
ar
X

iv
:1

60
7.

04
75

5v
2

 [
cs

.C
G

]
 6

 M
ay

 2
01

7

High-dimensional approximate r-nets

Georgia Avarikioti∗ Ioannis Z. Emiris† Loukas Kavouras‡ Ioannis Psarros§

May 9, 2017

Abstract

The construction of r-nets offers a powerful tool in computational and metric geometry.
We focus on high-dimensional spaces and present a new randomized algorithm which effi-
ciently computes approximate r-nets with respect to Euclidean distance. For any fixed ǫ > 0,
the approximation factor is 1 + ǫ and the complexity is polynomial in the dimension and
subquadratic in the number of points. The algorithm succeeds with high probability. More
specifically, the best previously known LSH-based construction of Eppstein et al. [EHS15]
is improved in terms of complexity by reducing the dependence on ǫ, provided that ǫ is
sufficiently small. Our method does not require LSH but, instead, follows Valiant’s [Val15]
approach in designing a sequence of reductions of our problem to other problems in different
spaces, under Euclidean distance or inner product, for which r-nets are computed efficiently
and the error can be controlled. Our result immediately implies efficient solutions to a num-
ber of geometric problems in high dimension, such as finding the (1 + ǫ)-approximate kth
nearest neighbor distance in time subquadratic in the size of the input.

Keywords: Metric geometry, High dimension, Approximation algorithms, r-nets, Locality-
sensitive hashing

1 Introduction

We study r-nets, a powerful tool in computational and metric geometry, with several applications
in approximation algorithms. An r-net for a metric space (X, ‖·‖), |X| = n and for numerical
parameter r is a subset R ⊆ X such that the closed r/2-balls centered at the points of R are
disjoint, and the closed r-balls around the same points cover all of X. We define approximate
r-nets analogously. Formally,

Definition 1. Given a pointset X ⊆ R
d, a distance parameter r ∈ R and an approximation

parameter ǫ > 0, a (1 + ǫ)r-net of X is a subset R ⊆ X s.t. the following properties hold:

1. (packing) For every p, q ∈ R, p 6= q, we have that ‖p− q‖2 ≥ r.

2. (covering) For every p ∈ X, there exists a q ∈ R s.t. ‖p− q‖2 ≤ (1 + ǫ)r.

Previous Work. Finding r-nets can be addressed naively by considering all points of X
unmarked and, while there remains an unmarked point p, the algorithm adds it to R and marks
all other points within distance r from p. The performance of this algorithm can be improved by
using grids and hashing [Har04]. However, their complexity remains too large when dealing with
big data in high dimension. The naive algorithm is quadratic in n and the grid approach is in

∗School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.
†Department of Informatics & Telecommunications, University of Athens, Athens, Greece.
‡School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.
§Department of Informatics & Telecommunications, University of Athens, Athens, Greece.

1

http://arxiv.org/abs/1607.04755v2

O(dd/2n), hence it is relevant only for constant dimension d [HR15]. In [HP05], they show that
an approximate net hierarchy for an arbitrary finite metric can be computed in O(2ddimn log n),
where ddim is the doubling dimension. This is satisfactory when doubling dimension is constant,
but requires a vast amount of resources when it is high.

When the dimension is high, there is need for algorithms with time complexity polynomial in
d and subquadratic in n. One approach, which computes (1+ ǫ)r-nets in high dimension is that
of [EHS15], which uses the Locality Sensitive Hashing (LSH) method of [AI08]. The resulting
time complexity is Õ(dn2−Θ(ǫ)), where ǫ > 0 is quite small and Õ hides polylogarithmic factors.

In general, high dimensional analogues of classical geometric problems have been mainly
addressed by LSH. For instance, the approximate closest pair problem can be trivially solved
by performing n approximate nearest neighbor (ANN) queries. For sufficiently small ǫ, this
costs Õ(dn2−Θ(ǫ)) time, due to the complexity factor of an LSH query. Several other problems
have been reduced to ANN queries [GIV01]. Recently, Valiant [Val12], [Val15] presented an
algorithm for the approximate closest pair problem in time Õ(dn2−Θ(

√
ǫ)). This is a different

approach in the sense that while LSH exploits dimension reduction through random projections,
the algorithm of [Val15] is inspired by high dimensional phenomena. One main step of the
algorithm is that of projecting the pointset up to a higher dimension.

Our Contribution. We present a new randomized algorithm that computes approximate
r-nets in time subquadratic in n and polynomial in the dimension, and improves upon the com-
plexity of the best known algorithm. Our method does not employ LSH and, with probability
1− o(1), it returns R ⊂ X, which is a (1 + ǫ)r-net of X.

We reduce the problem of an approximate r-net for arbitrary vectors (points) under Eu-
clidean distance to the same problem for vectors on the unit sphere. Then, depending on the
magnitude of distance r, an algorithm handling “small” distances or an algorithm handling
“large” distances is called. These algorithms reduce the Euclidean problem of r-nets on unit
vectors to finding an r-net for unit vectors under inner product (Section 3). This step requires
that the multiplicative 1 + ǫ approximation of the distance corresponds to an additive cǫ ap-
proximation of the inner product, for suitable constant c > 0.

Next, we convert the vectors having unit norm into vectors with entries {−1,+1} (Section
2). This transformation is necessary in order to apply the Chebyshev embedding of [Val15], an
embedding that damps the magnitude of the inner product of “far” vectors, while preserving
the magnitude of the inner product of “close” vectors. For the final step of the algorithm,
we first apply a procedure that allows us to efficiently compute (1 + ǫ)-nets in the case where
the number of “small” distances is large. Then, we apply a modified version of the Vector

Aggregation algorithm of [Val15], that exploits fast matrix multiplication, so as to achieve the
desired running time.

In short, we extend Valiant’s framework [Val15] and we compute r-nets in time Õ(dn2−Θ(
√
ǫ)),

thus improving on the exponent of the LSH-based construction [EHS15], when ǫ is small enough.
This improvement by

√
ǫ in the exponent is the same as the complexity improvement obtained

in [Val15] over the LSH-based algorithm for the approximate closest pair problem.
Our study is motivated by the observation that computing efficiently an r-net leads to

efficient solutions for several geometric problems, specifically in approximation algorithms. In
particular, our extension of r-nets in high dimensional Euclidean space can be plugged in the
framework of [HR15]. The new framework has many applications, notably the kth nearest
neighbor distance problem, which we solve in Õ(dn2−Θ(

√
ǫ)).

Paper Organization. Section 2 presents an algorithm for computing an approximate net
with respect to the inner product for a set of unit vectors. Section 3 translates the problem of
finding r-nets under Euclidean distance to the same problem under inner product. In Section

2

4, we discuss applications of our construction and possible future work. Omitted proofs are
included in the Appendices.

We use ‖·‖ to denote the Euclidean norm ‖·‖2 throughout the paper.

2 Points on a sphere under inner product

In this section, we design an algorithm for constructing an approximate ρ-net of vectors on the
sphere under inner product. To that end, we reduce the problem to constructing an approximate
net under absolute inner product for vectors that lie on the vertices of a unit hypercube.

Since our ultimate goal is a solution to computing r-nets with respect to Euclidean distance,
we allow additive error in the approximation, which under certain assumptions, translates to
multiplicative error in Euclidean distance. In the following, we define rigorously the notion of
approximate ρ-nets under inner product.

Definition 2. For any X ⊂ S
d−1, an approximate ρ-net for (X, 〈·, ·〉) , with additive approxi-

mation parameter ǫ > 0, is a subset C ⊆ X which satisfies the following properties:

• for any two p 6= q ∈ C, 〈p, q〉 < ρ, and

• for any x ∈ X, there exists p ∈ C s.t. 〈x, p〉 ≥ ρ− ǫ.

One relevant notion is that of ǫ-kernels [AHPV05]. In ǫ-kernels, one is interested in finding
a subset of the input pointset, which approximates its directional width. Such constructions
have been extensively studied when the dimension is low, due to their relatively small size.

2.1 Crude approximate nets

In this subsection we develop our basic tool, which is based on the Vector Aggregation Algorithm
by [Val15]. This tool aims to compute approximate ρ-nets with multiplicative error, as opposed
to what we have set as our final goal for this section, namely to bound additive error. Moreover,
in the context of this subsection, two vectors are close to each other when the magnitude of
their inner product is large, and two vectors are far from each other when the magnitude of their
inner product is small. Let |〈·, ·〉| denote the magnitude of the inner product of two vectors.

