
International Game Theory Review
c© World Scientific Publishing Company

COST AND COMPLEXITY OF
HARNESSING GAMES WITH PAYMENTS

Raphael Eidenbenz

Computer Engineering and Networks Laboratory (TIK)
ETH Zurich, Switzerland
eidenbenz@tik.ee.ethz.ch

Yvonne Anne Pignolet

IBM Research, Zurich Laboratory
Switzerland

yvo@zurich.ibm.com

Stefan Schmid

Deutsche Telekom Laboratories/TU Berlin
Berlin, Germany

stefan@net.t-labs.tu-berlin.de

Roger Wattenhofer

Computer Engineering and Networks Laboratory (TIK)
ETH Zurich, Switzerland
wattenhofer@tik.ee.ethz.ch

Received (Day Month Year)
Revised (Day Month Year)

This article studies how a mechanism designer can influence games by promising pay-
ments to the players depending on their mutual choice of strategies. First, we investigate
the cost of implementing a desirable behavior and present algorithms to compute this

cost. Whereas a mechanism designer can decide efficiently whether strategy profiles can
be implemented at no cost at all our complexity analysis indicates that computing an
optimal implementation is generally NP-hard. Second, we introduce and analyze the
concept of leverage in a game. The leverage captures the benefits that a benevolent or
a malicious mechanism designer can achieve by implementing a certain strategy profile

region within economic reason, i.e., by taking the implementation cost into account.
Mechanism designers can often manipulate games and change the social welfare by a
larger extent than the amount of money invested. Unfortunately, computing the lever-

age turns out to be intractable as well in the general case.

1. Introduction

Many societies and distributed systems exhibit a socio-economic complexity that
is often difficult to describe and understand formally from a scientific perspective.

1

2 Eidenbenz, Pignolet, Schmid, Wattenhofer

Game theory is a powerful tool for analyzing decision making in systems with au-
tonomous and rational (or selfish) participants. It is used in a wide variety of fields
such as biology, economics, politics, or computer science. A major achievement of
game theory is the insight that networks of self-interested agents (or players) of-
ten suffer from inefficiency due to effects of selfishness. The concept of the price
of anarchy allows us to quantify these effects: The price of anarchy compares the
performance of a distributed system consisting of selfish participants to the perfor-
mance of an optimal reference system where all participants collaborate perfectly.

If a game theoretic analysis of a distributed computing system reveals that the
system has a large price of anarchy, this indicates that the protocol should be
extended by a mechanism encouraging cooperation. In many distributed systems,
for example in a computer network, a mechanism designer cannot change the rules
of interactions. However, she may be able to influence the players’ behavior by
offering payments for certain outcomes. On this account, we consider a mechanism
designer whose power is to some extent based on her monetary assets, primarily,
though, on her creditability. That is, the players trust her to pay the promised
payments. Thus, a certain subset of outcomes is implemented in a given game if, by
expecting additional non-negative payments, rational players will necessarily choose
one of the desired outcomes. A designer faces the following optimization problem:
How can the desired outcome be implemented at minimal cost? Surprisingly, it
is sometimes possible to improve (or worsen) the performance of a given system
merely by creditability, i.e., without any payments at all: promising payments for
other profiles can function as some sort of insurance upon which players choose a
better strategy, ending up in a profile where eventually no payments are made.

Whether a mechanism designer is willing to invest the cost of implementing a
desired outcome often depends on how much better than the original outcome the
implemented outcome is. If the social welfare gain does not exceed the implementa-
tion cost, the mechanism designer might decide not to influence the game at all. In
many games, however, manipulating the players’ utility is profitable. The following
extension of the well-known prisoners’ dilemma illustrates this phenomenon. Two
bank robbers, both members of the Al Capone gang, are arrested by the police.
The policemen have insufficient evidence for convicting them of robbing a bank,
but they could charge them with a minor crime. Cleverly, the policemen interro-
gate each suspect separately and offer both of them the same deal. If one testifies
to the fact that his accomplice has participated in the bank robbery, they do not
charge him for the minor crime. If one robber testifies and the other remains silent,
the former goes free and the latter receives a three-year sentence for robbing the
bank and a one-year sentence for committing the minor crime. If both betray the
other, each of them will get three years for the bank robbery. If both remain silent,
the police can convict them for the minor crime only and they get one year each.
There is another option, of course, namely to confess to the bank robbery and thus
supply the police with evidence to convict both criminals for a four-year sentence
(cf. G in Figure 1; note that payoffs are expressed in terms of saved years!). A short

Harnessing Games with Payments 3

game-theoretic analysis shows that a player’s best strategy is to testify. Thus, the
prisoners will betray each other and both get charged a three-year sentence. Now
assume that Mr. Capone gets a chance to take influence on his employees’ decisions.
Before they take their decision, Mr. Capone calls each of them and promises that if
they both remain silent, they will receive money compensating for one year in jail
(for this scenario, we presume that time really is money!) and furthermore, if one
remains silent and the other betrays him, Mr. Capone will pay the former money
worth two years in prison (cf. V in Figure 1). Thus, Mr. Capone creates a new
situation for the two criminals where remaining silent is the most rational behavior.
Mr. Capone has saved his gang an accumulated two years in jail.

�

� � �

� � � � � � �

� � � 	 	 � �

� � � � � � �

� ��
�

� � � � � � � � � � � �

� 	 	 � � � � � � � � � � � � � � � � � � �

� � � � � � 	 	 � � � � � � � � 	 	 � �

� � � � � � � � � � � � � � � � � � � �

��

Al Capone Police

Fig. 1. Extended prisoners’ dilemma: G shows the prisoners’ initial payoffs, where payoff values
equal saved years. The first strategy is to remain silent (s), the second to testify (t) and the
third to confess (c). Nash equilibria are colored gray, and non-dominated strategy profiles have
a bold border. The left bimatrix V shows Mr. Capone’s offered payments which modify G to
the game G(V). By offering payments V ′, the police implements the strategy profile (c, c). As
V1(c, c) = V2(c, c) = 0, payments V ′ implement (c, c) for free.

Let us consider a slightly different scenario where after the police officers have
made their offer to the prisoners, their commander-in-chief devises an even more
promising plan. He offers each criminal to drop two years of the four-year sentence
in case he confesses the bank robbery and his accomplice betrays him. Moreover, if
he confesses and the accomplice remains silent they would let him go free and even
reward his honesty with a share of the booty (worth going to prison for one year).
However, if both suspects confess the robbery, they will spend four years in jail. In
this new situation, it is most rational for a prisoner to confess. Consequently, the
commander-in-chief implements the best outcome from his point of view without
dropping any sentence and he increases the accumulated years in prison by two.

From Mr. Capone’s point of view, implementing the outcome where both pris-
oners keep quiet results in four saved years for the robbers. By subtracting the
implementation cost, the equivalent to two years in prison, from the saved years,
we see that this implementation yields a benefit of two years for the Capone gang.

4 Eidenbenz, Pignolet, Schmid, Wattenhofer

We say that the leverage of the strategy profile where both prisoners play s is two.
For the police, the leverage of the strategy profile where both prisoners play c is two,
since the implementation costs nothing and increases the years in prison by two.
Since implementing c reduces the players’ gain, we say the strategy profile where
both play c has a malicious leverage of two.

In the described scenario, Mr. Capone and the commander-in-chief solve the
optimization problem of finding the game’s strategy profile(s) which bear the largest
(malicious) leverage and therewith the problem of implementing the corresponding
outcome at optimal cost.

In the remainder of this section, we review related work and give an overview of
our contributions, followed by an introduction of our model and some basic game
theoretic definitions.

1.1. Related Work and Our Contributions

Game theory (e.g., Osborne and Rubinstein [1994]) and mechanism design & imple-
mentation theory Maskin [1999]; Maskin and Sjöström [2002] have been a flourishing
research field for many decades. In 2007, three pioneers in implementation theory
(Leonid Hurwicz, Eric Maskin, and Roger Myerson) were awarded the Nobel prize.
With the advent of the Internet and its numerous applications such as e-commerce
(e.g., Feigenbaum and Shenker [2002]; Rosenschein and Zlotkin [1994]), peer-to-
peer systems (e.g., Dash et al. [2003]), or social networks, algorithmic mechanism
design and game theory is extensively studied by computer scientists as well. For
instance, game theory is used to shed light onto sociological and economic phenom-
ena in decentralized networks consisting of different interacting stake-holders, and
mechanism design is needed to ensure efficiency in online auctions like eBay. For an
interesting recent survey of the field, we refer the reader to the book by Nisan et
al. [2007].

Popular problems in computer science studied from a game theoretic point of
view include virus propagation (Aspnes et al. [2005]), congestion (Christodoulou and
Koutsoupias [2005]), wireless spectrum auctions (Zhou et al. [2008]), among many
others. Poor performance of selfish networks requires research for countermeasures
(Dash et al. [2003]; Maskin and Sjöström [2002]). Cole et al. [2003a] and Cole et al.
[2003b] have studied how incentive mechanisms can influence selfish behavior in a
routing system where the latency experienced by the network traffic on an edge of
the network is a function of the edge congestion, and where the network users are
assumed to selfishly route traffic on minimum-latency paths. They show that by
pricing network edges the inefficiency of selfish routing can always be eradicated,
even for heterogeneous traffic in single-commodity networks.

