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Introduction

Accurately predicting future volatility is essential for volatility options traders, as it directly impacts their ability to
price options, manage risk, and optimize returns. It is one of the bottlenecks to any underlying trading strategy. By
improving the HAR volatility model [1] with more accurate estimation techniques and applying cutting-edge regime
detection methods on predicted volatility time series [2], the project aims to build a successful trading strategy. The
ability to accurately forecast volatility and dynamically adjust trading strategies based on identified market regimes can
lead to better risk management, more efficient capital allocation, and ultimately higher returns.
This project unfolds into three parts:

1) Estimate future volatility using the HAR volatility model
2) Split the predicted volatility time series into stationary intervals
3) Cluster the intervals into distinct volatility regimes
4) Develop profitable strategies for each volatility regime

I. ESTIMATE FUTURE VOLATILITY USING THE HAR VOLATILITY MODEL

A. Definition of Volatility

Volatility refers to the degree of variation in the price of a financial instrument over time, typically measured by the
standard deviation of returns. It reflects the uncertainty or risk associated with the price movements of assets. High
volatility indicates large price movements, while low volatility suggests more stable price behavior.

B. Realized Volatility

Realized volatility is a specific measure of volatility calculated using historical price data within a fixed time window,
typically on an intraday or daily basis. It is computed as the square root of the sum of squared returns over the chosen
period. The formula for realized volatility Vt over a period of M days is given by:

Vt =
√

RVt =

√√√√ N∑
i=1

r2t,i

where RVt is called the realized variance and rt,i represents the return on period i within day t.

C. The HAR and HARQ volatility models

The HAR volatility model

The HAR (heterogeneous autoregressive) volatility model is a family of models. The original one estimates return
volatility using raw realized variance and ordinary least squares (OLS). However, various transformations can be applied
to RV and different estimators can be used to achieve better predictions.
The HAR volatility model approximates future RV as a linear function of past realized variance. According to the past
day, week and month values:

RVt = β0 + β1RVd
t−1 + β2RVw

t−1 + β3RVm
t−1 + ut,

where the components are defined as:

RVd
t−1 = RVt−1, RVw

t−1 =
1

5

5∑
i=1

RVt−i, RVm
t−1 =

1

22

22∑
i=1

RVt−i.

In this notation: RVt is the realized variance on day t, RVd
t−1 is the daily lagged realized variance, RVw

t−1 is the weekly
lagged realized variance, and RVm

t−1 is the monthly lagged realized variance. The βj (for j = 0, 1, 2, 3) are the unknown
parameters to be estimated, and ut represents the error term.

The HARQ volatility model

The HARQ model, proposed by [3], is an extension of the standard HAR model that incorporates the estimation error
of realized variance (RV) by using realized quarticity (RQ).
The full HARQ model can be expressed as:

RVt = β0 +

(
β1 + β1Q

√
RQd

t−1

)
RVd

t−1 +
(
β2 + β2Q

√
RQw

t−1

)
RVw

t−1 +
(
β3 + β3Q

√
RQm

t−1

)
RVm

t−1 + ut,
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where RVt is the realized variance on day t, and RQd
t−1, RQw

t−1, and RQm
t−1 denote the daily, weekly, and monthly

lagged realized quarticity, respectively.
A simplified version of the HARQ model, which focuses on short-term forecasting, is given by:

RVt = β0 +

(
β1 + β1Q

√
RQd

t−1

)
RVd

t−1 + β2RVw
t−1 + β3RVm

t−1 + ut.

This model adjusts the weight placed on historical observations of daily realized variance (RVd
t−1) based on the realized

quarticity, mitigating the impact of measurement error and improving forecast accuracy.

Transformations and Estimators

In [4], the original HAR and HARQ models with raw realized variance and OLS are used as a benchmark. It is shown
that applying transformations such as the qr, log or Box-Cox transformation can lead to better variance-stabilization of
the data. As well as using more robust estimators such as WLS or RR combined with transformations can lead to better
results.

II. SPLIT THE PREDICTED VOLATILITY TIME SERIES INTO STATIONARY INTERVALS

To split the volatility time series, we will apply the nonparametric Mood test to extract stationary segments with respect
to variance. Given the time series of log returns {Rt}Tt=1, where Rt = log

(
Pt

Pt−1

)
, Pt being the closing price of an asset

on day t, we assume the log returns Rt are independent random variables with a mean close to zero, without assuming
any particular distribution [5].
Using the Mood test, we detect changes in the variance of the time series. Although primarily known as a median test,
the Mood test is also suitable for detecting changes in variance between two distributions, as described in Section 4 of
Mood [6]. The test identifies a set of change points {τ1, τ2, . . . , τm−1}, where for convenience, we define τ0 = 1 and
τm = T .
This partitioning yields m stationary segments of the log return series, denoted as {Rt}t∈[τj−1,τj ] for j = 1, 2, . . . ,m.
Each segment Y(j) is the restricted time series of Rt over the interval [τj−1, τj ]. The algorithm determines that each
Y(j) is sampled from a consistent distribution, ensuring stationarity within each segment.