Definition 3. For any X = [x1, . . . , xn],X
′ = [x′1, . . . , x

′
n] ⊂ R

d×n, a crude approximate ρ-net
for (X,X ′, |〈·, ·〉|), with multiplicative approximation factor c > 1, is a subset C ⊆ [n] which
satisfies the following properties:

• for any two i 6= j ∈ C, |〈xi, x′j〉| < cρ, and

• for any i ∈ [n], there exists j ∈ C s.t. |〈xi, x′j〉| ≥ ρ.

Vector Aggregation follows the exposition of [Val15]. The main difference is that, instead
of the “compressed” matrix ZTZ, we use the form XTZ, where Z derives from vector aggrega-
tion. Both forms encode the information in the Gram matrix XTX. The matrix XTZ is better
suited for our purposes, since each row corresponds to an input vector instead of an aggregated
subset; this extra information may be useful in further problems.

Vector Aggregation

Input: X = [x1, . . . , xn] ∈ R
d×n, X ′ = [x′1, . . . , x

′
n] ∈ R

d×n, α ∈ (0, 1), τ > 0.
Output: n× n1−α matrix W and random partition S1, . . . , Sn1−α of {x1, . . . , xn}.

3

• Randomly partition [n] into n1−α disjoint subsets, each of size nα , denoting the sets
S1, . . . , Sn1−α .

• For each i = 1, 2, . . . , 78 log n:

– Select n coefficients q1, . . . , qn ∈ {−1,+1} at random.

– Form the d× n1−α matrix Zi with entries zij,k =
∑

l∈Sk
ql · x′j,l

– W i = XTZi

• Define the n× n1−α matrix W with wi,j = quartile(|w1
i,j|, . . . |w78 logn

i,j |).

• Output W and S1, . . . , Sn1−α .

Theorem 4. Let X ∈ R
d×n, X ′ ∈ R

d×n, α ∈ (0, 1), τ > 0 the input of Vector Aggregation.
Then, the algorithm returns a matrix W of size n×n1−α and a random partition S1, . . . , Sn1−α,
which with probability 1−O(1/n3) satisfies the following:

• For all j ∈ [n] and k ∈ [n1−α], if ∀u ∈ Sk, |〈xj , u〉| ≤ τ then |wj,k| < 3 · nατ .

• For all j ∈ [n] and k ∈ [n1−α] if ∃u ∈ Sk, |〈xj , u〉| ≥ 3nατ then |wj,k| ≥ 3 · nατ .

Moreover, the algorithm runs in time Õ(dn+ n2−α +MatrixMul(n× d, d× n1−α)).

For the case of pointsets with many “small” distances, we rely crucially on the fact that the
expected number of near neighbors for a randomly chosen point is large. So, if we iteratively
choose random points and delete these and their neighbors, we will end up with a pointset
which satisfies the property of having sufficiently few “small” distances. Then, we apply Vector

Aggregation.

Crude ApprxNet

Input: X = [x1, . . . , xn] ∈ R
d×n, X ′ = [x′1, . . . , x

′
n] ∈ R

d×n, α ∈ (0, 1), τ > 0.
Output: C ′ ⊆ [n], F ′ ⊆ [n].

• C ← ∅, F1 ← ∅, F2 ← {x1, . . . , xn}

• Repeat n0.5 times:

– Choose a column xi uniformly at random.

– C ← C ∪ {xi}.
– Delete column i from matrix X and column i from matrix X ′.

– Delete each column k from matrix X, X ′ s.t. |〈xi, x′k〉| ≥ τ .

– If there is no column k from matrix X s.t. |〈xi, x′k〉| ≥ τ , then F1 ← F1 ∪ {xi}

• Run Vector Aggregation with input X, X ′, α, τ and output W , S1, . . . , Sn1−α .

• For each of the remaining columns i = 1, . . .:

– For any |wi,j | ≥ 3nατ :

∗ If more than n1.7 times in here, output ”ERROR”.

4

∗ Compute inner products between xi and vectors in Sj . For each vector
x′k ∈ Sj s.t. x′k 6= xi and |〈xi, x′k〉| ≥ τ , delete row k and F2 ← F2\{xi}.

– C ← C ∪ {xi}

• Output indices of C and F ← {F1 ∪ F2}.

Theorem 5. On input X = [x1, . . . , xn] ∈ R
d×n, X ′ = [x′1, . . . , x

′
n] ∈ R

d×n, α ∈ (0, 1), τ > 0,
Crude ApprxNet, computes a crude 3nα-approximate τ -net for X, X ′, following the notation
of Definition 3. The algorithm costs time:

Õ(n2−α + d · n1.7+α +MatrixMul(n× d, d× n1−α)),

and succeeds with probability 1 − O(1/n0.2). Additionally, it outputs a set F ⊆ R with the
following property: {xi | ∀xj 6= xi |〈xj , xi〉| < τ} ⊆ F ⊆ {xi | ∀xj 6= xi |〈xj , xi〉| < naτ}.

Proof. We perform n0.5 iterations and for each, we compare the inner products between the
randomly chosen vector and all other vectors. Hence, the time needed is O(dn1.5).

In the following, we denote by Xi the number of vectors which have “large” magnitude of the
inner product with the randomly chosen point in the ith iteration. Towards proving correctness,
suppose first that E[Xi] > 2n0.5 for all i = 1, . . . n0.5. The expected number of vectors we delete
in each iteration of the algorithm is more than 2n0.5 + 1. So, after n0.5 iterations, the expected
total number of deleted vectors will be greater than n. This means that if the hypothesis holds
for all iterations we will end up with a proper net.

Now suppose that there is an iteration j where E[Xj] ≤ 2n0.5. After all iterations, the
number of “small” distances are at most n1.5 on expectation. By Markov’s inequality, when the
Vector Aggregation algorithm is called, the following is satisfied with probability 1− n−0.2 :

|{(i, k) | |〈xi, x′k〉| ≥ τ, i 6= k}| ≤ n1.7.

By Theorem 4 and the above discussion, the number of entries in the matrix W that we need
to visit is at most n1.7. For each entry, we perform a brute force which costs dnα.

Now notice that the first iteration stores centers c and deletes all points p for which |〈c, p〉| ≥
τ . Hence, any two centers c, c′ satisfy |〈c, p〉| < τ . In the second iteration, over the columns of
W , notice that by Theorem 4, for any two centers c, c′ we have |〈c, c′〉| < 3nατ.

2.2 Approximate inner product nets

In this subsection, we show that the problem of computing ρ-nets for the inner product of unit
vectors reduces to the less natural problem of Definition 3, which refers to the magnitude of the
inner product.

The first step consists of mapping the unit vectors to vectors in {−1, 1}d′ . The mapping is
essentially Charikar’s LSH scheme [Cha02]. Then, we apply the Chebyshev embedding of [Val15]
in order to achieve gap amplification, and finally we call algorithm Crude ApprxNet, which will
now return a proper ρ-net with additive error.

Theorem 6 ([Val15]). There exists an algorithm with the following properties. Let d′ =
O(logn

δ2
) and Y ∈ R

d′×n denote its output on input X, δ, where X is a matrix whose columns

have unit norm, with probability 1 − o(1/n2), for all pairs i, j ∈ [n],
∣

∣

∣
〈Yi, Yj〉/d′ −

(

1 − 2 ·
cos−1(〈Xi,Xj〉)/π

)
∣

∣

∣
≤ δ, where Xi, Yi denote the ith column of X and Y respectively. Addi-

tionally, the runtime of the algorithm is O(dn logn
δ2).

5

The following theorem provides a randomized embedding that damps the magnitude of the
inner product of “far” vectors, while preserving the magnitude of the inner product of “close”
vectors. The statement is almost verbatim that of [Val15, Prop.6] except that we additionally
establish an asymptotically better probability of success. The proof is the same, but since we
claim stronger guarantees on success probability, we include the complete proof in Appendix B.

