n[\+\-][0-9]+\)[\+\-][0-9]**?
a\(n[\+\-][0-9]+\)([\+\-][0-9]**?a\(n[\+\-][0-9]+\))*

Which matches character patterns like

a(n) = 2 ∗ a(n− 3) + 5 ∗ a(n− 5)− 17a(n− 5) (3)

Due to the similarity with the well known Fibonacci Sequence (A000045), we call sequences with
formulas that are matched by above regular expression Fibonacci-Like.

B Synthetic Generation

In this section we explain the steps followed to create synthetic sequences.

From the identified categories (cf. fig. 2) in the OEIS database, we have elected a significant
and representative subset and augmented their organic entries with synthetic data. For each cat-
egory, a total of 500K synthetic sequences have been generated. The sequences were generated
with logaritmically increasing length of the generating formula. This way, most of the sequences-
generating expressions are relatively short (motivated by Kolmogorov complexity, cf. Section 2),
but longer sequences remain playing a significant role in the dataset. In the following, we provide
information how synthetic extensions of each sequence category are created using context-free gram-
mars. Typically, the “logical” terminals in our grammars are {V ar, Const} and the non-terminals
{Add, Sub,Mult,NConst, Pow}. NConst is defined as the non-terminal which represents the
number constants with multiple digits. The reason why we consider it a non-terminal is that we count
the length of polynomial based on the number of non-terminals only.

Polynomial The context-free grammar for polynomials is defined as:

T → Var | Cons t
N → Add | Sub | Mult | Pow | NConst | T
Add → (N + N)
Sub → (N − N)
Mult → (N * N)
Pow → (N ** NConst)
NConst → (ConstPos NConst) | Cons t
Var → x
Cons t → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
ConstPos → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Exponential Context-free grammar of exponentials group is defined as:

T → Var | Cons t
N → Add | Sub | Mult | Pow | NConst | T
Add → (N + N)
Sub → (N − N)
Mult → (N * N)
Pow → (N ** N)
NConst → (ConstPos NConst) | Cons t
Var → x

20

Const → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
ConstPos → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Prime In this group, we introduce a non terminal Prime(x), which evaluated at value x ∈
{1, 2, ...} returns the ith prime number. That is, Prime(1) = 2, Prime(2) = 3, Prime(3) = 5,
and so on. This way we inject in our sequences prior knowledge about prime numbers. More
concretely, the context free grammar is defined as:

T → Var | Cons t
N → Add | Sub | Mult | Pow | NConst | Prime | T
Add → (N + N)
Sub → (N − N)
Mult → (N * N)
Pow → (N ** N)
NConst → (ConstPos NConst) | Cons t
Var → x
Prime → pr ime (x) # d e f i n e d as a f u n c t i o n
Cons t → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
ConstPos → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Periodic Periodic group makes use of the previous grammars, but it also has a non terminal that
is added in the root of the grammar, which makes the whole sequence repeat only the first few k
numbers. More concretely, we can phrase this as a grammar too, by adding primitive Periodic as a
root of the grammar

P e r i o d i c → p e r i o d i c (N , k) # d e f i n e d as a f u n c t i o n
k → NConst
N → . . . as above . . .

Let sequence f(x) be any sequence, then the function periodic(f(x), k) is defined as f(x%k).

Modulo In this group we add a non terminal modulo and we define the grammar as:

T → Var | Cons t
N → Add | Sub | Mult | Pow | NConst | Modulo | T
Add → (N + N)
Sub → (N − N)
Mult → (N * N)
Pow → (N ** N)
NConst → (ConstPos NConst) | Cons t
Var → x
Modulo → N % N
Const → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
ConstPos → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Trigonometric Here we add two non terminals Sin and Cos. The grammar defined in this group
can be found in the following.

T → Var | Cons t
N → Add | Sub | Mult | Pow | NConst | S i n | Cos | T
Add → (N + N)
Sub → (N − N)
Mult → (N * N)
Pow → (N ** N)
NConst → (ConstPos NConst) | Cons t
Var → x
S i n → s i n (p i * (N))
Cos → cos (p i * (N))
Cons t → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
ConstPos → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

21

Finite Finite is a simple group where we only create a list of finite numbers. They are created the
same way by using previous rules but they are cut at a specific place randomly.

Increasing The next three groups are meta-categories, for which no specific grammar is used, but
the property is inferred afterwards. If the sequence generated is monotonically increasing, then it is
labelled as increasing.

Bounded If the sequence is bounded by a number, then it is labelled as bounded. For example
sin(pi ∗ x) is bounded.

Unique If all numbers in the sequence are distinct, then it is marked as unique. We generate at least
first 500 numbers of the sequence to check this property. Of course, this may not be the case for the
numbers appearing later in the sequence.

B.1 Hosting and Maintenance of the Dataset

The dataset is available through the ETH Research Collection and is directly accessible with DOI
10.3929/ethz-b-000562705 [5]. The ETH Research Collection guarantees minimal data retention
period of 10 years. The presence of the dataset will be maintained by the D-ITET DISCO and ISG
groups. Members of DISCO will also be responsible for the maintenance of the dataset in response to
queries or any errors found and reported – please email fact@ethz.ch to do so.

C Baseline Models

To provide baselines for model performance on the above tasks, we use a total of 24 different models
across our bench-marking tasks, namely 4 neural models, 9 classical classifiers, and 11 standard
regressors. The following sections describe the architecture of these models. For consistency, we
used the random seed 1234 wherever it could be specified.

