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Abstract
We introduce a stronger validity property for the byzantine agreement problem with orderable
initial values: The median validity property. In particular, the decision value is required to be
close to the median of the initial values of the non-byzantine nodes. The proximity to the median
scales with the desired level of fault-tolerance: If no fault-tolerance is required, algorithms have to
decide for the true median. If the number of failures is maximal, algorithms must still decide on a
value within the range of the input values of the non-byzantine nodes. We present a deterministic
algorithm satisfying this property for n ≥ 3t + 1 within t + 1 phases, where t is the maximum
number of byzantine nodes and n is the total number of nodes.
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1 Introduction

A distributed system consists of a number of nodes, which collaboratively achieve fault-
tolerance: Even if some of the nodes fail, the system as a whole can continue to operate
reliably. As such, distributed systems are omnipresent in areas that have strong availability
and reliability requirements. The challenging problem is to keep the system in a consistent
and reasonable state. The following example illustrates this problem.

An airplane control system consists of multiple machines. In order to reach a decision on
what action the plane performs next, the system relies on data from various sensors. One
type of sensor is the altitude meter. Assume that the system needs to decide whether or not
it is safe to descend, and queries the altitude meters. As those sensors are susceptible to
freezing – and known to malfunction when frozen – each plane is equipped with multiple
altitude meters. The airplane control system needs to agree on a value, and in order to avoid
a single point of failure, this agreement will be achieved in a distributed manner.

One may argue that this agreement operation is at the core of many distributed systems,
and generally fundamental for distributed computing research. Depending on the failure
model, it is sometimes referred to as consensus (to cope with crash failures, e.g. [10]) or as
byzantine agreement (to cope with arbitrary failures, e.g. [24]). In our airplane scenario – as
well as in many other scenarios – one must be able to tolerate arbitrary failures, as a frozen
sensor might not simply crash but still continue to provide data, even though that data is
totally bogus. Nodes not complying with the protocol or reporting wrong data are called
byzantine, nodes which behave correctly we simply call good.

The byzantine agreement (BA) problem consists of three properties: Termination, agree-
ment, and validity. We need termination since we require our algorithm to come to a decision
within finite time, as not deciding how high a plane is flying for a long time is disastrous. We
need agreement as we want the nodes of our distributed system to continue their operation
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in the same state. To rule out trivial solutions (“The altitude is always 10,000 meters.”) we
need a third property: Validity. The purpose of the validity property is to make sure that
the value agreed on is reasonable. There exist slightly different definitions for validity, but
the most common one is the following (see, e.g. [4, 12]):

Validity If all good nodes start with the same input value, they agree on this value.

Unfortunately, there is no limitation on what the decision value can be for configurations
in which not all good nodes start with the same input value. Surprisingly, in the literature,
dissenting configurations receive only little attention. Informally speaking, one is obliged
to accept a solution as long as the nodes agree on any value. The rationale for this weak
validity condition is as follows: Since initially there is disagreement among the good nodes,
a byzantine node can propose a bad value but follow the protocol of the algorithm, and
there is no way to guarantee that the decision value will always be the input value of a good
node. While this argument is formally correct, it implicitly assumes that it is impossible to
distinguish good from bad values.

We believe that there is room for improvement, in particular in cases where input values
can be ordered. Assume that we use an existing algorithm for BA in the previously described
airplane example, and that we have four altitude meters which report the altitudes 995, 1002,
1004, and 5000, respectively. Even though it is clear that the correct altitude is roughly 1000,
existing algorithms for BA might choose 5000, which might lead to a catastrophe. Often
one must solve BA on input values in R, e.g., measurements. Measured values are usually
prone to noise, hence even the good nodes will have slightly different input values. The
classic validity property (which is only concerned with the case where all input values are
equal) does not help. To address this problem, we introduce a stronger validity property:
The median validity property. In particular, we require the decision value to be “reasonably
close” to the median of the values of the good nodes. We will later specify this requirement
precisely.