Theorem 7. Let Y , Y ′ be the matrices output by algorithm “Chebyshev Embedding” on input
X,X ′ ∈ {−1, 1}d×n, τ+ ∈ [−1, 1], τ− ∈ [−1, 1] with τ− < τ+ , integers q, d′. With probability
1− o(1/n) over the randomness in the construction of Y, Y ′, for all i, j ∈ [n], 〈Yi, Y

′
j 〉 is within

√
d′ log n from the value Tq

(〈Xi,X′
j〉/d′−τ−

τ+−τ− 2− 1
)

· d′ · (τ+ − τ−)q/23q−1, where Tq is the degree-q

Chebyshev polynomial of the first kind. The algorithm runs in time O(d′ · n · q).

Inner product ApprxNet

Input: X = [x1, . . . , xn] with each xi ∈ S
d−1, ρ ∈ [−1, 1], ǫ ∈ (0, 1/2].

Output: Sets C,F ⊆ [n].

• If ρ ≤ ǫ, then:

– C ← ∅, F ← ∅, W ← {x1, . . . , xn}
– While W 6= ∅:
∗ Choose arbitrary vector x ∈W .

∗ W ←W \ {y ∈W | 〈x, y〉 ≥ ρ− ǫ}
∗ C ← C ∪ {x}
∗ If ∀y ∈W , 〈x, y〉 < ρ− ǫ then F ← F. ∪ {x}

– Return indices of C, F .

• Apply Theorem 6 for input X, δ = ǫ/2π and output Y ∈ {−1, 1}d′×n for d′ =
O(log n/δ2).

• Apply Theorem 7 for input Y , d′′ = n0.2, q = 50−1 log n, τ− = −1, τ+ = 1 −
2 cos−1(ρ−ǫ)

π + δ and output Z,Z ′.

• Run algorithm Crude ApprxNet with input τ = 3n0.16, α =
√
ǫ/500, Z,Z ′ and output

C, F .

• Return C, F .

Theorem 8. The algorithm Inner product ApprxNet, on input X = [x1, . . . , xn] with each
xi ∈ S

d−1, ρ ∈ [−1, 1] and ǫ ∈ (0, 1/2], computes an approximate ρ-net with additive error ǫ,
using the notation of Definition 2. The algorithm runs in time Õ(dn+ n2−√

ǫ/600) and succeeds
with probability 1 − O(1/n0.2). Additionally, it computes a set F with the following property:
{xi | ∀xj 6= xi 〈xj , xi〉 < ρ− ǫ} ⊆ F ⊆ {xi | ∀xj 6= xi 〈xj , xi〉 < ρ}.

3 Approximate nets in high dimensions

In this section, we translate the problem of computing r-nets in (Rd, ‖ · ‖) to the problem
of computing ρ-nets for unit vectors under inner product. One intermediate step is that of
computing r-nets for unit vectors under Euclidean distance.

6

3.1 From arbitrary to unit vectors

In this subsection, we show that if one is interested in finding an r-net for (Rd, ‖·‖), it is sufficient
to solve the problem for points on the unit sphere. One analogous statement is used in [Val15],
where they prove that one can apply a randomized mapping from the general Euclidean space to
points on a unit sphere, while preserving the ratio of distances for any two pairs of points. The
claim derives by the simple observation that an r-net in the initial space can be approximated
by computing an ǫr/c-net on the sphere, where c is the maximum norm of any given point
envisaged as vector. Our exposition is even simpler since we can directly employ the analogous
theorem from [Val15].

Corollary 9. There exists an algorithm, Standardize, which, on input a d×n matrix X with
entries xi,j ∈ R, a constant ǫ ∈ (0, 1) and a distance parameter r ∈ R, outputs a m′ × n matrix
Y , with columns having unit norm and m′ = log3 n, and a distance parameter ρ ∈ R, such that
a ρ-net of Y is an approximate r-net of X, with probability 1− o(1/poly(n)).

3.2 Approximate nets under Euclidean distance

In this subsection, we show that one can translate the problem of computing an r-net for points
on the unit sphere under Euclidean distance, to finding an r-net for unit vectors under inner
product as defined in Section 2. Moreover, we identify the subset of the r-net which contains
the centers that are approximately far from any other point. Formally,

Definition 10. Given a set of points X and ǫ > 0, a set F ⊆ X of (1 + ǫ)-approximate r-far
points is defined by the following property: {x ∈ X | ∀x 6= y ∈ X ‖x − y‖ > (1 + ǫ)r} ⊆ F ⊆
{x ∈ X | ∀x 6= y ∈ X ‖x− y‖ > r}.

If r is greater than some constant, the problem can be immediately solved by the law of
cosines. If r cannot be considered as constant, we distinguish cases r ≥ 1/n0.9 and r < 1/n0.9.
The first case is solved by a simple modification of an analogous algorithm in [Val15, p.13:28].
The second case is not straightforward and requires partitioning the pointset in a manner which
allows computing r-nets for each part separately. Each part has bounded diameter which implies
that we need to solve a “large r” subproblem.

Theorem 11. There exists an algorithm, ApprxNet(Large radius), which, for any constant
ǫ ∈ (0, 1/2], X ⊂ S

d−1 s.t. |X| = n, outputs a (1 + ǫ)r-net and a set of (1 + ǫ)-approximate
r-far points with probability 1−O(1/n0.2). Additionally, provided r > 1/n0.9 the runtime of the
algorithm is Õ(dn2−Θ(

√
ǫ)).

Let us now present an algorithm which translates the problem of finding an r-net for r <
1/n0.9 to the problem of computing an r-net for r ≥ 1/n0.9. The main idea is that we compute
disjoint subsets Si, which are far enough from each other, so that we can compute r-nets for
each Si independently. We show that for each Si we can compute Ti ⊆ Si which has bounded
diameter and T ′

i ⊆ Si such that Ti, T
′
i are disjoint, each point in Ti is far from each point in

T ′
i , and |T ′

i | ≤ 3|Si|/4. It is then easy to find r-nets for Ti by employing the ApprxNet(Large
radius) algorithm. Then, we recurse on T ′

i which contains a constant fraction of points from
|Si|. Then, we cover points in Si \ (Ti ∪ T ′

i) and points which do not belong to any Si.

ApprxNet(Small radius)

Input: X = [x1, . . . , xn]
T with each xi ∈ S

d−1, r < 1/n0.9, ǫ ∈ (0, 1/2].
Output: Sets R,F ⊆ [n].

7

1. Project points on a uniform random unit vector and consider projections p1, . . . , pn
which wlog correspond to x1, . . . , xn ∈ R

d.

2. Traverse the list as follows:

• If |{j | pj ∈ [pi − r, pi]}| ≤ n0.6 or i = n:

– If |{j | pj < pi}| ≤ n0.9 remove from the list all points pj s.t. pj < pi− r and
save set K = {xj | pj ∈ [pi − r, pi]}.

– If |{j | pj < pi}| > n0.9 save sets Ki = {xj | pj ∈ [pi − r, pi]} ∪K, Si = {xj |
pj < pi − r} \K and remove projections of Si and Ki from the list.

3. After traversing the list if we have not saved any Si go to 5; otherwise for each Si:

• For each u ∈ Si, sample n0.1 distances between u and randomly chosen xk ∈ Si.
Stop if for the selected u ∈ Si, more than 1/3 of the sampled points are in distance
≤ rn0.6. This means that one has found u s.t. |{xk ∈ Si, ‖u − xk‖ ≤ rn0.6}| ≥
|Si|/4 with high probability. If no such point was found, output ”ERROR”.

• Let 0 ≤ d1 ≤ . . . ≤ d|Si| be the distances between u and all other points in Si.
Find c ∈ [rn0.6, 2rn0.6] s.t. |{j ∈ [n] | dj ∈ [c, c + r]}| < n0.4, store Wi = {xj |
dj ∈ [c, c + r]}, and remove Wi from Si.

• Construct the sets Ti = {xj ∈ Si | dj < c} and T ′
i = {xj ∈ Si | dj > c+ r}.

– For Ti, subtract u from all vectors in Ti, run Standardize, then ApprxNet

(Large radius), both with ǫ/4. Save points which correspond to output at
Ri, Fi respectively.

– Recurse on T ′
i the whole algorithm, and notice that |T ′

i | ≤ 3|Si|/4. Save
output at R′

i, and F ′
i respectively.

4. Let R← ⋃

iRi ∪R′
i and F ← ⋃

i Fi ∪ F ′
i . Return to the list p1, . . . , pn.