We believe that the model studied in this article is particularly interesting for
computer networks. Computer networks have special boundary conditions that pre-
clude certain classic implementation theoretic solutions. For example, it is difficult
for a mechanism designer to influence the rules according to which the players

Harnessing Games with Payments 5

act, e.g., by laws. One way of manipulating the players’ decision-making is to of-
fer them money for certain outcomes. Monderer and Tennenholtz [2003] study a
minimal rationality model (players choose non-dominated strategies) and show how
creditability can be used to outwit selfish agents and influence their decisions. They
consider a mechanism designer who cannot enforce behaviors and cannot change the
system, and who attempts to encourage agents to adopt desired behaviors in a given
multi-player setting. The only way the third party can influence the course of the
game is by promising non-negative monetary transfers for certain outcomes (notion
of k-implementation). The interested party wishes to minimize her expenses to im-
plement certain outcomes. The authors show that the mechanism designer might be
able to induce a desired outcome at very low cost. In particular, they prove that any
pure Nash equilibrium has a 0-implementation (see also Dybvig and Spatt [1983];
Segal [1999]; Spiegler [2000]), i.e., it can be transformed into a dominant strategy
profile at zero cost (achieving a Price of Stability for free, e.g., Resnick et al. [2009]).
Similar results hold for any given ex-post equilibrium of a frugal VCG mechanism.
Moreover, the paper addresses the question of the hardness of computing the min-
imal implementation cost.

We extend Monderer and Tennenholtz [2003] in various respects. Monderer and
Tennenholtz [2003] attends to mechanism designers calculating with maximum pos-
sible payments for a desired outcome—a “worst-case scenario”. To assume the worst
case makes sense since it is left open how a player chooses among the non-dominated
strategies. In this article we also consider games where, due to the lack of infor-
mation of other players’ payoff functions, a player is assumed to pick a one of her
non-dominated strategies uniformly at random. For such a manner of dealing with
imperfect knowledge or uncertainty, we prove that computing the optimal imple-
mentation cost is NP-hard in general. Analyzing the computational complexity of
worst-case scenarios turns out to be more intricate; we discovered an error in the
approach taken in Monderer and Tennenholtz [2003], and it is unclear how to repair
their construction.

We introduce the concept of leverage, a measure for the change of behavior
a mechanism design can inflict, taking into account the social gain and the imple-
mentation cost. Regarding the payments offered by the mechanism designer as some
form of insurance, it seems natural that outcomes of a game can be improved at no
cost. On the other hand, we show that a malicious mechanism designer can in some
cases even reduce the social welfare at no cost. Second, we present algorithms to
compute both the beneficial as well as the malicious leverage, and provide evidence
that several optimization problems related to the leverage are NP-hard.

To the best of our knowledge, this is the first work studying malicious mech-
anism designers which aim at influencing a game based primarily on their cred-
itability. Other types of maliciousness have been studied before in various contexts,
especially in cryptography, and it is impossible to provide a complete overview of
this literature. Recently, the concept of BAR games (Aiyer et al. [2005]) has been
introduced which aims at understanding the impact of altruistic and malicious be-

6 Eidenbenz, Pignolet, Schmid, Wattenhofer

havior in game theory. Moscibroda et al. [2006] extend the virus inoculation game
from Aspnes et al. [2005] to comprise both selfish and malicious players. A similar
model has recently been studied in the context of congestion games (Babaioff et al.
[2007]). Our work is also related to Stackelberg theory Roughgarden [2001] where a
fraction of the entire population is orchestrated by a global leader. In contrast to
our model, the leader is not bound to offer any incentives to follow her objectives.
In the recent research thread of combinatorial agencies (Babaioff et al. [2006a];
Babaioff et al. [2006b]; Eidenbenz and Schmid [2009]), a setting is studied where a
mechanism designer seeks to influence the outcome of a game by contracting the
players individually; however, as she is not able to observe the players’ actions, the
contracts can only depend on the overall outcome.

Our work has also connections to fault-tolerant mechanism design: In Porter et
al. [2008], the authors extend the field of mechanism design to take into account
execution uncertainty, where the costs of a player depends on the probabilities of
failure. Apart from incentive-compatible mechanisms, they also give impossibility
results. Moreover there are intriguing touching points with correlated equilibria and
mediated mechanisms, where a mechanism designer can communicate with the play-
ers and suggest (without money) certain subset of the outcomes for example (e.g.,
Monderer and Tennenholtz [2009]); indeed, in Monderer and Tennenholtz [2003]
it is shown that all correlated equilibria can in fact be 0-implemented. Recently,
Bradonjic et al. Bradonjic et al. [2009] also introduced the study of a malicious
interested party in the mediator setting.

Preliminary versions of this work have been published at the International Con-
ference on Combinatorial Optimization and Applications (Eidenbenz et al. [2007b])
and the International Symposium on Algorithms and Computation (Eidenbenz et
al. [2007a]). Follow-up work by Moscibroda and Schmid [2009] studies an application
of the theories devised in this article to the domain of throughput maximization.

1.2. Preliminaries and Model

1.2.1. Game Theory

A finite strategic game can be described by a tuple G = (N, X, U), where N =
{1, 2, . . . , n} is the set of players and each player i ∈ N can choose a strategy
(action) from the set Xi. The product of all the individual players’ strategies is
denoted by X := X1 ×X2 × . . .×Xn. In the following, a particular outcome x ∈ X

is called strategy profile and we refer to the set of all other players’ strategies of
a given player i by X−i = X1 × . . . × Xi−1 × Xi+1 × . . . × Xn. An element of
Xi is denoted by xi, and similarly, x−i ∈ X−i; we may write xi, x−i to denote
strategy profile x ∈ X where player i plays xi and all other players play according
to x−i. Finally, U = (U1, U2, . . . , Un) is an n-tuple of payoff functions (utilities),
where Ui : X → R determines player i’s payoff arising from the game’s outcome.
The social gain of a game’s outcome is given by the sum of the individual players’
payoffs at the corresponding strategy profile x, i.e. gain(x) :=

∑n
i=1 Ui(x). Let

Harnessing Games with Payments 7

xi, x
′
i ∈ Xi be two strategies available to Player i. We say that xi dominates x′

i

iff Ui(xi, x−i) ≥ Ui(x′
i, x−i) for every x−i ∈ X−i and there exists at least one x−i

for which a strict inequality holds. xi is the dominant strategy for player i if it
dominates every other strategy x′

i ∈ Xi\{xi}. xi is a non-dominated strategy if
no other strategy dominates it. By X∗ = X∗

1 × . . . × X∗
n we will denote the set of

non-dominated strategy profiles, where X∗
i is the set of non-dominated strategies

available to the individual player i. A strategy profile set—also called strategy profile
region—O ⊆ X of G is a subset of all strategy profiles X, i.e., a region in the
payoff matrix consisting of one or multiple strategy profiles. Similarly to Xi and
X−i, we define Oi := {xi|∃x−i ∈ X−i s.t. (xi, x−i) ∈ O} and O−i := {x−i|∃xi ∈
Xi s.t. (xi, x−i) ∈ O}.

1.2.2. Implementation Cost

Our model is based on the classic assumption that players are rational and always
choose a non-dominated strategy. Additionally, we assume that players do not col-
lude. We examine the impact of payments to players offered by a reliable mechanism
designer (an interested third party) who seeks to influence the outcome of a game.
It is assumed that the mechanism designer has complete knowledge of the players’
utilities. By reliable we mean that the owed payments will always be acquitted.
Note that this differs from standard mechanism design where a designer (e.g., a
government) defines an interaction for self-motivated parties that will allow it to
obtain some desired goal (such as maximizing revenue or social welfare) taking the
agents’ incentives into account, see also the discussion in Monderer and Tennen-
holtz [2003]. In many distributed systems, unfortunately, interested parties cannot
control the rules of interactions. A network manager for example cannot simply
change the communication protocols in a given distributed systems in order to lead
to desired behaviors, and a broker cannot change the rules in which goods are sold
by an agency auctioneer to the public.