C.1 Neural Models

C.1.1 Dense Neural Network

The densely connected neural network is composed of three hidden layers with 64, 32 and 16 neurons
each, and an input layer with 50 neurons, corresponding to the first 50 integers of the sequence.
Each hidden neuron is activated with the rectified function (ReLU). The last layer is activated with
the sigmoid function in case of classification tasks, and linearly activated in case of regression. In
multi-class-classification, 10 output neurons with sigmoid activation (one for each main class) are
used.
In terms of hyperparemeter-tuning, we focused on the depth layout and kernel regularisations. Our grid
search contained the following discrete ranges for each parameter: L1 ∈ [0.005, 0.01, 0.02], L2 ∈
[0.0001, 0.001, 0.01], depth-layout ∈ [(64, 32, 16, 8, 4), (64, 32, 16), (16, 16, 16)]

C.1.2 Recurrent Neural Network

The architecture of our recurrent model consists of three Long Short-Term Memory [15] layers, each
with 64, 32 and 16 units respectively. The first two layers produce the whole sequence, whereas
the last layer only yields the last output. The units of the last layer are fed into a dense-layer with
a sigmoidal or linear activation. No dropout was used for RNNs. The hyperparameter-grid-search
included: L1 ∈ [0, 0.001, 0.01], L2 ∈ [0, 0.0001, 0.001], Dropout ∈ [0, 0.1]

C.1.3 Convolutional Neural Network

Here we used a simple stack containing a convolutional layer with kernel size 2, 10 filters and
a pooling-layer of size 2, with unit strides. The network was composed of three of these stacks,
terminating in a dense layer with the same activation as above. The hyperparameter-tuning focused
on filter and kernel size: filters ∈ [1, 5, 10], kernel size ∈ [2, 4, 6], stack depth ∈ [2, 3]

22

mailto:fact@ethz.ch

C.1.4 Transformer

We followed the transformer architecture of [44] with only the normalisation layers excluded. We use
six transformer blocks for the encoder and three for the decoder decoder. Each multi-headed attention
unit consists of 20 attention heads and the output dimension of the embedding and feed-forward
layers is 12. We focused on the number of attention heads as well as the embedding dimension in our
grid search: heads ∈ [5, 10, 20, 40], embedding dimension ∈ [3, 6, 12, 24].

C.2 Standard Classifiers and Regressors

Table 4 summarizes all standard classifiers and regressors we used. Each standard model is imple-
mented with the scikit-learn [27] library for python. For each model we used its standard parameters.
Classification performance is measured in binary-accuracy whereas multiclass performance across all
categories is measured with macro-averaged F1-score.

Classifiers Regressors

KNNC k-Nearest Neighbors KNNR k-Nearest Neighbors
GNBC Gaussian naive Bayes LIR Linear Regressor
LSVC Linear Sup. Vector Machine RIR Ridge Regressor
DTC Decision Tree LAR Lasso Regressor
RFC Random Forest ENR Elastic Net
GBC Gradient Boosting DTR Decision Tree
ABC AdaBoost RFR Random Forest
XGBC XG Boost GBR Gradient Boosting
DYC Dummy Classifier ABR AdaBoost

XGBR XGBoost
DYR Dummy Regressor

Table 4: Standard Models

Max # of Epochs 20
Optimizer Adam
DNN L1 regularizer 0.001
DNN L2 regularizer 0.0001
RNN L1 regularizer 0.001
RNN L2 regularizer 0.0001
RNN dropout probability 0
CNN filter count 10
margin distance 1

Table 5: Additional general training hypterparameters

C.3 Loss and Metrics

C.3.1 Binary-Crossentropy

For our tasks in static mode we used binary-crossentropy as a loss for classification and mean squared
logarithmic error for regression.

C.3.2 Flexible Contrastive Loss

In dynamic mode we went for a contrastive loss described in the following formula:

da = max(α− d, 0)2

dn = d2

L = (1− λ)da + λdn

(4)

where d is the euclidean distance between two sequences in the embedding space and α is the margin-
distance which penalises dissimilar pairs only if their distance d is inside its radius. The goal of this

23

loss is to embed similar sequences near each other in terms of the euclidean distance and different
ones further away. The parameter λ functions as a measurement of similarity. In each dynamic task
we define this measurement differently. In sequence similarity, λ is the indicator function between
two classes. In sequence continuation, λ is the fraction between the first n similar numbers of two
sequences and its total length, whereas in sequence unmasking λ is the fraction of masked entries in
a sequence paired with its unmasked counterpart. With this approach we seek to build an embedding
space that learns to differentiate different sequences according to our tasks given.

C.4 Hosting and Maintenance of the Benchmarking Baseline Models

The bechmarking baseline models are available through the ETH Research Collection and are directly
accessible through DOI 10.3929/ethz-b-000565644 [4]. The ETH Research Collection guarantees
minimal data retention period of 10 years. The presence of the models will be maintained by the
D-ITET DISCO and ISG groups. Members of DISCO will also be responsible for the maintenance of
the models in response to queries or any errors found and reported – please email fact@ethz.ch to do
so.

24

mailto:fact@ethz.ch

D Baseline Model Performance

Model Dataset Scope

Within Across

po
ly

no
m

ia
l

ex
po

ne
nt

ia
l

tr
ig

on
om

et
ri

c

pe
ri

od
ic

fin
ite

m
od

ul
o

pr
im

e

bo
un

de
d

in
cr

ea
si

ng

un
iq

ue

al
lc

la
ss

es

Sequence [binary-accuracy] [f1-score]Classification

DNN oeis 0.634 0.575 0.621 0.451 n.a. 0.458 0.545 0.815 0.666 0.776 0.330
synth 0.784 0.754 0.815 0.746 0.748 0.801 0.876 0.990 0.857 0.959 0.430

RNN oeis 0.588 0.712 0.456 0.474 n.a. 0.489 0.586 0.860 0.840 0.834 0.370
synth 0.790 0.788 0.828 0.764 0.755 0.825 0.907 0.998 0.954 0.976 0.530

CNN oeis 0.569 0.550 0.619 0.470 n.a. 0.483 0.514 0.800 0.575 0.694 0.220
synth 0.769 0.704 0.792 0.727 0.736 0.769 0.843 0.976 0.752 0.793 0.390

