
Bounds On Contention Management Algorithms

Johannes Schneider1, Roger Wattenhofer1

Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich,
Switzerland

TIK Technical Report Nr. 311, September 2009
This is an extension of the ISAAC 2009 with the same title[20].

Abstract

We present two new algorithms for contention management in transactional
memory, the deterministic algorithm CommitRounds and the randomized algo-
rithm RandomizedRounds. Our randomized algorithm is efficient: in some noto-
rious problem instances (e.g., dining philosophers) it is exponentially faster than
prior work from a worst case perspective. Both algorithms are (i) local and (ii)
starvation-free. Our algorithms are local because they do not use global synchro-
nization data structures (e.g., a shared counter), hence they do not introduce
additional resource conflicts which eventually might limit scalability. Our algo-
rithms are starvation-free because each transaction is guaranteed to complete.
Prior work sometimes features either (i) or (ii), but not both. To analyze our
algorithms (from a worst case perspective) we introduce a new measure of com-
plexity that depends on the number of actual conflicts only. In addition, we show
that even a non-constant approximation of the length of an optimal (shortest)
schedule of a set of transactions is NP-hard – even if all transactions are known
in advance and do not alter their resource requirements. Furthermore, in case the
needed resources of a transaction varies over time, such that for a transaction the
number of conflicting transactions increases by a factor k , the competitive ratio
of any contention manager is Ω(k) for k <

√
m, where m denotes the number of

cores.

1 Introduction

Designing and implementing concurrent programs is one of the biggest challenges
a programmer can face. A program has to ensure correctness and fast progress of
computation at the same time. Traditionally, the logic of a program was executed
within a single thread. However, to make use of several cores, multiple concurrent
threads must be employed. The main difficulty lies in coordinating the usage of
shared resources such as memory cells. The most common approach is to reserve
a resource for a thread using locks. However, for a software designer it is a major
burden to use locks. Creating efficient and correct parallel algorithms, avoiding
deadlocks or race conditions, locking a resource neither too short nor too long,
has been puzzling computer programmers for decades.

Transactional memory promises to resolve a couple of the above issues. To
some extent, transactional memory improves on locking similarly as garbage
collection improved on manual memory management. Both reduce the work of
a programmer and narrow the potential for mistakes. Whereas in a system with
garbage collection the programmer is completely relieved of freeing memory, for
transactional memory a programmer still has to define a section of code as a
transaction in a reasonable manner, i.e. not too coarse for performance reasons
and not too fine to avoid errors. These days, in either scenario, manual tuning
seems to give an edge on performance, however with better transactional memory
systems and better algorithms for garbage collection, the gain decreases.

Transactions have been in use for database systems for a long time. They
share several similarities with transactional memory. For instance, in case of a
conflict (i.e. one transaction demanding a resource held by another) a transaction
might get aborted and all the work done so far is lost, i.e. the values of all accessed
variables will be restored (to the ones prior to the execution of the transaction).

The difficulty lies in making the right decision when conflicts arise. This
task is done by so-called contention managers. They operate in a distributed
fashion, that is to say, a separate instance of a contention manager is available
for every thread, operating independently. If a transaction A stumbles upon a
desired resource, held by another transaction B, it asks its contention manager
for advice. We consider three choices for transaction A: (i) A might wait or help
B, (ii) A might abort B or (iii) abort itself. An abort wastes all computation of a
transaction and might happen right before its completion. A waiting transaction
blocks all other transactions trying to access any resource owned by it.

Our contributions are as follows: First, we show that even coarsely approxi-
mating the makespan of a schedule is a difficult task. (Informally, the makespan
is the total time it takes to complete a set of transactions.) This holds even in
the absence of an adversary. However, in case an adversary is able to modify
resource requirements such that the number of conflicting transactions increases
by a factor of k, the length of the schedule increases by a factor proportional to
k. Second, we propose a complexity measure allowing more precise statements
about the complexity of a contention management algorithm. Existing bounds
on the makespan, for example, do not guarantee to be better than a sequential
execution. However, we argue that since the complexity measure only depends on
the number of (shared) resources overall, it does not capture the (local) nature
of the problem well enough. In practice, the total number of (shared) resources

may be large, though each single transaction might conflict with only a few other
transactions. In other words, a lot of transactions can run in parallel, whereas
the current measure only guarantees that one transaction runs at a time until
commit. Third, we point out weaknesses of widely used contention managers.
For instance, some algorithms schedule certain sets of transactions badly, while
others require all transactions – also those facing no conflicts – to modify a
global counter or access a global clock. Thus the amount of parallelism declines
more and more with a growing number of cores. Fourth, we state and analyze
two algorithms. Both refrain from using globally shared data. From a worst-case
perspective, the randomized algorithm RandomizedRounds improves on existing
contention managers drastically (exponentially) if for each transaction the num-
ber of conflicting transactions is small. We also show that to achieve a short
makespan (from a worst case perspective) it is necessary to detect and handle
all conflicts early, i.e. for every conflict a contention manager must have the pos-
sibility to abort any of the conflicting transactions. This is not possible if one
of them already committed, forcing the other transactions having accessed the
same data to abort without choice.

2 Related Work

Transactional memory was introduced as a hardware based approach in the early
nineties [12]. A few years later the term software transactional memory (STM)
was coined [22]. In 2003 a so called Dynamic STM (DSTM) for dynamic data
structures was described, and the use of a contention manager as an independent
module was suggested [11]. In the same year the FSTM system was proposed
[9]. There is a number of differences between DSTM and FSTM, for instance,
DSTM is only obstruction free, i.e. at least one thread makes progress in the
absence of contention, whereas FSTM is lock-free, i.e. at least one thread makes
progress (even in the case of contention). In FSTM contention is resolved by
helping, whereas in DSTM transactions either wait or abort. That is to say, a
transaction that must wait to access an object in use, assists the transaction
working on that object. Though it seems natural that assisting is better than
waiting, state of the art systems do not follow this approach due to its overhead.
After these two milestones, a lot of systems have been proposed. An overview of
design issues from a practical point of view can be found in [5]. Since the field
of STM is relatively young, it is not surprising that the theoretical foundations
need to be developed, as motivated for instance in [1, 10].