In Section 4 we present a new BA algorithm called the Jack algorithm. Our algorithm
has an optimal resilience, i.e., it works as long as n ≥ 3t + 1, where n is the total number
of nodes, and t denotes the tolerance, i.e., the maximum number of byzantine nodes. Note
that we distinguish between t and f , where f ≤ t is the actual number of byzantine nodes
during an execution of the algorithm, analogous to [8]. This distinction is necessary, as the
nodes only know the tunable parameter t, since f is only known to the adversary. We will
prove that the algorithm works for every f ≤ t, thus the algorithm does not rely on any
particular f . The Jack algorithm is deterministic and terminates in t + 1 phases, where
each phase consists of a constant number of synchronous rounds. The algorithm additionally
guarantees that the decision value will be reasonably close to the median of the good nodes.
The proximity of the decision to the median of the good nodes is defined in an elastic way: In
the best case, if we do not need any fault-tolerance, the algorithm agrees on the median itself.
In the worst case, if the number of byzantine nodes is maximal, we require the value only to
be within the interval spanned by the good nodes; in our airplane example, the algorithm
will choose a value x with 995 ≤ x ≤ 1004.

In addition, we present a lower bound for our validity property. If all byzantine nodes
collude and suggest arbitrarily small (respectively large) input values, no algorithm can
guarantee to find the correct median of the good nodes. In Section 5, we will provide exact
bounds on this error.



D. Stolz and R. Wattenhofer 3

2 Related Work

The BA problem has a long history, starting in 1980 when it was first introduced by Lamport
et al. [24]. Since then, a vast amount of research has been conducted and many models and
questions have been studied. The earlier works focused mainly on general computability
questions, e.g., [2, 10]. The first algorithms required message sizes exponential in n, or had a
runtime that was far from optimal, but these shortcomings have been addressed and solved
later.

With the proliferation of data centers, companies started implementing a large number of
BA protocols, and the interest from the practical distributed systems community exploded.
Well-known protocols include e.g. PBFT [6], Farsite [1], Google’s Chubby [5], PeerReview [14],
Zyzzyva [17], AZyzzyva [13], Apache ZooKeeper [15], SMART [20], ZZ [27], or RAFT [22].
These protocols try to improve various practical aspects of BA, in particular runtime, but
do not address validity. We believe that some of these protocols could benefit from our
orthogonal goal of strengthening the validity property.

Our contribution is a relative of the Queen [3] and King [4] algorithms by Berman, Garay
(and Perry). These algorithms operate in the synchronous model and terminate in t + 1
phases, which is asymptotically optimum for algorithms that terminate simultaneously [8].
While the Queen algorithm does not have optimal resilience, the King algorithm tolerates
the maximum number of byzantine nodes. Our Jack algorithm achieves optimum runtime
and resilience as well, and additionally satisfies a stronger validity condition as discussed in
the introduction.

There are also algorithms that are closely related to the BA problem, but do not satisfy
all three BA properties. In distributed average consensus, nodes try to achieve consensus
on the average of all input (sensor) values. There are some major differences to BA: First,
algorithms do not tolerate byzantine failures, but, e.g., only link failures [23, 29], systematic
failures on the input (noise) [28], or both [16]. Second, the goal is not to agree on a specific
value after a finite amount of time, but rather to converge towards a value. Hence, these
algorithms do not satisfy the termination property, and cannot be used in many scenarios,
e.g. in our airplane example. Please refer to the book of Ren and Beard [25] for an extensive
survey.

The clock synchronization problem [18] is another agreement problem, which usually
assumes that the clock values are initially close to each other, however, not exactly equal.
While this problem was only loosely related to the BA with the classical validity property,
the relation to BA with median validity is evident, since an agreement on the median is a
reasonable goal for clock synchronization.

In a very recent work [26] Su and Vaidya study the problem of byzantine distributed
optimization of real valued convex cost functions. Instead of starting with an initial value,
every node starts with a cost function h(x). The goal is to reach consensus on a value
x, such that the total cost (the sum of the costs of the good nodes) is minimized. Since
the optimization problem is similar to the problem we study, it is not surprising that they
establish a proof that the optimization problem cannot be solved exactly in the presence of
byzantine nodes, which conveys a similar message as our lower bound (see Section 5).