Transformer oeis 0.599 0.672 0.524 0.464 n.a. 0.475 0.578 0.825 0.661 0.793 0.330
synth 0.791 0.763 0.817 0.759 0.753 0.814 0.883 0.993 0.882 0.905 0.440

KNNC oeis 0.650 0.615 0.545 0.489 n.a. 0.484 0.559 0.793 0.693 0.756 0.330
synth 0.760 0.765 0.797 0.707 0.713 0.810 0.896 0.994 0.883 0.890 0.410

GNBC oeis 0.626 0.276 0.560 0.464 n.a. 0.474 0.476 0.810 0.683 0.667 0.230
synth 0.769 0.646 0.764 0.721 0.732 0.736 0.635 0.916 0.634 0.648 0.370

LSVC oeis 0.709 0.377 0.646 0.410 n.a. 0.485 0.508 0.763 0.546 0.637 0.310
synth 0.759 0.622 0.771 0.717 0.680 0.745 0.819 0.954 0.586 0.718 0.350

DTC oeis 0.618 0.607 0.497 0.480 n.a. 0.483 0.558 0.820 0.624 0.727 0.360
synth 0.722 0.754 0.807 0.690 0.677 0.812 0.887 0.995 0.918 0.949 0.490

RFC oeis 0.595 0.680 0.507 0.493 n.a. 0.468 0.563 0.843 0.579 0.787 0.340
synth 0.789 0.791 0.837 0.759 0.749 0.830 0.908 0.998 0.938 0.963 0.510

GBC oeis 0.576 0.495 0.643 0.478 n.a. 0.470 0.548 0.821 0.623 0.788 0.270
synth 0.785 0.746 0.804 0.758 0.751 0.803 0.872 0.990 0.835 0.860 0.400

ABC oeis 0.617 0.392 0.658 0.470 n.a. 0.457 0.497 0.782 0.511 0.691 0.310
synth 0.773 0.676 0.777 0.741 0.737 0.761 0.829 0.958 0.669 0.766 0.380

XGBC oeis 0.603 0.670 0.499 0.480 n.a. 0.477 0.595 0.842 0.674 0.813 0.370
synth 0.789 0.782 0.828 0.762 0.754 0.827 0.901 0.997 0.915 0.962 0.510

DYC oeis 0.500 0.500 0.500 0.500 n.a. 0.500 0.500 0.500 0.500 0.500 0.500
synth 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Next Sequence-Part [binary-accuracy]Prediction

DNN oeis 0.658 0.664 0.719 0.778 n.a. 0.760 0.744 0.749 0.753 0.726 0.733
synth 0.941 0.927 0.940 0.943 0.939 0.918 0.914 0.943 0.924 0.936 0.943

RNN oeis 0.869 0.890 0.827 0.849 n.a. 0.855 0.860 0.833 0.876 0.889 0.869
synth 0.988 0.973 0.979 0.987 0.988 0.972 0.955 0.978 0.982 0.976 0.984

CNN oeis 0.526 0.520 0.540 0.566 n.a. 0.548 0.535 0.566 0.547 0.539 0.551
synth 0.893 0.912 0.922 0.903 0.895 0.898 0.890 0.915 0.885 0.901 0.900

Transformer oeis 0.690 0.666 0.707 0.792 n.a. 0.759 0.747 0.752 0.744 0.737 0.736
synth 0.947 0.930 0.945 0.947 0.949 0.927 0.919 0.946 0.926 0.943 0.938

Table 6: The results for the classification and next sequence-part predicition, evaluated both within
categories and across the whole dataset. MLP, RNN, and CNN stand for multi-layer perceptron,
recurrent neural network, and convolutional neural network. Emphasis and emphasis mark the
best performing models for the OEIS and synthetic data, respectively. For both F1 score and binary
accuracy, higher is better.

25

Model Dataset Metric Scope

Within

po
ly

no
m

ia
l

ex
po

ne
nt

ia
l

tr
ig

on
om

et
ri

c

pe
ri

od
ic

fin
ite

m
od

ul
o

pr
im

e

bo
un

de
d

in
cr

ea
si

ng

un
iq

ue

Sequence [binary-accuracy]Similarity

DNN

oeis
Top-1 0.20 0.00 0.08 0.16 n.a. 0.09 0.12 0.07 0.09 0.08
Top-3 0.23 0.00 0.19 0.16 n.a. 0.23 0.21 0.29 0.32 0.26
Top-5 0.44 0.00 0.27 0.33 n.a. 0.30 0.34 0.43 0.45 0.48

synth
Top-1 0.12 0.13 0.19 0.10 0.09 0.11 0.32 0.10 0.07 0.09
Top-3 0.27 0.34 0.30 0.25 0.31 0.23 0.54 0.38 0.27 0.33
Top-5 0.43 0.46 0.44 0.44 0.40 0.57 0.69 0.57 0.44 0.48

RNN

oeis
Top-1 0.07 0.00 0.04 0.20 n.a. 0.13 0.14 0.06 0.06 0.11
Top-3 0.25 0.00 0.27 0.50 n.a. 0.35 0.16 0.34 0.31 0.25
Top-5 0.53 0.00 0.40 0.50 n.a. 0.41 0.34 0.45 0.44 0.42

synth
Top-1 0.17 0.11 0.20 0.08 0.10 0.13 0.35 0.12 0.07 0.08
Top-3 0.32 0.29 0.39 0.32 0.32 0.25 0.56 0.40 0.29 0.32
Top-5 0.41 0.38 0.47 0.42 0.47 0.49 0.70 0.56 0.41 0.51