Most proposed contention managers have been assessed by specific bench-
marks only, and not analytically. A comparison of contention managers based on
benchmarks can be found in [18, 16]. The experiments yield best performance for
randomized algorithms, which all leave a (small) chance for arbitrary large com-
pletion time. Apart from that, the choice of the best contention manager varies
with the considered benchmark. Still, an algorithm called Polka [18] exhibits
good overall performance for a variety of benchmarks and has been used suc-
cessfully in various systems, e.g. [4, 16]. In [16] an algorithm called SizeMatters
is introduced, which gives higher priority to the transaction that has modified
more (shared) memory. We also show that from a worst-case perspective Polka
and SizeMatters may perform exponentially worse than RandomizedRounds. In

[6] the effects of selfishness among programmers on the makespan is investigated
for various contention managers from a game theoretic perspective.

The first analysis of a contention manager named Greedy was given in [8],
using time stamps to decide in favor of older transactions. Variants of time-
stamping algorithms had been known previously (also in the field of STM [18]).
However, [8] guaranteed that a transaction commits within bounded time and
that the competitive ratio (i.e. the ratio of the makespan of the schedule defined
by an online scheduler and by an optimal offline scheduler, knowing all trans-
actions in advance) is O(s2), where s is the number of (shared) resources of all
transactions together. The analysis was improved to O(s) in [2]. In contrast to
our contribution, access to a global clock or logical counter is needed for every
transaction which clearly limits the possible parallelism with a growing number
of cores. In [17] a scalable replacement for a global clock was presented using syn-
chronized clocks. Unfortunately, these days most systems come without multiple
clocks. Additionally, there are problems due to the drift of physical clocks.

Also in [2] a matching lower bound of Ω(s) for the competitive ratio of any
(also randomized) algorithm is proven, where the adversary can alter resource re-
quests of waiting transactions. We show that, more generally, if an adversary can
reduce the possible parallelism (i.e., the number of concurrently running trans-
actions) by a factor k, the competitive ratio is Ω(k) for deterministic algorithms
and for randomized algorithms the expected ratio is Ω(min{k,

√
m}), where m is

the number of cores. In the analysis of [2] an adversary can change the required
resources such that instead of Ω(s) transactions only O(1) can run in parallel,
i.e. all of a sudden Ω(s) transactions write to the same resource. Though, in-
deed the needed resources of transactions do vary over time, we believe that
the reduction in parallelism is rarely that high. Dynamic data structure such as
(balanced) trees and lists usually do not vary from one extreme to the other.
Therefore our lower bound directly incorporates the power of the adversary.

Furthermore, the complexity measure is not really satisfying, since the num-
ber of (shared) resources in total is not correlated well to the actual conflicting
transactions an individual transaction potentially encounters. As a concrete ex-
ample, consider the classical dining philosophers problem, where there are n
unit length transactions sharing n resources, such that transaction Ti demands
resource Ri as well as R(i+1) mod n exclusively. An optimal schedule finishes in
constant time O(1) by first executing all even transactions and afterwards all odd
transactions. The best achievable bound by any scheduling algorithm using the
number of shared resources as complexity measure is only O(n). Furthermore,
with our more local complexity measure, we prove that for a wide variety of
scheduling tasks, the guarantee for algorithm Greedy is linearly worse, whereas
our randomized algorithm RandomizedRounds is only a factor log n off the op-
timal, with high probability.

We relate the problem of contention management to coloring, where a large
amount of distributed algorithms are available in different models of commu-
nication and for different graphs [14, 19, 21]. Our algorithm RandomizedRounds
essentially computes a O(max{∆, log n}) coloring for a graph with maximum
degree ∆. An optimal coloring is hard to approximate [13] and thus practically
any work of distributed computing settles for coloring a graph with O(∆) colors.

Additionally, in some cases O(∆) colors are required for coloring a graph, i.e.
for graphs containing a clique of size ∆.

Contention management is related to online scheduling. In contrast to con-
tention management, scheduling algorithms are centralized and assume known
conflicts. For illustration, in [7] the competitive ratios of scheduling algorithms
are given for conflicting jobs. Their algorithms are non-distributed and on arrival
of a new job J all conflicting jobs of J are known all at once, taking effect im-
mediately, without change. Furthermore, the completion of a job cannot create
new conflicts. In our model a conflict between two transactions happens when
both access the same resource, which is not necessarily directly at their start.
Additionally, dynamic data structures change their structure when modified and
thus a transaction might access different resources due to the commit of another
transaction, which might introduce new conflicts. Thus, it is difficult to reliably
predict conflicts, since they might change any time.

3 Model

A set of transactions ST := {T1, ..., Tn} sharing up to s resources (such as
memory cells) are executed on m processors P1, ..., Pm.1 For simplicity of the
analysis we assume that a single processor runs one thread only, i.e., in total at
most m threads are running concurrently. If a thread running on processor Pi

creates transactions TPi
0 , TPi

1 , TPi
2 , ... one after the other, all of them are executed

sequentially on the same processor, i.e., transaction TPi
j is executed as soon as

TPi
j−1 has completed, i.e. committed.

The duration of transaction T is denoted by tT and refers to the time T
executes until commit without contention (or equivalently, without interruption).
The length of the longest transaction of a set S of transactions is denoted by
tmax
S := maxK∈S tK . If an adversary can modify the duration of a transaction

arbitrarily during the execution of the algorithm, the competitive ratio of any
online algorithm is unbounded: Assume two transactions T0 and T1 face a conflict
and an algorithm decides to let T0 wait (or abort). The adversary could make
the opposite decision and let T0 proceed such that it commits at time t0. Then it
sets the execution time T0 to infinity, i.e., tT0 =∞ after t0. Since in the schedule
produced by the online algorithm, transaction T0 commits after t0 its execution
time is unbounded. Therefore, in the analysis we assume that tT is fixed for all
transactions T .2 We consider an oblivious adversary that knows the (contention
management) algorithm, but does not get to know the randomized choices of
the algorithm before they take effect.

