
Mangrove: Fast and Parallelizable State1

Replication for Blockchains2

Anton Paramonov #3

ETH Zurich4

Yann Vonlanthen #5

ETH Zurich6

Quentin Kniep #7

ETH Zurich8

Jakub Sliwinski #9

ETH Zurich10

Roger Wattenhofer #11

ETH Zurich12

Abstract13

Mangrove is a novel scaling approach to building blockchains with parallel smart contract support.14

Unlike in monolithic blockchains, where a single consensus mechanism determines a strict total15

order over all transactions, Mangrove uses separate consensus instances per smart contract,16

without a global order. To allow multiple instances to run in parallel while ensuring that no17

conflicting transactions are committed, we propose a mechanism called Parallel Optimistic Agreement.18

Mangrove is optimized for performance under optimistic conditions, where there is no misbehavior19

and the network is synchronous. Under these conditions, our protocol can achieve the latency of 220

communication steps between creating and executing a transaction.21

2012 ACM Subject Classification Computer systems organization → Distributed architectures;22

Security and privacy → Distributed systems security23

Keywords and phrases Blockchain, Parallelization, Low-latency, Consensus24

1 Introduction25

Scalability remains a major challenge for blockchain systems. Arguably, no single blockchain26

currently offers sufficient throughput to support traditional Web 2.0 applications in a trustless27

manner [46]. In the modern blockchain landscape, users are fragmented across numerous28

Layer-1, Layer-2, and even Layer-3 chains. This fragmentation raises concerns about the29

interoperability and latency of decentralized applications built on top of these chains.30

Techniques like sharding, where network nodes are divided into groups to process trans-31

actions in parallel [55, 4], have gained considerable attention as potential solutions to the32

problem. Although sharding has been proven to enhance system performance, the techniques33

come with drawbacks and limitations. Specifically, sharded systems experience significant la-34

tency (or abortion rate) when dealing with smart contracts with high contention. Furthermore,35

they require cross-shard agreement for transactions spanning multiple shards.36

Since it has been established that consensus is not necessary for applications like payments37

[34, 32], the research on consensus-less payment systems [13] has offered a remarkably simple38

alternative solution to the problem of scaling. Foregoing consensus, these systems offer a39

model in which every validator can parallelize processing and execution of all transactions40

without limitation. In contrast, sharding protocols assume a rigid division of validators that41

complicates the system and limits the potential for parallelizability. However, consensus-less42

systems can support only a limited range of applications, as consensus is necessary for general43

smart contracts.44

mailto:aparamonov@ethz.ch
mailto:yvonlanthen@ethz.ch
mailto:qkniep@ethz.ch
mailto:jsliwinski@ethz.ch
mailto:wattenhofer@ethz.ch

2 Mangrove: Fast and Parallelizable State Replication for Blockchains

Our Contributions. We address the following research question:45

“Can a protocol supporting consensus exhibit the advantages of consensus-less payment46

systems?”47

and answer in the positive. We summarize our contributions in the following.48

We propose the Replicated Actor Model, a novel execution model for blockchain systems49

based on externally owned accounts (user actors) and smart contracts (reactive actors),50

that makes dependencies explicit with parallelizability in mind.51

We introduce Parallelizable Optimistic Agreement (POA), a consensus primitive that can52

be used to achieve consensus on the stream of incoming transactions for individual smart53

contracts. POA instances are designed to run in parallel, while ensuring that conflicting54

(i.e., double-spending) transactions cannot be committed.55

The resulting system, called Mangrove, combines limitless parallelization, low latency,56

and support for general smart contracts. In Mangrove, no single validator can delay the57

entire system’s progress, and congestion at one smart contract does not impede the rest of58

the system. In other words, the transaction throughput of different smart contracts can59

be scaled horizontally by validators. Additionally, our system achieves optimal latency in60

optimistic conditions, where users or validators do not misbehave, and the network is61

synchronous. Under these conditions, a block producer can commit a transaction to a62

smart contract in two communication steps.63

2 Related Work64

Consensusless Systems. Blockchain-based systems use consensus mechanisms as their core65

building block. However, consensus tolerating Byzantine faults [39] is inherently slow. First66

blockchain systems such as Bitcoin [42] and Ethereum [18] are notorious for their limited67

performance.68

However, it has been established that consensus is not necessary for many applications,69

such as payments [34, 32]. Designs such as Fastpay [13], Astro [22], and Accept [41] propose70

remarkably simple solutions that inherently parallelize the workload. Validators in these71

systems can easily add computational resources to process more transactions. Tonkikh72

et al. [54] and Bazzi et al. [14] show that even dependencies between transactions of the73

same issuer can be resolved without consensus. Other systems, such as Groundhog [45],74

Setchain [20], and Pod [8] avoid consensus by using commutative semantics. Frey et al. [30]75

and Sridhar et al. [52] recently introduced new consensus-free objects, inspired by Byzantine76

fault-tolerant CRDTs [35]. Mangrove is orthogonal to these efforts, as it focuses on the77

interplay between all types of objects (with- or without consensus). Albouy et al. [6] show78

how a consensusless system can also provide anonymity properties in a lightweight fashion.79

Despite their numerous advantages, consensusless systems are inherently unsuitable80

for many applications, as general smart contracts require consensus [7]. The CoD [48]81

primitive alleviates this problem to a limited extent, by mixing payment system-like logic82

with consensus as fallback. In turn, it exhibits the problems of consensus systems, like poor83

parallelizability.84

Sui [16, 37] is a modern blockchain system that recognizes the mentioned problems and85

incorporates a consensusless component in its design. Sui relies on consensus only for complex86

tasks, like ordering accesses to the same shared objects. We further increase scalability, by87

allowing parallelism even for shared objects. In addition, Mangrove outperforms Sui in the88

number of communication rounds needed for transaction execution. Our proposed system89

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 3

shares many characteristics with Basil [53], namely parallel execution of non-conflicting90

transactions and fast commits under optimistic conditions. Contrary to Basil, in Mangrove91

users do not have to drive progress themselves and benefit from lower latency.92

Fast Byzantine Consensus. Martin and Alvisi [40] present an algorithm that achieves93

Byzantine Consensus in just two communication steps under optimistic conditions, specifically94

assuming an honest leader and a synchronous network. They introduce a parameter p ≤ f ,95

which represents the number of failures supported by the fast path and show a resilience96

bound of n ≥ 3f + 2p + 1. Subsequent work explores the potential and pitfalls of fast97

consensus, both for single-shot consensus and state machine replication [49, 1, 33]. Recently,98

Kuznetsov et al. [38] and Abraham et al. [2] revisited this topic, pointing out that for the99

category of protocols where the set of proposers is a subset of the validators, a lower resilience100

bound of n ≥ max(3f + 1, 3f + 2p− 1) can be achieved.101

In contrast to prior [38] that limits the set of proposers to a subset of validators, our102

protocol allows all users to act as proposers. This generality requires us to meet the more103

stringent resilience bound of n ≥ 3f +2p+1 by Martin and Alvisi. Our protocol, Mangrove,104

matches this bound and thus achieves optimal resilience in this setting.105

Parallel Execution. Parallelization is a natural way to improve scalability and can be applied106

at various levels in blockchains. Parallel execution [31, 10, 26, 43] aims to accelerate the107

local execution of transactions by the validator across cores, while distributed execution [36]108

leverages multiple machines per validator. Both approaches concentrate on improving local109

execution, whereas our work targets the elimination of the bottleneck of the single agreement110

mechanism.111

Sharding. Sharding [3, 9, 24, 4] is a technique of splitting the system state among disjoint112

groups of validators called shards. As shown in [4], while sharding is efficient when a113

transaction only accesses a part of the system within one shard, it can result in high latency114

or abortion rate [5] for transactions that span multiple shards, especially for highly contested115

actors. In Mangrove, “popular” actors do not slow the progress of the whole system.116

Instead, actors progress independently, ensuring that the system’s overall performance117

remains unaffected by the contention of individual actors.118

3 Replicated Actor Model119

Today, it is common for blockchains to define a total order over all transactions [42, 18].120

Thus, the ensuing sequential and atomic execution of transaction bundles is often the121

only considered execution model. The obtained atomic composability property allows for122

(potentially counterintuitive) applications such as flash loans [44].123

In this work, we challenge the status quo of this execution model. To this end, we define124

the replicated actor model, which foregoes global sequential ordering and is more suited125

for parallelism. In Appendix A we discuss the model’s expressiveness and even propose an126

extension, which optionally allows for the reintroduction of (targeted) atomic composability.127

Our model is closely related to the object model of Sui [16]. We differentiate between the128

following four types of components.129

Actors. A user actor is associated with a digital signature key pair. We say that a key pair130

(user) controls a user actor. Reactive actors are analogous to smart contracts and can be131

4 Mangrove: Fast and Parallelizable State Replication for Blockchains

thought of as a Turing machine with arbitrary state that can be changed via computations.132

Actors can emit new transactions.133

Objects. Owned objects are objects owned by some actor, e.g. gas, tokens, or NFTs. Every134

type of owned object is associated with a set of actions that can be performed over it. These135

actions are specified in a global read-only object containing the type definition. For example,136

for gas objects or tokens, those actions may include splitting and merging. Ownership of137

objects can be transferred. Assume actor A owns a gas object O worth 10 coins and wants138

to transfer 2 coins to actor B. Then A might perform split([8, 2]) on O to receive two139

objects worth 8 and 2 coins respectively, and transfer the latter to B.140

Users. A user is an external entity associated with a key pair, who interacts with the141

system by creating and giving instructions to actors through their user actors.142

Validators. The validators are the network participants in charge of running Mangrove.143

Validators participate in the broadcast and consensus algorithms and are responsible for144

keeping a consistent state of the system by maintaining the ownership records of each owned145

object and the state of actors.146

3.1 Validators147

We consider a set of n validators, denoted by V, which we assume to be known to all users148

and validators. We require that at most f of them are Byzantine [39]. We call non-Byzantine149

validators honest. Additionally, under optimistic conditions and when less than p validators150

are Byzantine, a transaction can be committed in two communication steps. Mangrove151

assumes the participation of n ≥ 3f + 2p + 1 validators.152

Each validator maintains a dedicated state associated with each actor in the system which153

we call an entity. We denote an entity of validator V corresponding to an actor A with V.A.154

Different entities may be located on different machines at the validator’s discretion and can155

communicate with each other.156

Entities of different validators communicate via Outer Links, and entities within a validator157

communicate via Inner Links. The Inner and Outer Links implement Perfect Links [19] and158

expose the following interface:159

- function Send(m, A): sends message m to A

- callback Deliver(m, A): fired upon receiving message m from A
160

Apart from direct messages, validators use two agreement primitives: Parallel Optimistic161

Agreement (POA), which is used for transactions involving reactive actors, and Parallel162

Optimistic Broadcast (POB), which is used for transactions that involve only user actors.163

Both primitives contain a fast path, consisting of (i) a broadcast step and (ii) a single voting164

step. In case of a failure (and only in case of failure), the fast path is followed by a failover165

mechanism (slow path) that ensures safety and liveness. Both primitives run in consecutive166

instances and are described in Section 5 and Appendix C respectively.167

Through these agreement primitives, we ensure that honest validators have a consistent168

view of the state of each reactive actor and the ownership of owned objects.169

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 5

3.2 Transactions170

Every transaction in our system consumes owned objects, meaning that once a transaction is171

executed, the objects it consumed no longer exist. Every transaction would consume a gas172

object to pay for computation fees, the economics of which we leave outside the scope of this173

work. Every transaction has a Code field, that specifies a list of commands to perform when174

a transaction is being executed. These commands can be (a) actions over owned objects175

a transaction consumed or created, (b) creating owned objects, (c) creating new actors,176

and (d) issuing new transactions. The model differentiates between user and reactive actor177

transactions.178

User Actor Transactions. Users can instruct a user actor they control to issue a transaction.179

Transactions issued by the user actor are categorized based on the presence of a recipient. If180

a transaction does not have a recipient, it is referred to as a UA transaction. If it does have181

a recipient, which is always a reactive actor, it is referred to as a UA-RA transaction.182

A UA transaction is of the form ⟨A, sn, [O1, . . . , Ok], Code⟩ where A, a user actor, is the183

sender, sn ∈ N is a sequence number and it consumes owned objects O1, . . . , Ok (that must184

be owned by A) and performs actions specified in Code over them. Code is allowed to create185

new owned objects at other user actors (arbitrarily many of those), but not reactive actors.186

It may also spawn new reactive actors. The reason a UA transaction can create new owned187

objects at user actors but not reactive actors is that the former is commutative whereas the188

latter requires agreement on the order.189

UA-RA transactions are of the form ⟨A, sn, X, [O1, . . . , Ok], Codepre, Call, Codepost⟩ in-190

stead. That is, they additionally include a recipient X that must be a reactive actor and a191

Call field specifying a function call to perform on X. A reactive actor might issue its own192

transactions as a result of processing a Call. Codepre can operate over the consumed objects193

and prepare them for input into the function call. Codepost can instead operate over the194

objects returned by the function call and, for example, decide whether and which additional195

transactions to spawn based on them. The pre- and post-processing Code blocks may spawn196

transactions of their own and can be executed in parallel to any other transaction since they197

do not have access to the internal state of the reactive actor.198

▶ Definition 1 (Conflicting Transactions). Two user transactions tx and tx′ with tx ̸= tx′
199

and tx.sender = tx′.sender are said to be conflicting if tx.sn = tx′.sn.200

Figure 1 System entities. The validators V1 and V2 maintain the user actors corresponding to
users A and B, and reactive actors, e.g., X and Y . The message m1 is sent from V1.A to V1.B via
Inner Links and a message m2 to V2.A via Outer Links. Entities can be spread across multiple
machines and organized independently by each validator.