The payments promised by the mechanism designer are described by a tuple of
non-negative payment functions V = (V1, V2, . . . , Vn), where Vi : X → R+, i.e. the
payments for player i depend on the strategy Player i selects as well as on the
choices of all other players. Thereby, we assume that the players trust the mechanism
designer to finally pay the promised amount of money, i.e., consider her trustworthy
(mechanism design by creditability). The original game G = (N, X, U) is modified
to G(V) := (N, X, [U + V]) by these payments, where [U + V]i(x) = Ui(x) + Vi(x),
that is, each player i obtains the payments of Vi in addition to the payoffs of Ui.
The players’ choice of strategies changes accordingly: Each player now selects a
non-dominated strategy in G(V). Henceforth, the set of non-dominated strategy
profiles of G(V) is denoted by X∗(V), and V (x) denotes the sum of all payments
offered to the players when x is the game’s outcome, V (x) =

∑n
i=1 Vi(x). Observe

that we have made two implicit assumptions: The mechanism designer can observe
the actions chosen by the players and the players can determine the payoffs of all

8 Eidenbenz, Pignolet, Schmid, Wattenhofer

their strategies and compute the best strategy among them.
The mechanism designer’s objective is to bring the players to choose a certain

strategy profile, or a set of strategy profiles without spending too much. It is of-
ten cheaper for a mechanism designer to allow for entire region implementations
rather than focusing on a fixed singleton profile. We consider two scenarios leading
to two kinds of implementation cost: worst-case implementation cost and uniform
implementation cost.

We first study a perfect knowledge scenario where all players know all strat-
egy spaces X and payoff functions U , and the mechanism designer calculates with
the maximum possible payments for a desired outcome (worst-case implementation
cost). For a desired strategy profile set O, we say that payments V implement O if
∅ ⊂ X∗(V) ⊆ O. V is called (worst-case) k-implementation if, in addition V (x) ≤ k,
∀x ∈ X∗(V). That is, the players’ non-dominated strategies are within the desired
strategy profile, and the payments do not exceed k for any possible outcome. More-
over, V is an exact k-implementation of O if all strategies of O are non-dominated
in the resulting game, i.e., X∗(V) = O and V (x) ≤ k ∀x ∈ X∗(V). The cost k(O) of
implementing O is the lowest of all non-negative numbers q for which there exists a
q-implementation. If an implementation meets this lower bound, it is optimal, i.e., V

is an optimal implementation of O if V implements O and maxx∈X∗(V) V (x) = k(O).
The cost k∗(O) of implementing O exactly is the smallest non-negative number q

for which there exists an exact q-implementation of O. V is an optimal exact im-
plementation of O if it implements O exactly and requires cost k∗(O). The set of
all implementations of O will be denoted by V(O), and the set of all exact imple-
mentations of O by V∗(O). Finally, a strategy profile set O = {z} of cardinality
one—consisting of only one strategy profile—is called a singleton. Clearly, for sin-
gletons it holds that non-exact and exact k-implementations are equivalent. For
simplicity’s sake we often write z instead of {z} . Observe that only subsets of X

which are in 2X1 × 2X2 × . . . × 2Xn , i.e., the Cartesian product of subsets of the
players’ strategies, can be implemented exactly. We call such a subset of X a rect-
angular strategy profile set.a In conclusion, for the worst-case implementation cost,
we have the following definitions.

Definition 1 (Worst-Case Cost and Exact Worst-Case Cost). The worst-
case implementation cost of a strategy profile set O is denoted by k(O) :=
minV ∈V(O){maxz∈X∗(V) V (z)}. A strategy profile set O has exact worst-case im-
plementation cost k∗(O) := minV ∈V∗(O){maxz∈X∗(V) V (z)}.

In a second scenario, we assume that a player i is aware of all strategy spaces
X, but the player only knows her own utilities Ui rather than all players’ utili-
ties U . Without having any indication of what the others will play we presume a
player chooses one of the non-dominated strategies uniformly at random. As a con-

aNote that within our model where payments are made to individual players in different profiles,
non-dominated profile sets will always be of rectangular shape.

Harnessing Games with Payments 9

sequence, all strategy profiles in the non-dominated region X∗(V) have the same
probability of being picked and the mechanism designer can calculate an expected
implementation cost. (An equivalent model would be a setting where the mecha-
nism designer is less anxious, and makes the simplifying assumption that players
sample the strategy rather than going for the worst-case.) We define the uniform
cost of an implementation V as the average of all strategy profiles’ possible cost in
X∗(V).

Definition 2 (Uniform Cost and Exact Uniform Cost). A strategy profile
set O has uniform implementation cost kUNI(O) := minV ∈V(O){avgz∈X∗(V) V (z)}
where avg is defined as avgx∈X f(x) := 1/ |X| ·∑x∈X f(x). A strategy profile set O

has exact uniform implementation cost k∗
UNI(O) := minV ∈V∗(O){avgz∈X∗(V) V (z)}.

1.2.3. Leverage

With rational players, mechanism designers can implement any desired outcomes
if they offer high enough payments. The natural question that arises from this
insight is for which games it actually makes sense to take influence at all, and
which behavior the mechanism designer should implement in order to maximize
her own utility. To answer this question we need to model the mechanism designer
herself, and define the interests she has in the outcome of the game. In this work,
we examine two diametrically opposed models of interested third parties. The first
one is benevolent towards the participants of the game, and the other one malicious.
While the former is interested in increasing a game’s social gain, the latter seeks
to minimize the players’ welfare.b We define a measure indicating whether the
mechanism of implementation enables them to modify a game in a favorable way
such that their gain exceeds the manipulation’s cost. We call these measures the
leverage and malicious leverage, respectively. In the following, we will often write
“(malicious) leverage” signifying both leverage and malicious leverage.

As the concept of leverage depends on the implementation cost, we examine
the worst-case and the uniform leverage. The worst-case leverage is a lower bound
on the mechanism designer’s influence: We assume that without the additional
payments, the players choose a strategy profile in the original game where the
social gain is maximal, while in the modified game, they select a strategy profile
among the newly non-dominated profiles where the difference between the social
gain and the mechanism designer’s cost is minimized. The value of the leverage is
given by the net social gain achieved by this implementation minus the amount of
money the mechanism designer had to spend. For malicious mechanism designers
we have to invert signs and swap max and min. Moreover, the payments made

bNote that our terminology assumes the perspective of the players, i.e., if a mechanism designer
acts contrary to their utilities, it is called “malicious”. Depending on the game, a malicious mecha-
nism designer’s goal to punish the players can be morally upright (as illustrated in the introductory
example).

10 Eidenbenz, Pignolet, Schmid, Wattenhofer

by the mechanism designer have to be subtracted twice, because for a malicious
mechanism designer, the money received by the players are considered a loss.

Definition 3 (Worst-Case Leverage). The leverage of a strategy profile set O

is LEV (O) := max{0, lev(O)}, where

lev(O) := max
V ∈V(O)

{ min
z∈X∗(V)

{U(z) − V (z)}} − max
x∗∈X∗

U(x∗).

Here U(z) refers to the total utility of the players in profile z and V (z) is the total
amount of payments.

Definition 4 (Malicious Worst-Case Leverage). The malicious leverage of a
strategy profile set O is MLEV (O) := max{0, mlev(O)}, where

mlev(O) := min
x∗∈X∗

U(x∗) − min
V ∈V(O)

{ max
z∈X∗(V)

{U(z) + 2V (z)}}.

Observe that according to our definitions, leverage values are always non-
negative, as a mechanism designer has no incentive to manipulate a game if she will
lose money. If the desired set consists only of one strategy profile z, i.e., O = {z},
we will speak of the singleton leverage. Similarly to the (worst-case) leverage, we
define the uniform leverage.

Definition 5 (Uniform Leverage). The uniform leverage of a strategy profile
set O is defined as LEVUNI(O) := max{0, levUNI(O)}, where

levUNI(O) := max
V ∈V(O)

{ avg
z∈X∗(V)

(U(z) − V (z))} − avg
x∗∈X∗

U(x∗).

Definition 6 (Malicious Uniform Leverage). The malicious uniform leverage
of a strategy profile set O is MLEVUNI(O) := max{0, mlevUNI(O)}, where

mlevUNI(O) := avg
x∗∈X∗

U(x∗) − min
V ∈V(O)

{ avg
z∈X∗(V)

{U(z) + 2V (z)}}.

We define the exact (uniform) leverage LEV ∗(O) and the exact (uniform) ma-
licious leverage MLEV ∗(O) by simply changing V(O) to V∗(O) in the definition
of LEV(UNI)(O) and in the definition of MLEV(UNI)(O). Thus, the exact (uni-
form) (malicious) leverage measures a set’s leverage if the interested party may
only promise payments which implement O exactly. Finally, the (uniform) (ma-
licious) leverages of an entire game G = (N, X, U) are defined as the (uniform)
(malicious) leverages of X, e.g., LEV (G) := LEV (X).

1.3. Organization

This article is organized in two major sections. Section 2 investigates implementa-
tion costs and its computation complexity and we present algorithms for finding
incentive compatible implementations of a desired set of outcomes. Section 3 then
discusses the concept of leverage in games. We analyze the leverage complexities
and present algorithms for computing the “potential” of such game manipulations.
The article concludes with a discussion of the contributions.