CNN

oeis
Top-1 0.15 0.00 0.06 0.00 n.a. 0.06 0.16 0.14 0.07 0.15
Top-3 0.34 0.12 0.31 0.00 n.a. 0.38 0.32 0.43 0.26 0.36
Top-5 0.34 0.75 0.41 0.40 n.a. 0.47 0.46 0.59 0.39 0.50

synth
Top-1 0.09 0.14 0.16 0.07 0.13 0.11 0.32 0.17 0.08 0.10
Top-3 0.37 0.39 0.37 0.42 0.29 0.32 0.61 0.49 0.30 0.39
Top-5 0.50 0.41 0.60 0.48 0.47 0.51 0.66 0.64 0.44 0.60

Transformer

oeis
Top-1 0.03 0.00 0.13 0.00 n.a. 0.05 0.18 0.11 0.09 0.09
Top-3 0.31 0.00 0.39 0.10 n.a. 0.33 0.28 0.42 0.29 0.38
Top-5 0.48 0.66 0.43 0.20 n.a. 0.49 0.40 0.50 0.43 0.55

synth
Top-1 0.21 0.13 0.31 0.12 0.17 0.10 0.36 0.13 0.07 0.10
Top-3 0.44 0.32 0.41 0.41 0.37 0.32 0.56 0.50 0.32 0.35
Top-5 0.67 0.52 0.63 0.51 0.52 0.55 0.65 0.61 0.44 0.58

Table 7: The accuracy results for the sequence similarity task, evaluated both within categories and
across the whole dataset. Emphasis and emphasis mark the best performing models for the OEIS
and synthetic data, respectively. For binary accuracy, higher is better.

26

Model Dataset Scope

Within Across

po
ly

no
m

ia
l

ex
po

ne
nt

ia
l

tr
ig

on
om

et
ri

c

pe
ri

od
ic

fin
ite

m
od

ul
o

pr
im

e

bo
un

de
d

in
cr

ea
si

ng

un
iq

ue

al
lc

la
ss

es

Sequence [root-mean-squared-log-error]Continuation

DNN oeis 0.750 0.700 0.588 0.576 n.a. 0.567 0.617 0.519 0.600 0.614 0.597
synth 0.496 0.408 0.345 0.485 0.489 0.398 0.379 0.372 0.477 0.452 0.430

RNN oeis 0.738 0.692 0.561 0.561 n.a. 0.554 0.602 0.506 0.577 0.614 0.603
synth 0.470 0.375 0.317 0.466 0.461 0.381 0.345 0.351 0.457 0.424 0.406

CNN oeis 0.776 0.768 0.765 0.679 n.a. 0.727 0.758 0.686 0.730 0.737 0.733
synth 0.586 0.550 0.498 0.585 0.581 0.557 0.623 0.536 0.599 0.612 0.579

Transformer oeis 1.632 1.596 0.573 1.113 n.a. 0.545 0.573 0.503 0.575 0.593 0.578
synth 2.051 1.420 0.308 1.978 0.452 0.365 0.335 0.341 0.449 0.415 0.395

KNNR oeis 0.955 0.874 0.761 0.807 n.a. 0.730 0.796 0.669 0.783 0.832 0.808
synth 0.575 0.451 0.373 0.560 0.551 0.459 0.401 0.433 0.564 0.513 0.486

LIR oeis 0.872 0.784 0.723 0.880 n.a. 0.710 0.846 0.704 0.786 0.821 0.797
synth 0.694 0.633 0.545 0.696 0.692 0.611 0.770 0.613 0.701 0.724 0.682

RIR oeis 0.873 0.784 0.721 0.875 n.a. 0.713 0.846 0.703 0.786 0.822 0.797
synth 0.692 0.632 0.546 0.695 0.692 0.613 0.769 0.613 0.701 0.725 0.682

LAR oeis 0.910 0.750 0.727 1.012 n.a. 0.734 0.882 0.743 0.798 0.856 0.827
synth 0.750 0.703 0.615 0.754 0.748 0.688 0.812 0.683 0.765 0.783 0.747

ENR oeis 0.886 0.756 0.722 0.951 n.a. 0.723 0.862 0.724 0.793 0.840 0.814
synth 0.722 0.672 0.583 0.727 0.723 0.656 0.794 0.651 0.734 0.754 0.716

DTR oeis 0.868 0.801 0.693 0.741 n.a. 0.663 0.731 0.618 0.695 0.749 0.730
synth 0.496 0.392 0.328 0.492 0.487 0.391 0.351 0.368 0.490 0.445 0.427

RFR oeis 0.871 0.797 0.696 0.740 n.a. 0.666 0.730 0.619 0.696 0.748 0.730
synth 0.496 0.393 0.325 0.492 0.488 0.396 0.348 0.368 0.491 0.446 0.427

GBR oeis 0.857 0.789 0.622 0.694 n.a. 0.650 0.706 0.578 0.694 0.726 0.702
synth 0.544 0.459 0.377 0.540 0.535 0.446 0.420 0.420 0.545 0.510 0.484

ABR oeis 0.907 0.868 0.782 0.894 n.a. 0.754 0.837 0.776 0.796 0.878 0.842
synth 0.635 0.621 0.542 0.667 0.659 0.594 0.652 0.635 0.658 0.672 0.662

XGBR oeis 0.869 0.796 0.679 0.726 n.a. 0.651 0.707 0.607 0.688 0.735 0.719
synth 0.499 0.400 0.330 0.497 0.490 0.400 0.360 0.372 0.496 0.452 0.433

DYR oeis 0.972 0.770 0.821 1.202 n.a. 0.788 0.912 0.883 0.860 0.930 0.923
synth 0.832 0.868 0.807 0.847 0.844 0.858 0.877 0.866 0.876 0.871 0.877

Table 8: The results for the sequence continuation task, evaluated both within categories and across
the whole dataset. Emphasis and emphasis mark the best performing models for the OEIS and
synthetic data, respectively. For RMSLE, lower is better.