6 Mangrove: Fast and Parallelizable State Replication for Blockchains

Users are responsible for issuing non-conflicting transactions with consequent sequence201

numbers. Moreover, users are also responsible for making sure that a user actor they are202

issuing a transaction for will eventually own the objects consumed by the transaction. We203

highlight that a user failing to adhere to these requirements has no global impact on the204

system, but just on the actors controlled by them.205

Reactive Actor Transactions. Unlike user actors, reactive actors only issue transactions as206

a potential result of executing an incoming transaction.207

A reactive actor transaction (RA-RA) is always sent to another reactive actor and shares208

the same structure as a UA-RA transaction, except it omits the sequence number. This209

omission is because the order of outgoing RA-RA transactions is determined by the order210

of incoming transactions. The sender is the reactive actor that produced the transaction.211

Upon receiving either a UA-RA or an RA-RA transaction, a reactive actor might perform212

computation to change its state based on the current state and Call data specified in the213

transaction.214

3.3 Network and Computation Model215

The partial synchrony settings of Global Stabilization Time (GST) and Unknown Delta [27]216

constitute the gold standard of assumptions under which modern blockchains are designed217

to operate. Mangrove is designed to function in the GST network model, i.e., correctness218

is ensured even in complete asynchrony, and liveness is achieved after an arbitrary point219

in time called Global Stabilization Time, or GST for short. Before GST, messages can220

be delayed with arbitrary delay, but every message sent at time t must be delivered by221

max(t + ∆, GST + ∆). The parameter ∆ is assumed to be known and fixed.222

We assume the time required for local computations and messaging internal to a validator223

to be negligible.224

4 Mangrove Overview225

The core principle behind Mangrove is to have a dedicated agreement mechanism per actor.226

In practice, agreement is achieved differently for the different types of transactions.227

For user actors, validators should agree on outgoing transactions for each given sequence228

number. This, paired with sequential transaction execution, guarantees them a consistent229

view of the system [22]. To this end, UA transactions are disseminated through Parallel230

Optimistic Broadcast (POB), and the agreement follows either from the fast path if the231

optimistic conditions are met, or from the failover mechanism in case they are not.232

Instead, for reactive actors, the validators must agree on incoming transactions. Thus,233

both UA-RA and RA-RA transactions go through the Parallel Optimistic Agreement234

(POA) mechanism of the reactive actor of the transaction recipient. The consecutive235

POA instances provide a total order of incoming transactions to execute on a reactive236

actor. Importantly, since agreement is inherited from the POA properties, a dedicated237

agreement on the user actor can be optimistically skipped, thus also providing two step238

finalization latency in the fast path.239

Since POB is simpler and less general than POA, we describe POA in Section 5 and POB240

in Appendix C. The complete process for handling UA and UA-RA transactions is detailed241

in Section 7.2, while the processing of RA-RA transactions is described in Section 7.3.242

Both POA and POB were designed with three main goals in mind:243

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 7

Figure 2 Mangrove UA-RA transaction processing. First, user A broadcasts tx1 to all Vi.A, who
relay it to Vi.X (full arrows). Then all Vi.X propose tx1 and other transactions they have to X.POA
(dashed arrows). Finally, when tx1 is included in a block decided by X.POA, all Vi.X notify Vi.A of
the decision (dotted arrows).

(i) They have a low good-case latency, that is, they terminate in two communication steps244

under optimistic conditions.245

(ii) A system running multiple instances in parallel can be sure that at most one transaction246

for each pair of user and sequence number is decided across all instances.247

(iii) A system running multiple instances in parallel does not suffer bottlenecks.248

Wait-Free Locking.249

To achieve these goals, the POA and POB instances do not communicate directly but instead250

obtain locks via Inner Links to the user actor entities introduced in Section 3. These entities251

provide security against conflicting transactions by (locally) tying a sequence number to a252

transaction. To describe this process more precisely, we introduce the following notation,253

also used throughout the remainder of this work:254

Notation. U denotes an arbitrary user, V.A denotes an arbitrary user actor entity of255

an arbitrary validator, and V.X denotes an arbitrary reactive actor entity of an arbitrary256

validator.257

User actor entities maintain the following two data structures.258

▶ Definition 2 (Slow-Path Locked). Each V.A maintains a map SPLocked, mapping sequence259

numbers to transactions. If V.A.SPLocked[tx.sn] = tx, we say that V.A SP-locked (slow-path260

locked) tx.261

▶ Definition 3 (Fast-Path Locked). Each V.A maintains a map FPLocked, mapping sequence262

numbers to transactions. If V.A.FPLocked[tx.sn] = tx, we say that V.A FP-locked (fast-path263

locked) tx.264

Intuitively, SP-locking a transaction ensures that V.X will never propose a conflicting265

transaction in the slow path, whereas FP-locking a transaction ensures V.X will never vote266

for a proposal containing a conflicting transaction in the fast path. However, note that V267

can FP-lock tx and SP-lock tx′ with tx and tx′ being conflicting. That might happen in268

a case V received tx from a user but received a lot of votes for a proposal containing tx′,269

which “forces” V to propose tx′ in the slow path.270

We describe the interplay between the different building blocks of Mangrove and their271

correctness in Section 7 and in Appendix F.272

8 Mangrove: Fast and Parallelizable State Replication for Blockchains

5 Parallel Optimistic Agreement273

This section describes the algorithm used by validators to agree on a block B of transactions274

to be executed at a reactive actor X. For every validator V and reactive actor X, V.X has a275

pool, that is, a set of transactions that V.X wants to execute on X. This algorithm is defined276

assuming a designated validator L, called leader. The Parallel Optimistic Agreement (POA)277

primitive has an interface consisting of:278

- function Initiate(k, pool): start the k-th instance with a transaction pool

- callback Decide(k, B): decide a block B in k-th instance
279

First, in the fast path the leader broadcasts its proposed block and all other validators280

cast their votes. A validator decides on a block once it receives enough votes, a process we281

refer to as a fast-path decision. Following the fast path, and only if necessary, a slow path282

(whose components are described in Section 6) is initiated to ensure liveness in cases where283

users or the leader misbehave or the network experiences asynchrony. We refer to a decision284

made in the slow path as a slow-path decision.285

Figure 3 POA scheme. In the fast path (blue rectangle), the leader (in this case V1) broadcasts
their proposal B. Then, validators cast their vote on the proposal, and append their own transactions
Bfb. In case the fast path fails, validators participate in the slow path (orange box), which consists
of one instance of Quorum Consensus and multiple instances of Transaction Agreement.

5.1 Properties286

A single instance of POA satisfies the following properties.287

▶ Property 4 (Agreement). If two honest validators decide blocks B and B′ respectively, then288

B = B′.289

▶ Property 5 (Termination). Every honest validator eventually decides a block.290

▶ Property 6 (Fast Termination). If L is honest, at most p validators misbehave, the system291

has reached GST, and for every UA-RA transaction tx ∈ L.X.pool the user who issued tx is292

honest, then all honest processes decide and stop sending messages in two communication293

steps.294

▶ Definition 7 (Emitted transaction). We say that a transaction tx is emitted if it is either295

(i) a user transaction from an actor A signed and broadcast at the moment where the whole296

system is in the state such that there exists an honest validator V.A who will eventually297

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 9

execute a transaction with a sequence number tx.sn − 1 and who will eventually own all298

objects consumed by tx or (ii) produced by a reactive actor at an honest validator.299

▶ Property 8 (Validity). (I) If a transaction tx is present in the pool of all honest validators300

at the start of the protocol and L is honest, then tx is included in the decided block. (II) If a301

transaction is included in the decided block, it was emitted.302

▶ Property 9 (No Conflict). Conflicting transactions cannot be simultaneously decided within303

POA instances, even if those correspond to different reactive actors.304

5.2 Multi-Instancing305

Leader Oracle. POA is designed to run in multiple instances, and to ensure liveness of306

the system, it is essential to have honest leaders. We assume all validators have access to a307

common leaderOracle function, which given an instance number outputs a leader for that308

instance. We require this function to output an honest leader infinitely often. This can309

be achieved by a random choice (assuming a common random source) or by a round-robin310

approach.311

Switching instances. A validator who decides in a POA instance at time t, broadcasts312

their decision along with the proof (in practice it can be a single aggregate signature). By313

time max(t + ∆, GST + ∆), every honest validator will receive a proof. Upon receiving such314

a valid proof, validators rebroadcast the proof and decide. This mechanism allows for the315

following property.316

▶ Property 10 (Common Termination). If an honest validator decides in the k-th POA instance317

at time t, then every honest validator decides in this instance by at most max(t+∆, GST +∆).318

The following property guarantees the progress of each validator.319

▶ Property 11 (Multi-Termination). For all honest validators V and reactive actors X, V.X320

eventually decides in the k-th instance of POA for X.321

5.3 Algorithm322

At the start of the protocol, L.X forms a block consisting of all tx ∈ L.X.pool and broadcasts323

it. Upon receiving a block B an honest validator V.X broadcasts its vote plus its own block324

(called a fallback block) consisting of all transactions tx ∈ V.X.pool. The vote is for B in case325

(i) for every UA-RA transaction tx ∈ B, tx is correctly signed, (ii) V.A manages to FP-lock326

tx, ensuring there is no conflicting transaction and tx can be executed and (iii) V emitted327

every RA-RA transaction from B. Otherwise, V.X broadcasts a negative vote.328

If at any time a validator V.X receives n− p votes for some block B, V.X decides B, we329

call it a fast-path decision. Upon fast-path deciding, a validator broadcasts a proof that330

B can be safely decided (in practice, this can be an aggregated threshold signature [47] of331

n− p votes). In case a validator does not receive n− p votes in 3∆ time or those votes are332

for different blocks, they wait until they have n− f votes and propose in the slow path.333

The slow path consists of two steps: Quorum Consensus (described in detail in 6.1), fol-334

lowed by the parallel Transaction Agreements (described in 6.2) for every UA-RA transaction335

decided in Quorum Consensus. A validator proposes to Quorum Consensus according to the336

following cases.337

10 Mangrove: Fast and Parallelizable State Replication for Blockchains

Algorithm 1 Parallel Optimistic Agreement on V.X (High Level)

1: Uses: Outer Links, Inner Links, Quorum Consensus, Transaction Agreement

2: function Initiate(k, pool) ▷ For Leader
3: proposalBlock ← pool

4: Broadcast via Outer Links proposalBlock

5: upon once time ≤ 3∆ and received proposal B do
6: for all tx : UA-RA transaction ∈ B do ▷ In parallel
7: A← tx.sender

8: Request V.A via Inner Links to FP-lock tx

9: upon once all V.A responded to an FP-lock request do
10: if all FP-locks are successful then V ote← B