Harnessing Games with Payments 11

2. Implementation Cost

The notion of k-implementations is introduced in Monderer and Tennenholtz [2003]
to denote mechanisms that manipulate the players’ behavior with payments of total
value at most k. For the smallest implementable units of a game, singletons, they
derived a closed formula for the minimal costs k needed to implement it. This
formula builds on the fact that in order to implement a strategy profile z ∈ X,
for each player i, strategy zi must be the dominant strategy for i in the game
G(V) that combines the original payoffs with the offered payments. To achieve
dominance Ui(z) + Vi(z) must be at least as large as any payoff Ui(xi, z−i) of any
other strategy xi ∈ Xi, all other payments Vi(zi, x−i) can be chosen high enough
to yield Ui(zi, x−i) + Vi(zi, x−i) > Ui(xi, x−i) for all xi �= zi, x−i �= z−i.

Theorem 1 (Monderer and Tennenholtz [2003]). Let G = (N, X, U) be a
game with at least two strategies for every player. Every strategy profile z has an
implementation V , and its implementation cost amounts to

k(z) =
n∑

i=1

max
xi∈Xi

(Ui(xi, z−i) − Ui(zi, z−i)) .

Furthermore, observe that z constitutes a Nash equilibrium if and only if it
holds for every player i ∈ N , maxxi∈Xi

(Ui(xi, z−i)−Ui(zi, z−i)) = 0. As a corollary
to Theorem 1 we get that a strategy profile z is a Nash equilibrium if and only
if z has a 0-implementation. This remarkable result by Monderer and Tennenholtz
[2003] implies that some outcomes can be implemented without spending anything.
For a discussion of exact 0-implementations of profile sets, we refer the reader
to Eidenbenz et al. [2007b].

Note that in general there are strategy profile regions for which it is cheaper
to implement the entire region rather than a singleton within that region. Hence,
it is worthwhile for a mechanism designer not to be too restrictive in what should
be implemented. For example, if several outcomes are acceptable (and not just a
singleton), better implementations may exist (e.g., in the game depicted in Figure 2).

2.1. Worst Case Implementation Cost

We begin by studying exact implementations where the mechanism designer aims
at implementing an entire strategy profile region. Exact region implementations
are computationally cheaper to find compared to general region implementations,
as calculating and comparing all the possible subregions is time-consuming. Subse-
quently, we examine general k-implementations.

2.1.1. Exact Implementation

Recall that the matrix V is an exact k-implementation of a strategy region O iff
X∗(V) = O and

∑n
i=1 Vi(x) ≤ k ∀x ∈ X∗(V), i.e. each strategy Oi is part of the set

12 Eidenbenz, Pignolet, Schmid, Wattenhofer

of player i’s non-dominated strategies for all Players i. We present the first correct
algorithm to find such implementations.

Algorithm and Complexity Recall that in our model each player classifies
the strategies available to her as either dominated or non-dominated. Thereby,
each dominated strategy xi ∈ Xi\X∗

i is dominated by at least one non-dominated
strategy x∗

i ∈ X∗
i . In other words, a game determines for each player i a relation

MG
i from dominated to non-dominated strategies, MG

i : Xi\X∗
i → X∗

i , where
MG

i (xi) = x∗
i states that xi ∈ Xi\X∗

i is dominated by x∗
i ∈ X∗

i . See Figure 3 for
an example.

When implementing a strategy profile region O exactly, the mechanism designer
creates a modified game G(V) with a new relation MV

i : Xi \Oi → Oi such that all
strategies outside Oi map to at least one strategy in Oi. Therewith, the set of all
newly non-dominated strategies of player i must constitute Oi. As every V ∈ V∗(O)
determines a set of relations MV := {MV

i : i ∈ N}, there must be a set MV for ev-
ery V implementing O optimally as well. If we are given such an optimal relation set
MV without the corresponding optimal exact implementation, we can compute a V

with minimal payments and the same relation MV , i.e., given an optimal relation
we can find an optimal exact implementation. As an illustrating example, assume
an optimal relation set for G with MG

i (x∗
i1) = oi and MG

i (x∗
i2) = oi. Thus, we can

compute V such that oi must dominate x∗
i1 and x∗

i2 in G(V), namely, the condition
Ui(oi, o−i) + Vi(oi, o−i) ≥ maxs∈(x∗

i1,x∗
i2)

(Ui(s, o−i) + Vi(s, o−i)) must hold ∀o−i ∈
O−i. In an optimal implementation, Player i is not offered payments for strategy pro-
files of the form (ōi, x−i) where ōi ∈ Xi\Oi, x−i ∈ X−i. Hence, the condition above
can be simplified to Vi(oi, o−i) = max(0, maxs∈{x∗

i1,x∗
i2} (Ui(s, o−i))) − Ui(oi, o−i).

Let Si(oi):={s ∈ Xi\Oi|MV
i (s) = oi} be the set of strategies where MV cor-

responds to an optimal exact implementation of O. Then, an implementation
V with Vi(ōi, x−i) = 0, Vi(oi, ō−i) = ∞ for any player i, and Vi(oi, o−i) =
max

{
0, maxs∈Si(oi) (Ui(s, o−i))

}−Ui(oi, o−i) is an optimal exact implementation of
O as well. Therefore, the problem of finding an optimal exact implementation V of O

corresponds to the problem of finding an optimal set of relations MV
i : Xi\Oi → Oi.

G =

20
0

11
9

15
15

15
15

11
9

20
0

15
15

15
15

19
10

10
19

9
11

0
20

10
19

19
10

0
20

9
11

V =

0
∞

0
∞

0
0

0
0

0
∞

0
∞

0
0

0
0

1
1

1
1

∞
0

∞
0

1
1

1
1

∞
0

∞
0

Fig. 2. 2-player game where O ’s optimal implementation V yields a region |X∗(V)| > 1. Each
singleton o in the region O consisting of the four bottom left profiles has cost k(o) = 11 whereas
V implements O at cost 2. This example can be generalized to an arbitrarily large difference in
the implementation cost between a singleton and a region in the worst case.

Harnessing Games with Payments 13

0 1 4

5 5 1

4 10 4

0 0 10

4 5 4

4 0 0a

b
d*a

c
e*b

d*
c f*

e*
X\X* X*

f*

Fig. 3. Game from a single player’s point of view with the corresponding relation of dominated
(Xi\X∗

i = {a, b, c}) to non-dominated strategies (X∗
i = {d∗, e∗, f∗}).

Our algorithm ALGexact (cf. Algorithm 1) exploits this fact and constructs an
implementation V for all possible relation sets, checks the cost that V would entail,
and returns the lowest cost found. The computation is done for one player after the
other, recursively. Note that V has reference semantics in Algorithm 1.

Algorithm 1 Exact k-Implementation (ALGexact)
Input: Game G, rectangular region O with O−i ⊂ X−i∀ i

Output: k∗(O)
1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) := ∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗;
4: return ExactK(V , n);

ExactK(V , i):
Input: payments V , current player i

Output: k∗(O) for G(V)
1: if |X∗

i (V)\Oi| > 0 then
2: s := any strategy in X∗

i (V)\Oi; kbest := ∞;
3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max(0, Ui(s, o−i)− (Ui(oi, o−i) + Vi(oi, o−i)));
6: k := ExactK(V + W , i);
7: if k < kbest then
8: kbest := k;
9: for all o−i ∈ O−i do

10: Wi(oi, o−i) := 0;
11: return kbest;
12: else if i > 1 then
13: return ExactK(V , i − 1);
14: else
15: return maxo∈O

∑
i Vi(o);

14 Eidenbenz, Pignolet, Schmid, Wattenhofer

Theorem 2. ALGexact computes a strategy profile region’s optimal exact imple-
mentation cost in time

O
(
|X|2 max

i∈N
(|Oi|n|X∗

i \Oi|−1) + n|O|max
i∈N

(|Oi|n|X∗
i \Oi|)

)
.

Note that ALGexact has a large time complexity. In fact, a faster algorithm for
this problem, called Optimal Perturbation Algorithm has been presented in Mon-
derer and Tennenholtz [2003]. In a nutshell, this algorithm proceeds as follows: After
initializing V similarly to our algorithm, the values of the region O in the matrix
V are increased slowly for every player i, i.e., by all possible differences between
a player’s payoffs in the original game. The algorithm terminates as soon as all
strategies in X∗

i \Oi are dominated. Unfortunately, this algorithm does not always
return an optimal implementation. Sometimes, it increases the values unnecessar-
ily. An example demonstrating that the optimal perturbation algorithm presented
in Monderer and Tennenholtz [2003] is not correct is the following game G with
X∗ and O and payments VOPT , VPERTURB.

G

2
0

0
0

0
0

2
3

4
0

0
0

VOPT

2
0

5
0

0
3

5
0

0
5

0
0

VPERTURB

2
3

5
0

2
3

5
0

0
5

0
0

As can be verified easily, VOPT implements O with cost k = 3. The matrix
VPERTURB computed by the optimal perturbation algorithm implements O as well,
however, it has cost k = 5.

Not only does this leave us without a polynomial algorithm, we even conjecture
that the problem is inherently hard and that deciding whether an k-exact imple-
mentation exists is NP-hard. Although we did not succeed in proving NP-hardness
we have reason to believe so as we can show the arguably easier, and closely related
problem of finding the exact uniform implementation cost of a strategy region to
be NP-hard (Theorem 3).