27

Model Dataset Metric Scope

Within Across

po
ly

no
m

ia
l

ex
po

ne
nt

ia
l

tr
ig

on
om

et
ri

c

pe
ri

od
ic

fin
ite

m
od

ul
o

pr
im

e

bo
un

de
d

in
cr

ea
si

ng

un
iq

ue

al
lc

la
ss

es

Sequence [top-k-root-mean-squared-error]Similarity

DNN

oeis
Top-1 2.037 1.662 3.542 1.392 n.a. 1.867 1.432 0.850 2.488 1.300 2.668
Top-3 0.931 1.662 0.442 0.390 n.a. 0.785 0.587 0.367 0.900 0.912 0.599
Top-5 0.855 1.662 0.361 0.152 n.a. 0.696 0.433 0.250 0.561 0.912 0.301

synth
Top-1 5.847 3.261 5.616 2.790 2.695 1.597 1.896 3.951 2.153 2.302 2.144
Top-3 0.870 0.927 0.365 1.192 1.483 0.475 1.246 0.534 1.130 1.900 1.690
Top-5 0.752 0.549 0.365 0.766 1.483 0.448 0.944 0.534 0.825 0.520 1.690

RNN

oeis
Top-1 2.089 2.278 1.624 1.735 n.a. 1.326 1.831 1.264 1.473 1.450 1.367
Top-3 1.038 1.025 0.677 0.661 n.a. 0.645 0.823 0.597 0.617 0.658 0.596
Top-5 0.706 0.665 0.429 0.439 n.a. 0.435 0.585 0.406 0.427 0.457 0.383

synth
Top-1 1.889 1.488 0.974 2.193 2.331 1.034 1.210 1.290 1.453 1.604 1.509
Top-3 0.784 0.566 0.405 0.954 1.033 0.448 0.508 0.589 0.654 0.713 0.667
Top-5 0.506 0.364 0.244 0.595 0.607 0.290 0.320 0.355 0.401 0.476 0.438

CNN

oeis
Top-1 3.117 2.943 1.957 1.715 n.a. 2.426 1.570 1.430 1.950 1.490 1.825
Top-3 1.309 1.302 0.679 0.813 n.a. 1.046 0.702 0.501 0.579 1.003 0.807
Top-5 0.631 0.646 0.585 0.521 n.a. 0.736 0.361 0.296 0.406 0.711 0.428

synth
Top-1 2.475 1.662 1.399 3.533 2.338 1.848 7.013 2.288 2.333 2.033 2.348
Top-3 1.060 0.695 1.115 1.031 1.151 0.880 1.007 1.152 0.826 0.871 1.105
Top-5 0.664 0.440 0.836 0.777 0.697 0.647 0.648 0.682 0.463 0.613 0.643

Transformer

oeis
Top-1 1.503 1.408 0.984 0.786 n.a. 0.977 1.161 0.663 1.022 0.935 0.847
Top-3 0.746 0.748 0.398 0.382 n.a. 0.454 0.584 0.348 0.499 0.438 0.383
Top-5 0.529 0.524 0.253 0.287 n.a. 0.285 0.414 0.284 0.376 0.288 0.267

synth
Top-1 1.816 0.962 0.788 1.730 1.651 0.811 0.801 0.873 1.084 1.198 1.258
Top-3 0.727 0.410 0.312 0.787 0.706 0.316 0.331 0.389 0.447 0.507 0.490
Top-5 0.448 0.248 0.202 0.484 0.418 0.225 0.205 0.233 0.270 0.331 0.284

Sequence [top-k-root-mean-squared-error]Unmasking

DNN

oeis
Top-1 3.702 3.529 3.460 3.248 n.a. 3.451 3.451 3.274 3.307 3.315 3.384
Top-3 3.305 3.163 2.936 2.917 n.a. 3.114 3.059 2.976 3.061 3.027 3.061
Top-5 3.125 3.000 2.748 2.779 n.a. 2.972 2.880 2.878 2.925 2.903 2.918

synth
Top-1 4.240 3.711 3.374 4.062 4.092 3.633 3.786 3.619 3.839 3.766 3.855
Top-3 3.898 3.448 2.958 3.710 3.744 3.353 3.321 3.356 3.547 3.470 3.524
Top-5 3.776 3.335 2.825 3.582 3.593 3.239 3.161 3.236 3.441 3.361 3.408

RNN

oeis
Top-1 3.789 3.720 3.548 3.314 n.a. 3.484 3.499 3.320 3.490 3.485 3.455
Top-3 3.206 3.175 3.052 2.876 n.a. 3.060 2.998 2.908 3.109 3.083 3.091
Top-5 3.010 2.990 2.847 2.688 n.a. 2.898 2.830 2.757 2.925 2.909 2.944

synth
Top-1 4.141 3.765 3.368 4.094 4.115 3.535 3.775 3.696 3.674 3.913 3.855
Top-3 3.663 3.463 3.082 3.639 3.663 3.254 3.314 3.346 3.328 3.515 3.511
Top-5 3.473 3.291 2.961 3.472 3.507 3.140 3.162 3.197 3.208 3.370 3.379

CNN

oeis
Top-1 3.738 3.699 3.615 3.268 n.a. 3.383 3.521 3.165 3.453 3.257 3.355
Top-3 2.943 2.922 2.873 2.594 n.a. 2.683 2.785 2.510 2.727 2.643 2.690
Top-5 2.689 2.631 2.577 2.370 n.a. 2.437 2.539 2.260 2.490 2.423 2.440

synth
Top-1 3.906 3.584 3.223 3.791 3.886 3.500 3.646 3.531 3.627 3.702 3.611
Top-3 3.179 3.100 2.811 3.128 3.168 2.968 3.112 3.008 2.988 3.122 3.033
Top-5 2.931 2.799 2.642 2.891 2.898 2.784 2.890 2.834 2.747 2.899 2.812