The work which is most closely related to our contribution is the one which aims at
strengthening the validity property. We are aware of two different approaches. The first
one is the approximate agreement problem by Dolev et al. [7]. Dolev et al. strengthen the
validity property at the expense of the agreement property. The agreement property by
Dolev et al. does not require the nodes to agree consistently on one value, but allows the
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nodes to choose different values which are in ε-distance of each other. In their algorithm,
the range of acceptable values is iteratively reduced, until the range satisfies the ε-property.
They can guarantee that the algorithm terminates as early as possible. On the other hand,
the agreement property cannot be guaranteed anymore. We believe that many applications
depend on all three BA properties, as future actions depend on past decision values.

The second one is the strong consensus problem [11,21]. The strong consensus problem
allows input values from a finite Domain D, and strengthens the validity property by requiring
the nodes to agree on a value that was the initial value of at least one good node. It might
seem that such a validity property is also the right choice for real valued inputs; however,
Neiger [21] showed that n must be at least |D| · t, which is clearly not applicable to scenarios
which require initial values in R.

Our validity property is hence both in the spirit of Dolev et al. [7] and Neiger [21], and
we think that we found a reasonable trade-off between agreement, validity of the decision
and the required number of nodes.

3 Model

Let A denote an array of length l. Throughout this paper we will use zero-based arrays,
meaning that the first element of an array is A[0] and the last element is A[l − 1]. When we
refer to the median of an array A, we want the median to be a value which actually occurs
in that array. As this raises a problem with arrays of even size, we define the median to be
the element at index A[d l

2e − 1], assuming A is sorted.
The network consists of n nodes which are fully connected, i.e., every node can communi-

cate with every other node. Nodes communicate by exchanging messages, and we assume
that time elapses in synchronous rounds. We allow every node to send exactly one message
to every other node in each round, and we assume that these messages will be received in
the following round. The network itself is assumed to be reliable, meaning that messages
are not altered or delayed between sender and receiver. The different links between nodes
are isolated from each other, i.e., only the sender and receiver of a message know about the
message. Hence, if a node broadcasts a message, it sends a single message to every node,
including itself.

The byzantine agreement problem tends to be specified in different ways in different
papers: Sometimes the input values are only binary, sometimes there is a predetermined
“leader node”. In this paper, we define the BA problem as follows:

Every node has an input value x ∈ R. There are f ≤ t byzantine nodes which can behave
arbitrarily. This includes lying about their input value, not following the protocol, sending
different messages to different nodes in the same round, crashing, and so on. We allow an
adaptive adversary, which can determine during the execution of the protocol which nodes are
byzantine, and how they behave. Note however, that the adversary is limited to selecting at
most t nodes, meaning that a node that is byzantine cannot be declared as non-byzantine at
later point in time. We call a node good if it is not selected by the adversary to be byzantine
at any point throughout the execution; it follows directly that there are always at least n− t

good nodes. However, a good node does not a priori know which of the other nodes are good;
a good node only knows that there must be at least n− t good nodes in the system. At the
end of the algorithm, every good node must have decided for a certain value, which we will
refer to as the decision.

Any algorithm that solves byzantine agreement with median validity must satisfy the
following three properties:
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Agreement For every selection of input values and every selection of byzantine nodes, all
good nodes must decide on the same value.

Termination Every good node must decide on a value in finite time.
Median Validity The decision is always a valid value1 (see definition below).

Let us now define which values are valid. For that purpose, we denote by G the sorted
array of the input values of the good nodes. Note that the length of the array is n−f ≥ n− t,
and the median of the good nodes is G[dn−f

2 e − 1].

I Definition 1 (valid value). We call a value x valid, if it holds that

G[
⌈

n− f

2

⌉
− 1− t] ≤ x ≤ G[

⌈
n− f

2

⌉
− 1 + t].

Note that in the best case, where f = t = 0, the median of the good nodes is the only valid
value. In the worst case, where n = 3t + 1 and f = t (which corresponds to the maximum
number of byzantine nodes so that BA is solvable, see [19, 24]), every value which is between
the smallest input value of a good node and the largest input value of a good node is valid.

Observe that even though the decision must be between the smallest and largest input
value of a good node, the decision is not necessarily the input value of a good node! For
example, we allow that the value proposed by a byzantine node can be chosen, as long as it
satisfies the required proximity to the median. Even though this relaxation has only little
negative impact on the quality of the decision, it is a crucial enabler of the validity property:
As shown by [11], a validity property which also satisfies that the decision is the input value
of a good node is impossible for real values, and even with input values from a finite domain,
the failure tolerance decreases linearly with the size of the domain, which is an unfeasible
requirement for many applications.