11: else V ote← ⊥
12: fallBackBlock ← pool

13: Broadcast via Outer Links ⟨V ote, fallBackBlock⟩

14: upon once exists a block B with at least n− p votes do
15: Decide B in POA

16: upon once Time > 3∆ and exists block B′ with at least n− p− 2f votes do
17: for all tx : UA-RA transaction ∈ B′ do ▷ In parallel
18: A← tx.sender

19: Request V.A via Inner Links to SP-lock tx

20: upon once all V.A responded to an SP-lock request and all SP-locks succeeded do
21: Propose B′ to Quorum Consensus

22: upon once Time > 3∆ and (received n−f votes) and (there is no block with n−p−2f

votes or not all SP-Locks succeeded) do
23: B′′ ← all transactions present in at least n− 2f fallback blocks
24: Attempt to (analogously) SP-lock all UA-RA transactions in B′′

25: B′′ ← B′′ \ {transactions that failed to SP-lock}
26: Propose B′′ to Quorum Consensus

27: upon event ⟨decide in Quorum Consensus | Bqc⟩ do
28: for all tx : UA-RA transaction ∈ Bqc do ▷ In parallel
29: A← tx.sender

30: Request V.A via Inner Links to propose tx to Transaction Agreement

31: upon once all V.A responded to an Transaction Agreement request do
32: Fails← all UA-RA transactions from Bqc which V.A did not decide in Transaction

Agreement
33: BP OA ← Bqc \ Fails

34: Decide BP OA in POA

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 11

Algorithm 2 Parallel Optimistic Agreement on V.A (High Level)

1: upon event ⟨FP-lock request | tx, X⟩ do
2: if a conflicting transaction is FP-locked then respond fail to V.X

3: if execution preconditions for tx are not met then respond fail to V.X

4: Respond success to V.X

5: upon event ⟨SP-lock request | tx, X⟩ do
6: if a conflicting transaction is SP-locked then respond fail to V.X

7: Respond success to V.X

8: upon event ⟨Transaction Agreement request | tx, X⟩ do
9: Try to SP-Lock tx

10: Propose an SP-Locked transaction with sequence number tx.sn to Transaction Agree-
ment instance tx.sn of A

11: upon event ⟨decide in Transaction Agreement | tx′, sn⟩ do
12: if tx′ = tx then respond “Transaction Agreement sn Success” to V.X

13: else respond “Transaction Agreement sn Failure” to V.X

(i) There was some block B for which V.X received at least n− p− 2f votes. In this case,338

it is possible that some other validator received n − p votes for B, so V.X attempts339

to SP-lock all UA-RA transactions in B, and if it succeeds, proposes B to Quorum340

Consensus.341

(ii) If either there was no block for which V.X saw n− p− 2f votes or V.X was not able342

to SP-lock some transaction in the block, V.X forms a block to propose to Quorum343

Consensus based on the fallback blocks received.344

In particular, a transaction tx is included in the Quorum Consensus proposal of V.X if345

and only if V.X saw tx in at least n− 2f fallback blocks and (in the UA-RA case) was able346

to SP-lock tx.347

After deciding a block B in the Quorum Consensus, for each UA-RA transaction tx ∈ B348

from user A, V.X sends tx to V.A, who proposes SP-Locks and proposes it to A’s Transaction349

Agreement instance number tx.sn. If a conflicting transaction tx′ was SP-Locked before,350

then tx′ is proposed.351

Upon deciding in the Transaction Agreement instance number tx.sn, V.A notifies V.X352

whether tx was decided or not. After receiving all such notifications, V.X decides on the353

block BP OA, which is formed from B but omitting those UA-RA transactions which were354

not decided in their corresponding Transaction Agreement instances.355

Intuition. The reason to broadcast a fallback block is for verifiers to know the pools of each356

other, which would allow for a “good” proposal to Quorum Consensus in case the fast path357

fails. More precisely, knowing each other’s pools, verifiers will propose “popular” transactions358

to Quorum Consensus, making them committed in the slow path and thus ensuring liveness.359

The 3∆ threshold consists of ∆ for the leader’s broadcast, ∆ for verifiers’ votes, and ∆360

for the possible shift in times at which the leader and verifier initiate the primitive.361

One needs a Transaction Agreement after Quorum Consensus to preclude committing362

conflicting UA-RA transactions on different reactive actors. Note that if the fast path363

12 Mangrove: Fast and Parallelizable State Replication for Blockchains

succeeds, it ensures that no conflicting transaction can be committed; hence, we only need364

the Transaction Agreement in case the fast path fails.365

We provide a high-level pseudocode for POA for a reactive actor X in Algorithms 1 and 2.366

For a precise description, please see Appendix D.367

6 Slow Path368

In this section, we describe the two components of the slow path of POA and POB: Quorum369

Consensus and Transaction Agreement.370

6.1 Quorum Consensus371

- function Propose(k, B): start the k-th instance with proposal B

- callback Decide(k, B): decide a block B in k-th instance
372

A Quorum Consensus is a partial-synchrony consensus algorithm, meaning it exposes an373

interface of proposing and deciding a block, and it satisfies Agreement, Termination, and374

Quorum Validity:375

▶ Property 12 (Quorum Validity). (I) If a transaction tx is such that tx is in the proposal376

of every honest validator, then tx is included in the decided block.377

(II) If some transaction tx is included in the decided block, then tx is in the proposal of378

at least n− 3f honest validators.379

▷ Claim 13. There exists an algorithm that solves consensus with Quorum Validity.380

Proof. The proof applies Theorem 5 and Definition 2 of [21] to Quorum Validity. Throughout381

the proof we use terms and notation from [21].382

Consider some input configuration c ∈ In−f . We claim that a block B consisting of383

transactions that are present in at least n−2f proposals in In−f belongs to
⋂

c′∈sim(c) val(c′).384

Consider an input configuration c′ with at least n− f elements (if there are less than n− f385

elements in c′, then any block is admissible). We deduce that |π(c)∩π(c′)| ≥ n−2f , therefore,386

for each tx ∈ B, tx is present in at least n− 3f proposals of c′, therefore, can be included387

in the block decided for c′. Conversely, if some transaction is present in every proposal388

of c′, then it is present in at least n − 2f proposal of c and hence included in B. Thus,389

B ∈ val(c′). ◀390

In Appendix B we discuss how modern high-throughput BFT protocols could be adapted391

to instantitate practical high-throughput Quorum Consensus.392

6.2 Transaction Agreement393

Transaction Agreement is a simple consensus primitive used to provide agreement on which394

transaction tx should be committed at sequence number sn for a given user A. Though it is395

possible to agree on this proactively, i.e., prior to submitting a transaction to POA, that would396

imply an additional latency for a UA-RA transaction under optimistic conditions, hence,397

Mangrove does it retroactively instead, i.e., after the decision in the Quorum Consensus398

has been made.399

- function Propose(tx): propose transaction tx

- callback Decide(tx): decide a transaction tx
400

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 13

The Transaction Agreement primitive should satisfy the specification of a partially401

synchronous multi-valued Strong Byzantine Agreement, namely:402

Every process can propose and decide a (not necessarily binary) value.403

Agreement. If two honest processes decide v and v′ respectively, then v = v′.404

Quorum Validity. If all honest processes propose the same value, only that value can be405

decided. Furthermore, if the value is decided, it was proposed by at least n− 3f honest406

validators.407

Termination. Given a partially synchronous network, every correct process eventually408

decides.409

This agreement primitive can be implemented as a special case of Quorum Consensus410

with blocks of size one.411

7 Transaction Processing412

7.1 Transaction Execution Properties413

First, we informally present several properties of transaction processing in Mangrove.414

These are grouped into correctness properties, which are common among many distributed415

systems, Fast Execution properties, demonstrating the ability to process transactions with low416

latency, and Parallelization properties, showing the ability to make progress independently417

at different actors. Full formal definitions as well as proofs of all properties are given in418

Appendix F.419

Correctness Properties. Reactive actors adhere to the Agreement, Validity, Total Order,420

and Integrity properties of Total Order Broadcast [25], with respect to emission and execution421

of transactions. User actors instead follow the Agreement, Validity, and Integrity properties422

of Byzantine Reliable Broadcast [17].423

Fast Execution Properties. Mangrove is designed so that under optimistic conditions,424

transactions are executed with low latency. Table 1 summarizes conditions needed for a425

transaction tx of a given type to be executed fast. Those conditions are: Honest author (in426

case of user transactions) — the user who issued a transaction is honest, synchrony — the427

system is after GST, honest leader (in case of UA-RA or RA-RA with recipient X) — there428

exists an honest validator L who will start a POA instance for X as a leader as soon as it has429

tx in its pool, good pool — for every UA-RA transaction tx′ ∈ L.X.pool a user who emitted430

tx′ is honest. The latency column shows how many communication steps are needed before431

every honest validator executes tx. The resilience column shows how many misbehaving432

validators the system can tolerate.433

Transaction
Type

Honest
Author Synchrony Honest

Leader
Good
Pool Latency Resilience

UA ✓ ✓ 2δ ≤ p

RA-RA ✓ ✓ ✓ 2δ ≤ p

UA-RA ✓ ✓ ✓ ✓ 2δ∗ / 3δ† ≤ p

Table 1 Conditions and execution latency for the fast-path of different transaction types. Latency
across validators is denoted δ, while latency within a validator is ignored. ∗ When emitted by the
leader. † For other validators.

14 Mangrove: Fast and Parallelizable State Replication for Blockchains

There are instances where the good pool condition is not met due to user misbehavior,434

preventing fast transaction execution. Specifically, this occurs only when honest validators435

see conflicting transactions (Line 14, Algorithm 6). In such cases, an honest validator will436

have evidence of the user’s misbehavior (namely, two signed conflicting transactions) and437

may initiate punishment (e.g. destroy the gas object). We emphasize that users can only438

affect the liveness of the fast path and in this case, all honest transactions are still committed439

in the slow path (that is, Validity I of POA holds no matter the user’s misbehavior).440

Parallelization Property. Classical blockchain systems address the double-spending problem441

[42] by totally ordering transactions. While effective, this introduces significant redundancy442

because many transactions are non-conflicting, meaning they can be executed in any order443

without affecting the outcome and therefore do not require total ordering.444

Mangrove achieves optimal parallelization by ordering only the transactions that require445

it. It avoids ordering UA transactions entirely since these only create objects at user actors,446

and such operations are commutative. For reactive actor transactions, Mangrove maintains a447

partial order by keeping a separate ordered chain for each reactive actor. For example, given448

two reactive actors X and Y and a set of transactions {txX
1 , . . . , txX

k , txY
1 , . . . , txY

l } (where449

txA
i is a transaction with receiver A), Mangrove maintains two ordered sets {txX

1 , . . . , txX
k }450

and {txY
1 , . . . , txY

l } but does not impose an order between these sets.451

For a system with a transaction set T and for a reactive actor X, denote TX ⊆ T the452

subset of transactions with X as a receiver. The longest ordered chain in Mangrove is then453

max
X∈RAs

|TX |, whereas in classical systems like Bitcoin and Ethereum, the chain length is |T |.454

This length, max
X∈RAs

|TX |, is optimal unless additional assumptions are made about reactive455

actor behavior.456

The creation of multiple short chains is beneficial in two ways. First, each chain can be457

maintained by a separate machine (running V.X) at each validator. This allows throughput458

to be scaled horizontally. Secondly, the throughput of an application (corresponding to an459

RA actor) depends solely on the length of its associated chain, and doesn’t degrade when460

other applications experience high load.461

7.2 User Transactions462

Each user keeps a sequence number of the last issued transaction for each user actor it463

controls. When issuing a new transaction tx from a user actor A, a user must first check that464

A has all owned objects consumed by tx. If a user fails to do so, tx may never be executed,465

precluding all consecutive transactions from A. Note, though, that this only halts A and not466

the rest of the system. After a user checks owned objects for tx, it assigns a new sequence467

number to it, signs it, and broadcasts it to all V.A-s using Parallel Optimistic Broadcast. In468

Parallel Optimistic Broadcast, a user sends tx to all V.A-s, those attempt to FP-lock it, and469

if the FP-lock is successful, broadcast a vote for tx. Once a validator obtains n− p votes470

tx, it fast-path decides tx, broadcasts a proof and stops sending messages. When unable471

to decide in the fast-path, validators invoke Transaction Agreement to ensure safety and472

liveness in case of asynchrony and validators’ misbehavior. For pseudocode, see Appendix C.473