Transformer

oeis
Top-1 3.635 3.674 3.586 3.245 n.a. 3.465 3.556 3.378 3.456 3.606 3.524
Top-3 3.042 3.045 2.951 2.798 n.a. 2.991 2.974 2.903 2.947 3.038 3.017
Top-5 2.820 2.781 2.658 2.606 n.a. 2.808 2.717 2.717 2.756 2.816 2.811

synth
Top-1 3.953 3.719 3.403 3.968 4.079 3.478 3.638 3.605 3.717 3.780 3.757
Top-3 3.374 3.259 3.019 3.395 3.475 3.190 3.115 3.226 3.293 3.359 3.291
Top-5 3.171 3.067 2.872 3.161 3.259 3.041 2.941 3.045 3.121 3.173 3.091

Table 9: The top-k RMSE results for the sequence similarity and unmasking tasks, evaluated both
within categories and across the whole dataset. Emphasis and emphasis mark the best performing
models for the OEIS and synthetic data, respectively. The masking probability is 0.25. For top-k-
RMSE, lower is better.

28

D.1 Compute Time Breakdown

Model Task

cl
as

sifi
ca

tio
n

ne
xt

pa
rt

pr
ed

.

co
nt

in
ua

tio
n

sim
ila

rit
y

un
m

as
ki

ng

mean task training and evaluation time in minutes

DNN 23 214 98 32 168
RNN 44 428 234 57 345
CNN 35 388 198 48 246
Transformer 48 465 256 45 326
KNNC 67 - - - -
GNBC 7 - - - -
DTC 14 - - - -
XGBC 17 - - - -
LSVC 26 - - - -
RFC 14 - - - -
GBC 9 - - - -
ABC 23 - - - -
XGBC 11 - - - -
KNNR - - - 72 -
RIR - - - 42 -
LIR - - - 37 -
ENR - - - 61 -
LAR - - - 58 -
DTR - - - 50 -
ABR - - - 24 -
GBR - - - 27 -
DYR - - - 36 -
XGBR - - - 22 -
RFR - - - 28 -
LSVR - - - 41 -

Table 10: The mean combined task training and evaluation time per baseline model. Where applicable
(cf. Appendix D), the mean is computed across all model runs for various sections of the dataset.

29

E Expectations on Model Performance

We believe that our the baseline classifier performance can be vastly improved on and shifted towards
the region of 0.8 to 0.9. We would expect tailored models to have near-perfect performance on the
next part prediction task, RMSLEs of below 0.3 (corresponding to 0.3 uniform sequence element
logarithm difference) in the continuation task, and top-5-RMSEs in the similarity and unmasking
tasks of below 0.1 and 1.0, respectively.

Especially in the sequence similarity task, which is essentially a database lookup task, we would hope
that the top-k-RMSE performance on the synthetic test set could be brought to essentially zero. The
OEIS dataset, however, contains many sequences that belong to the categories used for the experiments
run in Section 4 but are very different from what one would achieve by procedural generation as per
Appendix B. We therefore do not think it feasible for the currently known architectures could achieve
near-perfect results on this set, but see this as a natural challenge for architectures yet to be proposed.

An argument could be made that a human, if faced with the task of even just identifying the category
of many of the sequences in OEIS, would struggle greatly and perhaps soon resort to guesswork.
The existence of Online Encyclopedia of Integer Sequences alone is a proof of that understanding
integer sequences for what they are is, in practice, very often beyond the computational abilities
of humans and demands thorough, encyclopedic knowledge instead. By extension, one could be
tempted to claim that our effort goes in the wrong direction with respect to the general motivation of
artificial intelligence research, as the problem we are considering is much more difficult than what
one would consider the natural baseline for intelligence – human performance – can reliably handle.
This dilemma of “turning the tables in the Turing test” was popularised and partially answered in
[28]. Let us just simply invoke the argument of the Turing test “in the limit”, in which the human
participant would have enough time and resources to develop a mechanism that would allow him to
begin answering the trial’s questions at computer-level speeds. Then, the apparent difficulty of our
benchmark is no longer in contrast with the common conception of intelligence, and furthermore,
the development of such a mechanism is precisely something we hope will be facilitated by the
benchmark presented in this paper.

The utility of our benchmark, however, can be seen even when disregarding this somewhat philo-
sophical challenge. The existence of OEIS as an online service proves demand for a system that
“understands” sequences, and perhaps continues them, fills their gaps, and suggests similar sequences
on top of immediately identifying which category the sequence belongs to. Our benchmark can thus
be viewed as a sort of “CodeSearchNet [17] for sequences”, built to aid the development of models
that can satisfy this demand.

30

F Relationship to Symbolic Regression

One can notice that contemporary symbolic regression methods could be deemed suitable for per-
forming the unmasking task, or at least its easier variant – the continuation task. We emphasise that
the aim of the FACT toolkit is not to address these tasks as challenges, but instead to provide tools
for research on the learning of finitary abstractions.

With this motivation in mind, there seems to be little evidence that classical symbolic regression
methods manage to abstract any high-level descriptive information about the data they fit in their
regression process. Indeed, many of the methods used for symbolic regression perform systematic
searches of hypothesis space of potential formulas. While perhaps guided by sound empirical search
methods and well-founded heuristics, they do not learn, and they do not learn to abstract anything
about the nature of the sequences they regress. Further, many of these methods make precisely the
assumptions of simplicity of the underlying generative rule we make in our generative process, which
would render their baseline evaluation results vacuous. As such, we have therefore decided against
their inclusion in this work, and believe that while state-of-the-art symbolic regression methods may
play a role as performance contenders for future studies leveraging FACT, they would be difficult to
interpret as natural baselines for finitary abstraction learning.

31

G An Illustrative Qualitative Evaluation of GPT-3 Davinci

We qualitatively evaluate the performance of GPT-3 Davinci on initial segments of length 10 of the
6 most popular OEIS sequences for two tasks: sequence classification, and sequence continuation.
Our operating assumption is that the most popular sequences have been sufficiently present in the
GPT-3 training data for the model to have a solid amount of information learned about them. We
have chosen temperature of 0.7, maximum length of 256, top P of 1, frequency and presence penalty
of 0, and “best of” of 1.