Each transaction consists of a sequence of operations. An operation can be
a read or write access of a shared resource R or some arbitrary computation. A
value written by a transaction T takes effect for other transactions only after T
commits. A transaction either successfully finishes with a commit after executing
all operations and acquiring all modified (written) resources or unsuccessfully

1 Transactions are sometimes called jobs, and machines are sometimes called cores.
2 In case the running time depends on the state/value of the resources and therefore

the duration varied by a factor of c, the guarantees for our algorithms (see Section
5.3) would worsen only by the same factor c.

with an abort anytime. A resource can be acquired either once it is used for
the first time or at latest at commit time. A resource can be read in parallel by
arbitrarily many transactions. A read of transaction A of resource R is visible, if
another transaction B accessing R after A is able to detect that A has already
read R. If B is unaware of A, the system consists of invisible readers. To perform
a write, a resource must be acquired exclusively. Only one transaction at a time
can hold a resource exclusively. This leads to the following types of conflicts: (i)
Read-Write: A transaction B tries to write to a resource that is read by another
transaction A. In case of invisible reads the system can detect the conflict at
earliest when A tries to commit. However, in case B committed beforehand, A is
forced to abort and no contention manager is called in this case. (ii) Write-Write:
A transaction tries to write to a resource that is already held exclusively (written)
by another transaction, (iii) Write-Read: A transaction tries to read a resource
that is already held exclusively (write) by another transaction. A contention
manager comes into play if a conflict occurs and decides how to resolve the
conflict. It can make a transaction wait (arbitrarily long), or abort, or assist
the other transaction. We do not explicitly consider the third option. Helping
requires that a transaction can be parallelized effectively itself, such that multiple
processors can execute the same transaction in parallel with low coordination
costs. In general, it is difficult to split a transaction into subtasks that can
be executed in parallel. Consequently, state of the art systems do not employ
helping. If a transaction gets aborted due to a conflict, it restores the values of
all modified resources, frees its resources and restarts from scratch with its first
operation. A transaction can request different resources in different executions
or change the requested resource while waiting for another transaction.

Usually conflicts are handled in a lazy or eager way, i.e., a transaction notices
a conflict once it actually occurs or once it tries to commit. Depending on the
scenario, experimental evaluation showed that one or the other way leads to a
shorter makespan. Even for “typical” cases neither consistently outperforms the
other. We assume that conflicts are handled eagerly and furthermore that all
reads are visible. In fact, we will prove in Section 4.7 that systems with invisible
readers can be very slow.

In some cases a transaction might do an early release of a resource before
its commit. For instance, if a sorted linked list is traversed element by element
to find a value, any element not corresponding to the searched value might be
released after it has been considered without effecting the result of the search.
For simplicity, we ignore early releases. For all our worst-case scenarios additional
dependencies among operations (e.g. writes to already accessed resources) could
be inserted, such that freeing resources would not result in an asymptotic change
of our lower and upper bounds.

A schedule shows for each processor P at any point in time whether it exe-
cutes some transaction T ∈ ST or whether it is idle. The makespan of a schedule
for a set of transactions ST is defined as the duration from the start of the sched-
ule until all transactions ST have committed. We say a schedule for transactions
ST is optimal, if its makespan is minimum possible. We measure the quality of a
contention manager in terms of the makespan. A contention manager is optimal,
if it produces an optimal schedule for every set of transactions ST .

4 Lower Bounds

Before elaborating on the problem complexity of contention management, we
introduce some notation related to graph theory and scheduling. We show that
even coarse approximations are NP-hard to compute. Then we a give lower bound
of Ω(n) for the competitive ratio of algorithms Polka, SizeMatters and Greedy,
which holds even if resource requirements remain the same over time. We also
discuss the power of the adversary and, additionally, we show that a system
using visible reads has a clear advantage over one with invisible reads. In the
later case, some conflicts are not necessarily detected, i.e. read-write conflicts.

4.1 Notation

We use the notion of a conflict graph G = (S,E) for a subset S ⊆ ST of transac-
tions executing concurrently, and an edge between two conflicting transactions.
The neighbors of transaction T in the conflict graph are denoted by NT and
represent all transactions that have a conflict with transaction T in G. The de-
gree dT of a transaction T in the graph corresponds to the number of neighbors
in the graph, i.e., dT = |NT |. We have dT ≤ |S| ≤ min{m,n}, since at most
m transactions can run in parallel, and since there are at most n transactions,
i.e., |ST | = n. The maximum degree ∆ denotes the largest degree of a trans-
action, i.e., ∆ := maxT∈S dT . The term tNT denotes the total time it takes to
execute all neighboring transactions of transaction T sequentially without con-
tention, i.e., tNT :=

∑
K∈NT

tK . The time t+NT includes the execution of T , i.e.,
t+NT = tNT + tT . Note that the graph G is highly dynamic. It changes due to new
or committed transactions or even after an abort of a transaction. Therefore, by
dT we refer to the maximum size of a neighborhood of transaction T that might
arise in a conflict graph due to any sequence of aborts and commits. If the num-
ber of processors equals the number of transactions (m = n), all transactions
can start concurrently. If, additionally, the resource requirements of transactions
stay the same, then the maximum degree dT can only decrease due to commits.
However, if the resource demands of transactions are altered by an adversary,
new conflicts might be introduced and dT might increase up to |ST |.

For an example, consider Figure 1.

4.2 Problem complexity

If an adversary is allowed to change resources after an abort, such that all
restarted transactions require the same resource R, then for all aborted trans-
actions T we can have dT = min{m,n}. This means that no algorithm can do
better than a sequential execution (see lower bound in [2]).