4 The Jack Algorithm

We developed an algorithm that uses some ideas from the Phase King algorithm developed
by Berman, Garay and Perry [4]. One such idea is to have t + 1 nodes predetermined as
kings. In t + 1 phases there is always one of those kings the depicted king for that phase,
assuming a special role. We use the same idea in our algorithm, but refer to this special role
as the jack.

Note that the Jack algorithm requires the tolerance as an input parameter t, which
is tunable. The choice of t affects the runtime of the algorithm, its fault-tolerance, and
how close to the median of the good nodes the final decision value will be. In particular, t
determines the maximum number of byzantine nodes that the algorithm can tolerate, and it
determines which values are considered valid, according to the definition of a valid value (see
Definition 1).

All nodes start the execution of the algorithm at the same time, and execute the same
steps at the same time; the only exception is the step marked with Only Jack, in which
only the respective jack of that phase is active, and all other nodes remain silent. Note that
since it is predetermined which node is the jack of which phase, every node can simply ignore
byzantine nodes pretending to be the jack in a wrong phase.

1 Note that the classic validity property is implied by our validity property as a special case.
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Algorithm 1: The Jack algorithm
input : inputValue, n, t
output : consensusValue
Setup Stage

1 Broadcast(inputValue)

2 Store and sort all received values in array values
interval = values.Subarray(dn−t

2 e − 1, n− bn−t
2 c − 1)

Broadcast(“bounds: interval.first, interval.last”)

3 Store all received interval bounds
if inputValue is in at least n-t bounds then

suggestion = inputValue
else

suggestion = pick any value from interval that is in at least n-t bounds
current = suggestion
Search Stage

for i = 1 to t + 1 do
4 Broadcast(current)
5 if some value x appears ≥ n-t times then

Broadcast(“propose x”)

6 if some “propose x” received > t times then
current = x

Only Jack if some “propose x” received > t times then
jackSuggestion = current

else
jackSuggestion = suggestion

Broadcast(“suggest jackSuggestion”)

7 if current == jackSuggestion or
( interval.first ≤ jackSuggestion ≤ interval.last) then

Broadcast(“support jackSuggestion”)

8 if received “propose x” < n-t times then
if some “support jackSuggestion” received > t times then

current = jackSuggestion

9 consensusValue = current

The Jack algorithm works as follows: At the start there is a setup stage consisting of 3
rounds, in which all nodes determine which values they will support later on. It is followed
by the search stage consisting of t+1 phases, in which the nodes agree on the decision value.
In each of these phases there is at first a part where all nodes perform the same actions, and
a second part, in which a predetermined jack tries to suggest a value. As there are t+1 jacks,
we are guaranteed to have at least one non-byzantine jack. Since we do not know in which
of these phases we have a non-byzantine jack, we need the first part: This part prevents
a byzantine jack to change an existing agreement. The second part (the part of the jack)
allows a good jack to suggest a valid value, so that we are assured to reach agreement.
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In the following sections, we prove the correctness of the algorithm.

4.1 Preliminaries
I Lemma 2. The median of the good nodes G[dn−f

2 e − 1] is in the interval of every good
node.

Proof. The intervals are created during the setup stage in Step 2 by truncating the array of
received input values on both sides, i.e., by removing a subarray with the smallest values,
and by removing a subarray with the largest values. In order to show that the median of the
good nodes will always remain in the subarray interval, we show that it cannot be in either
of two parts of the array that are removed.

Let us first look at the part of the array which is removed since the values within this
part are considered too small. The smallest index of the sorted array that is kept in the
array interval is dn−t

2 e − 1. Since we use arrays that start at index 0, the number of values
that are smaller or equal to the value at a certain index of the array is equal to the index.
Thus, we know that the construction of the subarray interval discards the smallest dn−t

2 e − 1
values. As there are dn−f

2 e− 1 input values of good nodes which are smaller than the median
of the good nodes (by definition of the median), and since dn−f

2 e − 1 ≥ dn−t
2 e − 1, it follows

that the median of the good nodes will never be removed because it is considered too small.
Analogously we show that the median of the good nodes cannot lie in the part of the array

that is removed due to the values being too large. The largest index of the received value
that is kept is n− bn−t

2 c − 1. Therefore, the number of received values that are discarded
since they are considered too large is bn−t

2 c. Again, due to definition of the median, this is
at most the number of input values of good nodes which are larger or equal to the median of
the good nodes. Thus, the median of the good nodes will also never be considered to be too
large, which concludes the proof. J

I Lemma 3. All values stored in the interval arrays of good nodes are valid.