III. CLUSTER THE INTERVALS INTO DISTINCT VOLATILITY REGIMES

This step consists of identifying patterns in the stationary segments identified earlier.

A. Finding the optimal number of classes

To do so, we construct the empirical cumulative distribution functions for each segment Y(j) and compute the Wasserstein
distance matrix Dij between each distribution to identify clusters. The Wasserstein distance Wp(µi, µj), where p = 1,
is computed as:

Wp(µi, µj) =

(∫
R
|Fi(x)− Fj(x)|p dx

) 1

p

,

where Fi and Fj are the cumulative distribution functions of the distributions µi and µj . This results in an m × m
distance matrix Dij = Wp(µi, µj), capturing the distances between the m distributions of the stationary segments.

Next, we apply spectral clustering directly to the Wasserstein distance matrix D to identify patterns in the cumulative
distribution functions. We use the self-tuning method from [7] to define the affinity matrix A with:

Ai,j = exp

(
−

D2
ij

σiσj

)
,

where σi is chosen as the K-th nearest neighbor distance, with K = ⌈
√
m⌉, with m being the total number of segments

following Hassanat et al. (2014). We then construct the normalized Laplacian matrix Lsym and determine the number of
clusters k that either minimize the alignment cost with the cannonical coordinate system of the matrix spanned by the
eigenvectors corresponding to the k largest eigenvalues [7] or that maximize the eigengap between successive largest
eigenvalues.
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B. Assigning labels to segments with spectral clustering

Having determined the number of clusters k, we compute the normalized eigenvectors u1, . . . , uk corresponding to the
k smallest eigenvalues of Lsym. These eigenvectors form the matrix U ∈ Rm×k, where the rows ⊑i ∈ Rk represent the
data points i = 1, . . . ,m. We then apply k-means clustering to these rows ⊑i to group them into k clusters C1, . . . , Ck.
Finally, we assign the original m elements (segment distributions) to the corresponding clusters Al = {i : ⊑i ∈ Cl}, for
l = 1, . . . , k.

IV. DEVELOP PROFITABLE STRATEGIES FOR EACH VOLATILITY REGIME

In the final part of this project, we will explore and develop trading strategies that take advantage of the volatility regimes
identified and optimize returns by dynamically allocating assets based on the current market environment.

Momentum-Based Basket Allocations:

Rather than merely reallocating between asset classes as in [2], we propose a more nuanced strategy that involves
reallocating within the equity asset class itself. Specifically, we will define and monitor ”momentum baskets,” which
consist of stocks that have shown significant upward movement with relatively low volatility (or noise). Which could
be done by focusing the Mood Test on mean changes. These stocks, often driven by strong recent performance, are
particularly susceptible to downturns when market regimes shift. Which could lead us to re-allocating to different equity
asset classes.

Slow Reallocation Back to Risky Assets:

Volatility regimes are not static, and the persistence of a regime can affect asset performance over time. In some cases,
risky assets may begin to outperform as a high-volatility regime persists, especially if no recent shocks have occurred.
To capture this dynamic, we propose a strategy that gradually reallocates capital back into riskier assets as the regime
progresses, using a slow reallocation approach guided by an exponential decay factor. This reallocation strategy allows
for a more responsive approach to changing market conditions, where the model slowly increases exposure to risky
assets as market stability improves, rather than waiting for a complete regime shift to occur.

Strategy Performance Metrics:

To evaluate the effectiveness of the proposed strategies, we will employ several standard performance measures. These
include:

• Sharpe Ratio: A measure of risk-adjusted return, calculated by dividing the excess return over the risk-free rate
by the standard deviation of the portfolio’s returns.

• Sortino Ratio: Similar to the Sharpe Ratio but only penalizes downside volatility, providing a clearer view of the
risk-adjusted returns when negative returns are a key concern.

• Maximum Drawdown: The largest peak-to-trough decline in portfolio value, indicating the most significant loss
from a high point to a low point.

• Annual Return (AR): The annual growth rate of the portfolio’s value over a specified period.
• Portfolio Standard Deviation: A measure of the portfolio’s return variability over time, highlighting the degree of

risk involved.
• Calmar Ratio (CR): A measure of risk-adjusted return, calculated by dividing the annualized return of an investment

by its Maximum Drawdown over the same period. It evaluates how well an investment compensates for the risk
taken, as represented by the maximum drawdown.

These metrics will be used to quantitatively assess the performance of each strategy across different volatility regimes.

DATA

For this project, we have at our disposal high-frequency data on all 500 components of the SPX index, along with
related ETFs, futures, and indices. The dataset includes price information at 5-second intervals. Given our focus on
options trading, we will likely focus on a subset of the stocks, selecting either the top 100 ranked by index weight
and / or by option liquidity. In addition to individual stocks, we will also incorporate relevant ETFs into our analysis.
The availability of such high-frequency data enables us to conduct our analyses at a higher temporal resolution than is
typically done in classical HAR(Q) model studies.
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