For a UA transaction tx from A with a sequence number sn and consumed objects474

O1, . . . , Ok, it is executed if (i) tx is decided in Parallel Optimistic Broadcast, (ii) a transaction475

from A with a sequence number sn − 1 is executed and (iii) A owns O1, . . . , Ok. See the476

pseudocode for UA transactions in Algorithm 3.477

For a UA-RA transaction tx from A to X with a sequence number sn and consumed478

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 15

Algorithm 3 UA Transaction Processing

1: Uses: Parallel Optimistic Broadcast pob

2: upon event ⟨pob[A, k].Decide | sender, tx⟩ do ▷ On V.A

3: if k = tx.sn and VerifySig(A, tx) then
4: pending ← pending ∪ {tx}
5: upon exists tx ∈ pending : tx is UA and executed[tx.sn − 1] and

tx.consumedObjects ⊆ ownedObjects do ▷ On V.A

6: pending ← pending \ {tx}
7: effects← VM.Execute(tx.Code)
8: ownedObjects← ownedObjects \ tx.consumedObjects ∪ effects.createdObjects

9: executed[tx.sn]← true

objects O1, . . . , Ok, V.A sends it to V.X if tx is correctly signed by A, V.A have not seen479

any other transactions with sequence number sn, and (ii) and (iii) hold. tx is executed as480

soon as it is decided in the POA of X. Note that execution crucially does not rely on (ii)481

and (iii) to hold. We would like to highlight here that UA-RA transactions do not use an482

agreement mechanism on the sending user actor. See the pseudocode for UA-RA transactions483

in Algorithm 4.484

Algorithm 4 UA-RA Transaction Processing

1: Uses: Outer Links ol, Inner Links il, POA poa

2: upon event ⟨Emit UA-RA Transaction | A, X, [O1, . . . , Ok], Code, Call⟩ do ▷ On U

3: if not executed[A][sns[A]− 1] or {O1, . . . , Ok} ̸⊆ ownedObjects[A] then
4: return Error(“Not possible to emit”)
5: tx← Sign(⟨A, sns[A], X, [O1, . . . , Ok], Code, Call⟩)
6: sns[A]← sns[A] + 1
7: for all V ∈ V do trigger ⟨ol.Send | V, tx⟩
8: upon event ⟨ol.Deliver | tx : UA-RA Transaction⟩ do ▷ On V.A

9: if not VerifySign(A, tx) or FPLocked[tx.sn] ̸= ⊥ then return
10: FPLocked[tx.sn]← tx

11: await executed[tx.sn− 1] and tx.consumedObjects ⊆ ownedObjects

12: trigger ⟨il.Send | tx.receiver, tx⟩
13: upon event ⟨il.Deliver | tx, A⟩ do ▷ On V.X

14: if tx /∈ executed then pool← pool ∪ {tx}

7.3 Reactive Actor Transactions485

When a reactive actor V.X decides a block, it starts executing transactions of that block in486

a deterministic order. Some transactions might create outgoing transactions when executed.487

Upon creating an outgoing transaction tx that consumes owned objects O1, . . . , Ok, V.X488

checks its owned objects. If it owns all required objects, V.X sends tx to the receiver via489

inner links, and receiver adds tx to the pool. If some objects that transaction consumes are490

missing, then this transaction is immediately dropped and has no effect. For the pseudocode,491

please see Algorithm 7 in Appendix E.492

16 Mangrove: Fast and Parallelizable State Replication for Blockchains

8 Discussion and Outlook493

In general, a transaction may result in a cascade of multiple subsequent transactions. Classical494

systems guarantee that such cascades appear to be executed atomically and in isolation.495

Moreover, they immediately execute the whole cascade of a transaction after agreeing on the496

initial transaction, whereas Mangrove (in the worst case) performs a separate agreement497

for each individual transaction in the cascade. Therefore, in the case of deep cascades, we498

expect classical solutions to complete the execution of the cascade faster. Empirical study of499

the workload types under which either approach performs better is subject to future research.500

Finally, we acknowledge that the bit complexity and message complexity of POA are501

relatively high. However, the primary objective of this work is to demonstrate the feasibility502

of a system that supports smart contracts while enabling maximal parallelization. Optimizing503

these complexities is an important consideration, which we leave as future work.504

References505

1 Ittai Abraham, Guy Gueta, Dahlia Malkhi, and Jean-Philippe Martin. Revisiting fast practical506

byzantine fault tolerance: Thelma, velma, and zelma. arXiv preprint arXiv:1801.10022, 2018.507

2 Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of byzantine508

broadcast: A complete categorization. In Proceedings of the 2021 ACM Symposium on509

Principles of Distributed Computing, pages 331–341, 2021.510

3 Ramesh Adhikari and Costas Busch. Lockless blockchain sharding with multiversion control.511

In International Colloquium on Structural Information and Communication Complexity, pages512

112–131. Springer, 2023.513

4 Ramesh Adhikari, Costas Busch, and Miroslav Popovic. Fast transaction scheduling in514

blockchain sharding. arXiv preprint arXiv:2405.15015, 2024.515

5 Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George Danezis.516

Chainspace: A sharded smart contracts platform. arXiv preprint arXiv:1708.03778, 2017.517

6 Timothé Albouy, Emmanuelle Anceaume, Davide Frey, Mathieu Gestin, Arthur Rauch, Michel518

Raynal, and François Taïani. Asynchronous bft asset transfer: Quasi-anonymous, light, and519

consensus-free. arXiv preprint arXiv:2405.18072, 2024.520

7 Orestis Alpos, Christian Cachin, Giorgia Azzurra Marson, and Luca Zanolini. On the521

synchronization power of token smart contracts. In 2021 IEEE 41st International Conference522

on Distributed Computing Systems (ICDCS), pages 640–651. IEEE, 2021.523

8 Orestis Alpos, Bernardo David, and Dionysis Zindros. Pod: An optimal-latency, censorship-free,524

and accountable generalized consensus layer. arXiv preprint arXiv:2501.14931, 2025.525

9 Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. Sharper: Sharding526

permissioned blockchains over network clusters. In Proceedings of the 2021 international527

conference on management of data, pages 76–88, 2021.528

10 Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit Somani. An529

efficient framework for optimistic concurrent execution of smart contracts. In 2019 27th530

Euromicro International Conference on Parallel, Distributed and Network-Based Processing531

(PDP), pages 83–92. IEEE, 2019.532

11 Balaji Arun, Zekun Li, Florian Suri-Payer, Sourav Das, and Alexander Spiegelman. Shoal++:533

High throughput DAG BFT can be fast! arXiv preprint arXiv:2405.20488, 2024.534

12 Kushal Babel, Andrey Chursin, George Danezis, Lefteris Kokoris-Kogias, and Alberto Son-535

nino. Mysticeti: Low-latency DAG consensus with fast commit path. arXiv preprint536

arXiv:2310.14821, 2023.537

13 Mathieu Baudet, George Danezis, and Alberto Sonnino. Fastpay: High-performance byzantine538

fault tolerant settlement. In Proceedings of the 2nd ACM Conference on Advances in Financial539

Technologies, pages 163–177, 2020.540

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 17

14 Rida Bazzi and Sara Tucci-Piergiovanni. The fractional spending problem: Executing payment541

transactions in parallel with less than f+ 1 validations. In Proceedings of the 43rd ACM542

Symposium on Principles of Distributed Computing, pages 295–305, 2024.543

15 Sam Blackshear, Evan Cheng, David L Dill, Victor Gao, Ben Maurer, Todd Nowacki, Alis-544

tair Pott, Shaz Qadeer, Dario Russi Rain, Stephane Sezer, et al. Move: A language with545

programmable resources. Libra Assoc, page 1, 2019.546

16 Sam Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris Kokoris-547

Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto Sonnino, et al. Sui lutris:548

A blockchain combining broadcast and consensus. arXiv preprint arXiv:2310.18042, 2023.549

17 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,550

75(2):130–143, 1987.551

18 Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized application552

platform, 2014. URL: https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_553

Whitepaper_-_Buterin_2014.pdf.554

19 Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to reliable and secure555

distributed programming. Springer Science & Business Media, 2011.556

20 Margarita Capretto, Martín Ceresa, Antonio Fernández Anta, Antonio Russo, and César557

Sánchez. Setchain: Improving blockchain scalability with byzantine distributed sets and558

barriers. In 2022 IEEE International Conference on Blockchain (Blockchain), pages 87–96.559

IEEE, 2022.560

21 Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira. On561

the validity of consensus. In Proceedings of the 2023 ACM Symposium on Principles of562

Distributed Computing, pages 332–343, 2023.563

22 Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti, Matej564

Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, and Athanasios565

Xygkis. Online payments by merely broadcasting messages. In 2020 50th Annual IEEE/IFIP566

International Conference on Dependable Systems and Networks (DSN), pages 26–38. IEEE,567

2020.568

23 George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal569

and Tusk: a DAG-based mempool and efficient bft consensus. In Proceedings of the Seventeenth570

European Conference on Computer Systems, pages 34–50, 2022.571

24 Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin, and Beng Chin572

Ooi. Towards scaling blockchain systems via sharding. In Proceedings of the 2019 international573

conference on management of data, pages 123–140, 2019.574

25 Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast575

algorithms: Taxonomy and survey. ACM Computing Surveys (CSUR), 36(4):372–421, 2004.576

26 Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, and Eric Koskinen. Adding concurrency577

to smart contracts. In Proceedings of the ACM Symposium on Principles of Distributed578

Computing, pages 303–312, 2017.579

27 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial580

synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.581

28 Aptos Foundation. Aptos blockchain, 2024. Accessed: 2024-10-11. URL: https://582

aptosfoundation.org.583

29 Sui Foundation. Sui blockchain, 2024. Accessed: 2024-10-11. URL: https://sui.io.584

30 Davide Frey, Lucie Guillou, Michel Raynal, and François Taïani. Process-commutative585

distributed objects: From cryptocurrencies to byzantine-fault-tolerant crdts. Theoretical586

Computer Science, 1017:114794, 2024.587

31 Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun Li, Dahlia588

Malkhi, Yu Xia, and Runtian Zhou. Block-STM: Scaling blockchain execution by turning589

ordering curse to a performance blessing. In Proceedings of the 28th ACM SIGPLAN Annual590

Symposium on Principles and Practice of Parallel Programming, pages 232–244, 2023.591

https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://aptosfoundation.org
https://aptosfoundation.org
https://aptosfoundation.org
https://sui.io

18 Mangrove: Fast and Parallelizable State Replication for Blockchains

32 Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovič, and Dragos-Adrian Seredin-592

schi. The consensus number of a cryptocurrency. In Proceedings of the 2019 ACM Symposium593

on Principles of Distributed Computing, pages 307–316, 2019.594

33 Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael595

Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. Sbft: A scalable and596

decentralized trust infrastructure. In 2019 49th Annual IEEE/IFIP international conference597

on dependable systems and networks (DSN), pages 568–580. IEEE, 2019.598

34 Saurabh Gupta. A non-consensus based decentralized financial transaction processing model599

with support for efficient auditing. Arizona State University, 2016.600

35 Martin Kleppmann. Making crdts byzantine fault tolerant. In Proceedings of the 9th Workshop601

on Principles and Practice of Consistency for Distributed Data, pages 8–15, 2022.602

36 Quentin Kniep, Lefteris Kokoris-Kogias, Alberto Sonnino, Igor Zablotchi, and Nuda Zhang. Pi-603

lotfish: Distributed transaction execution for lazy blockchains. arXiv preprint arXiv:2401.16292,604

2024.605

37 Lefteris Kokoris-Kogias, Alberto Sonnino, and George Danezis. Cuttlefish: Expressive fast606

path blockchains with fastunlock, 2023. URL: https://arxiv.org/abs/2309.12715, arXiv:607

2309.12715.608

38 Petr Kuznetsov, Andrei Tonkikh, and Yan X Zhang. Revisiting optimal resilience of fast609

byzantine consensus. In Proceedings of the 2021 ACM Symposium on Principles of Distributed610