(a) Remove from F all points which cover at least one point from
⋃

iWi or
⋃

iKi.

(b) Delete all points (
⋃

i Ti) \ (
⋃

i Ri), and (
⋃

i T
′
i) \ (

⋃

i R
′
i).

(c) For each i delete all points in Wi covered by Ri, or covered by R′
i.

(d) For each i delete all points in Ki covered by R.

(e) Finally delete R from the list. Store the remaining points at F ′.

5. R′ ← ∅. Traverse the list as follows: For each pi, check the distances from all xj s.t.
pj ∈ [pi − r, pi].

• If ∃xj ∈ R′ : ‖xi − xj‖ ≤ r, delete xi from the list, set F ′ ← F ′\{xi, xj} and
continue traversing the list.

• If there is no such point xj then R← R ∪ {xi} and continue traversing the list.

6. Output indices of R← R ∪R′ and F ← F ∪ F ′.

Theorem 12. For any constant ǫ > 0, X ⊂ S
d−1 s.t. |X| = n, and r < 1/n0.9, ApprxNet(Small

radius) will output a (1 + ǫ)r-net and a set of (1 + ǫ)-approximate r-far points in time
Õ(dn2−Θ(

√
ǫ)), with probability 1− o(1/n0.04).

Proof. Note that points in Si had projections pi in sets of contiguous intervals of width r; each
interval had ≥ n0.6 points, hence the diameter of the projection of Si is ≤ n0.4r. By the Johnson

8

Lindenstrauss Lemma [Das03] we have that for v ∈ S
d−1 chosen uniformly at random:

Pr
[

〈u, v〉2 ≤ ‖u‖
2

n0.4

]

≤
√
d
√
e

n0.2
.

Hence, E[|{xk, xj ∈ Si | ‖xk − xj‖ ≥ n0.6r and ‖pk − pj‖ ≤ n0.4r}|] ≤ |Si|2 ·
√
ed

n0.2 , and the
probability

Pr[|{xk, xj ∈ Si | ‖xk − xj‖ ≥ n0.6r and ‖pk − pj‖ ≤ n0.4r}| ≥ |Si|1.95] ≤ |Si|0.05 ·
√
ed

n0.2
≤
√
ed

n0.15
.

Taking a union bound over all sets Si yields a probability of failure o(1/n0.045). This implies
that (for large enough n, which implies large enough |Si|) at least

(|Si|
2

)

− |Si|1.95 ≥
|Si|2
4

distances between points in Si are indeed small (≤ n0.6r). Hence, there exists some point pk ∈ Si

which (n0.6r)-covers |Si|/2 points. For each possible pk we sample n0.1 distances to other points,
and by Chernoff bounds, if a point (n0.6r)-covers a fraction of more than 1/2 of the points in
Si, then it covers more than n0.1/3 sampled points with high probability. Similarly, if a point
(n0.6r)-covers a fraction of less than 1/4 of the points in Si, then it covers less than n0.1/3
sampled points with high probability. More precisely, for some fixed u ∈ Si, let Xj = 1 when
for the jth randomly chosen point v ∈ Si, it holds ‖u − v‖ ≤ n0.6r and let Xj = 0 otherwise.

Then, for Y =
∑n0.1

j=1 Xj , it holds:

E[Y] ≥ n0.1/2 =⇒ Pr[Y ≤ n0.1/3] ≤ exp(−Θ(n0.1)),

E[Y] ≤ n0.1/4 =⇒ Pr[Y ≥ n0.1/3] ≤ exp(−Θ(n0.1)).

Since for any point x ∈ Ti and any point y ∈ T ′
i we have ‖x− y‖ > r, the packing property of

r-nets is preserved when we build r-nets for Ti and T ′
i independently. For each Ti, we succeed

in building r-nets with probability 1 − O(1/n0.2). By a union bound over all sets Ti, we have
a probability of failure O(1/n0.1). Furthermore, points which belong to sets Wi and Ki are
possibly covered and need to be checked.

For the analysis of the runtime of the algorithm, notice that step 4b costs time O(d·(∑i |Ti|+
∑

i |T ′
i |)) = O(dn). Then, step 4c costs time O(d ·∑i |Wi| · |Ti|+ d ·∑i |Wi| · |T ′

i |) = O(dn1.4).
Finally, notice that we have at most n0.1 sets Ki. Each Ki contains at most 2n0.6 points, hence
checking each point in

⋃

iKi with each point in R costs O(dn1.7).
Now regarding step 5, consider any interval [pi − r, pi] in the initial list, where all points

are projected. If |{j | pj ∈ [pi − r, pi]} ≤ 2n0.9 then the ith iteration in step 5 will obviously
cost O(n0.9), since previous steps only delete points. If |{j | pj ∈ [pi − r, pi]} > 2n0.9, we claim
that |{j < i | pj ∈ [pi − r, pi] and Kj is created}| ≤ 1. Consider the smallest j < i s.t. Kj is
created and pj ∈ [pi − r, pi]. This means that all points pk, for k ≤ j, are deleted when pj is
visited. Now assume that there exists integer l ∈ (j, i) s.t. Kl is created. This means that the
remaining points in the interval [pl − r, pl] are ≤ n0.6 and all of the remaining points pk < pl
are more than n0.9. This leads to contradiction, since by the deletion in the jth iteration, we
know that all of the remaining points pk < pl lie in the interval [pl − r, pl].

Now, assume that there exists one j < i s.t. pj ∈ [pi − r, pi] and Kj is created. Then, when
pi is visited, there at least 2n

0.9−n0.6 > n0.9 remaining points in the interval [pi− r, pi]. Hence,
there exists l ≥ i for which the remaining points in the interval [pi − r, pi] are contained in
Sl ∪Kl. Hence in this case, in step 5, there exist at most O(n0.6) points which are not deleted
and belong to the interval [pi − r, pi]. Now assume that there does not exist any j < i s.t.

9

pj ∈ [pi − r, pi] and Kj is created. This directly implies that there exists l ≥ i for which the
remaining points in the interval [pi − r, pi] are contained in Sl ∪Kl.

At last, the total time of the above algorithm is dominated by the calls to the construc-

tion of the partial r-nets of the sets Ti. Thus, the total running time is O(
∑

i |Ti|2−Θ(
√
ǫ) +

∑

i |Ti|′2−Θ(
√
ǫ)) = O(

∑

i |Ti|2−Θ(
√
ǫ) +

∑

i (3|Ti|/4)2−Θ(
√
ǫ)) = Õ(n2−Θ(

√
ǫ))). Finally, taking

a union bound over all recursive calls of the algorithm we obtain a probability of failure
o(1/n0.04).

We now present an algorithm for an (1 + ǫ)r-net for points in R
d under Euclidean distance.

ApprxNet

Input: Matrix X = [x1, . . . , xn] with each xi ∈ R
d, parameter r ∈ R, constant ǫ ∈

(0, 1/2].
Output: R ⊆ {x1, . . . , xn}

• Let Y , r′ be the output of algorithm Standardize on input X, r with parameter ǫ/4.

• If r ≥ 1/n0.9 run ApprxNet(Large radius) on input Y , ǫ/4, r′ and return points
which correspond to the set R.

• If r < 1/n0.9 run ApprxNet(Small radius) on input Y , ǫ/4, r′ and return points
which correspond to the set R.

Theorem 13. Given n points in R
d, a distance parameter r ∈ R and an approximation param-

eter ǫ ∈ (0, 1/2], with probability 1 − o(1/n0.04), ApprxNet will return a (1 + ǫ)r − net, R, in
Õ(dn2−Θ(

√
ǫ)) time.

Proof. The theorem is a direct implication of Theorems 11, 12, 22.

Theorem 14. Given X ⊂ R
d such that |X| = n, a distance parameter r ∈ R and an approxima-

tion parameter ǫ ∈ (0, 1/2], there exists an algorithm, DelFar, that will return, with probability
1− o(1/n0.04), a set F ′ with the following properties in Õ(dn2−Θ(

√
ǫ)) time:

• If for a point p ∈ X it holds that ∀q 6= p, q ∈ X we have ‖p− q‖ > (1 + ǫ)r, then p /∈ F ′.

• If for a point p ∈ X it holds that ∃q 6= p, q ∈ X s.t. ‖p− q‖ ≤ r, then p ∈ F ′.