Proof. Note that valid values are around the median of the good nodes. Thus, for a value to
be not valid, it must either be too small, or too large. We prove the lemma by proving the
two cases individually.

The smallest value of the received input values that is taken into the interval is at the
index dn−t

2 e − 1 of the sorted array of all received values, thus the number of input values
that are discarded since they are too small is dn−t

2 e − 1. Note that f ≤ dn−t
2 e − 1, since:

3t < n | −t, ·12
t <

n− t

2

t ≤
⌈

n− t

2

⌉
− 1 | f ≤ t

f ≤
⌈

n− t

2

⌉
− 1

Within those values that are discarded, there are at most f values from byzantine nodes.
Therefore, the number of good values that are discarded is at least dn−t

2 e − 1− f , meaning
that the largest input value of a good node that is discarded because it is too small is at
least G[dn−t

2 e − 1− f − 1].
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We can distinguish two cases: The first case is that all the byzantine nodes have sent a
value that is discarded since it was too small. In this case, the smallest value in the interval
must be from a good node, and since dn−t

2 e − 1− f good values have been discarded, the
smallest value of the interval is G[dn−t

2 e − 1 − f ], which is at least as large as the lower
bound of being valid, since:

f ≤ t⌈
n− f

2

⌉
+ f ≤

⌈
n− t

2

⌉
+ t | −f − t− 1⌈

n− f

2

⌉
− 1− t ≤

⌈
n− t

2

⌉
− 1− f

And therefore G[dn−f
2 e − 1− t] ≤ G[dn−t

2 e − 1− f ].
The second case is where at least one byzantine node sent a value that is not discarded

for being too small. In that case, the number of good values that are discarded for being too
small is at least one more than in the previous case. In particular, the value G[dn−t

2 e− 1− f ]
will be discarded. Since all nodes that are not discarded must be bigger than the discarded
ones, the lower bound holds.

We show that no value in the interval can be too large to be valid analogously. The
number of values that are not taken into the interval since they are too large is bn−t

2 c. As
there might be at most f values from byzantine nodes, there will be at least bn−t

2 c− f values
from good nodes discarded because they are too large. Hence, the smallest discarded good
value is at most G[(n− f)− (bn−t

2 c− f)] = G[dn−t
2 e+ t]. We distinguish the two cases again:

First, the case where all byzantine values are discarded, as they are too large. In that case,
the largest value kept in the interval is G[dn−t

2 e+ t− 1], and since dn−t
2 e ≤ d

n−f
2 e, it follows

that G[dn−t
2 e+ t− 1] ≤ G[dn−f

2 e+ t− 1], i.e., the required bound is satisfied. Second, the
case where there is at least one byzantine value that is not discarded. In that case, the value
G[dn−t

2 e+ t− 1] is discarded, implying that all values in the interval are smaller than this
value, and thus the upper bound holds. J

4.2 Main Theorem
I Theorem 4. The Jack algorithm achieves byzantine agreement with median validity in
O(t + 1) rounds, if and only if n ≥ 3t + 1.

Note that the Jack algorithm matches the upper bound on the number of byzantine nodes
that it can tolerate [19], and that it has an asymptotically optimal runtime [8,9]. To facilitate
the readability of the proof, we split it up into separate lemmas. Note that throughout the
proof, we often use the fact that n− f ≥ n− t implicitly.

I Lemma 5. Each good node has at least one value in its interval which is within the bounds
of at least n− f received bounds.