PROMPT: [Continue the following sequence:] 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

GPT-3 DAVINCI: 89

BASELINE TRANSFORMER: 89

TRUE (ASSUMING FIBONACCI’S SEQUENCE): 89

PROMPT: [Continue the following sequence:] 0, 1, 3, 6, 2, 7, 13, 20, 12, 21

GPT-3 DAVINCI: 27, 28, 30, 33, 34, 36, 39, 40, 42, 45

BASELINE TRANSFORMER: 11, 22, 10, 23, 9, 24, 8, 25, 43, 62

TRUE (ASSUMING RECAMAN’S SEQUENCE): 11, 22, 10, 23, 9, 24, 8, 25, 43, 62

PROMPT: [Continue the following sequence:] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862

GPT-3 DAVINCI: The next number in the sequence would be 16796.

BASELINE TRANSFORMER: 16796

TRUE (ASSUMING CATALAN NUMBERS): 16796

PROMPT: [Continue the following sequence:] 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

GPT-3 DAVINCI: 31, 37, 41, 43, 47, 53, 59, 61, 67, 71

BASELINE TRANSFORMER: 31, 37, 41, 43, 47, 53, 59, 61, 67, 71

TRUE (ASSUMING PRIME NUMBERS): 31, 37, 41, 43, 47, 53, 59, 61, 67, 71

PROMPT: [Continue the following sequence:] 2, 3, 5, 7, 13, 17, 19, 31, 61, 89

GPT-3 DAVINCI: 131, 233, 337, 461, 563, 673, 761, 829, 937, 1033

BASELINE TRANSFORMER: 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423

TRUE (ASSUMING MERSENNE EXPONENTS): 107, 127, 521, 607, 1279, 2203, 2281,
3217, 4253, 4423

PROMPT: [Continue the following sequence:] 3, 7, 31, 127, 8191, 131071, 524287,
2147483647, 2305843009213693951, 618970019642690137449562111

GPT-3 DAVINCI: 618970019642690137449562111, 36893488147419103232,
1085102592571150095, 33554431,

BASELINE TRANSFORMER: Too big, the sequence was not included

TRUE (ASSUMING MERSENNE PRIMES): 162259276829213363391578010288127,
170141183460469231731687303715884105727

We observe that the GPT-3 sometimes performs well, although it takes liberties as to how it presents
its output. We further saw that our baseline transformer implementation for this task was consistently
correct.

PROMPT: [Classify the following sequence:] 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

GPT-3 DAVINCI: The sequence is an example of the Fibonacci sequence.

BASELINE TRANSFORMER: N/A

TRUE (ASSUMING FIBONACCI’S SEQUENCE): Fibonacci sequence.

32

PROMPT: [Continue the following sequence:] 0, 1, 3, 6, 2, 7, 13, 20, 12, 21

GPT-3 DAVINCI: The sequence is made up of numbers that follow the pattern of adding
the two most recent numbers together. This pattern is known as a Fibonacci
sequence.

BASELINE TRANSFORMER: N/A

TRUE (ASSUMING RECAMAN’S SEQUENCE): Recamán’s sequence.

PROMPT: [Continue the following sequence:] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862

GPT-3 DAVINCI: The sequence appears to be the Fibonacci sequence.

BASELINE TRANSFORMER: N/A

TRUE (ASSUMING CATALAN NUMBERS): Catalan numbers.

PROMPT: [Continue the following sequence:] 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

GPT-3 DAVINCI: 31, 37, 41, 43, 47, 53, 59, 61, 67, 71

BASELINE TRANSFORMER CLASSIFIER: Prime.

TRUE (ASSUMING PRIME NUMBERS): Prime.

PROMPT: [Continue the following sequence:] 2, 3, 5, 7, 13, 17, 19, 31, 61, 89

GPT-3 DAVINCI: The sequence is a prime number sequence.

BASELINE TRANSFORMER: Prime.

TRUE (ASSUMING MERSENNE EXPONENTS): Prime.

PROMPT: [Continue the following sequence:] 3, 7, 31, 127, 8191, 131071, 524287,
2147483647, 2305843009213693951, 618970019642690137449562111

GPT-3 DAVINCI: The sequence appears to be a list of powers of two, with the exception
of the third number.

BASELINE TRANSFORMER: Too big, the sequence was not included

TRUE (ASSUMING MERSENNE PRIMES): Prime, or rather, primes p such that 2p − 1 is
a prime.

Here we observe that the GPT-3 is sometimes right, but sometimes just assumes a sequence based on
its popularity, or misses crucial detail.

33

H Datasheets for Datasets

For the dataset documentation we used the recommended documentation framework "Datasheets for
Datasets" [12].

H.1 Motivation

For what purpose was the dataset created? To advance research in comprehension of finitary
abstractions.

Who created the dataset? The dataset is a combination of the efforts of contributors to the Online
Encyclopedia of Integer Sequences and our own systematic synthetic data generation effort. All those
who contributed, directly and indirectly, are given credit in Acknowledgements. We will aim to keep
acknowledgements in our GitHub repository up-to-date as the work on the dataset continues in the
future.

Who funded the creation of the dataset? If there is an associated grant, please provide the name
of the grantor and the grant name and number [N/A]

Any other comments? [N/A]

H.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and
interactions between them; nodes and edges)? The dataset consists of integer sequences – or
rather, initial segments of integer sequences, and in most cases also annotations that allow for their
automatic continuation if necessary.

How many instances are there in total (of each type, if appropriate)? See Section 2. Short
answer: About 3.6 million.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? It is a well-structured of a larger set as there are infinitely many
integer sequences.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or
features? Annotated entries pointing to integer sequences.