Conjecture 1. Finding an optimal exact implementation of a strategy region is
NP-hard.

The study of exact implementation cost was introduced by Monderer and Tennen-
holtz Monderer and Tennenholtz [2003] primarily because it seems easier to compute
the exact implementation cost of a region O than its non-exact cost. Computing
O’s non-exact cost implicitly computes at least the optimal subregion’s exact cost,
potentially the exact cost of all subsets of O since the algorithm has to discover
that no other subregion has lower implementation cost. Unfortunately, although we
experienced that computing exact cost is computationally easier than computing
non-exact cost, it still seems infeasible to do so in polynomial time.

Harnessing Games with Payments 15

2.1.2. Non-Exact Implementation

In contrast to exact implementations where the complete set of strategy profiles
O must be non-dominated, the additional payments in non-exact implementations
only have to ensure that a subset of O is the newly non-dominated region. Obviously,
it matters which subset this is. Knowing that a subset O′ ⊆ O bears optimal cost,
we could find k(O) by computing k∗(O′). As we conjectured that computing exact
cost is in NP we get the following:

Conjecture 2. Finding an optimal implementation of a strategy region is NP-
hard.

Apart from the fact that finding an optimal implementation includes solving
the—believed to be NP-hard—optimal exact implementation cost problem for at
least one subregion of O, finding this subregion might also be NP-hard even if
the exact implementation cost problem shows to be in P since there are expo-
nentially many possible subregions. In fact, a reduction from the SAT problem is
presented in Monderer and Tennenholtz [2003]. The authors show how to construct
a 2-person game in polynomial time given a CNF formula such that the game has
a 2-implementation if and only if the formula has a satisfying assignment. How-
ever, their proof is not correct: While there indeed exists a 2-implementation for
every satisfiable formula, it can be shown that 2-implementations also exist for non-
satisfiable formulas. E.g., strategy profiles (xi, xi) ∈ O are always 1-implementable.
Unfortunately, we were not able to correct their proof. However, we conjecture the
problem to be NP-hard, i.e., we assume that no algorithm can do much better than
performing a brute force computation of the exact implementation cost (cf. Algo-
rithm 1) of all possible subsets, unless NP = P. Note that we give a reduction from
SET COVER for the uniform implementation cost in the following section.

2.2. Uniform Implementation Cost

In the uniform model, we assume non-dominated strategy profiles are played with
the same probability. This assumption is reasonable in settings where players have
imperfect knowledge and only know their own utility function rather than all play-
ers’ utilities. Without any indication of what the others will play, it seems a player’s
natural strategy to mix among the non-dominated pure strategies uniformly at ran-
dom yielding a uniform probability distribution over the non-dominated strategy
profiles. Note that this assumption can be modeled either on the level of the players
or on the level of the mechanism designer. We either presume the players to adopt
a certain behavior or we presume the mechanism designer to make some assump-
tions on the players’ behavior. The argument supporting the uniform assumption
stated above reasons on the level of the players’ behavior. To reason on the latter
level we could think of the mechanism designer as willing to take risks and presume
her to anticipate uniform rather than worst case costs regardless of the scope of

16 Eidenbenz, Pignolet, Schmid, Wattenhofer

�

�

�

� �

�

�

�� �

�

� �

�

�

�

� �

�

� �

�

�� �

� �

� ��

�

�� �

� �

�

� �

� �

�

�

�

�

�

�

�

�

�

�

�

��

�

���

� �

�

�

�

���
�

�
�

�
�

�
�

�
	

�
	

�
�

�
�

�
�

�
�

	

�

�

�

���

Fig. 4. Payoff matrix for player 1 in a game which reduces the SET COVER problem instance

SC = (U ,S) where U = {e1, e2, e3, e4, e5}, S = {S1, S2, S3, S4}, S1 = {e1, e4}, S2 = {e2, e4}, S3 =

{e2, e3, e5}, S4 = {e1, e2, e3} to the problem of computing k∗
UNI(O). The optimal exact imple-

mentation V of O in this sample game adds a payment V1 of 1 to the strategy profiles (s1, d)
and (s3, d), implying that the two sets S1 and S3 cover U optimally.

information available to the players.
In the following we show that it is NP-hard to compute the uniform implemen-

tation cost for both the non-exact and the exact case. We devise game configura-
tions which reduce SET COVER to the problem of finding an implementation of a
strategy profile set with optimal uniform cost.

Theorem 3. In games with at least two players, the problem of finding a strategy
profile set’s exact uniform implementation cost is NP-hard.

Proof. For a given universe U of l elements {e1, e2, . . . , el} and m subsets S =
{S1, S2, . . . , Sm}, with Si ⊂ U , SET COVER is the problem of finding the minimal
collection of Si’s which contains each element ei ∈ U . We assume without loss
of generality that �(i �= j) : Si ⊂ Sj . Given a SET COVER problem instance
SC = (U ,S), we can efficiently construct a game G = (N, X, U) where N = {1, 2},
X1 = {e1, e2, . . . , el, s1, s2, . . . , sm}, and X2 = {e1, e2, . . . , el, d, r}. Each strategy
ej corresponds to an element ej ∈ U , and each strategy sj corresponds to a set
Sj . Player 1’s payoff function U1 is defined as follows: U1(ei, ej) := m + 1 if i = j

and 0 otherwise, U1(si, ej) := m + 1 if ej ∈ Si and 0 otherwise, U1(ei, d) := 1,
U1(si, d) := 0, U1(x1, r) := 0 ∀x1 ∈ X1. player 2 has a payoff of 0 when playing r

and 1 otherwise. In this game, strategies ej are not dominated for player 1 because
in column d, U1(ej , d) > U1(si, d), ∀i ∈ {1, . . . m}. The set O we would like to
implement is {(x1, x2)|x1 = si∧(x2 = ei∨x2 = d)}. See Figure 3 for an example. Let
Q = {Q1, Q2, . . . , Qk}, where each Qj corresponds to an Si. We now claim that Q is

Harnessing Games with Payments 17

an optimal solution for a SET COVER problem, an optimal exact implementation
V of O in the corresponding game has payments V1(si, d) := 1 if Qi ∈ Q and 0
otherwise, and all payments V1(si, ej) equal 0.

Note that by setting V1(si, d) to 1, strategy si dominates all strategies ei which
correspond to an element in Si. Thus, our payment matrix makes all strategies ei

of player 1 dominated since any strategy ei representing element ei is dominated
by the strategies sj corresponding to Sj which cover ei in the minimal covering set.
(If |Sj | = 1, sj gives only equal payoffs in G(V) to those of ei in the range of O2.
However, sj can be made dominating ei by increasing sj ’s payments V1(sj , r) in the
extra column r.) If there are any strategies si dominated by other strategies sj , we
can make them non-dominated by adjusting the payments V1(si, r) for column r.
Hence, any solution of SC corresponds to a valid exact implementation of O.

It remains to show that such an implementation is indeed optimal and there
are no other optimal implementations not corresponding to a minimal covering
set. Note that by setting V1(si, d) := 1 and V1(si, r) > 0 for all si, all strategies
ej are guaranteed to be dominated and V implements O exactly with uniform
cost avgo∈O V (o) = m/ |O|. If an implementation had a positive payment for any
strategy profile of the form (si, ej), it would cost at least m + 1 to have an effect.
However, a positive payment greater than m yields a larger. Thus, an optimal V

has positive payments inside set O only in column d. By setting V1(si, d) to 1, si

dominates the strategies ej which correspond to the elements in Si, due to our
construction. An optimal implementation has a minimal number of 1s in column
d. This can be achieved by selecting those rows si (V1(si, d) := 1), which form
a minimal covering set and as such all strategies ei of player 1 are dominated at
minimal cost. Our reduction can be generalized for n > 2 by simply adding players
with only one strategy and zero payoffs in all strategy profiles.

Theorem 4. In games with at least three players, the problem of finding a strategy
profile set’s non-exact uniform implementation cost is NP-hard.