We show that even if the adversary can only choose the initial conflict graph
and does not influence it afterwards, it is computationally hard to get a rea-
sonable approximation of an optimal schedule. Even, if the whole conflict graph
is known and fixed, the best approximation of the schedule obtainable in poly-
nomial time is exponentially worse than the optimal. The claim follows from a
straight forward reduction to coloring.

Fig. 1. Illustration of all possible conflict graphs arising when scheduling transac-
tions {T P0

0 , T P1
0 , T P2

0 , T P1
1 , T P2

1 } of unit length on 3 processors P0, P1 and P2. Let
T P1

0 conflict with T P0
0 and also with T P0

1 , T P2
1 . Let {T P0

0 , T P1
0 , T P2

0 } start in par-
allel at time 0. The maximum degree of transaction T P1

0 in any graph is 2 and
N

T
P0
0

∈ {{T P0
0 , T P2

1 }, {T P0
1 , T P2

1 }}. Transactions T P1
0 , T P1

1 , T P2
1 have degree 1 with

N
T
P0
0

= N
T
P0
1

= N
T
P2
1

= T P0
1 . Transaction T P2

0 has degree 0.

Theorem 1 If the optimal schedule requires time k, it is NP-hard to compute
a schedule of makespan less than k

log k
25 (for sufficiently large constants), even

if the conflict graph is known and transactions do not change their resource
requirements.

Proof. Assume all accesses to resources are writes. There are n transactions of
unit length, running on n processors, each transaction requires its resources on
start up. Consider a coloring of the conflict graph G = (S,E). Every set Ci ⊆ S
of transactions of color i forms an independent set (i.e., no nodes in Ci are
neighbors) and thus all transactions in Ci can execute in parallel without facing
any conflicts. The makespan of an optimal schedule is equal to the chromatic
number χ(G), i.e., the minimum number of colors that is needed to color graph
G. If this was not the case then the independent sets ISi of the allegedly faster
schedule of length l with l < χ(G) colors, formed a coloring with Ci = ISi and l
colors. In [13] it was shown that computing an optimal coloring given complete
knowledge of the graph is NP-hard. Even worse, computing an approximation
within a factor of χ(G)

log χ(G)
25 (for sufficiently large χ(G)) is NP-hard as well.

As an approximation it seems reasonable to schedule transactions M , such
that M is a maximum independent set (MaxIS, i.e an independent set of maxi-
mum cardinality) in G = (S,E). Once all transactions in M have committed, the
next MaxIS is scheduled. Iteratively scheduling a MaxIS yields a 4-approximation
for the average response time or equivalently for the minimum sum of the trans-
actions completion times [3]. Unfortunately, approximating the MaxIS problem
within a factor of nc for c > 0 is NP-hard [13]. Instead of a MaxIS one could
try to schedule a maximal independent set (MIS, i.e., an independent set not
extendable by adding a transaction). This yields a O(∆ · tmax

S) approximation.
The factor tmax

S is a bound on how long it takes at most until the next MIS can
be scheduled. So, how to obtain a MIS without any knowledge about the conflict
graph? The well-known distributed algorithm by Luby [15] computes a MIS with
high probability (i.e., 1− 1

n) in time O(tmax
S ·log n). Unfortunately, it requires the

degree of each transaction. Our Algorithm RandomizedRounds (see Section 5.5)
works for dynamic conflict graphs, does not need any information about them
and can also be bounded by O(tmax

S · log n). Thus the total approximation ratio
is O(∆ · tmax

S · log n). In fact, for conflict graphs where no new edges (conflicts)
are added, it can be improved to O(max{∆, log n} · tmax

S).

4.3 Competitive ratio of algorithm Greedy

The next theorem states that algorithm Greedy [8] executes all transactions
almost entirely sequentially for certain problem instances, even if a large amount
of them could be run in parallel. In contrast to the lower bound in [2], our
lower bound holds even if transactions do not modify their resource requirements
after an abort (i.e. the adversary must not alter the demanded resources of a
transaction). In algorithm Greedy each transaction gets a unique time stamp on
start up and keeps it until commit. In case of a conflict, the older transaction
proceeds and the younger aborts (if it has already acquired the resource needed
by the older transaction) or waits. A waiting transaction is always aborted.

Theorem 2 Algorithm Greedy [8] has competitive ratio of Ω(n) even if trans-
actions do not alter their resource requests over time.

Proof. Consider the dining philosophers problem (see Section 2) and assume
eager conflict handling. Suppose all transactions have unit length and transaction
i requires its first resource Ri at time 0 and its second R(i+1) mod n at time 1−i·ε.
Since the algorithm is deterministic, we know the time stamp of each transaction.
Let transaction i have the ith oldest time stamp. At time 1 − i · ε transaction
i + 1 with i ≥ 1 will get aborted by transaction i and only transaction 1 will
commit at time 1. After every abort transaction i restarts ε time units before
transaction i− 1. Since transaction i− 1 acquires its second resource (i− 1) · ε
time units before its termination, transaction i − 1 will abort transaction i at
least i − 1 times. Thus after i − 1 aborts transaction i can commit. The total
time until the algorithm is done is bounded by the time transaction n stays in
the system, i.e.,

∑n
i=1(1− i · ε) = Ω(n). An optimal schedule requires only O(1)

time.
For lazy conflict handling, we let transaction i have duration 1 and require

its second resource at time 1
2 . Let all transactions start with their first operation

at the same time. Just before commit every transaction i acquires resource i at
the same time and also each transaction i with i < n aborts transaction i + 1
concurrently. The transaction with the oldest time stamp commits. All other
transactions start again at the same time and the process repeats.

In an analogous way the competitive ratio of algorithm SizeMatters [16] that
decides a conflict in favor of the transaction, that has accessed (read or written)
more unique bytes, can be shown to be Ω(n).

4.4 Competitive ratio of algorithm SizeMatters

SizeMatters decides a conflict in favor of the transaction, that has accessed (read
or written) more unique bytes, i.e. an access to a memory cell is only counted
once during an execution. Thus if the same byte is accessed multiple times, the
overall increase of the priority is only 1. The priority is reset to 0 on restart. After
a threshold c of restarts, it reverts to time-stamp. Unfortunately, the authors in
[16] do not explain how the time-stamps are chosen. Thus, we assume that a
transaction running on processor Pi gets the ith smallest time-stamp.