4 Applications and Future work

Concerning applications, in [HR15], they design an approximation scheme, which solves various
distance optimization problems. The technique employs a grid-based construction of r-nets
which is linear in n, but exponential in d. The main prerequisite of the method is the existence of
a linear-time decider (formally defined in Appendix G). The framework is especially interesting
when the dimension is constant, since the whole algorithm costs time linear in n which, for
some problems, improves upon previously known near-linear algorithms. When the dimension
is high, we aim for polynomial dependency on d, and subquadratic dependency on n.

Let us focus on the problem of approximating the kth nearest neighbor distance.

Definition 15. Let X ⊂ R
d be a set of n points, approximation error ǫ > 0, and let d1 ≤ . . . ≤

dn be the nearest neighbor distances. The problem of computing an (1+ ǫ)-approximation to the
kth nearest neighbor distance asks for a pair x, y ∈ X such that ‖x− y‖ ∈ [(1− ǫ)dk, (1 + ǫ)dk].

10

Now we present an approximate decider for the problem above. This procedure combined
with the framework we mentioned earlier, which employs our net construction, results in an
efficient solution for this problem in high dimension.

kth NND Decider

Input: X ⊆ R
d, constant ǫ ∈ (0, 1/2], integer k > 0.

Output: An interval for the optimal value f(X, k).

• Call DelFar(X, r
1+ǫ/4 , ǫ/4) and store its output in W1.

• Call DelFar(X, r, ǫ/4) and store its output in W2.

• Do one of the following:

– If |W1| > k, then output “f(X, k) < r”.

– If |W2| < k, then output “f(X, k) > r”.

– If |W1| ≤ k and |W2| ≥ k, then output “f(X, k) ∈ [r
1+ǫ/4 ,

1+ǫ/4
r]”.

Theorem 16. Given a pointset X ⊆ R
d, one can compute a (1 + ǫ)-approximation to the k-th

nearest neighbor in Õ(dn2−Θ(
√
ǫ)), with probability 1− o(1).

To the best of our knowledge, this is the first high dimensional solution for this problem.
Setting k = n and applying Theorem 16 one can compute the farthest nearest neighbor in
Õ(dn2−Θ(

√
ǫ)) with high probability.

Concerning future work, let us start with the problem of finding a greedy permutation. A
permutation Π =< π1, π2, · · · > of the vertices of a metric space (X, ‖·‖) is a greedy permutation
if each vertex πi is the farthest in X from the set Πi−1 =< π1, . . . , πi−1 > of preceding vertices.
The computation of r-nets is closely related to that of the greedy permutation.

The k-center clustering problem asks the following: given a set X ⊆ R
d and an integer k,

find the smallest radius r such that X is contained within k balls of radius r. By [EHS15], a
simple modification of our net construction implies an algorithm for the (1 + ǫ) approximate
greedy permutation in time Õ(dn2−Θ(

√
ǫ) log Φ) where Φ denotes the spread of the pointset.

Then, approximating the greedy permutation implies a (2 + ǫ) approximation algorithm for
k-center clustering problem. We expect that one can avoid any dependencies on Φ.

Acknowledgment.

I.Z. Emiris acknowledges partial support by the EU H2020 research and innovation programme,
under the Marie Sklodowska-Curie grant agreement No 675789: Network “ARCADES”.

11

References

[AHPV05] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation
via coresets. In Combinatorial and Computational Geometry, MSRI, pages 1–30.
University Press, 2005.

[AI08] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM, 51(1):117–122, 2008.

[Cha02] M. Charikar. Similarity estimation techniques from rounding algorithms. In Proceed-
ings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002,
Montréal, Québec, Canada, pages 380–388, 2002.

[Cop97] D. Coppersmith. Rectangular matrix multiplication revisited. J. Complex., 13(1):42–
49, March 1997.

[Das03] A. Dasgupta, S. and Gupta. An elementary proof of a theorem of Johnson and
Lindenstrauss. Random Struct. Algorithms, 22(1):60–65, 2003.

[EHS15] D. Eppstein, S. Har-Peled, and A. Sidiropoulos. Approximate greedy clustering and
distance selection for graph metrics. CoRR, abs/1507.01555, 2015.

[GIV01] A. Goel, P. Indyk, and K.R. Varadarajan. Reductions among high dimensional
proximity problems. In Proc. 12th Symposium on Discrete Algorithms (SODA),
pages 769–778, January 2001.

[Har04] S. Har-Peled. Clustering motion. Discrete & Computational Geometry, 31(4):545–
565, 2004.

[HP05] M. Har-Peled, S. and Mendel. Fast construction of nets in low dimensional met-
rics, and their applications. In Proc. 21st Annual Symp. Computational Geometry,
SCG’05, pages 150–158, 2005.

[HR15] S. Har-Peled and B. Raichel. Net and prune: A linear time algorithm for euclidean
distance problems. J. ACM, 62(6):44, 2015.

[Val12] G. Valiant. Finding correlations in subquadratic time, with applications to learning
parities and juntas. In 53rd Annual IEEE Symp. on Foundations of Computer
Science, FOCS 2012, 20-23, 2012, pages 11–20, 2012.

[Val15] G. Valiant. Finding correlations in subquadratic time, with applications to learning
parities and the closest pair problem. J. ACM, 62(2):13, 2015.

12

A Proof of Theorem 4

Lemma 17 (Anti-concentration). Let q1, . . . , qt ∈ {−1, 1} be chosen independently and uni-
formly at random, and let a1, . . . , at ∈ R s.t. |a1| = maxi |ai|. Then,

Pr[|
t

∑

i=1

qi · ai| ≥ |a1|] ≥ 1/2.

Proof. Consider a given assignment for q2, . . . , qt. Then if

t
∑

i=2

qi · ai = 0 =⇒ |
t

∑

i=1

qi · ai| = |q1 · a1| = |a1|.

Otherwise,

Pr[|
t

∑

i=1

qi · ai| ≥ |a1|] ≥ Pr[sign(q1 · a1) = sign(
t

∑

i=2

qi · ai = 0)] = 1/2.

Proof of Theorem 4. Notice that

wi
j,k =

∑

xi∈Sk

qi · 〈xj , xi〉

and since q1, . . . , q|Sk| ∈ {−1, 1} are independent and chosen uniformly at random, we obtain

E[wi
j,k] = 0.

If ∀u ∈ Sk, |〈xj , u〉| ≤ τ , then

V ar(wi
j,k) = E[(wi

j,k)
2] ≤ n2ατ2

By Chebyshev’s inequality:
Pr[|wi

j,k| ≥ 3 · nατ] ≤ 1/9

With m repetitions, the number of successes N , that is the number of indices i for which
|wi

j,k| ≤ 3 · nατ , follows the binomial distribution. Hence,

Pr[N ≤ 3m/4] ≤ exp(−m/26).

We consider as bad event the event that for some j, k, more than 25% of the repetitions fail,
that is |wi

j,k| ≥ 3 ·nατ . By the union bound, this probability is ≤ n2−α · exp(−m/26), which for

m ≥ 78 log n implies a probability of failure ≤ 1/n3.
Now consider xj , and xl ∈ Sk s.t. |〈xj , xl〉| ≥ 3 · nατ , then by Lemma 17, with probability

1/2, |wi
j,k| ≥ 3 · nατ . We consider as bad event the event that for j, l, more than 75% of the

repetitions fail, that is |wi
j,k| ≤ 3 · nατ . Hence,

Pr[N ≤ m/4] ≤ exp(−m/8),

which for m ≥ 78 log n implies a probability of failure ≤ 1/n3.
The runtime of the algorithm is dominated, up to polylogarithmic factors, by the computa-

tion of matrix Z, taking time O(dn), the computation of matrix W , taking time n2−a, or the
computation of the product W i, taking time MatrixMul(n× d, d× n1−a).

13

B Proof of Theorem 7

We refer to [Val15, Algorithm 3: Chebyshev Embedding]. The proof is the same with that of
[Val15], apart from indicating that the probability of success is actually 1 − o(1/n) instead of
1− o(1) as stated in [Val15]. While 1− o(1/n) probability of success is enough for our purposes,
even better probability bounds can be achieved.