Proof. We give a similar reduction of SET COVER to the problem of comput-
ing kUNI(O) by extending the setup we used for proving the exact case. We
add a third player and show NP-hardness for n = 3 first and indicate how
the reduction can be adapted for games with n > 3. Given a SET COVER
problem instance SC = (U ,S), we can construct a game G = (N, X, U) where
N = {1, 2, 3}, the strategies for the players are X1 = {e1, e2, . . . , el, s1, s2, . . . , sm},
X2 = {e1, e2, . . . , el, s1, s2, . . . , sm, d, r} and X3 = {a, b}. Again, each strategy ej

corresponds to an element ej ∈ U , and each strategy sj corresponds to a set Sj . In
the following, we use ‘ ’ in profile vectors as a placeholder for any possible strategy.
Player 1’s payoff function U1 is defined as follows: U1(ei, ej ,) := (m + l)2 if i = j

and 0 otherwise, U1(ei, sj ,) := 0, U1(si, ej ,) := (m+l)2 if ej ∈ Si and 0 otherwise,
U1(si, sj ,) := 0 if i = j and (m + l)2 otherwise, U1(ei, d,) := 1, U1(si, d,) := 0,
U1(, r,) := 0. Player 2 has a payoff of (m + l)2 for any strategy profile of the form

18 Eidenbenz, Pignolet, Schmid, Wattenhofer

�

�

�

�

�

���
�

�
�

�
�

�
�

�
	

�
	

�
�

�
�

�
�

�
�

	

�

�

�

��
�

	

�

�

�

�
�

�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�

��
�

��
�

��
�

��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

���
�

�
�

�
�

�
�

�
	

�
	

�
�

�
�

�
�

�
�

	

�

�

�

	

�

�

�

�� ������

� �������

� �������

� ������

��

��

�

�

��

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 5. Payoff matrix for player 1 and Player 2 given Player 3 chooses a and payoff matrix for Player
3 when she plays strategy b in a game which reduces a SET COVER instance SC = (U ,S) where
U = {e1, e2, e3, e4, e5}, S = {S1, S2, S3, S4}, S1 = {e1, e4}, S2 = {e2, e4}, S3 = {e2, e3, e5}, S4 =

{e1, e2, e3} to the problem of computing kUNI(O). Every implementation V of O in this game
needs to add any positive payment in the second matrix to V3, i.e. V3(x1, x2, a) = U3(x1, x2, b),
in order to convince player 3 of playing strategy a. An optimal implementation adds a payment
V1 of 1 to the strategy profiles (s1, d, a) and (s3, d, a), implying that the two sets S1 and S3 cover
U optimally in the corresponding SET COVER problem.

(si, si,) and 0 for any other strategy profile. Player 3 has a payoff of m + l + 2 for
strategy profiles of the form (si, si, b), a payoff of 2 for profiles (si, ei, b) and profiles
(si, sj , b), i �= j, and a payoff of 0 for any other profile. The set O we would like to
implement is {(x1, x2, x3)|x1 = si ∧ (x2 = ei ∨ x2 = si ∨ x2 = d) ∧ (x3 = a)}.
See Figure 5 for an example. First, note the fact that any implementation of O

will have V3(o1, o2, a) ≥ U3(o1, o2, b), in order to leave player 3 no advantage play-
ing b instead of a. In fact, setting V3(o1, o2, a) = U3(o1, o2, b) suffices. (Setting any
V3(a, ō−3) > U3(b, ō−3) where ō−3 is outside O lets player 3 choose strategy a.)
Also note that for Player 2, O2 can be made non-dominated without offering any
payments inside O, e.g., set V2(ei, ej ,) = 1 and V2(ei, d,) = 1.

Analogously to the exact case’s proof, we claim that iff Q = {Q1, Q2, . . . , Qk},
where each Qj corresponds to an Si, is an optimal solution for a SET COVER
problem, there exists an optimal exact implementation V of O in the corresponding
game. This implementation selects a row si (V1(si, d, a) = 1), if Qi ∈ Q and does not
select si (V1(si, d, a) = 0) otherwise. All other payments V1 inside O are 0. Player
2’s payments V2(o) are 0 for all o ∈ O and player 3’s payoffs are set to V3(o1, o2, a) =
U3(o1, o2, b). A selected row si contributes costsi

= (3(l+m)+1)/(l+m+1). A non-
selected row sj contributes costsj

= (3(l+m))/(l+m+1) < costsi
. Thus including

non-selected rows in X∗(V) can be profitable. Selecting all rows si yields a correct
implementation of O with uniform cost avgm

i=1 costsi
= (3(l+m)+1)/(l+m+1) < 3.

In fact, the game’s payoffs are chosen such that it is not worth implementing any
set smaller than O. We show for every set smaller than O, that its exact uniform
implementation cost is strictly larger. Assume a set yielding lower cost implements
α strategies for player 1, β strategies ei and γ strategies sj for player 2. Note that

Harnessing Games with Payments 19

implementing player 2’s strategy d is profitable if β + γ > 0, as it adds α to the
denominator and at most α to the numerator of the implementation cost of sets
without d. Consequently, there are three cases to consider: (i) β �= 0, γ = 0: The
costs add up to

∑
o∈O(V1(o)+V2(o)+V3(o))/|O| ≥ (1+(m+ l)2 +2αβ)/(α(β +1)),

which is greater than 3, since α ≤ m, β ≤ l. (ii) β = 0, γ �= 0: The aggregated
cost is at least (1 + α(m + l) + 2αγ)/(α(γ + 1)), which is also greater than 3. (iii)
β �= 0, γ �= 0: Assume there are κ sets necessary to cover U . Hence the sum of the
payments in column d is at least κ. In this case, the cost amounts to (κ + α(m +
l)+2α(β +γ))/(α(β +γ +1))=2+(m+ l− 2+κ/α)/(β +γ +1) ≥ k∗(O). Equality
only holds if α = γ = m and β = l. We can conclude that O has to be implemented
exactly in order to obtain minimal cost.

Therefore, an optimal implementation yields X∗(V) = O with the inalienable
payments to player 3 and a minimal number of 1-payments to player 1 for strategy
profiles (si, d, a) such that every ej is dominated by at least one si. The number of
1-payments is minimal if the selected rows correspond to a minimal covering set,
and the claim follows.

Note that a similar SET COVER reduction can be found for games with more
than three players. Simply add players to the described 3-player game with only
one strategy.

Due to the nature of the reduction the inapproximability results of SET COVER
(Alon et al. [2006]; Feige [1998]) carry over to our problem.

Theorem 5. Unless P=NP the best approximation ratio a polynomial-time al-
gorithm can achieve is Ω (n maxi{log |X∗

i \ Oi|}) for both the exact and non-exact
implementation cost within any function of the input length.

Proof. Exact Case: In order to prove this claim, a reduction similar to the
one in the proof of Theorem 3 can be applied. Consider again a SET COVER
instance with a universe U of l elements {e1, e2, . . . , el} and m subsets S =
{S1, S2, . . . , Sm}, with Sj ⊂ U . We construct a game G = (N, X, U) with n play-
ers N = {1, . . . , n}, where Xi = {e1, e2, . . . , el, s1, s2, . . . , sm} ∀i ∈ {1, . . . , n − 1},
and Xn = {e1, e2, . . . , el, d, r}. Again, each strategy ej corresponds to an element
ej ∈ U , and each strategy sj corresponds to a set Sj . Player i’s payoff function Ui,
for i ∈ {1, . . . , n − 1}, is defined as follows: Let ek and sk be strategies of player i

and let el be a strategy of Player n. If k = l, player i has payoff m + 1, and 0 oth-
erwise. Moreover, Ui(sk, el) := m + 1 if el ∈ Sk and 0 otherwise, and Ui(ek, d) := 1,
Ui(sk, d) := 0, Ui(xk, r) := 0 ∀xk ∈ Xi. Thus, player i’s payoffs only depend on
Player i and Player n’s strategies. Player n has a payoff of 0 when playing r and 1
otherwise, independently of all other players’ choices. We ask for an implementation
of set O where Player i, for i ∈ {1, . . . , n − 1}, plays any strategy sk, and Player n

plays any strategy el or strategy d.
Due to the independence of the players’ payoffs, the situation is similar to the

example in Figure 3, and a SET COVER instance has to be solved for each player i

20 Eidenbenz, Pignolet, Schmid, Wattenhofer

∀i ∈ {1, . . . , n− 1}. According to the well-known inapproximability results for SET
COVER, no polynomial time algorithm exists which achieves a better approxima-
tion ratio than Ω (log |X∗

i \ Oi|) for each player i, unless P = NP, and the claim
follows.

Non-Exact Case: We use the inapproximability results for SET COVER again.
Concretely, we assume a set of n = 3k players for an arbitrary constant k ∈ N

and make k groups of three players each. The payoffs of the three players in each
group are the same as described in the proof of Theorem 4 for the non-exact case,
independently of all other players’ payoffs. Hence, SET COVER has to be solved
for n/3 players.

Remark 1. The uniform implementation cost is based on the assumption that
players choose one of the non-dominated strategies uniformly at random such that
an equal probability mass is assigned to each strategy profile in the non-dominated
region. I.e., the implementation cost depends on the aggregate cost over the entire
profile set. This enables us to construct a game corresponding to a set cover prob-
lem instance. In the worst-case model however, individual strategy profiles need to
be taken into account and payment differences between strategy profiles matter.
Put differently, the worst-case model assumes less about the players behavior than
the uniform model. We believe that this renders the minimal implementation cost
problem only harder. Therefore, we conjecture that the worst case implementation
cost is NP- hard as well.