Theorem 3 Algorithm SizeMatters [16] has competitive ratio of Ω(n) even if
transactions do not alter their resource requests over time.

Proof. We use the same transactions as in the proof of Theorem 2 and say that
an access of resource Ri equals an access to n − i bytes. The rest is analogous
to the proof of Theorem 2. Transaction i will always have larger priority than
i+ 1, independent of whether the priority is calculated using time-stamps or the
number of accessed bytes.

4.5 Competitive ratio of algorithm Polka

Roughly speaking, algorithm Polka works as follows. A transaction increases
its priority by one for every acquired object until commit (it keeps its priority

on abort). A transaction with higher priority can abort a lower priority one. If
a transaction with lower priority wants a resource held by a transaction with
higher priority, Polka waits for a number of intervals given by the difference in
priority between the two conflicting transactions. The length of interval i has
mean 2i according to a fixed distribution chosen by the algorithm designer. For
instance, assume transaction A wants a resource held by B and the difference in
priorities is 2. After having tried to access the resource the first time, transaction
A waits for a (random) time interval with mean 21. Then it tries to access the
resource again. If it fails, it waits for a time interval with mean 22. If it was not
able to access the resource again, transaction B is aborted, frees the resource
and A can access it.

Theorem 4 Algorithm Polka has at least competitive ratio Ω(n).

Proof. Consider eager conflict handling and the probability that the back off
time XB is more than n time units. First, assume p(XB ≥ n) ≥ 1

n . Assume n
transactions of unit length run on n processors. Each transaction i faces only
one conflict on startup, i.e., transaction 1 with transaction 2, transaction 2 with
transaction 3 etc. Thus directly after startup half the transactions will acquire
a resource and thus have priority 1, whereas the rest will wait for an interval of
random length with mean 2. The probability that no transaction waits for n time
units is (1− 1

n)
n
2 ≤ 1√

e
. Therefore the expected schedule is at least n·(1− 1√

e
). An

optimal schedule is of length 2. Now assume p(XB ≥ n) < 1
n and consider two

transactions T1, T2 of length 3 · n. Let them start simultaneously and conflict
after running for time n due to resource R. Assume transaction T1 acquires
resource R and thus has priority 1. Transaction T2 will wait in expectation for 2
time units before aborting T1 and increasing its priority to 1. Once T1 aborted
it will conflict again after time n with T2. Both will have priority 1 and thus T1

aborts T2 and sets its priority to 2. The process repeats: Again T2 will execute
for n time units and then wait in expectation for 2 time units. The chance that
T2 waits until T1 completed, i.e., at least time n, is less than 1

n . Therefore in
expectation n trials of duration n are needed until transaction T2 waits long
enough. Thus in total expected time O(n2) is needed. The optimal requires time
O(n).

For lazy conflict handling assume that there are two transactions of equal
length starting at the same time. Transaction T1 writes to resources R1 and R2.
So does transaction T2 but in the opposite order. Just before trying to commit
transaction T1 acquires R1 and at the same time transaction T2 acquires R2.
Then T1 aborts T2 and concurrently T2 aborts T1, since both have the same
priority and thus do not back off before aborting another transaction. Again,
both start at the same time and the scenario repeats. Therefore the system will
livelock and the competitive ratio becomes unbounded.

4.6 Power of the adversary

We show that if the conflict graph can be modified, the competitive ratio is pro-
portional to the possible change of a transaction’s degree. Initially, a contention
manager is not aware of any conflicts. Thus, it is likely to schedule (many) con-
flicting transactions. All transactions that faced a conflict (and aborted) change

their resources on the next restart and require the same resource. Thus they
must run sequentially. The contention manager might schedule transactions ar-
bitrarily – in particular it might delay any transaction for an arbitrary amount
of time (even before it executed the first time). The adversary has control of the
initial transactions and can state how they are supposed to behave after an abort
(i.e. if they should change their resource requirements). During the execution,
it cannot alter its choices. Furthermore, we limit the power of the adversary as
follows: Once the degree of a transaction T has increased by a factor of k, no
new conflicts will be added for T , i.e. all initial proposals by the adversary for
resource modifications augmenting the degree of T are ignored from then on.

Theorem 5 If the conflict graph can be modified by an oblivious adversary such
that the degree of any transaction is increased by a factor of k, any determin-
istic contention manager has competitive ratio Ω(k) and any randomized has
Ω(min{k,

√
m}).

Proof. We run m transactions on m cores. In the initial conflict graph each
transaction faces only one conflict and all transactions have the same duration
t. Thus, we have m/2 pairs {U, T} ⊆ ST of conflicting transactions. For each
pair {U, T} both transactions read the same resource RUT on start-up and write
it before their commits. Thus if two conflicting transactions start within time
t − ε for some constant ε > 0, both must have read RUT and thus only one
of them can commit while the other must abort. For every pair {U, T} we can
choose one transaction and let it change its resource demands after an abort,
i.e. any (chosen) aborted transaction will write to resource R on startup until
k transactions write to R. Thus, if k aborts take place, any schedule will be of
length at least kt.

The scheduled transactions are known for a deterministic algorithm. Thus
we can fix the transactions’ resource requirements (before the start of the al-
gorithm) such that (enough) aborts happen. Assume the algorithm schedules
x > 2 transactions at at time. Since, the algorithm has no information about
the conflicts, at least x/3 can be made to abort (in case three transactions are
scheduled concurrently, two transactions can commit and one has to abort). We
can set the aborted transactions, such that at least min{x/3, k} transactions
write to the same resource R on startup. Thus either a deterministic strategy
schedules at most two transactions at a time or at least 1/3 of the transactions
are aborted and therefore we can choose min{m/3, k} of them and let them
write to the same resource R on startup. Thus the total time for a deterministic
manager is min{m/3, k} · t. The optimal contention manager being aware of all
conflicts finishes within time 2 · t.