Is there a label or target associated with each instance? If so, please provide a description
[Yes] All labels and targets are described in Section 3 and further Appendix A.

Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information, but might include, e.g., redacted text. [N/A]

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? [N/A]

Are there recommended data splits (e.g., training, development/validation, testing)? [Yes]
We have used 10:1:1 ratio of our synthetic training, synthetic testing, and organic testing sets in

the benchmarking setup. Data split in the fashion is separately available through the ETH Research
Collection, see [5].

Are there any errors, sources of noise, or redundancies in the dataset? [No]

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? The dataset is self-contained, there are no restrictions associated
with any of the external resources that might apply to a future user.

34

Does the dataset contain data that might be considered confidential? [No]

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? [No]

Does the dataset relate to people? [No]

Does the dataset identify any subpopulations (e.g., by age, gender)? [No]

Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? [No]

Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union
memberships, or locations; financial or health data; biometric or genetic data; forms of government
identification, such as social security numbers; criminal history)? [No]

Any other comments? [N/A]

H.3 Collection Process

How was the data associated with each instance acquired? Was the data directly observable
(e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly
inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or
language)? [Yes] The collection and generation processes are extensively described in Section 3,
Appendix A, Appendix B.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)? How were these mechanisms
or procedures validated? [Yes] The collection and generation processes are extensively described
in Section 3, Appendix A, Appendix B.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)? [Yes] The collection and generation processes
are extensively described in Section 3, Appendix A, Appendix B.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)? [N/A]

Over what timeframe was the data collected? [N/A]

Were any ethical review processes conducted (e.g., by an institutional review board)? [N/A]

Does the dataset relate to people? [No]

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)? [N/A]

Were the individuals in question notified about the data collection? [N/A]

Did the individuals in question consent to the collection and use of their data? [N/A]

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis)been conducted? [N/A]

Any other comments? [N/A]

35

H.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)? [Yes] The collection, preprocessing, and generation processes are extensively
described in Section 3, Appendix A, Appendix B.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)

Is the software used to preprocess/clean/label the instances available? If so, please provide a
link or other access point. [Yes] See the project code repository.

Any other comments? [N/A]

H.5 Uses

Has the dataset been used for any tasks already? [Yes] See Section 4.

Is there a repository that links to any or all papers or systems that use the dataset? [N/A]

What (other) tasks could the dataset be used for? [Yes] See Section 6.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? [N/A]

Are there tasks for which the dataset should not be used? [No]

Any other comments? [N/A]

H.6 Distribution

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)? The dataset is available through the ETH Research
Collection (DOI 10.3929/ethz-b-000562705, [5]). The library (DOI 10.3929/ethz-b-000565638, [6])
and benchmarking models (DOI 10.3929/ethz-b-000565644, [5]) are also available from the same
source, and they too have their individual DOIs.

When will the dataset be distributed? The dataset is available through the ETH Research Collec-
tion, see [5].

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? The dataset is distributed under the terms of the
Creative Commons CC BY license, which permits non-commercial use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? [Yes] Our license is in agreement with the license of the OEIS.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? [No]

Any other comments [N/A]

H.7 Maintenance

Who is supporting/hosting/maintaining the dataset? The dataset is maintained by the FACT
Development Team, https://github.com/FACT-Development-Team. In practice, this subsumes

36

https://github.com/FACT-Development-Team

individual from the ETH D-ITET ISG and DISCO groups. The hosting of the dataset is maintained
by the ETH Research Collection [5, 6, 4].

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? Email
address: fact@ethz.ch. Should this email address become unavailable in the future, please address
your correspondence at members of ETH D-ITET DISCO.

Is there an erratum? If so, please provide a link or other access point [No]

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
[Yes] The dataset will be regularly updated, information about each update will be published in our
repository.

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were individuals in question told that their data would be retained for a
fixed period of time and then deleted)? [N/A] .

Will older versions of the dataset continue to be supported/hosted/maintained? [Yes] Yes, all
published versions of the dataset will be available through the ETH Research Collection.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? [Yes] We release our complete infrastructure and provide a simple and easy-to-use
interface to evaluate new methods. We invite the users of the dataset to submit their suggested
contributions either directly to the authors or as pull requests through the GitHub system. The
alternative is to contact us at fact@ethz.ch to arrange closer collaboration if desired.

Any other comments? [N/A]

I Author Statement

The authors of this work confirm that all parts of the content they publish conform to the licensing
requirements of the individual parts, and that new additions are licenses accordingly. They further
declare that they bear all responsibility in case of violation of any rights.

37

mailto:fact@ethz.ch
mailto:fact@ethz.ch

	Introduction
	Dataset
	Synthetic Generation

	Benchmark
	Motivation
	Structure
	Task Types
	Sequence Classification
	Sequence Similarity
	Next Sequence-Part Prediction
	Sequence Continuation
	Sequence Element Unmasking

	Baseline model performance
	Models
	Results
	Metric Interpretation
	Comparative Analysis

	Related Work
	Avenues for Future Work
	Conclusion
	OEIS Processing
	Characteristics
	Processing methods
	The Annotator Class
	Aggregator
	Classification Methods

	Synthetic Generation
	Hosting and Maintenance of the Dataset

	Baseline Models
	Neural Models
	Dense Neural Network
	Recurrent Neural Network
	Convolutional Neural Network
	Transformer

	Standard Classifiers and Regressors
	Loss and Metrics
	Binary-Crossentropy
	Flexible Contrastive Loss

	Hosting and Maintenance of the Benchmarking Baseline Models

	Baseline Model Performance
	Compute Time Breakdown

	Expectations on Model Performance
	Relationship to Symbolic Regression
	An Illustrative Qualitative Evaluation of GPT-3 Davinci
	Datasheets for Datasets
	Motivation
	Composition
	Collection Process
	Preprocessing/cleaning/labeling
	Uses
	Distribution
	Maintenance

	Author Statement