3. Leverage

This section studies to which extent the social welfare of a game can be influenced
by a mechanism designer within economic reason, i.e., by taking the implemen-
tation cost into account. To this end we study the leverage, a measure indicating
whether the mechanism of implementation allows to modify a game in a favorable
way such that the gain exceeds the manipulation’s cost, as defined in Section 1.2.
Besides considering classic, benevolent mechanism designers, we also analyze mali-
cious mechanism designers seeking to minimize the players’ welfare. For instance,
we show that a malicious mechanism designer can sometimes corrupt games and
worsen the players’ situation to a larger extent than the amount of money invested.

3.1. Worst-Case Leverage

We first study singleton implementations and then extend our investigations to
profile sets.

3.1.1. Singletons

In the following we will examine a mechanism designer seeking to implement a
game’s best singleton, i.e., the strategy profile with the highest singleton leverage.

Harnessing Games with Payments 21

Dually, a malicious designer attempts to find the profile of the largest malicious
leverage.

We propose an algorithm that computes two arrays, LEV and MLEV , contain-
ing all (malicious) singletons’ leverage within a strategy profile set O. By setting
O = X, the algorithm computes all singletons’ (malicious) leverage of a game. We
make use of a formula presented in Monderer and Tennenholtz [2003] for comput-
ing a singleton’s cost, namely that k(z) =

∑n
i=1 maxxi∈Xi

{Ui(xi, z−i)−Ui(zi, z−i)}.
Algorithm 2 initializes the lev-array with the negative value of the original game’s

Algorithm 2 Singleton (Malicious) Leverage
Input: Game G, Set O ⊆ X

Output: LEV and MLEV

1: compute X∗;
2: for all strategy profiles x ∈ O do
3: lev[x] := −maxx∗∈X∗ U(x∗);
4: mlev[x] := minx∗∈X∗ U(x∗);
5: for all Players i ∈ N do
6: for all x−i ∈ O−i do
7: m := maxxi∈Xi

Ui(xi, x−i);
8: for all strategies zi ∈ Oi do
9: lev[zi, x−i] += 2 · Ui(zi, x−i) − m;

10: mlev[zi, x−i] += Ui(zi, x−i) − 2m;
11: ∀ o ∈ O: LEV [o] := max{0, lev[o]};
12: ∀ o ∈ O: MLEV [o] := max{0, mlev[o]};
13: return LEV, MLEV ;

maximal social gain in the non-dominated set and the mlev-array with its minimal
social gain. Next, it computes the set of non-dominated strategy profiles X∗; in or-
der to do this, we check, for each player and for each of her strategies, whether the
strategy is dominated by some other strategy. In the remainder, the algorithm adds
up the players’ contributions to the profiles’ (malicious) leverage for each player and
strategy profile. In any field z of the leverage array lev, we add the amount that
Player i would contribute to the social gain if z was played and subtract the cost we
had to pay her, namely Ui(xi, x−i)−(m−Ui(xi, x−i)) = 2Ui(xi, x−i)−m. For any en-
try z in the malicious leverage array mlev, we subtract player i’s contribution to the
social gain and also twice the amount the designer would have to pay if z is played
since she loses money and the players gain it, −Ui(xi, x−i) − 2(m − Ui(xi, x−i)) =
Ui(xi, x−i) − 2m. Finally, lev and mlev will contain all singletons’ leverage and
singletons’ malicious leverage in O. By replacing the negative entries by zeros, the
corresponding leverage arrays LEV and MLEV are computed. The interested party
can then lookup the best non-negative singleton by searching the maximal entry in
the respective array.

22 Eidenbenz, Pignolet, Schmid, Wattenhofer

Theorem 6. For a game where every player has at least two strategies, Algo-
rithm 2 computes all singletons’ (malicious) leverage within a strategy profile set
O in O

(
n|X|2) time.

Proof. The correctness of Algorithm 2 follows directly from the application of
the (malicious) singleton leverage formula. It remains to prove the time com-
plexity. Finding the non-dominated strategies in the original game requires time∑n

i=1

(|Xi|
2

)|X−i| = O(n|X|2), and finding the maximal or minimal gain amongst
the possible outcomes X∗ of the original game requires time O(n |X|). The time for
all other computations can be neglected asymptotically, and the claim follows.

3.1.2. Strategy Profile Sets

Observe that implementing singletons may be optimal for entire strategy sets as
well, namely in games where the strategy profile set yielding the largest (malicious)
leverage is of cardinality 1. In some games, however, dominating all other strategy
profiles in the set is expensive and unnecessary. Therefore, a mechanism designer is
bound to consider sets consisting of more than one strategy profile as well to find a
subset of X yielding the maximal (malicious) leverage. Moreover, we can construct
games where the difference between the best (malicious) set leverage and the best
(malicious) singleton leverage gets arbitrarily large. Figure 6 depicts such a game.

Although many factors influence a strategy profile set’s (malicious) leverage,
there are some simple observations. First, if rational players already choose strate-
gies such that the strategy profile with the highest social gain is non-dominated,
a designer will not be able to ameliorate the outcome. Just as well, a malicious
interested party will have nothing to corrupt if a game already yields the lowest
social gain possible.

Fact 7. (i) If a game G’s social optimum xopt := arg maxx∈X U(x) is in X∗ then
LEV (G) = 0. (ii) If a game G’s social minimum xworst := arg minx∈X U(x) is in
X∗ then MLEV (G) = 0.

As an example, a class of games where both properties (i) and (ii) of Fact 7
always hold are equal sum games, where every strategy profile yields the same gain,
U(x) = c ∀x ∈ X, c : constant. (Zero sum games are a special case of equal sum
games where c = 0.)

Fact 8 (Equal Sum Games). The leverage and the malicious leverage of an equal
sum game G is zero: LEV (G) = 0, MLEV (G) = 0.

A well-known example of an zero sum game is Matching Pennies: Two players
each secretly turn a penny to heads or tails. Then they reveal their choices simul-
taneously. If both coins show the same face, player 2 gives his penny to player 1; if
the pennies do not match, player 2 gets the pennies. This matching pennies game

Harnessing Games with Payments 23

G =

α
0

1
0

γ
0

γ
0

1
0

α
0

γ
0

γ
0

α − 1
0

0
α − 1

0
α

0
1

0
α − 1

α − 1
0

0
1

0
α

VO =

0
∞

0
∞

0
0

0
0

0
∞

0
∞

0
0

0
0

1
1

1
1

∞
0

∞
0

1
1

1
1

∞
0

∞
0

Vs =

0
∞

0
0

0
0

0
0

0
∞

0
0

0
0

0
0

0
α

0
0

0
0

0
0

α
1

0
α

∞
0

∞
0

Fig. 6. Two-player game where the set O bears the largest leverage. Implementation VO yields
X∗(VO) = O and Vs yields one non-dominated strategy profile. By offering payments VO, a
mechanism designer has cost 2, no matter which o ∈ O will be played. However, she changes the
social welfare to α− 1. If γ < α− 3 then O has a leverage of α− 3− γ and if γ > α+3 then O has
a malicious leverage of γ−α−3. Any singleton o ∈ O has an implementation cost of α+1, yet the
resulting leverage is 0 and the malicious leverage is max(0, γ − 3α − 1). This demonstrates that

a profile set O ’s (malicious) leverage can be arbitrarily large, even if its singletons’s (malicious)
leverage is zero.

features another interesting property: There is no dominated strategy. Therefore an
interested party could only implement strategy profile sets O which are subsets of
X∗. This raises the question whether a set O ⊆ X∗ can ever have a (malicious)
leverage. We find that the answer is no and moreover:

Theorem 9. The leverage of a strategy profile set O ⊆ X intersecting with the set
of non-dominated strategy profiles X∗ is (M)LEV = 0.

Proof. Assume that |O ∩ X∗| > 0 and let ẑ be a strategy profile in the intersection
of O and X∗. Let x∗

max := arg maxx∗∈X∗ U(x∗) and x∗
min := arg minx∗∈X∗ U(x∗).

Let VLEV be any implementation of O reaching LEV (O) and VMLEV any im-
plementation of O reaching MLEV (O). We get for the leverage LEV (O) =
max{0, minz∈X∗(VLEV){U(z)−VLEV (z)}−U(x∗

max)} ≤ max{0, [U(ẑ)−VLEV (ẑ)]−
U(x∗

max)} ≤ max{0, U(x∗
max)−VLEV (ẑ)−U(x∗

max)} = max{0,−VLEV (ẑ)} = 0, and

24 Eidenbenz, Pignolet, Schmid, Wattenhofer

for the malicious leverage MLEV (O) =max{0, U(x∗
min)−maxz∈X∗(VMLEV)[U(z)+

2VMLEV (z)]} ≤ max{0, U(x∗
min) − U(ẑ) − 2VMLEV (ẑ)} ≤ max{0, U(x∗

min) −
U(x∗

min) − 2VMLEV (ẑ)} = max{0,−2VMLEV (ẑ)}= 0.

In general, the problem of computing a strategy profile set’s (malicious) lever-
age seems computationally hard. It is related to the problem of computing a set’s
implementation cost, which we conjectured in Section 2 to be NP-hard, and hence,
we conjecture the problem of finding LEV (O) or MLEV (O) to be NP-hard in
general as well. In fact, we can show that computing the (malicious) leverage has
at least the same complexity as computing a set’s cost.