Proof. We proved that the median of the good nodes is in the interval of every good node
(Lemma 2). Hence the value of the median of the good nodes is at least in all good bounds,
i.e., every good node receives at least n− f bounds containing the median of the good nodes.
Since every good node has the median in its own interval, the lemma holds. J

This lemma guarantees that the setup stage can always be completed successfully, i.e.,
that every good node can always find an eligible suggestion.
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I Lemma 6. If all good nodes have the same value stored in the variable current at the
beginning of a phase, they will not change the value of current during this phase.

Proof. Let v denote the value which is stored in the variable current at all good nodes. In
Step 4 all n−f good nodes broadcast v, and thus all good nodes hear at least n−f messages
containing v. Therefore, all good nodes propose v in Step 5, and all good nodes hear at least
n− f proposals for v in Step 6. They update their value to v, i.e., they keep v. The only
other step where the nodes update their variable current is Step 8, but since every good node
received at least n− f proposals for v, no good node updates to the jackSuggestion. J

I Corollary 7. If all good nodes have the same value v stored in the variable current in the
beginning of any phase, they will agree on v when the algorithm terminates.

I Lemma 8. If all good nodes start with the same input value v, they will agree on this
value. (The classic validity property holds.)

Proof. Since all good nodes start with the input value v, this value is also the median of the
good nodes. Lemma 2 states that v must be in the interval of every good node. Thus, every
good node sets its variable current to v in Step 3. As every good node starts the search stage
with current set to v, it follows from Corollary 7 that they agree on v when the algorithm
terminates. J

I Lemma 9. A good node will only store values in its variable current which are within the
bounds of an interval of at least one good node.

Proof. Note that every good node picks a value from its own interval as the starting value
for current, thus the lemma holds at the end of the setup stage. For the search stage, it is
sufficient to show, that if the lemma holds at the beginning of a phase, it will also hold at
the end of the phase (and thus at the beginning of the next phase). There are two steps in
which a good node can update its variable current: Step 6 and Step 8.

If a good node updates the variable current in Step 6 to a new value x, we know that more
than t nodes sent a proposal for x, i.e., at least one good node sent a “propose x”. Hence, the
good node which sent the proposal must have received x in Step 5 least n− t ≥ 2t + 1 > f

times, meaning that at least one good node must have sent x in Step 4. Since we assumed
that the lemma holds at the beginning of the phase, this value must have been in the interval
of a good node.

The second possibility to update current is in Step 8. If a good node updates the value in
Step 8 to a jackSuggestion x, it must have received a message “support x” from at least one
good node. Such a message is sent in Step 7, but a good node only supports a suggestion
from the jack if the suggestion is either the current of the good node, or if the suggestion
is within the bounds of its interval. In the latter case the lemma holds, as this is condition
enforces exactly what the lemma states. Looking at the former case, we know that the lemma
holds after Step 6, and thus it also holds in Step 7, as current was not changed in between.
Therefore, x must be within the interval of at least one good node, concluding the lemma. J

Combining this lemma with Lemma 3 yields the following corollary:

I Corollary 10. A good node always has a valid value stored in its variable current.

Since the value for which a good node decides when the algorithm terminates is the value
stored in the variable current, it follows that every good node will always decide for a valid
value. Before we can establish the last lemma that concludes the proof of Theorem 4, we
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need to show the following lemma. Please note that this lemma has already been shown in
slightly different form in [4], since the authors use the same idea in the Phase King algorithm.

I Lemma 11. If a good node updates its variable current in Step 6 to x, no good node updates
its variable current to y in Step 6 in the same phase, if x 6= y.

Proof. Assume for a contradiction that there are two good nodes, one updating its value
to x, and one updating its value to y. Therefore, one node must have heard at least t + 1
proposals for x, and another node heard at least t + 1 proposals for y. Thus, at least one
good node proposed x, and one good node proposed y. In order for a good node to propose
a certain value in Step 5, it must have heard this value at least n− t times. Since at most t

of those values can come from byzantine nodes, it must have heard the value from at least
n− 2t good nodes. Therefore at least n− 2t good nodes sent x in Step 4, and at least n− 2t

good nodes sent y; with x 6= y, the total number of good nodes must be at least 2n − 4t.
Since the number of good nodes is by definition n− t, it follows that n− t ≥ 2n− 4t, i.e.,
n ≤ 3t must hold, which contradicts our initial assumption that n ≥ 3t + 1. J

With the help of this lemma, we only need to show the following lemma to complete the
proof of Theorem 4.