Assume a randomized algorithm schedules a set X > 4 ·
√
m of transac-

tions at a time. Clearly, if the algorithm chooses transactions in a non-uniform
manner, i.e. the chance that a pair {U, T} ⊆ ST is scheduled together is larger
than a pair {V, T} ⊆ ST the adversary can make use of this knowledge. Thus,
the algorithm is best off by treating all transactions equally. The chance that
a transaction T ∈ X does not face a conflict is given by (1 − 1/m)|X|−1. The
chance that none of the transactions in X is involved in a conflict is given by
(1 − 1/m)|X|−1 · (1 − 1/m)|X|−2 · (1 − 1/m)|X|−3 · ... · 1 = (1 − 1/m)

∑|X|−1
i=1 i =

(1 − 1/m)|X|·(|X|−1)/2 ≤ (1 − 1/m)8m ≤ 1/e8. Assume two transactions {U, T}
conflict. The algorithm must decide on one of the transactions to abort. Assume
it aborts U with probability p ≥ 1/2. Then the adversary lets U be the transac-
tion that chooses resource R on startup. Thus, the overall chance that out of X
transactions with |X| > 4 ·

√
m one transaction aborts and chooses resource R

on startup is 1/2 · (1− 1/e8). Thus, if k · 4 ·
√
m transactions run in parallel, we

expect at least a constant fraction of them to abort. Thus either the algorithm
schedules less than 4 ·

√
m at a time or we expect in total up to Ω(min{k,

√
m})

transactions to choose the same resource on startup.

4.7 Visible vs. invisible reads

We show that when an optimal contention manager is employed for a set of
transactions, which do not alter their resource requirements over time, a system
using visible reads can be linearly faster than a system with invisible reads. This
is due to the fact that for invisible reads all aborts might take place without
the influence of a contention manager, since read-write conflicts might not be
handled by a contention manager, but can simply force a transaction to abort.
It underlines the importance of detecting all conflicts and resolving them by a
contention manager.

Theorem 6 The competitive ratio of a system employing invisible reads is a
factor Ω(n) worse than a system using visible reads, if both make use of an
optimal contention manager.

Proof. Suppose we have n processors and schedule 2 · n transactions, i.e., trans-
actions TPi

0 and TPi
1 on processor Pi. All transactions TPi

0 with 0 ≤ i ≤ n − 1
start at the same time, read resource Ri on startup and have duration n+2 · i · ε.
Transactions TPi

1 with 0 ≤ i ≤ n− 1 write to all resources Rj i < j ≤ n− 1 on
startup and have duration ε.

For invisible reads transaction TP0
0 commits after time n and TP1

0 after time
n+ ε. A transaction TPi

0 with 1 ≤ i ≤ n− 1 will abort at time n+ 2 · i · ε. After
time 2 · (n + 2 · ε) transaction TP2

0 commits and ε time units later TP2
1 . Again

all transactions TPi
0 with 2 ≤ i ≤ n − 1 abort. Thus all transactions TPi

0 with
0 ≤ i ≤ n− 1 execute sequentially. The time it takes until all transactions have
committed is lower bounded by Ω(n2).

For visible reads, the contention manager decides to give all transactions
TPi

0 with 0 ≤ i ≤ n − 1 higher priority. Afterwards all transactions TPi
1 with

0 ≤ i ≤ n−1 execute sequentially. Thus the makespan equals n+3 ·n ·ε = O(n).

5 Algorithms

Our first algorithm CommitRounds (Section 5.1) gives assertions for the response
time of individual transactions, i.e., how long a transaction needs to commit.
Although we refrain from using global data and we can still give guarantees on
the makespan, the result is not satisfying from a performance point of view, since
the worst-case bound on the makespan is not better than a sequential execution.
Therefore we derive a randomized algorithm RandomizedRounds (Section 5.2)
with better performance.

Algorithm Commit Rounds (CommitRounds)

On conflict of transaction T Pi with transaction T Pj :
cmax

Pi
:= max{cmax

Pi
, cmax

Pj
}

cmax
Pj

:= cmax
Pi

if cPi < cPj ∨ (cPi = cPj ∧ Pi < Pj)

then Abort transaction T Pj

else Abort transaction T Pi

end if

After commit of transaction T P :
cmax

P := cmax
P + 1

cP := cmax
P

5.1 Deterministic algorithm CommitRounds

The idea of the algorithm is to assign priorities to processors, i.e. a transaction
TP running on a processor P inherits P ’s priority, which stays the same until the
transaction committed. When T commits, P ’s priority is altered, such that any
transaction K having had a conflict with transaction T will have higher priority
than all following transactions running on P . Furthermore, transaction T will
inform every transaction (more precisely, processor) with which T conflicts, that
it should set its priority (after a commit) such that transaction K can abort it.
To achieve this every processor P maintains two variables: (i) cP represents the
priority, such that the smaller cP the higher transaction T ’s priority, and (ii)
cmax
P holds the next priority for a transaction running on processor P . In case

a conflict occurs between transactions TPi and TPj , the transaction running on
the processor P with smaller cP proceeds. In case both processors have the same
value (cPi = cPj), the transaction running on the processor with smaller identifier
obtains the resource. The variable cmax

P +1 is the next value for cP , i.e., on commit
we increment cmax

P and set cP := cmax
P . The value of cmax

Pi
should be such that

after a commit of a transaction running on Pi, the next transaction running on
Pi should have lower priority than any transaction running on some processor
Pj , that got previously aborted by the committed transaction executed on Pi,
i.e. cPi > cPj . Thus, on every conflict we set cmax

Pi
:= cmax

Pj
:= max{cmax

Pi
, cmax

Pj
}.

Additionally, once the transaction running on Pi commits, we increment cmax
P

and set cP := cmax
P . For the first execution of the first transaction on processor

Pi, the variable cmax
Pi

and cPi are initialized with 0.