Computing, pages 343–353, 2021.611

39 Leslie Laport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM612

Transactions on Programming Languages and Systems, 4(3):382–401, 1982.613

40 J-P Martin and Lorenzo Alvisi. Fast byzantine consensus. IEEE Transactions on Dependable614

and Secure Computing, 3(3):202–215, 2006.615

41 Max Mathys, Roland Schmid, Jakub Sliwinski, and Roger Wattenhofer. A Limitlessly Scalable616

Transaction System. In 6th International Workshop on Cryptocurrencies and Blockchain617

Technology (CBT), Copenhagen, Denmark, September 2022.618

42 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.619

pdf, 2008. Accessed: 2025-01-20.620

43 Ray Neiheiser, Arman Babaei, Giannis Alexopoulos, Marios Kogias, and Eleftherios Koko-621

ris Kogias. Pythia: Supercharging parallel smart contract execution to guide stragglers and622

full nodes to safety. Workshop on Scalability & Interoperability of Blockchains (SIB), 2024.623

44 Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. Attacking the defi ecosystem624

with flash loans for fun and profit. In International conference on financial cryptography and625

data security, pages 3–32. Springer, 2021.626

45 Geoffrey Ramseyer and David Mazières. Groundhog: Linearly-scalable smart contracting via627

commutative transaction semantics. arXiv preprint arXiv:2404.03201, 2024.628

46 saikatdas0790. Lament: A tale of constant struggle of what it’s like trying629

to scale on icp, 2024. Accessed: 2024-10-11. URL: https://forum.dfinity.org/t/630

lament-a-tale-of-constant-struggle-of-what-its-like-trying-to-scale-on-icp/35829.631

47 Victor Shoup. Practical threshold signatures. In Advances in Cryptology—EUROCRYPT632

2000: International Conference on the Theory and Application of Cryptographic Techniques633

Bruges, Belgium, May 14–18, 2000 Proceedings 19, pages 207–220. Springer, 2000.634

48 Jakub Sliwinski, Yann Vonlanthen, and Roger Wattenhofer. Consensus on demand. In635

International Symposium on Stabilizing, Safety, and Security of Distributed Systems, pages636

299–313. Springer, 2022.637

49 Yee Jiun Song and Robbert van Renesse. Bosco: One-step byzantine asynchronous consensus.638

In International Symposium on Distributed Computing, pages 438–450. Springer, 2008.639

50 Alexander Spiegelman, Balaji Arun, Rati Gelashvili, and Zekun Li. Shoal: Improving DAG-640

BFT latency and robustness. arXiv preprint arXiv:2306.03058, 2023.641

https://arxiv.org/abs/2309.12715
https://arxiv.org/abs/2309.12715
https://arxiv.org/abs/2309.12715
https://arxiv.org/abs/2309.12715
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://forum.dfinity.org/t/lament-a-tale-of-constant-struggle-of-what-its-like-trying-to-scale-on-icp/35829
https://forum.dfinity.org/t/lament-a-tale-of-constant-struggle-of-what-its-like-trying-to-scale-on-icp/35829
https://forum.dfinity.org/t/lament-a-tale-of-constant-struggle-of-what-its-like-trying-to-scale-on-icp/35829

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 19

51 Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bull-642

shark: DAG BFT protocols made practical. In Proceedings of the 2022 ACM SIGSAC643

Conference on Computer and Communications Security, pages 2705–2718, 2022.644

52 Srivatsan Sridhar, Alberto Sonnino, and Lefteris Kokoris-Kogias. Stingray: Fast concurrent645

transactions without consensus. arXiv preprint arXiv:2501.06531, 2025.646

53 Florian Suri-Payer, Matthew Burke, Zheng Wang, Yunhao Zhang, Lorenzo Alvisi, and Natacha647

Crooks. Basil: Breaking up bft with acid (transactions). In Proceedings of the ACM SIGOPS648

28th Symposium on Operating Systems Principles, pages 1–17, 2021.649

54 Andrei Tonkikh, Pavel Ponomarev, Petr Kuznetsov, and Yvonne-Anne Pignolet. Cryptocon-650

currency: (almost) consensusless asset transfer with shared accounts. In Proceedings of the651

2023 ACM SIGSAC Conference on Computer and Communications Security, pages 1556–1570,652

2023.653

55 Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling blockchain654

via full sharding. In Proceedings of the 2018 ACM SIGSAC conference on computer and655

communications security, pages 931–948, 2018.656

A Model Expressiveness657

Most common applications can be easily adapted from something resembling Ethereum’s smart658

contract model to our model with a gain in scalability and without a loss in expressiveness659

apart from the obvious loss of free atomic composability. For the most part, this is equivalent660

to how these applications would be designed for the Move VM [15], on the Sui [29] and661

Aptos [28] blockchains.662

Token: A token is primarily defined by a data type for owned objects that adheres663

to a specific interface. Additionally, a token might have an associated reactive actor664

responsible for minting new tokens or handling a reserve.665

Decentralized Exchange: Each liquidity pool of a decentralized exchange should be666

its own reactive actor. This allows asynchronous access to different liquidity pools. One667

popular heavily congested contract does not impede access to any of the other liquidity668

pools.669

NFT Marketplace: The marketplace would be a reactive actor owning all the (NFT)670

objects currently for sale. Buyers can interact by sending accepted tokens as payment671

and receiving ownership of the desired object. Sellers can interact by sending it new672

objects to put up for sale or delisting items, receiving back the object.673

More generally, we argue the replicated actor model (Section 3) does not lose expressiveness.674

This can be shown by providing a general framework of translating applications from675

Ethereum’s smart contract model to our model. However, atomic composability is not676

inherently guaranteed at the protocol level. If it is intended, it has to be specifically designed677

into applications and users could be charged additional fees at the application layer for the678

privilege.679

Gas. To incentivize validators to perform computations, our system uses gas objects, a type of680

owned object. Each transaction needs to consume at least a gas object. As validators process681

the Call and Code fields, they are compensated through fees deducted from the provided gas682

object. The amount of gas required depends on the complexity of the transaction, ensuring683

fair compensation for resource-intensive tasks. Design and study of specific game-theoretic684

mechanisms in our system model is outside the scope of this work.685

20 Mangrove: Fast and Parallelizable State Replication for Blockchains

Atomic Composability. Full atomic composability could be trivially achieved by keeping all686

composable state in a single reactive actor. However, this is not realistic when considering an687

open, diverse and growing ecosystem of applications. More importantly, it does not make use688

of the scalability advantages of our model. We can instead give users the option to request689

composability across reactive actors on-demand.690

Locking. To this end we define a locking pattern that applications may independently opt691

into. Locking is unique in that it allows idle blocking while waiting for other calls to return.692

A reactive actor that supports locking has associated state lockHolder, lockCollateral,693

lockStartT ime, lockPrice, and exposes functions lock(), unlock(), getLockHolder(), and694

getLockPrice(). The locking fee is the product of the current price for locking and the695

time the lock is held. The lock is valid until the required fee has exceeded the posted696

collateral. The price for locking can be updated by the reactive actor and may depend on697

the application as well as current usage statistics. For example, a decentralized exchange698

may count accesses or trading volume to a given liquidity pool and set the fee proportional699

to its recent popularity.700

Any lockPrice larger than 0 prevents a permanent deadlock on the reactive actor.701

However, the application protocol designers need to ensure that at any time the price is702

fair, to prevent abuse of this feature. The price for holding a lock could even increase703

super-linearly in the time it is held. This would further discourage continuously preventing704

others from acquiring the lock.705

This would require some support on the protocol side as well. At least, each transaction706

should receive a timestamp agreed upon by the validators. This would serve as the basis to707

determine how long each lock is held. Also, execution of other transactions at that reactive708

actor should be delayed until after the lock is released. Maybe with the exception of a call709

checking whether a lock is currently being held.710

Hard Example: Flash Loan. Some particularities of the strong atomic transaction model711

are not easily translatable. Locking is necessary but not sufficient to enable full atomic712

composability. For example, there is no way to implement a flash loan using just the above713

locking interface.714

A flash loan is a loan where there is no risk of default because the loan is only valid715

within an atomic and isolated transaction. In this case, the lender needs to be sure that the716

entire transaction may only commit if the loan is paid back. If not, it should be reverted717

and the loan paid back.718

Fully Atomic Transaction Cascades. Locking can be extended to provide atomic and719

isolated execution of entire transaction cascades. To be able to revert transactions, an atomic720

transaction execution context is needed. Most importantly, objects stay within the execution721

context until the transaction commits. Otherwise, other transactions might be able to see722

partial effects of the cascade before it commits. This would also make reversion on abort723

impossible without affecting other transactions.724

Within an atomic transaction context all additional calls that are made are considered725

to be atomic and part of the same execution context. These calls need to hold a lock of726

the recipient reactive actor. The context is passed along the entire transaction cascade.727

Any transaction within an atomic transaction context may only spawn new transactions728

within the same context. Locks can only be freed at the end of the transaction (i.e. once729

it commits or aborts). Conversely, if any of the locks run out of collateral, the transaction730

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 21

aborts. If a particular transaction aborts, the entire transaction cascade aborts. Importantly,731

all consumed objects are returned to the sender.732

Using this extension of our model even flash loans can be realized. The only additional733

thing that is required for safety is that the lend() method of the flash loan reactive actor734

can indicate that it needs to be called from an atomic execution context and may revert.735

B High-Throughput Quorum Consensus736

A reactive actor that is at the core of a popular application may experience high contention737

over a long time period. Continuously trying to get transactions accepted on the fast-738

path in this case inhibits both throughput and latency. On the other hand, continuously739

running a chained high-throughput consensus protocol at each reactive actor, where most740

instances only produce empty blocks, is a significant and unnecessary burden. To alleviate741

this, reactive actors should be able to individually toggle between single-shot POA and a742

high-throughput consensus mechanism. This could happen automatically based on certain743

heuristics (configured either at the system level or by each RA). Switching from uncontested744

to contested mode can be done by deciding a special message in the same manner as any745

transaction. Switching from contested back to uncontested mode can be done via the746

high-throughput consensus’ epoch closing mechanism.747

Existing high-throughput consensus protocols, like Narwhal & Tusk [23], Bullshark [51],748

Shoal/Shoal++ [50, 11] and Mysticeti [12] can be extended to achieve part (II) of Quorum749

Validity, which is what differentiates it from regular Validity. For this, a simple consensus750

rule can be added. This rule restricts whether an ordered transaction is actually delivered. In751

addition to the voting on blocks necessary for ordering, validators directly vote on transactions.752

Honest validators vote for a transaction if and only if there are no conflicting transactions in753

their pool. Only transactions reaching a threshold of direct votes are delivered for execution.754

If this threshold ensures a quorum intersection of at least f +1, no conflicting transactions can755

be committed. This is the same rule that is added in Mysticeti-FPC, to make the general756

consensus compatible with the reliable broadcast fast-path allowed for owned-object-only757

transactions.758

C Parallel Optimistic Broadcast759

The Parallel Optimistic Broadcast (POB) primitive has an interface consisting of:760

- function Broadcast(sn, tx): broadcast sn-th transaction
- callback Decide(sn, tx): decide transaction tx

761

To issue a UA transaction tx, user A broadcasts it among all V.A-s. Subsequently, V.A-s762

FP-lock tx and vote for it, and if some V.A obtains n− p votes, they can decide tx and stop763

sending messages. After receiving n− p− 2f votes for tx, V.A SP-locks tx and proposes it764

to a Transaction Agreement instance number tx.sn of A.765

Parallel Optimistic Broadcast adheres to the following properties.766

▶ Property 14 (Agreement). If two honest validators decide tx1 and tx2 in the same instance767

of Parallel Optimistic Broadcast, then tx1 = tx2.768

Proof. If both validators decide in the Transaction Agreement, the Agreement follows from769

the Agreement of Transaction Agreement.770

If both validators decide in the fast path (here, we also call a decision done after receiving771

a proof on Line 25 a fast-path decision), that means that each of them obtained n− p votes772

22 Mangrove: Fast and Parallelizable State Replication for Blockchains

Figure 4 POB scheme. In the fast path (blue rectangle), a user A broadcasts their transaction
tx. Then, validators cast their vote. In case the fast path fails, validators participate in the slow
path (orange box), which consists of one instance of Transaction Agreement.