I Lemma 12. At the end of a phase with a non-byzantine jack, all good nodes store the
same value in their variable current.

Proof. If all good nodes store the same value in current at the beginning of the phase, this
lemma follows directly from Lemma 6. Hence we only need to prove the case where not all
good nodes start with the same value in current.

Note that the jack has two values which it can propose: Either the value stored in the
suggestion created in the setup stage, or the value stored in its variable current. Both these
values are valid: suggestion is chosen from the interval in the setup stage, and thus valid (see
Lemma 3), and the value stored in current is always valid (see Corollary 10).

Let us first look at the case where the jack suggests its value stored in its variable current.
As the jack suggests its current, it must have received more than t proposals for a certain
value x, and therefore it has updated its current to x in Step 6. Since the jack heard more
than t proposals, at least one good node proposed x. This node must have heard at x in
Step 5 at least n− t times, i.e., it heard it at least from n− 2t good nodes. As we assume
that n ≥ 3t + 1, it follows that at least t + 1 good nodes started this phase with the value
x. As a consequence of Lemma 11, those nodes will not change the value in their variable
current in Step 6, as the only value for which they can hear enough proposals is in fact x.
This implies that the number of good nodes which have value x stored in current in Step
7 must be at least t + 1, and because the jack suggests x, there will be at least t + 1 good
nodes that support x. Any good node that heard less than n− t proposal messages for x

will therefore accept the suggestion of the jack, which is x. Every node that ignores the
suggestion from the jack does so, because it heard at least n− t proposal messages for the
same value x in Step 6. It follows from Lemma 11 that these nodes updated their current
to the same value x as the jack did in Step 6. Therefore, all nodes have value x stored in
current at the end of the phase.

It remains to be shown that if the jack suggests its value stored in suggestion, that all
good nodes update their variable accordingly. If the jack suggests its suggestion, it heard at
most t proposals for any value in Step 6. Hence, any other good node can hear at most 2t

proposals for any value. Recall that the jack picked a value for its suggestion in the setup
stage that was in at least n− t bounds (note that there is always such a value, see Lemma
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5). As at most t of those bounds might have been sent by byzantine nodes, the chosen value
is in within at least n − 2t ≥ t + 1 bounds of good nodes, where we used that n ≥ 3t + 1.
Therefore, at least those t + 1 good nodes support the suggested value in Step 7. Since every
good node heard at most 2t < n− t proposals, and the suggestion of the jack has at least
t + 1 support, every good node accepts the suggested value of the jack in Step 8. J

Since we perform t + 1 phases, we are guaranteed to have at least one phase with a
non-byzantine jack. In combination with Corollary 7, this establishes the agreement property,
and with Corollary 10 follows the median validity property. As the termination property
follows from the construction of the algorithm, Theorem 4 follows. J

5 Discussion

In the following, we put our result into context, by providing a tight bound on how close to
the median of the good nodes any algorithm can get, and by doing so, we also discuss an
alternative approach to the initially stated problem of achieving agreement on a reasonable
value.

I Theorem 13. There is no deterministic algorithm that can guarantee that, for every
selection of input values and every selection of byzantine nodes, the decision value x will
always satisfy

G[
⌈

n− f

2

⌉
− 1−

⌊
t

2

⌋
] < x < G[

⌈
n− f

2

⌉
− 1 +

⌈
t

2

⌉
].

Proof. To prove this theorem, it is not necessary to assume byzantine behavior throughout
the execution of the protocol; it suffices to let the byzantine nodes select tedious input values.
We assume that f = t. Let us look at two different selections of input values: First, we let
the start the good nodes with input values G1 = {1, . . . , n − t}, and the byzantine nodes
pick the input values {n− t + 1, . . . , n}. Second, we start the good nodes with input values
G2 = {t + 1, . . . , n}, and the byzantine nodes with {1, . . . , t}. Throughout the execution of
the protocol, the byzantine nodes adhere to the protocol defined by the algorithm. As the
two executions will be exactly equal, the good nodes agree on the same value v in both runs.