The fact that all inner products are concentrated within ±√m log n about their expectations
follows from the fact that each row of Y , Y ′ is generated identically and independently from
the other rows, and all entries of these matrices are ±1; thus, each inner product is a sum of
independent and identically distributed random ±1 random variables, and we can apply the
basic Chernoff bound to each inner product, and then a union bound over the O(n2) inner
products. Let Xi ∈ ±1 i.i.d. random variables. The basic chernoff bound gives probability,

Pr[|
m′
∑

i=1

Xi − E[

m′
∑

i=1

Xi]| >
√
m′ log n] ≤ 2 · exp(−Θ(log2 n)) = o(1/n3).

Given this concentration, we now analyze the expectation of the inner products. Let u, u′

be columns of X,X ′ , respectively, and v, v′ the corresponding columns of Y, Y ′. Letting x =
〈u, u′〉/m, we argue that by [Val15, Lemma 3.3], E[v, v′] = m′∑q

i=1
x−ci
2 (1), where ci is the

location of the ith root of the qth Chebyshev polynomial after the roots have been scaled to
lie in the interval [τ−, τ+]. To see why this is the case, note that each coordinate of u, u′ ,is
generated by computing the product of q random variables that are all ±1; namely, a given
entry of u is given by

∏q
l=1 sv(l), with the corresponding entry of u′ given by

∏q
l=1 sv′(l). Note

that for i 6= j, sv(i) is independent of sv(j) and tv′(j), although by construction, sv(i) and tv′(i)
are not independent. We now argue that E[sv(i)tv′(i)] =

x−ci
2 , from which Eq. (1) will follow

by the fact that the expectation of the product of independent random variables is the product
of their expectations.

By construction, in Step (1) of the inner loop of the algorithm, with probability 1/2,
E[sv(i)tv′(i)] = 〈v, v′〉/m = x. Steps (2)(4) ensure that with the remaining 1/2 probability,
E[sv(i)tv(i)] =

1−ci
2 (1) − 1+ci

2 (−1) = −ci. Hence, in aggregate over the randomness of Steps
(1)(4), E[sv(i)tv′(i)] = x/2− ci/2i , as claimed, establishing Eq. (1).

To show that Eq. (1) yields the statement of the proposition, we simply reexpress the poly-
nomial

∏q
i=1

x−ci
2 in terms of the qth Chebyshev polynomial Tq. Note that the qth Chebyshev

polynomial has leading coefficient 2q−1, whereas this expression (as a polynomial in x) has lead-
ing coefficient 1/2q, disregarding the factor of the dimension m′. If one has two monic degree q
polynomials, P and Q where the roots of Q are given by scaling the roots of P by a factor of
α, then the values at corresponding locations differ by a multiplicative factor of 1/αq ; since the
roots of Tq lie between [−1, 1] and the roots of the polynomial constructed in the embedding lie
between [τ−, τ+], this corresponds to taking α = 2

τ+−τ−
.

C Proof of Theorem 8

Theorem 18 ([Cop97]). For any positive γ > 0, provided that β < 0.29, the product of a k×kβ

with a kβ × k matrix can be computed in time O(k2+γ).

Corollary 19. For any positive γ > 0, provided that β < 0.29 · α < 1, the product of a n× nβ

by a nβ × nα matrix can be computed in time O(n1+α+αγ).

Proof. The idea is to perform n1−α multiplications of matrices of size nα × nβ and nβ × nα.
Hence, by Theorem 18, the total cost is:

O(n1−α(nα(2+γ))) = O(n1+α+αγ).

14

Fact 20. Let Tq(x) denote the qth Chebyshev polynomial of the first kind, then the following
hold:

• For x ∈ [−1, 1], |Tq(x)| ≤ 1.

• For δ ∈ (0, 1/2], Tq(1 + δ) ≥ 1
2e

q
√
δ.

Claim 21. For ρ ∈ [−1, 1], ǫ ∈ (0, 1), it holds cos−1(ρ− ǫ)− cos−1(ρ) ≥ ǫ/2.

Proof. If (ρ− ǫ)2 6= 1 then we have

cos−1(ρ− ǫ)− cos−1(ρ) =

∫ 1

ρ−ǫ

1√
1− x2

dx−
∫ 1

ρ

1√
1− x2

dx =

=

∫ ρ

ρ−ǫ

1√
1− x2

dx =

∫ ǫ

0

1
√

1− (ρ− ǫ+ y)2
dy ≥

∫ ǫ

0

1
√

1− (ρ− ǫ)2
dy =

ǫ
√

1− (ρ− ǫ)2
≥ ǫ.

Now if (ρ− ǫ)2 6= 1 =⇒ ρ− ǫ = −1 then,

cos−1(ρ− ǫ)− cos−1(ρ) =

∫ −1+ǫ

−1

1√
1− x2

dx ≥ ǫ√
2ǫ− ǫ2

≥ ǫ/2.

Proof of Theorem 8. If ρ ≤ ǫ, our approach ensures that for any x, y ∈ C, it holds 〈x, y〉 <
ρ − ǫ ≤ 0. We show that |C| ≤ d + 1, due to a simple packing argument. Let x1, . . . , xd+2

such that ∀i 6= j ∈ [d + 2] we have 〈xi, xj〉 < 0. Then, there exist λ1, . . . , λd+1 ∈ R not

all zero for which
∑d+1

i=1 λixi = 0. Now consider two subsets I, J ⊆ [d+2] of indices such
that ∀i ∈ I, λi > 0 and ∀j ∈ J, λj < 0. We can write

∑

i∈I λixi =
∑

j∈J −λjxj =⇒ 0 ≤
〈∑i∈I λixi,−

∑

j∈J λjxj〉 = −
∑

i∈I,j∈J λiλj〈xi, xj〉 < 0 which leads to contradiction. If J = ∅
(or equivalently if I = ∅), then 0 = 〈xd+2,

∑

i∈I λixi〉 < 0, which leads again to contradiction.
We now focus on the case ρ > ǫ. By Theorem 6, with probability 1− o(1/n2), the matrix Y

returned by the corresponding algorithm will have the property that any pair of columns

〈Xi,Xj〉 ≥ ρ =⇒ 〈Yi, Yj〉
d′

≥ 1− 2 cos−1(ρ)

π
− δ

〈Xi,Xj〉 ≤ ρ− ǫ =⇒ 〈Yi, Yj〉
d′

≤ 1− 2 cos−1(ρ− ǫ)

π
+ δ.

Hence, according to Claim 21, it suffices to set δ = ǫ/3π in order to distinguish between the
two cases:

1− 2 cos−1(ρ− ǫ)

π
+ 2δ ≤ 1− 2 cos−1(ρ)

π
− δ.

Now we set τ+ = 1− 2 cos−1(ρ−ǫ)
π + δ > −1. By Theorem 7, with probability 1− o(1),

〈Yi, Yj〉 ≤ τ+d′ ≤ =⇒ |〈Zi, Zj〉| ≤ d′′
2q

23q−1
+
√
d′′ log n ≤ 3n0.16

for large enough n. Moreover, let Yi, Yj s.t. 〈Yi, Yj〉 ≥ (τ+ + δ)d′. Then,

|〈Zi, Z
′
j〉| ≥ d′′ · Tq

(

1 + 2
δ

τ+ + 1

) 2q

23q−1
−
√
d′′ log n >

1

2
· Tq

(

1 + 2
δ

τ+ + 1

)

· n0.16

for large enough n.
Then, by Fact 20,

|〈Zi, Z
′
j〉| · n−0.16 ≥ 1

4
eq

√
δ =

1

4
n
√
δ/50 ≥ 3n

√
δ/100 ≥ 3n

√
ǫ/400,

15

where some of the inequalities hold for large enough n.
Now, by Theorems 6, 7, 5 and Corollary 19 the time complexity is Õ(dn+n2−√

ǫ/600), if we
set as γ in Corollary 19 a sufficiently small multiple of

√
ǫ. Finally,, the subroutine with the

higher probability of failure is Crude ApprxNet and by the union bound, it dominates the total
probability of failure.

D Proof of Corollary 9

We use an algorithm introduced in [Val15]: its guarantees are stated below.