for tx (Line 19), meaning there is at least one common honest vote, and hence tx1 = tx2773

since no honest validator issues conflicting votes (Line 6).774

If tx1 was decided in the fast path, it means it got n−p votes, so no conflicting transaction775

can obtain n−p−2f votes (the intersection is (n−p)+(n−p−2f)−n = n−2p−2f ≥ f +1),776

hence no honest verifier will propose it to Transaction Agreement, hence, by the Validity777

property of the Transaction Agreement, tx2 can’t be decided. ◀778

▶ Property 15 (Integrity). A transaction tx is decided at most once in the given instance779

and only if it was broadcast by the user.780

Proof. The only once part is ensured through checks (Lines 14 and 32), and if the user didn’t781

emit the transaction, it will receive at most f votes, which is not sufficient neither for the782

fast path (n− p > f), nor to propose it to the Transaction Agreement (n− p− 2f > f). ◀783

▶ Property 16 (Validity). If an honest user broadcasts a transaction tx, it is eventually784

decided.785

Proof. Since an honest user does not issue conflicting transactions, all honest verifiers will786

eventually FP-lock tx (Line 6) and broadcast their vote. Now, if at any time an honest787

verifier gets n − p votes, it broadcasts the proof, hence all honest verifiers will eventually788

decide. If none of the honest verifiers receive n − p votes, since the user is honest, they789

all will eventually get n − f ≥ n − p − 2f votes for tx and hence will propose it to the790

Transaction Agreement. Therefore, by the Validity property of Transaction Agreement, tx791

will be eventually decided in it and hence in Parallel Optimistic Broadcast (Line 34). ◀792

▶ Property 17 (Fast Termination). Given the system is after GST, a user issuing the793

transaction is honest and at most p validators misbehave, every validator decides and stops794

sending messages in 2δ time after a user broadcasts its transaction.795

Proof. Assume an honest user broadcasts a transaction tx at time t. Then, since the system796

is after GST, all honest verifiers will receive it, and, since an honest user can not issue797

conflicting transactions, will FP-lock it (Line 9) and broadcast their vote for it (Line 12).798

Therefore, by the time t + 2δ, every honest verifier will receive at least n− p votes for tx and799

will fast-path decide it (Line 19). ◀800

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 23

Algorithm 5 Parallel Optimistic Broadcast

1: Uses: Perfect Links ol, Transaction Agreement ta

2: upon event ⟨broadcast | tx⟩ do ▷ On User A

3: for all V ∈ V do
4: trigger ⟨ol.Send | V.A, tx⟩

5: upon event ⟨ol.Deliver | A, tx⟩ do ▷ On V.A

6: if FPLocked[tx.sn] ̸= ⊥ and FPLocked[tx.sn] ̸= tx then
7: vote← Sign(⊥)
8: else
9: FPLocked[tx.sn]← tx

10: vote← Sign(Vote(tx))
11: for all V ∈ V do
12: trigger ⟨ol.Send | V.A, vote⟩

13: upon once received n− p votes for tx do ▷ On V.A

14: if pobDecided then
15: return
16: proof(tx)← aggregate(n− p votes)
17: for all V ∈ V do
18: trigger ⟨ol.Send | V.A, proof(tx)⟩
19: trigger Decide(tx)
20: pobDecided← True

21: upon event ⟨ol.Deliver | V ′, proof(tx)⟩ do ▷ On V.A

22: if verify(proof(tx)) then
23: for all V ′′ ∈ V do
24: trigger ⟨ol.Send | V ′′.A, proof(tx)⟩
25: trigger Decide(tx)

26: upon once received n− p− 2f votes for tx do ▷ On V.A

27: if SPLocked[tx.sn] ̸= ⊥ and SPLocked[tx.sn] ̸= tx then
28: return
29: SPLocked[tx.sn]← tx

30: trigger ta[tx.sn].P ropose(tx)

31: upon event ⟨ta[tx.sn].Decide | tx⟩ do ▷ On V.A

32: if pobDecided then
33: return
34: trigger Decide(tx)
35: pobDecided← True

24 Mangrove: Fast and Parallelizable State Replication for Blockchains

Algorithm 6 Parallel Optimistic Agreement (Part 1)

1: Uses: Outer Links ol, Inner Links il, Quorum Consensus qc, Transaction Agreement ta

2: function Initiate(k, pool) ▷ On V.X

3: poaInstance← k

4: if leaderOracle(k) = V then
5: for all V ′ ∈ V do ol.Send(V ′.X, ⟨k, B := pool⟩)
6: Timer.Restart()

7: upon event ⟨ol.Deliver | L, ⟨k, B⟩⟩ do ▷ On V.X

8: if leaderOracle(k) = L then block[k]← B

9: upon once poaInstance = k and block[k] ̸= ⊥ and Timer ≤ 3∆ and
∀tx RA-RA transaction ∈ block[k] : tx ∈ pool do ▷ On V.X

10: repliesFPLock[k]← 0
11: successFPLock[k]← true

12: for all tx : UA-RA transaction ∈ block[k] do ▷ In parallel
13: trigger ⟨il.Send | FPLock(tx), tx.sender⟩

14: upon event ⟨il.Deliver | FPLock(tx), X⟩ do ▷ On V.A

15: if not VerifySig(tx.sender, tx) then
16: trigger ⟨il.Send | false, X⟩; return
17: if FPLocked[tx.sn] = ⊥ then FPLocked[tx.sn]← tx

18: if FPLocked[tx.sn] ̸= tx then
19: trigger ⟨il.Send | false, X⟩; return
20: if within ∆ time executed[tx.sn− 1] and tx.objects ⊆ ownedObjects then
21: trigger ⟨il.Send | true, X⟩
22: else
23: trigger ⟨il.Send | false, X⟩

24: upon event ⟨il.Deliver | status, A⟩ do ▷ On V.X

25: repliesFPLock[k]← repliesFPLock[k] + 1
26: successFPLock[k]← successFPLock[k] ∧ status

27: upon once repliesFPLock[k] == |{tx : UA-RA transaction ∈ block[k]}| do ▷ On V.X

28: V ote← block[k]
29: if not successFPLock[k] then V ote← ⊥
30: Bfb ← pool

31: for all V ′ ∈ V do
32: trigger ⟨ol.Send | [k, Vote, Bfb], V ′.X⟩

D Parallel Optimistic Agreement (Extended)801

This section provides the full pseudocode and proofs showing that Algorithm 6, as presented802

in Section 5.3, achieves the properties laid out in Section 5.1.803

▶ Lemma 18. Given tx ∈ B was fast-path decided, no honest validator can SP-Lock a804

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 25

Algorithm 6 Parallel Optimistic Agreement (Part 2)

33: upon event ⟨ol.Deliver | U, ⟨k, Vote, Bfb⟩⟩ do ▷ On V.X

34: votes[k]← votes[k] ∪ {Vote}
35: if Vote ̸= ⊥ ∧ |{v ∈ votes[k] | v = Vote}| = n− p then
36: proof(B)← aggregate(n− p votes)
37: for all V ′′ ∈ V do
38: trigger ⟨ol.Send | V ′′.X, proof(B)⟩
39: trigger ⟨poa.Decide | k, B⟩
40: fallbackBlocks[k]← fallbackBlocks[k] ∪ {Bfb}

41: upon event ⟨ol.Deliver | V ′, proof(tx)⟩ do ▷ On V.X

42: if verify(proof(tx)) then
43: for all V ′′ ∈ V do
44: trigger ⟨ol.Send | V ′′.A, proof(tx)⟩
45: trigger ⟨poa.Decide | k, B⟩

46: upon once poaInstance = k and Timer > 3∆ and |votes[k]| = n− f do ▷ V.X

47: if ∄B : |{v ∈ votes[k] | v = B}| ≥ n− p− 2f then
48: needFallbackBlocks← true return
49: candidateB[k]← B such that |{v ∈ votes[k] | v = B}| ≥ n− 3f

50: repliesSPLock[k]← 0
51: successSPLock[k]← true

52: for all tx : UA-RA transaction ∈ candidateB[k] do ▷ In parallel
53: trigger ⟨il.Send | SPLock(tx), tx.sender⟩

54: upon event ⟨il.Deliver | SPLock(tx), X⟩ do ▷ On V.A

55: if SPLocked[tx.sn] = ⊥ then SPLocked[tx.sn]← tx

56: status← SPLocked[tx.sn] == tx

57: trigger ⟨il.Send | status, X⟩

58: upon event ⟨il.Deliver | status, A⟩ do ▷ On V.X

59: repliesSPLock[k]← repliesSPLock[k] + 1
60: successSPLock[k]← successSPLock[k] ∧ status

61: upon once repliesSPLock[k] == |{tx : UA-RA transaction ∈ candidateB[k]}| do ▷

On V.X

62: if successSPLock[k] then
63: trigger ⟨qc.Propose | B⟩ ; return
64: needFallbackBlocks← true

conflicting transaction tx′.805

Proof. A validator attempts to SP-lock a UA-RA transaction tx′ in four cases. Either806

because it received n− p− 2f votes for a block containing tx′ (Line 53), because it received807

n− p− 2f votes for tx′ in Parallel Optimistic Broadcast (Line 29, Algorithm 5), because808

it received n − 2f fallback blocks containing tx′ (Line 70), or because it decided a block809

26 Mangrove: Fast and Parallelizable State Replication for Blockchains

Algorithm 6 Parallel Optimistic Agreement (Part 3)

65: upon once needFallbackBlocks do ▷ V.X

66: candidateB2[k]← {tx | |{Bfb ∈ fallbackBlocks[k] | tx ∈ Bfb}| ≥ n− 2f}
67: SPLockedTxs[k]← ∅
68: repliesSPLock2[k]← 0
69: for all tx : UA-RA transaction ∈ candidateB2[k] do
70: trigger ⟨il.Send | SPLock2(tx), tx.sender⟩

71: upon event ⟨il.Deliver | SPLock2(tx), X⟩ do ▷ On V.A

72: if SPLocked[tx.sn] = ⊥ then SPLocked[tx.sn]← tx

73: status← SPLocked[tx.sn] == tx

74: trigger ⟨il.Send | ⟨status, tx⟩, X⟩

75: upon event ⟨il.Deliver | ⟨status, tx⟩, A⟩ do ▷ On V.X

76: if status then
77: SPLockedTxs[k]← SPLockedTxs[k] ∪ {tx}
78: repliesSPLock2[k]← repliesSPLock + 1

79: upon once repliesSPLock2[k] == |{tx : UA-RA transaction ∈ candidateB2[k]}| do ▷

On V.X

80: QCPropose← SPLockedTxs[k] ∪ {tx ∈ candidateB2 | tx is RA-RA transaction}
81: trigger ⟨qc.Propose | QCPropose⟩

82: upon event ⟨qc.Decide | Bqc⟩ do ▷ On V.X

83: for all tx : UA-RA transaction ∈ B do
84: A← tx.sender

85: trigger ⟨il.Send | UAInitiate(tx), V.A⟩

86: upon event ⟨il.Deliver | UAInitiate(tx), V.X⟩ do ▷ On V.A

87: if SPLocked[tx.sn] = ⊥ then SPLocked[tx.sn]← tx

88: trigger ⟨ta[tx.sn].P ropose | SPLocked[tx.sn]⟩

89: upon event ⟨ta[sn].Decide |tx’⟩ do ▷ On V.A

90: if tx′ = tx then trigger ⟨il.Send | “UA success”, V.X⟩
91: else trigger ⟨il.Send | “UA fail”, V.X⟩

92: upon once received all Transaction Agreement responses do ▷ On V.X

93: BP OA ← Bqc \ {tx | tx failed in Transaction Agreement}
94: trigger ⟨poa.Decide | poaInstance, BP OA⟩

containing tx′ in Quorum Consensus (Line 87). We want to show that given some honest810

validator Fast-Path decided a block containing tx, none of the above can hold.811

Let’s start with n − p − 2f votes. If a validator received n − p − 2f votes for a block812

containing tx′, it means that at least n − p − 3f ≥ p + 1 honest validators FP-locked tx′
813