5.2 Randomized algorithm RandomizedRounds

For our randomized algorithm RandomizedRounds a transaction chooses a dis-
crete number uniformly at random in the interval [1,m] on start up and after
every abort. In case of a conflict the transaction with the smaller random num-
ber proceeds and the other aborts. The routine Abort(transaction T , K) aborts
transaction K. Moreover, K must hold off on restarting until T committed or
aborted.

To incorporate priorities set by a user, a transaction simply has to modify
the interval from which its random number is chosen. For example, choosing
from [1, bm

2 c] instead of [1,m] doubles the chance of succeeding in a round.3

Algorithm Randomized Rounds (RandomizedRounds)

procedure Abort(transaction T , K)
Abort transaction K
K waits for T to commit or abort before restarting

end procedure

On (re)start of transaction T :
xT := random integer in [1, m]

On conflict of transaction T with transaction K:
if xT < xK then Abort(T , K)

else Abort(K, T)
end if

5.3 Analysis

We study two classic efficiency measures of contention management algorithms,
the makespan (the total time to complete a set of transactions) and the response
time of the system (how long it takes for an individual transaction to commit).

5.4 Analysis of Deterministic Algorithm CommitRounds

Theorem 7 Any transaction will commit after being in the system for a dura-
tion of at most 2 ·m · tmax

ST
.

Proof. When transaction TPi runs and faces a conflict with a transaction TPj

having lower priority than TPi i.e., cPi < cPj or cPi = cPj and also Pi < Pj , then
TPj will lose against TPi . If not, transaction TPj will have cmax

Pj
≥ cmax

Pi
≥ cPi

after winning the conflict. Thus at latest after time tmax
ST

one of the following
two scenarios will have happened: The first is that TPj has committed and all
transactions running on processor Pj later on will have cPj > cmax

Pj
≥ cmax

Pi
≥ cPi .

The second is that TPj has had a conflict with another transaction TPk for which
will also hold that cmax

Pk
≥ cmax

Pi
after the conflict. Thus after time tmax

ST
either a

processor has got to know cmax
Pi

(or a larger value) or committed knowing cmax
Pi

(or a larger value). In the worst-case one processor after the other gets to know
cmax
Pi

within time tmax
ST

, taking time at most m · tmax
ST

and then all transactions
commit one after the other, yielding the bound of 2 ·m · tmax

ST
.

3 Any interval yields the same guarantees on the makespan as long as the number of
distinct possible (random) values is at least m, i.e., the maximal number of parallel
running jobs.

We follow previous work [2] and also consider the competitive ratio of our
algorithm to an optimal one. As in [2] we make the assumption that the overall
time resources are required exclusively is a constant fraction d of the sum of the
running time of all transactions ST , i.e., at least d ·

∑
K∈ST

tK , and that every
transaction requires some resource exclusively.

Theorem 8 Given a set ST of n transactions starting at the same time on
n processors, the makespan of Algorithm CommitRounds has competitive ratio
Θ(s), where s is the number of resources.

Proof. The transaction TP with the smallest pair (cP , P) will commit. Thus, it
takes at most time

∑
K∈ST

tK until all transactions commit. The makespan of

an optimal schedule is at least
d·

∑
K∈ST

tK

s , since at most a set of s transactions
can run concurrently, each requiring a distinct resource.

5.5 Analysis of Randomized Algorithm RandomizedRounds

To analyze the response time, we use a complexity measure depending on lo-
cal parameters, i.e., the neighborhood in the conflict graph (for definitions see
Section 4.1).

Theorem 9 The time span a transaction T needs from its first start until com-
mit is O(dT · tmax

N+
T

· log n) with probability 1− 1
n2 .

Proof. Consider an arbitrary conflict graph. The chance that for a transaction T
no transaction K ∈ NT has the same random number given m discrete numbers
are chosen from an interval [1,m] is: p(@K ∈ NT |xK = xT) = (1 − 1

m)dT ≥
(1− 1

m)m ≥ 1
e . We have dT ≤ min{m,n} (Section 4.1). The chances that xT is

at least as small as xK of any transaction K ∈ NT is 1
dT+1 . Thus the chance

that xT is smallest among all its neighbors is at least 1
e·(dT+1) . If we conduct

y = 32 · e · (dT + 1) · log n trials, each having success probability 1
e·(dT+1) , then

the probability that the number of successes X is less than 16 · log n becomes
(using a Chernoff bound): p(X < 16 · log n) < e−2·log n = 1

n2

The duration of a trial, i.e., the time until T can pick a new random number,
is at most the time until the first conflict occurs, i.e., the duration tT plus the
time T has to wait after losing a conflict, which is at most tmax

NT
. Thus the

duration of a trial is bounded by 2 · tmax
N+
T

.

Theorem 10 If n transactions S = {TP0 , ..., TPn} run on n processors, then the
makespan of the schedule by algorithm RandomizedRounds is O(maxT∈ST (dT ·
tmax
N+
T

) · log n)+ tlast with probability 1− 1
n , where tlast is the time, when the latest

transaction started to execute.

Proof. Once all transactions are executing, we can use Theorem 9 to show that
p(∃K ∈ S finishing after O(maxT∈S dT · tmax

N+
T

) · log n) < 1
n . In the proof of The-

orem 9, we showed that for any transaction T : p(T finishes after O(dT · tmax
N+
T

·
log n) < 1

n2 . Since O(dT · tmax
N+
T

· log n) ≤ O(maxT∈S(dT · tmax
N+
T

) · log n) we have

p(T finishes after O(maxT∈S(dT · tmax
N+
T

) · log n) < 1
n2 . The chance that no trans-

action out of all n transactions exceeds the bound of O(maxT∈S(dT ·tmax
N+
T

)·log n)

is (1− 1
n2)n ≥ 1− 1

n .