Theorem 22. [Val15] There exists an algorithm which on input a d×n matrix X with entries
xi,j ∈ R and a constant ǫ ∈ (0, 1) outputs a m′×n matrix Y with columns having unit norm and
m′ = log3 n, such that, with probability 1−o(1/poly(n)) for all sets of four columns Y1, Y2, Y3, Y4

of matrix Y , with X1,X2,X3,X4 being the corresponding columns of matrix X, it holds that

‖Y1 − Y2‖
‖Y3 − Y4‖

‖X3 −X4‖
‖X1 −X2‖

∈ [1− ǫ

10
, 1 +

ǫ

10
].

Now, let us define two d-dimensional vectors Xn+1,Xn+2, s.t. r
′ = Xn+1−Xn+2 and ‖r′‖ = r,

whereX is a d×n matrix with entries xi,j ∈ R and r ∈ R is the radius of the r-net of X. Also, let
matrix X ′ denote the concatenation of X, Xn+1 and Xn+2 with size d× (n+2). After applying
Theorem 22 on input X ′ and ǫ/10, we define ρ := ‖Yn+1 − Yn+2‖ to be the new radius of Y .
Then, we claim that the following hold with probability 1 − o(1/poly(n)), which immediately
implies Corollary 9:

• For all Xi,Xj ∈ X and their corresponding Yi, Yj ∈ Y , if ‖Xi−Xj‖ ≤ r then ‖Yi− Yj‖ ≤
(1 + ǫ/10)ρ.

• For all Xi,Xj ∈ X and their corresponding Yi, Yj ∈ Y , if ‖Xi − Xj‖ ≥ (1 + ǫ)r then
‖Yi − Yj‖ ≥ (1 + ǫ/2)ρ.

Proof of Corollary 9. From Theorem 22, we easily derive that for all Xi,Xj ∈ X and their
corresponding Yi, Yj ∈ Y , it holds that

‖Yi − Yj‖ ≤ (1 + ǫ/10)
‖Xi −Xj‖

r
ρ

Therefore, if ‖Xi −Xj‖ ≤ r, we have ‖Yi − Yj‖ ≤ (1 + ǫ/10)ρ. For the other direction, we use
the opposite side of Theorem 22, thus we have that for all Xi,Xj ∈ X and their corresponding
Yi, Yj ∈ Y :

‖Yi − Yj‖ ≥ (1− ǫ/10)
‖Xi −Xj‖

r
ρ.

It follows that ‖Xi−Xj‖ ≥ (1+ ǫ)r ⇒ ‖Yi−Yj‖ ≥ (1− ǫ/10)(1 + ǫ)ρ⇒ ‖Yi−Yj‖ ≥ (1+ ǫ/2)ρ.

E Proof of Theorem 11

ApprxNet(Large radius)

Input: X = [x1, . . . , xn]
T with each xi ∈ S

d−1 with d = log3 n, r > 1/n0.9, ǫ ∈ (0, 1/2].
Output: Sets R,F ⊆ [n].

16

• If r > 0.2 run Inner Product ApprxNet with error parameter ǫ/25 and ρ = 1− r2

2 .

• Otherwise, define the d × n matrix Z as follows: for each i ∈ [d], select q =
⌊

π
2 cos−1(1−r2/2)

⌋

uniformly random vectors v1, . . . , vq and for all j ∈ [n], set

zi,j = sign
k=q
∏

k=1

XT
j vk,

where Xj is the jth column of matrix X.

• Run Inner Product ApprxNet with ρ =
(

1− 2 cos−1(1−r2/2)
π

)q
, error parameter ǫ/100

and input matrix Z with all entries scaled by 1/
√
d to make them have unit norm.

Proof of Theorem 11.

In the case of r > 0.2 we will show that the 1+ǫ multiplicative approximation on the distance
translates to cǫ additive approximation to the inner product. Applying the law of cosines, the

first condition yields 〈p, q〉 ≥ 1− r2

2 and the second condition yields 〈p, q〉 ≤ 1− r2

2 −
2ǫr2+(ǫr)2

2 <

1− r2

2 − ǫ
25 . So, it suffices to take c = 1/25.

Now suppose that r < 0.2. For each random vector v we have that E[sign(XT
i v ·XT

j v)] = 1−
2θ(Xi,Xj)

π , where θ(Xi,Xj) denotes the angle between Xi,Xj . Since expectations of independent
random variables multiply, we have that, for each k,

E[zk,izk,j] = (1− 2 · θ(Xi,Xj)/π)
q .

Now let θr = cos−1(1− r2/2),

‖Xi −Xj‖ ≤ r =⇒ θ(Xi,Xj) ≤ θr =⇒ E[〈Zi, Zj〉] ≥ d(1− 2θr/π)
q

‖Xi −Xj‖ ≥ (1 + ǫ)r =⇒ θ(Xi,Xj) ≥ (1 + ǫ/2)θr =⇒ E[〈Zi, Zj〉] ≤ d(1− 2(1 + ǫ/2)θr/π)
q.

Notice that,
(1− 2(1 + ǫ/2)θr/π)

q

(1− 2θr/π)q
< 1− ǫ/10,

for q = ⌊π/(2θr)⌋ and since n−0.9 ≤ r ≤ 0.2. Notice that d(1 − 2θr/π)
q ∈ [0.3d, 0.5d]. Hence, if

‖Xi −Xj‖ ≤ r and ‖Xl −Xk‖ ≥ (1 + ǫ)r,

E[〈Zl, Zk〉] < (1− ǫ/10)E[〈Zi, Zj〉] ≤ E[〈Zi, Zj〉]− 0.3dǫ/10,

By a union bound over Chernoff bounds, since d = log3 n, with probability 1− o(1/poly(n)),
the inner products between any two columns of Z differs from their expectations by o(d). After
performing the scaling procedure, and due to the fact that d(1 − 2θr/π)

q ≤ 0.5d, we conclude
that it suffices to compute Inner Product ApprxNet with ρ = (1−2·θr/π)q and approximation
error ǫ/100.

The runtime of all components of the algorithm aside from the calls to Inner Product

ApprxNet is bounded by Õ(n/ cos−1(1− r2/2)) = Õ(n1.9).

F Proof of Theorem 14

We present a randomized approximation algorithm which, given a pointset in R
d and distance

parameter r, returns the points that have at least one neighbor at distance at most r.

17

DelFar

Input: Matrix X = [x1, . . . , xn] with each xi ∈ R
d, parameter r ∈ R, constant ǫ ∈

(0, 1/2].
Output: F ′ ⊆ {x1, . . . , xn}.

• Let Y , r′ be the output by algorithm Standardize on input X, r with parameter ǫ/4.

• If r ≥ 1/n0.9 run ApprxNet(Large radius) on input Y , ǫ/4, r and return points
which correspond to the set F ′ ← X\F .

• If r < 1/n0.9 run ApprxNet(Small radius) on input Y , ǫ/4, r and return points
which correspond to the set F ′ ← X\F .

By Theorems 11, 12, 9, both ApprxNet(Large radius) and ApprxNet(Small radius) re-
turn a set F , the subset of the centers of r-net that are isolated, i.e. the points that do not
have any neighbor at distance (1 + ǫ)r. Also, both procedures run in Õ(dn2−Θ(

√
ǫ)). Thus,

DelFar on input a d × n matrix X, a radius r ∈ R and a fixed constant ǫ ∈ (0, 1/2] returns
a set F ′ ⊆ {x1, . . . , xn}, which contains all the points (vectors) of X that have at least one
neighbor at distance r. Additionally, the algorithm costs Õ(dn2−Θ(

√
ǫ)) time and succeeds with

probability 1− o(n0.04).

G A general framework for high dimensional distance problems

In this section, we modify a framework originally introduced by [HR15], which provides an
efficient way for constructing approximation algorithms for a variety of well known distance
problems. We present the algorithm Net and Prune of [HR15], modified to call the algorithms
ApprxNet and DelFar. We claim that this algorithm computes, with high probability, a constant
spread interval and costs O(dn1.999999) time.

We assume the existence of a fast approximate decider procedure for the problems we want
to address using this framework, specifically an algorithm that runs in Õ(dn2−Θ(

√
ǫ)), where ǫ

is the approximation factor. Formally,

Definition 23. Given a function f : X → R, we call a decider procedure a (1+ ǫ)-decider for f ,
if for any x ∈ X and r > 0, decider(r, x) returns one of the following: (i) f(x) ∈ [α, (1 + ǫ)α],
where α is some real number, (ii) f(x) < r, or (iii) f(x) > r.