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 27

(Line 13). The same argument holds for tx′ in Parallel Optimistic Broadcast (Line 9). But814

those wouldn’t then vote for block B that contains tx, since an FP-lock attempt in Line 13815

would fail. Hence, no validator can receive n− p votes for B, thus no fast decision of B is816

possible. A contradiction.817

Next, assume that a validator SP-locked tx′ due to receiving n− 2f fallback Blocks with818

tx′. This implies that at least n− 3f honest validators broadcasted a fallback block with819

tx′ and hence at least n − 3f ≥ 2p + 1 honest validators have tx′ in their pool (Line 30),820

meaning they have FPLocked[tx.sn] = tx′ (Line 10) and therefore can not FP-lock tx, and821

wouldn’t vote for a block containing tx. Thus, a Fast-Path decision of a block containing tx822

is not possible, contradiction.823

Finally, assume that a validator SP-locked tx′ due to deciding a block containing tx′ in824

Quorum Consensus. By the part (II) of the Quorum Validity property, that means that825

at least n− 3f ≥ 2p + 1 honest validators proposed tx′ to Quorum Consensus, and hence826

SP-Locked it for one of the first two reasons(Lines 55 or 72) which we’ve shown to be827

impossible given tx was fast-path decided. ◀828

Agreement Property. If two validators decide blocks B and B′ in the fast path, that means829

that each of them received at least n − p votes (Line 35), hence there must be at least830

(n− p) + (n− p)−n = 3f + 1 common votes, therefore at least 2f + 1 honest validators voted831

for both B and B′ meaning B = B′ since an honest validator only votes once (Line 27).832

Assume two honest validators V and V ′ decided blocks B and B′ respectively in the slow833

path. By the agreement property of the Quorum Consensus, V and V ′ decided the same834

block Bqc in Quorum Consensus, hence they have the same set of UA-RA transactions to send835

to Transaction Agreements and by the Agreement Property of the Transaction Agreement,836

the same subset S of those was not decided. Thus, B = B′ = Bqc \ S.837

Therefore, what is left to show is that if an honest validator V decides B in the fast path838

and another honest validator decides B′ in Quorum Consensus, then B = B′.839

If V decides B in the Fast Path, it means that it received n−p votes for B. Hence among840

every n− f votes there will be at least n− p− 2f votes for B. We would like to show that841

every honest validator will propose B to Quorum Consensus, and hence B will be decided in842

Quorum Consensus.843

To do so, we need to show that a condition in Line 62 will hold, namely that every UA-RA844

transaction tx ∈ B will be successfully SP-locked. We show it by showing that no conflicting845

transaction tx′ can be SP-locked.846

So every honest validator will propose B to the Quorum Consensus. Denote with Bqc a847

block decided in Quorum Consensus. By the condition (I) of Quorum Validity, if tx is in the848

proposal of every honest validator, then tx is in the decided block, that is tx ∈ B → tx ∈ Bqc.849

Denote with S ⊂ Bqc a subset of UA-RA transactions in Bqc that were not decided in the850

corresponding Transaction Agreement. We will show that tx ∈ B → tx ̸∈ S. Indeed, assume851

tx ∈ B. Then, by Lemma 18, all honest validators will propose it (Line 88) to the Transaction852

Agreement, and by the Quorum Validity of the Transaction Agreement tx will be decided.853

This allows us to conclude that B ⊆ Bqc \ S = B′
854

Next, note that Bqc ⊆ B. Indeed, by condition (II) of Quorum Validity, if tx is in Bqc,855

then it was proposed by at least n−3f ≥ 1 honest validators, and hence, as we’ve showed that856

every honest validator proposes B, tx must be in B. This gives us B′ = Bqc\S ⊆ Bqc ⊆ B ◀857

Termination Property. There will either be an honest validator that received n− p votes858

for some block B, or there will be not. In case there will be, it will broadcast the proof,859

hence every honest validator will eventually receive it and will eventually decide and stop860

28 Mangrove: Fast and Parallelizable State Replication for Blockchains

sending messages. If none of the honest validators ever receive n− p votes, we argue by the861

termination of a slow path:862

By 3∆ time after the start of the instance (Line 46) an honest validator will propose to863

the Quorum Consensus (Line 63 or 81). They eventually decide in the Quorum Consensus864

by the Termination property of Quorum Consensus and will propose to multiple Transaction865

Agreements (Line 85). By the Termination property of the Transaction Agreement, all866

instances will terminate and a validator will decide in POA (Line 94). ◀867

Fast Termination Property. Let’s consider some honest validator V . Given the system is868

in the synchrony period, by the Common Termination property, L.X will start the instance869

at most ∆ time after V.X started and hence L.X’s proposal B will reach V.X at most 2∆870

time after V.X started. For every UA-RA transaction tx ∈ B, by assumption, a user who871

emitted tx is honest, and hence V will successfully FP-lock tx since there is no conflicting872

transaction and since V will be ready to execute tx by the time 2∆ by Lemma 34. Also, by873

Lemma 33, for every RA-RA transaction tx ∈ B V will emit tx at most ∆ time after L did.874

Hence V.X will issue a vote for B.875

Therefore, due to synchrony, and by the assumption that at most p validators misbehave,876

every honest validator will acquire n− p votes for B within 3∆ time after its own start and877

will Fast-Path decide B. ◀878

Validity Property. For simplicity, we only consider the validity of a block decided in the879

Slow Path, since by the Agreement Property, it’s the same block as the one decided in the880

Fast Path.881

Consider a block B decided in the Slow Path. Let’s first prove condition (I) of the Validity882

Property: If a transaction tx is present in the pool of all honest validators at the start of the883

protocol and L is honest, then tx is included in B.884

Consider such tx. An honest validator V.X proposes to the Quorum Consensus either a885

block B1 for which V received at least n− p− 2f votes (Line 63) or a block B2 consisting886

of transactions that were present in n− 2f fallback blocks (Line 81). Since L is honest, B1887

is its proposal, and it contains tx. So does B2 because among every n− f fallback blocks888

there will be at least n − 2f blocks from honest validators and each such block contains889

tx (by condition to form a Quorum Consensus proposal from fallback blocks at Line 66).890

Therefore, every honest validator’s proposal to Quorum Consensus will contain tx, and by the891

(I) condition of a Quorum Validity tx will be in the decided block Bqc of Quorum Consensus.892

If tx is an RA transaction, it will trivially be in the decided block, so assume tx is a UA-RA893

transaction. After deciding Bqc, every honest validator will propose tx to the corresponding894

Transaction Agreement (Line 88), since no conflicting transaction can be SP-Locked since895

an honest user doesn’t issue conflicting transactions. Therefore, tx will be decided in its896

Transaction Agreement instance by the Quorum Validity, and hence be included in B.897

Now let’s prove condition (II) of Validity, namely that if a transaction is included in the898

decided block, it was emitted.899

Consider some tx ∈ B. By condition (II) of Quorum Validity, tx is in the proposal of at900

least n− 3f ≥ 1 honest validators, and an honest validator proposes a UA-RA transaction tx901

to Quorum Consensus only if it SP-locked tx (lines 53, 63 or 70, 81), which is only possible902

if n − 3f ≥ 1 honest validators have tx in their pool which implies (Line 11) that this903

transaction was emitted. And an honest validator proposes an RA transaction only if it was904

present in n− 2f fallback blocks (Line 80), meaning at least n− 3f ≥ 1 honest validators905

included it in their fallback blocks, meaning they have it in their pool (Line 30), meaning906

emitted it (Line 13, Algorithm 4). ◀907

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 29

No Conflict Property. For the sake of contradiction, assume that there were POA instances908

POA1 and POA2 in which blocks B1 and B2 were decided, containing respectively tx1 and909

tx2, which are conflicting. Now, either one of those blocks were decided in the fast path or910

none were.911

Consider the case where w.l.o.g. B1 was decided in the fast path. This means that at least912

n− p− f honest validators FP-locked tx1, and hence B2 can receive at most 2f + p < n− p913

votes, hence can not be fast-path decided. Moreover, given tx1 was fast-path decided, by914

Lemma 18 no honest validator can SP-Lock tx2, therefore, no honest validator proposes tx2915

to the Transaction Agreement instance number tx2.sn, therefore, by the Quorum Validity of916

Transaction Agreement, tx2 can not be decided in the Transaction Agreement, and hence in917

the slow path.918

Finally, assume that both B1 and B2 were decided in the slow path. But this implies that919

tx1 and tx2 were both decided in the Transaction Agreement instance number tx1.sn for920

user tx1.sender (which are the same values as tx2.sn and tx2.sender), which is not possible921

due to the agreement property of Transaction Agreement. ◀922

E Pseudocode for Transaction Execution923

Algorithm 7 Transaction Execution (UA-RA and RA-RA)

1: upon event ⟨once poa.Decide | k, B⟩ do ▷ On V.X

2: pool← pool \B

3: for all tx ∈ DeterministicOrder(B) do
4: if tx ∈ executed then continue
5: executed← executed ∪ {tx}
6: effects← VM.Execute(tx.Codepre, tx.consumedObjects)
7: effects← VM.Execute(tx.Call, effects)
8: effects← VM.Execute(tx.Codepost, effects)
9: for all raratx ∈ effects.raratxs do

10: if raratx.consumedObjects ̸⊆ ownedObjects then
11: continue
12: ownedObjects← ownedObjects \ raratx.consumedObjects

13: trigger ⟨il.Send | raratx.receiver, raratx⟩
14: if tx is UA-RA then
15: trigger ⟨il.Send | tx.sender, Executed(tx, effects)⟩
16: poa.Initiate(k + 1)

17: upon event ⟨il.Deliver | ⟨Executed(tx), effects⟩, V.X⟩ do ▷ On V.A

18: if executed[tx.sn] then return
19: await executed[tx.sn− 1] and tx.consumedObjects ⊆ ownedObjects

20: ownedObjects← ownedObjects \ tx.consumedObjects ∪ effects.createdObjects

21: executed[tx.sn]← true

30 Mangrove: Fast and Parallelizable State Replication for Blockchains

F System Analysis924

F.1 Formal Correctness Properties925

Properties for reactive actors follow the schema of Total Order Broadcast [25].926

▶ Property 19 (Reactive Actor Agreement). For any honest validators V1 and V2, a reactive927

actor X and a transaction tx, if V1.X executes tx, then V2.X eventually executes tx.928

▶ Property 20 (Reactive Actor Validity). If an honest user emits a UA-RA transaction, it is929

eventually executed by all correct validators.930

If a reactive actor on any honest validator emits an RA-RA transaction, it is eventually931

executed by all correct validators.932

▶ Property 21 (Reactive Actor Total Order). For any reactive actor X, honest validators933

V1, V2, and transactions tx1, tx2, if V1.X executes tx1 before tx2, then V2.X executes tx1934

before tx2.935

▶ Property 22 (Reactive Actor Integrity). For any reactive actor X, honest validator V and936

transaction tx, V.X executes tx at most once and only if tx was emitted.937

User actor properties follow the schema of Byzantine Reliable Broadcast [17].938

▶ Property 23 (User Actor Validity). If a correct user emits a user actor transaction, this939

transaction is eventually executed by every honest validator.940

▶ Property 24 (User Actor Integrity). Every correct validator executes each user actor941

transaction at most once and only if it was emitted.942

▶ Property 25 (User Actor Agreement). For any user actor A, honest validators V1, V2 and943

user actor transactions tx1, tx2 both with sender A and the same sequence number, if V1.A944

executes tx1 and V2.A executes tx2, then tx1 = tx2.945

F.2 Formal Fast Execution Properties946

▶ Property 26 (Fast UA Transaction Execution). Given an honest user A issues a UA947

transaction tx, the system is after GST, and at most p validators are faulty, tx is executed948

after 2 communication steps.949

▶ Property 27 (Fast UA-RA Transaction Execution). Given an honest user A issues a UA-RA950

transaction tx to a reactive actor X, the system is after GST, the leader L of the next POA951

instance of X is honest and starts the instance as soon as it receives a transaction from A,952

and at most p validators misbehave, then tx is executed after 3 communication steps.953

▶ Property 28 (Fast RA-RA Transaction Execution). Given a reactive actor issues an RA954

transaction tx to a reactive actor Y , the system is after GST, the leader L of the next POA955

instance of Y is honest and starts the instance as soon as it receives a transaction from X,956

and at most p validators misbehave, then tx is executed after 2 communication steps.957