The theorem shows that if an adversary can increase the maximum degree
dT by a factor of k the running time also increases by the same factor. The
bound still holds if an adversary can keep the degree constantly at dT despite
committing transactions. In practice, the degree might also be kept at the same
level due to new transactions entering the system. In case, we do not allow any
conflicts to be added to the initial conflict graph, the bound of Theorem 10 (and
also the one of Theorem 9) can be improved to O(maxT∈ST (max{dT , log n} ·
tmax
N+
T

)), with an analogous derivation as in [21]. The schedule corresponds then

to a coloring using O(max{∆, log n}) colors.
Let us consider an example to get a better understanding of the bounds.

Assume we have n transactions starting on n processors having equal length
t. All transactions only need a constant amount of resources exclusively and
each resource is only required by a constant number of transactions, i.e., dT

is a constant for all transactions T – as is the case in the dining philosophers
problem mentioned in Section 2. Then the competitive ratio is O(log n), whereas
it is O(n) for the Greedy and SizeMatters algorithms (see Sections 4.3 and 4.4).
For the Polka contention management strategy, the examples used in the proof of
Theorem 4 disclose an exponential gap between RandomizedRounds and Polka,
since the makespan of Algorithm RandomizedRounds for both examples is within
a factor of O(log n) of the optimal with high probability.

A frequently used heuristic for contention management algorithms is to base
the priority of a transaction on some measure of the work it has already com-
pleted. Since algorithm RandomizedRounds does not use any information about
the progress of a transaction such as the number of accessed resources, it looks
like RandomizedRounds does not follow this heuristic at all. However, we show
that the probability that a transaction T has high priority increases with every
transaction aborted due to T . Assume a set W of transactions has aborted due
to T . Then the probability that xT is less than a ∈ [1,m] is:

p(xT ≤ a) = 1− p(xT > a)
= 1− p(xK > a,∀K ∈ (W ∪ T))

= 1− (1− a

m
)|W |+1

This indicates that in general the more conflicts a transaction has won the higher
are its chances to succeed in the next one as well.

6 Conclusions

In the quickly growing field of transactional memory, most research has been
based on practical concerns on current systems, frequently neglecting future
trends, such as the possibly fast growth of the number of cores per chip. Fur-
thermore, evaluation has been often limited to a few selected scenarios, reflected

in a couple of benchmarks. In this paper we have pointed out some shortcomings
of well-known algorithms in the field of contention management. Additionally,
we derived two algorithms to overcome them. Our algorithms avoid using global
data, which limits scalability. Our randomized algorithm improves on the (worst-
case) performance of previous work dramatically when more than a sequential
execution of transactions is possible. For scenarios where transactions face only
conflicts with a few other transactions the gap is exponential. Due to the re-
duction to coloring a further improvement by more than a constant factor is
difficult and for some scenarios impossible. When dealing with a strong adver-
sary, any contention manager has a poor competitive ratio. Due to our lower
bound on the problem complexity, which holds even for centralized algorithms
with full knowledge of the resource needs of any transaction, deriving even a
non-constant approximation is NP-hard.

References

1. H. Attiya. Needed: foundations for transactional memory. ACM SIGACT News,
39, 2008.

2. H. Attiya, L. Epstein, H. Shachnai, and T. Tamir. Transactional contention man-
agement as a non-clairvoyant scheduling problem. In PODC, 2006.

3. A. Bar-Noy, M. Bellare, M. M. Halldorsson, H. Shachnai, and T. Tamir. On
chromatic sums and distributed resource allocation. Information and Computation,
140(2):183–202, 1998.

4. P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum.
Hybrid transactional memory. In ASPLOS, 2006.

5. D. Dice and N. Shavit. Understanding Tradeoffs in Software Transactional Mem-
ory. In Symp. on Code Generation and Optimization, 2007.

6. R. Eidenbenz and R. Wattenhofer. Good Programming in Transactional Memory:
Game Theory Meets Multicore Architecture. In ISAAC, 2009.

7. G. Even, M. M. Halldorsson, L. Kaplan, and D. Ron. Scheduling with conflicts:
online and offline algorithms. In Journal of Scheduling, 2008.

8. R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional con-
tention managers. In PODC, 2005.

9. T. Harris and K. Fraser. Language support for lightweight transactions. In
OOPSLA Conference, 2003.

10. M. Herlihy and V. Luchangco. Distributed Computing and the Multicore Revo-
lution. ACM SIGACT News, 39, 2008.

11. M. Herlihy, V. Luchangco, M. Moir, and W. Scherer. Software transactional
memory for dynamic-sized data structures. In PODC, 2003.

12. M. Herlihy and J. Moss. Transactional Memory: Architectural Support For Lock-
free Data Structures. In Symp. on Computer Architecture, 1993.

13. S. Khot. Improved Inapproximability Results for MaxClique, Chromatic Number
and Approximate Graph Coloring. In FOCS, 2001.

14. F. Kuhn. Weak Graph Coloring: Distributed Algorithms and Applications. In
SPAA, 2009.

15. M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem.
SIAM Journal on Computing, 15:1036–1053, 1986.

16. H. Ramadan, C. Rossbach, D. Porter, O. Hofmann, A. Bhandari, and E. Witchel.
MetaTM/TxLinux: transactional memory for an operating system. In Symp. on
Computer Architecture, 2007.

17. T. Riegel, C. Fetzer, and P. Felber. Time-based Transactional Memory with
Scalable Time Bases. In Parallel Algorithms and Architectures, 2007.

18. W. Scherer and M. Scott. Advanced contention management for dynamic software
transactional memory. In PODC, 2005.

19. J. Schneider and R. Wattenhofer. A Log-Star Distributed Maximal Independent
Set Algorithm for Growth-Bounded Graphs. In PODC, 2008.

20. J. Schneider and R. Wattenhofer. Bounds On Contention Management Algorithms.
In Proc. of the 20th International Symposium on Algorithms and Computation
(ISAAC), 2009.

21. J. Schneider and R. Wattenhofer. Coloring Unstructured Wireless Multi-Hop Net-
works. In PODC, 2009.

22. N. Shavit and D. Touitou. Software transactional memory. Distributed Computing,
10, 1997.