Additionally, we assume the problems we seek to improve with this method have the following
property: if the decider returns that the optimal solution is smaller than a fixed value r, we
can efficiently remove all points that do not have any neighbor at distance at most r and this
does not affect the optimal solution. Let us denote f(X) the optimal solution of a problem for
input X.

Net & Prune

Input: An instance (X,Γ) s.t. X ⊆ R
d.

Output: An interval [x, y] containing the optimal value.

• X0 = X, i = 0

• While TRUE do

18

– Choose at random a point x ∈ Xi and compute its nearest neighbor distance, li

– Call 3
2 -decider(2li/3,Xi) and

3
2 -decider(cli,Xi). Do one of the following:

∗ If 3
2 -decider(2li/3,Xi) returns f(Xi) ∈ [x, y], return f(X) ∈ [x/2, 2y]

∗ If 3
2 -decider(cli,Xi) returns f(Xi) ∈ [x′, y′], return f(X) ∈ [x′/2, 2y′]

∗ If 2li/3 is too small and cli too large, return [li/3, 2cli]

∗ If 2li/3 is too large, call Xi+1 =DelFar(2li/3,Xi,
3
2)

∗ If cli is too small, Xi+1 =ApprxNet(4li,Xi,
3
2)

– i = i+ 1,

Let us denote as |Xi
≤l| and |Xi

≥l| the set of points in X, whose nearest neighbor distance
is smaller than l and greater than l, respectively.

Theorem 24. Assume that the DelFar algorithm and the ApprxNet algorithm succeed with
probability 1− 1

n0.01 . The algorithm Net & Prune (X,Γ) runs in expected O(dn1.999999) time.

Proof. In each iteration of the while loop the algorithm calls on inputXi the
3
2 -decider procedure

and either ApprxNet or DelFar, all of which cost O(d|Xi|1.999999) time. Thus, the total running
time of the algorithm is O(

∑i=k−1
i=0 d|Xi|1.999999), where k denotes the last iteration of the while

loop.
In the (i+1)th iteration of the while loop, where (i+1 < k), lets assume that x1, x2, . . . , xm

is the points’ labels in increasing order of their nearest neighbor distance in Xi. If j is the index
of the chosen point on the first step of the algorithm andXi

≥j andXi
≤j are the subsets of points

with index ≥ j and ≤ j, respectively, then we call i a successful iteration when j ∈ [m/4, 3m/4].
Then, we have that |X≥j

i | ≥ |Xi+1|/4 and |X≤j
i | ≥ |Xi+1|/4 for a successful iteration. The

probability that i+ 1 is a successful iteration is 1/2.
At each iteration, but the last, either ApprxNet or DelFar gets called. Thus, for any suc-

cessful iteration, a constant fraction of the point set is removed (it follows from Lemma 3.2.3 in
[HR15] and Theorem 14). Also, the algorithms (1 + ǫ)-decider, ApprxNet and DelFar succeed

at every call with probability 1− O(logn)
n0.01 = 1− o(1), since the expected number of iterations is

O(log n). Hence, the expected running time of the algorithm is O(dn1.999999), given the above
algorithms succeed.

At every step, either far points are being removed or we net the points. If the DelFar

algorithm is called, then with small probability we remove a point which is not far. This
obviously affects the optimal value, thus we will prove the correctness of the algorithm with
high probability. On the other hand, if the ApprxNet algorithm is called, the net radius is
always significantly smaller than the optimal value, so the accumulated error in the end, which
is proportional to the radius of the last net computation, is also much smaller than the optimal
value. For the following proofs we assume both DelFar and ApprxNet algorithms succeed, which
occurs with probability 1− o(1).

Lemma 25. For every iteration i, we have |f(Xi)− f(X0)| ≤ 16li.

Proof. Let I be the set of indices of the ApprxNet iterations up to the ith iteration. Similarly,
let I ′ be the set of iterations where DelFar is called.
If ApprxNet was called in the jth iteration, then Xj is at most a 6lj-drift of Xj−1, therefore
|f(Xj)− f(Xj−1)| ≤ 12lj . Also, if DelFar is called in the jth iteration, then f(Xj) = f(Xj−1)
(by Theorem 14). Let m=maxI, we have that,

|f(Xi)− f(X0)| ≤
i

∑

j=1

|f(Xj)− f(Xj−1)| =
∑

j∈I
|f(Xj)− f(Xj−1)|+

∑

j∈I′
|f(Xj)− f(Xj−1)|

19

≤
∑

j∈I
12lj +

∑

j∈I′
0 ≤ 12lm

∞
∑

j=0

(

1

4

)j

≤ 16lm ≤ 16li

,where the second inequality holds since for every j < i, in the beginning of the jth iteration
of the while loop, the set of points Xj−1 is a subset of the net points of a 4li-net, therefore
lj ≥ 4li.

Lemma 26. For any iteration i of the while loop such that ApprxNet gets called, we have
li ≤ f(X0)/η, where η = c− 16.

Proof. We will prove this with induction. Let m1,m2, . . . ,mt be the indices of the iterations of
the while loop in which ApprxNet gets called.
Base: In order for ApprxNet to get called we must have ηlm1

< clm1
< f(Xm1−1) and since this

is the first time ApprxNet gets called we have f(Xm1−1) = f(X0). Therefore, ηlm1
< f(X0).

Inductive step: Suppose that lmj
≤ f(X0)/η, for all mj < mi. If a call to 3

2 -rNet is made in
iteration mi then again clmi

< f(X(mi)−1) = f(Xmi−1
). Thus, by the induction hypothesis and

Lemma 25 we have,

lmi
<

f(Xmi−1
)

c
≤ f(X0) + 16lmi−1

c
≤ f(X0) + 16f(X0)/η

c
=

1 + 16/η

c
f(X0) = f(X0)/η

Therefore, if we set c = 64 we have η = 48, thus by Lemma 25 and Lemma 26,

|f(Xi)− f(X0)| ≤ 16li ≤ 16f(X0)/η = f(X0)/3

Corollary 27. For c ≥ 64 and for any iteration i we have:

• (2/3)f(X0) ≤ f(Xi) ≤ (4/3)f(X0),

• if f(Xi) ∈ [x, y], then f(X0) ∈ [(3/4)x, (3/2)y] ⊆ [x/2, 2y],

• if f(X0) > 0 then f(Xi) > 0.

Theorem 28. For c ≥ 64, the Net & Prune algorithm computes in O(dn1.999999) time a constant
spread interval containing the optimal value f(X), with probability 1− o(1).

Proof. Consider the iteration of the while loop at which Net & Prune terminates. If the interval
[x, y] was computed by the 3

2 -decider, then it has spread ≤ 3
2 . Thus, by Corollary 27 the returned

interval [x′, y′] = [x/2, 2y] contains the optimal value and its spread is ≤ 6. Similarly, if 2li/3 is
too small and cli too large, then the returned interval is [li3 , 2cli] and its spread is 384.

G.1 Proof of Theorem 16

Proof. For this particular problem, the optimal solution is not affected by the DelFar’s removal
of the points with no other point at distance at most r. Also, each time the ApprxNet algorithm
is called, for a fixed distance r, the drift of the optimal solution is at most 2r. Thus, Theorem
28 holds, and we compute a constant spread interval [x, y] containing the optimal value, with
high probability. We then apply binary search on values x, (1 + ǫ)x, (1 + ǫ)2x, . . . , y using the
algorithm kth NND Decider. We perform O(1/ log(1 + ǫ)) = O(1/ǫ2) iterations, hence the
total amount of time needed is Õ(dn2−Θ(

√
ǫ)) and the algorithm succeeds with high probability

1− o(1).

20

	1 Introduction
	2 Points on a sphere under inner product
	2.1 Crude approximate nets
	2.2 Approximate inner product nets

	3 Approximate nets in high dimensions
	3.1 From arbitrary to unit vectors
	3.2 Approximate nets under Euclidean distance

	4 Applications and Future work
	A Proof of Theorem ??
	B Proof of Theorem ??
	C Proof of Theorem ??
	D Proof of Corollary ??
	E Proof of Theorem ??
	F Proof of Theorem ??
	G A general framework for high dimensional distance problems
	G.1 Proof of Theorem ??