F.3 Proofs for All System Properties958

Reactive Actor Agreement. If V1.X executes tx, it means that it decided a block B con-959

taining tx. Assume V1.X decided B in the k-th instance of POA. By the Multi-Termination960

and Agreement properties of POA, V2.X will eventually decide in the k-th instance of POA961

for X and its decision will be B. Therefore, V2.X will also eventually execute tx. ◀962

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 31

▶ Corollary 29 (Reactive Actor Agreement). For two honest validators V1 and V2, and a963

reactive actor X, if V1.X emits tx, then V2.X eventually emits tx.964

Proof. Let tx′ be a transaction executing a Call of which made V1.X emit tx. By the965

Reactive Actor Agreement property, V2.X will eventually execute tx′ having the same state966

and the same set of owned objects as V1.X had when executing tx′. Therefore, V2.X will967

also emit tx. ◀968

▶ Remark 30. Definition 7 is independent of a validator since if a transaction was emitted by969

a reactive actor of one validator, by Corollary 29 of the Reactive Actor Agreement property,970

every honest validator will eventually emit it.971

▶ Definition 31. Consider an execution E and two honest validators V1 and V2. We define972

a direct ancestor according to V1 relation for two transactions tx1 and tx2 executed by V1973

in E the following way: tx1 is a direct ancestor of tx2 if either (i) tx1 and tx2 are emitted974

by the same user actor and tx1.sn = tx2.sn− 1 or (ii) tx2 consumes objects created by tx1.975

Define an ancestor relation as a transitive closure of a direct ancestor relation.976

▶ Lemma 32. Consider two honest validators V1 and V2 and execution E. If V1 executes977

some transaction tx at time t in E and V2 executes all ancestors of tx according to V1 by at978

most max(t + ∆, GST + ∆) then V2 executes tx by at most max(t + ∆, GST + ∆).979

Proof. In case tx is either UA-RA, RA-RA or RA, this follows from the Reactive Actor980

Agreement and Common Termination properties without a need for the ancestor premise.981

Therefore, we focus on the case of tx being a UA transaction. Denote A := tx.sender and tx′
982

a transaction with sender = A and tx′.sn = tx.sn− 1. Note that if V1 executed tx, it means983

it decided it in Parallel Optimistic Broadcast (Line 2, Algorithm 3), meaning V2 will also984

eventually decide it in Parallel Optimistic Broadcast and will put it into pending (Line 4).985

And V2 will be ready to execute tx (Line 5) by the time of at most max(t + ∆, GST + ∆)986

since by the state of the Lemma, by that time V2 will execute all ancestors of tx. ◀987

▶ Lemma 33. If an honest validator executes a transaction tx at time t, then every honest988

validator executes tx at time at most max(t + ∆, GST + ∆).989

Proof. For UA-RA and RA-RA transactions, this follows from the Reactive Actor Agreement990

and Common Termination properties. We now give proof for UA transactions.991

For the sake of contradiction, consider an execution E of the protocol, two honest992

validators V1 and V2, and a UA transaction tx such that in E V1 executes tx at time t and993

V2 does not execute tx by max(t + ∆, GST + ∆).994

By Lemma 32, if V1 executes tx but V2 does not, it means that there is a transaction that995

is an ancestor of tx according to V1 that is not executed by V2. Repeat the proof process for996

that ancestor. Since there is a finite number of ancestors of each transaction and an ancestor997

relation is transitive, we end up with an ancestor of tx that is not executed by the time998

max(t + ∆, GST + ∆) but all its ancestors are, which contradicts Lemma 32. ◀999

▶ Lemma 34. Consider a user actor A controlled by honest user U and a transaction tx1000

from A.1001

If U emits tx at time t, then for every honest validator V , V.A will have executed[tx.sn−1]1002

and tx.objects ⊆ ownedObjects by max(t + ∆, GST + ∆).1003

Proof. Since U is honest and emits tx, we conclude that U saw effect of some transactions1004

tx1, . . . , txk that made executed[A][tx.sn] and tx.objects ⊆ objects[A] hold. It means that1005

32 Mangrove: Fast and Parallelizable State Replication for Blockchains

∀i ∈ [k] U received at least f + 1 votes for txi, meaning there is at least one honest process1006

which executed txi, which by Lemma 33 implies that every honest validator will execute txi1007

by max(t + ∆, GST + ∆). Therefore, for every honest validator V.A executed[tx.sn− 1] and1008

tx.objects ⊆ ownedObjects will hold by max(t + ∆, GST + ∆). ◀1009

Reactive Actor Validity. First, consider an honest user U issues a UA-RA transaction tx to1010

a reactive actor X. Since U is honest, checks in Line 9 of Algorithm 4 will pass and each1011

honest validator will put tx into its pending set. Moreover, by Lemma 34, a condition in1012

Line 11, Algorithm 4 will eventually hold for every honest V.A and it will send tx to V.X1013

(Line 12). So, tx will eventually end up in the pool of every honest validator (Line 14), let’s1014

denote this time point with t. Now consider a point in time after t and after GST when1015

an honest validator L becomes a leader of POA for X. If by this time L already executed1016

tx, then by the Reactive Actor Agreement tx will be eventually executed by every honest1017

validator. Otherwise, L will include tx in its proposal and by the (I) part of the Validity1018

property of POA, tx will be decided and then executed (Lines 6 and 7).1019

Now, we give a prove for an RA-RA transaction from a reactive actor X to a reactive1020

actor Y . Corollary 29 states that if for some honest validator V1, V1.X emitted tx, then1021

for every other honest validator V2, V2.X will eventually emit tx. Therefore, tx will end up1022

in the pool of V.Y for every honest validator V , and by the same logic as with a UA-RA1023

transaction, tx will be eventually executed by every honest validator. ◀1024

Reactive Actor Total Order. A reactive actor validator executes a transaction only if it1025

decides a block in POA containing this transaction.1026

Let B1 be the block containing tx1 and k1 be the number of POA instance in which B11027

is decided. Analogously we define B2 and k2 for tx2.1028

Given V1.X executed tx1 before tx2 and since processes execute blocks sequentially, we1029

conclude that k1 ≤ k2. If now k1 < k2, then V2.X executes tx1 before tx2 because of the1030

sequential execution of blocks. And if k1 = k2, then B1 = B2, and this block is executed in1031

the same order by V1.X and V2.X due to the deterministic block execution. ◀1032

Reactive Actor Integrity. If tx is executed by V.X, it means that V.X decided a block1033

containing tx. V.X can decide either on the Fast Path (Line 39, Algorithm 6) or on the slow1034

path (Line 94, Algorithm 6).1035

If a block containing tx is decided on the fast path, it means it received at least n−p−f ≥ 11036

honest votes (Line 35), meaning it passed the checks of an honest validator. In case tx1037

is a UA-RA transaction, this means that tx is correctly signed by a user (Line 15) and a1038

validator successfully FP-locked tx (Line 13), meaning it has executed[tx.sn − 1] = true1039

and tx.objects ⊆ ownedObjects (Line 20), therefore tx is emitted. In case tx is an RA-RA1040

transaction, it means that it is contained in the pool of an honest validator (Line 9), hence it1041

was issued by a reactive actor of an honest validator, and hence it is emitted.1042

If tx is included in the block decided on the slow path, then by the (II) part of Quorum1043

Validity, there are n− 3f ≥ 1 honest validators who proposed a block containing tx to the1044

Quorum Consensus. An honest validator includes tx in its proposal either if it received1045

n − p − 2f votes for the block containing tx (Line 63) or if it received n − 2f fallback1046

blocks containing tx (Line 81). In case it received n − p − 2f votes, there were at least1047

n−p−3f ≥ p+1 honest votes for a block containing tx, which by the argument above implies1048

that tx is emitted. In case it received n− 2f fallback blocks containing tx, it means that at1049

least n− 3f ≥ 1 honest validators included tx into their fallback block, meaning tx was in1050

their pool, meaning it was either sent by a reactive actor (Line 13, Algorithm 4) and thus1051

emitted, or it was sent by a user actor (Line 12, Algorithm 4) and hence checked for a correct1052

A. Paramonov, Y. Vonlanthen, Q. Kniep, J. Sliwinski, R. Wattenhofer 33

user signature (Line 9) and for executed[tx.sn− 1] = true and tx.objects ⊆ ownedObjects1053

(Line 11) and thus emitted.1054

Every transaction is executed at most once by a reactive actor since it maintains an1055

executed set and skips a transaction if it was executed already (Line 4, Algorithm 4). ◀1056

User Actor Validity. Consider an emitted transaction tx issued by user A with tx.sender =1057

A. Given that A is honest, by the Validity Property of Parallel Optimistic Broadcast, tx will1058

eventually be decided in the Parallel Optimistic Broadcast and will end up in a pending set1059

of every honest validator (Line 4, Algorithm 3). And by Lemma 34, for every honest V.A1060

executed[tx.sn− 1] and tx.objects ⊆ ownedObjects will eventually hold (Line 5) and thus1061

V.A will execute tx (Line 7). ◀1062

User Actor Integrity. A correct validator executes a transaction only if it previously put1063

it into a pending set (Line 5, Algorithm 3). A correct validator puts a transaction into a1064

pending set only if it delivers it in a Parallel Optimistic Broadcast instance (Line 4). By the1065

Integrity property of the Parallel Optimistic Broadcast, at most one transaction with a given1066

sequence number will be decided in the given instance, and hence, at most one transaction1067

with a given sequence number will be executed.1068

Furthermore, a transaction is put in the pending set only if it is correctly signed and is1069

executed only if the condition in Line 5 holds, meaning only if a transaction is emitted. ◀1070

User Actor Agreement. We consider all possible cases for tx1 and tx2 to be either UA or1071

UA-RA transactions.1072

In case both tx1 and tx2 are UA transactions, we can conclude that V1.A and V2.A1073

delivered them in the same Parallel Optimistic Broadcast instance, hence tx1 = tx2 by the1074

Agreement property of Parallel Optimistic Broadcast.1075

If tx1 and tx2 are both UA-RA transactions, we conclude that they were both decided in1076

the POA and hence, due to the No Conflict property of POA, tx1 = tx2.1077

Finally, it can not be that tx1 is a UA transaction, and tx2 is a UA-RA transaction.1078

That is because, given Agreement properties of Parallel Optimistic Broadcast and POA, we1079

can assume that both tx1 and tx2 were decided in the slow path, that is in the instance1080

number tx1.sn (same as tx2.sn) of Transaction Agreement of A. But then tx1 = tx2 by the1081

Agreement property of Transaction Agreement.1082

◀1083

Fast UA Transaction Execution. Each honest validator will terminate the Byzantine Reli-1084

able Broadcast of tx in two communication steps. And by Lemma 34, every honest validator1085

will be ready to execute tx by that time. ◀1086

Fast UA-RA Transaction Execution. The first communication step is a user’s broadcast of1087

tx, so, in particular, L receives it. Then we apply the Fast Termination property of POA1088

which adds two additional communication steps. ◀1089

Multi-termination. Due to the Termination property of POA, it’s sufficient to show that1090

V.X will initiate k-th instance. This we prove by induction on k.1091

The first POA instance is initiated immediately when the reactive actor entity is initialized.1092

Now, assume a validator decides in the k−1 instance. This would trigger a poa.Decide(k−1, ·)1093

event (Line 1, Algorithm 4) and thus a poa.Initiate(k) event (Line 16). ◀1094

	1 Introduction
	2 Related Work
	3 Replicated Actor Model
	3.1 Validators
	3.2 Transactions
	3.3 Network and Computation Model

	4 Mangrove Overview
	5 Parallel Optimistic Agreement
	5.1 Properties
	5.2 Multi-Instancing
	5.3 Algorithm

	6 Slow Path
	6.1 Quorum Consensus
	6.2 Transaction Agreement

	7 Transaction Processing
	7.1 Transaction Execution Properties
	7.2 User Transactions
	7.3 Reactive Actor Transactions

	8 Discussion and Outlook
	A Model Expressiveness
	B High-Throughput Quorum Consensus
	C Parallel Optimistic Broadcast
	D Parallel Optimistic Agreement (Extended)
	E Pseudocode for Transaction Execution
	F System Analysis
	F.1 Formal Correctness Properties
	F.2 Formal Fast Execution Properties
	F.3 Proofs for All System Properties