We will now show by contradiction that no value satisfies the bounds for both scenarios.
Note that for all values which are in both sets of good input values G1, G2 it holds by
construction that G1[i] = G2[i− t]. Assume that v is a value that satisfies the upper bound
for G1. Note that:

v < G1[
⌈

n− f

2

⌉
− 1 +

⌈
t

2

⌉
] =⇒ v ≤ G1[

⌈
n− f

2

⌉
− 1 +

⌈
t

2

⌉
− 1]

Due to the selection of the input values of the good nodes. Therefore it must hold that:

v ≤ G1[
⌈

n− f

2

⌉
− 1 +

⌈
t

2

⌉
− 1] = G2[

⌈
n− f

2

⌉
− 2−

⌊
t

2

⌋
] < G2[

⌈
n− f

2

⌉
− 1−

⌊
t

2

⌋
]

Hence, every value that satisfies the upper bound for the first scenario, does not satisfy the
lower bound for the second scenario. J
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I Theorem 14. There is a deterministic algorithm that guarantees that the decision value x

always satisfies

G[
⌈

n− f

2

⌉
− 2−

⌊
t

2

⌋
] ≤ x ≤ G[

⌈
n− f

2

⌉
+

⌈
t

2

⌉
].

Proof. The algorithm works in two stages: First, we use any algorithm that achieves
interactive consistency (for example the one from [24]). With interactive consistency, every
node agrees on the input values of all nodes; in particular, it knows all the input values of
the good nodes, and for all the byzantine nodes, there is either agreement on a value, or the
good nodes agree that the node is byzantine. The second stage of the algorithm is to pick
the median of the agreement array.

The agreement array will consist of all values from G, and some byzantine values. Note
that every node that is identified as a byzantine node has no effect on the resulting decision
value; therefore, the distortion created by the byzantine nodes is maximal if all byzantine
nodes succeed in adding a bad value to the agreement array. Observe that this distortion
can be maximized, if all byzantine nodes add values that are either smaller than the median
of the good nodes, or larger2. It is clear that in order to achieve the maximal effect on the
value of the resulting decision, and not only to maximize the index shift on the median of
the good nodes, all byzantine values must be either smaller than the smallest good value, or
larger than the largest good value, and that f = t. As n ≥ 3t + 1, it is not possible for the
byzantine nodes to move the median of the agreement array beyond the value range spanned
by the good values; thus, the minimal (maximal) decision value can be bounded by a value
from G. Due to the definition of the median, the t byzantine nodes can shift the decision
value at most by d t

2e index positions. Hence, the upper bound follows directly, and the lower
bound follows with the fact that d t

2e ≤ b
t
2c+ 1. J

Comparing how close to the median of the good nodes the decision value of the Jack
algorithm is in terms of index position difference within G yields the following corollary:

I Corollary 15. The Jack algorithm is a 2-approximation with respect to the index distance
in G in the worst case.

Having shown that the Jack algorithm is not optimal, one might argue, that it is better
to use an algorithm based on interactive consistency, as outlined before. However, we are not
aware of any algorithm that achieves interactive consistency with real valued3 input values
in an efficient way. The algorithm in [24] uses messages of exponential size, and also local
computation that requires exponential runtime in each step. Since the Jack algorithm only
requires small messages (only one4 value), and only simple local computations, we claim that
our algorithm achieves a reasonable trade-off between precision and complexity.

6 Conclusion

We introduced the median validity property which addresses a shortcoming in the specification
of the byzantine agreement problem for many practical scenarios. Algorithms satisfying the

2 If one byzantine node proposes a value that is smaller than the median, and one proposes a value that
is larger, the median does not change.

3 Note that many of the existing algorithms assume binary input values.
4 In the setup stage two values are sent in one round, which could of course be split into two rounds in

which only one value is sent.
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median validity property can be used in environments with orderable input values, and such
algorithms are particularly suitable if one cannot expect the input values of the nodes to
be exactly equal. We presented an algorithm that achieves byzantine agreement satisfying
this stronger validity property within an asymptotically optimal runtime of t + 1 phases,
requiring only small messages. To analyze the quality of the validity property, we established
a lower bound on the index distance to the good median within the input values of the good
nodes, and we showed that our algorithm achieves a 2-approximation; i.e., if the input values
are tightly clustered around a certain value v, the Jack algorithm guarantees to decide for a
value that is very close to v.
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