Theorem 10. If the computation of a set’s implementation cost is NP-hard the
computation of a strategy profile set’s (malicious) leverage is also NP-hard.

Proof. We proceed by reducing the problem of computing k(O) to the problem of
computing MLEV (O). Theorem 9 allows us to assume that O and X∗ do not inter-
sect since O∩X∗ �= ∅ implies MLEV (O) = 0. By definition, a strategy profile set’s
cost are minV ∈V(O){maxz∈X∗(V) V (z)} and from the malicious leverage’s definition,
we have minV ∈(V){maxz∈X∗(V){U(z)+2V (z)}} = minx∗∈X∗ U(x∗)−mlev(O). The
latter equation’s left hand side almost matches the formula for k(O) if not for the
term U(z) and a factor of 2. If we can modify the given game such that all strat-
egy profiles inside X∗(V) ⊆ O have a gain of γ := −2n maxx∈X{maxi∈N Ui(x)} −
minx∗∈X∗ U(x∗) − ε where ε > 0, we will be able to reduce O’s cost to k(O) =
(minx∗∈X∗ U(x∗)−mlev(O)−γ)/2 = (−mlev(O)+2n maxx∈X{maxi∈N Ui(x)}+ε),
thus mlev(O) > 0 and MLEV (O) = mlev(O), ensuring that MLEV (O) and
mlev(O) are polynomially reducible to each other. This is achieved by the following
transformation of a problem instance (G, O) into a problem instance (G′, O): Add
an additional Player n + 1 with one strategy a and a payoff function Un+1(x) equal
to γ − U(x) if x ∈ O and 0 otherwise. Thus, a strategy profile x in G′ has social
gain equal to γ if it is in O and equal to U(x) in the original game if it is outside O.
As Player n+1 has only one strategy available, G′ has the same number of strategy
profiles as G and furthermore, there will be no payments Vn+1 needed in order to
implement O. Player (n + 1)’s payoffs impact only the profiles’ gain, and they have
no effect on how the other players decide their tactics. Thus, the non-dominated
set in G′ is the same as in G and it does not intersect with O. Since the transfor-
mation does not affect the term minx∗∈X∗ U(x∗), the set’s cost in G are equal to
(minx∗∈X∗ U(x∗) − MLEV (O) − γ)/2 in G′.

Reducing the problem of computing k(O) to lev(O) is achieved by using the same
game transformation where an additional player is introduced such that ∀o ∈ O :
U(o) = γ, where γ := n maxx∈X{maxi∈N{Ui(x)}}+maxx∗∈X∗{U(x∗)}+ε for ε > 0.
We can then simplify the leverage formula to lev(O) = γ−k(O)−maxx∗∈X∗ U(x∗) =
n maxx∈X{maxi∈N{Ui(x)}} − k(O) + ε > 0 and thus we find the cost k(O) by
computing n maxx∈X{maxi∈N{Ui(x)}} − LEV (O) − ε.

Harnessing Games with Payments 25

Algorithm 3 Exact Leverage
Input: Game G, rectangular set O with O−i ⊂ X−i∀ i

Output: LEV ∗(O)
1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) := ∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗

i ;
4: return max{0, ExactLev(V, n) − maxx∗∈X∗ U(x∗)};

ExactLev(V , i):
Input: payments V , current player i

Output: lev∗(O) for G(V)
1: if |X∗

i (V)\Oi| > 0 then
2: s := any strategy in X∗

i (V)\Oi; levbest := 0;
3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max{0, Ui(s, o−i)− (Ui(oi, o−i) + Vi(oi, o−i))};
6: lev := ExactLev(V + W, i);
7: if lev > levbest then
8: levbest := lev;
9: for all o−i ∈ O−i do

10: Wi(oi, o−i) := 0;
11: return levbest;
12: if i > 1 return ExactLev(V , i − 1);
13: else return mino∈O{U(o) − V (o)};

The task of finding a strategy profile set’s leverage is computationally hard.
Recall that we have to find an implementation V of O which maximizes the term
minz∈X∗(V){U(z) − V (z)}. Thus, there is at least one implementation V ∈ V(O)
bearing O’s leverage. Since this V implements a subset of O exactly, it is also
valid to compute O’s leverage by searching among all subsets O′ of O the one with
the largest exact leverage LEV ∗(O′). (Note that we do not provide algorithms for
computing the malicious leverage but for the benevolent leverage only. However,
we are sure that a malicious mechanism designer will figure out how to adapt our
algorithms for the benevolent leverage for a nastier purpose.)

In the following we will provide an algorithm which computes a rectangular
strategy profile set’s exact leverage. It makes use of the fact that if X∗(V) has to
be a subset of O, each strategy ōi /∈ Oi must be dominated by at least one strategy
oi in the resulting game G(V)—a property which has been observed and exploited
before in the previous section in order to compute a set’s exact cost. In order to
compute LEV (O), we can apply Algorithm 3 for all rectangular subsets and return
the largest value found.

26 Eidenbenz, Pignolet, Schmid, Wattenhofer

Theorem 11. Algorithm 3 computes a strategy profile set’s exact leverage in time

O
(
|X|2 max

i∈N
(|Oi|n|X∗

i \Oi|−1) + n|O|max
i∈N

(|Oi|n|X∗
i \Oi|)

)
.

Proof. Clearly, the algorithm is correct as it searches for all possibilities of a strat-
egy in Xi\Oi to be dominated by a strategy in Oi. The time complexity follows
from solving the doubly recursive equation over the strategy set and the number of
players (compare to the analysis of Algorithm 1 in the previous section).

3.2. Uniform Leverage

In the setting where a mechanism designer applies uniform implementations the
players have less information of the game and are assumed to play a non-dominated
strategy uniformly at random. This allows her to calculate with the average cost
and thus, the observation stating that the uniform (malicious) leverage is always at
least as large as the worst-case (malicious) leverage does not surprise.

Theorem 12. A set’s uniform (malicious) leverage is always larger than or equal
to the set’s (malicious) leverage.

Proof.

levUNI(O) = max
V ∈V(O)

{ avg
z∈X∗(V)

{U(z) − V (z)}} − avg
x∗∈X∗(V)

U(x∗)

≥ max
V ∈V(O)

{ min
z∈X∗(V)

{U(z) − V (z)}} − max
x∗∈X∗(V)

U(x∗)

= lev(O)

and

mlevUNI(O) = avg
x∗∈X∗(V)

U(x∗) − min
V ∈V(O)

{ avg
z∈X∗(V)

{U(z) + 2V (z)}}

≥ min
x∗∈X∗(V)

{U(x∗)} − min
V ∈V(O)

{ max
z∈X∗(V)

{U(z) + 2V (z)}}
= mlev(O).

Another difference concerns the sets O intersecting with X∗, i.e., O ∩ X∗ �= ∅:
Unlike the worst-case leverage (Theorem 9), the uniform leverage can exceed zero
in these cases, as can be verified by calculating O’s leverage in Figure 3.

3.2.1. Complexity

We show how the uniform implementation cost can be computed in polynomial time
given the corresponding leverage. Thus the complexity of computing the leverage
follows from the NP-hardness of finding the optimal implementation cost. The lower
bounds are derived by modifying the games constructed from the SET COVER
problem in Theorem 3, and by using a lower bound for the approximation quality

Harnessing Games with Payments 27

of the SET COVER problem. If no polynomial time algorithm can approximate the
size of a set cover within a certain factor, we get an arbitrarily small approximated
leverage LEV approx

UNI ≤ ε while the actual leverage is large. Hence the approximation
ratio converges to infinity and, unless P=NP, there exists no polynomial time
algorithm approximating the leverage of a game within any function of the input
length.

Theorem 13. For games with at least two players, the problem of

• computing a strategy profile set’s exact uniform leverage as well as
• computing its exact malicious uniform leverage are NP-hard.

For games with at least three players, the problem of

• computing a strategy profile set’s non-exact uniform leverage as well as
• computing its non-exact malicious uniform leverage are NP-hard.

Furthermore, the (exact) uniform leverage of O cannot be approximated in polyno-
mial time within any function of the input length unless P=NP.

Proof. NP-Hardness: Exact Case. The claim follows from the observation that if
(M)LEV ∗

UNI(O) is found, we can immediately compute k∗
UNI(O) which is NP-hard

(Theorem 3). Due to the fact that any z ∈ O is also in X∗(V) for any V ∈ V∗(O)
we know that

lev∗UNI(O) = max
V ∈V∗(O)

{ avg
z∈X∗(V)

{U(z) − V (z)}} − avg
z∈X∗

U(x∗)

= max
V ∈V∗(O)

{avg
z∈O

U(z) − avg
z∈O

V (z)} − avg
x∗∈X∗

U(x∗)

= avg
z∈O

U(z) − min
V ∈V∗(O)

{avg
z∈O

V (z)} − avg
x∗∈X∗

U(x∗)

= avg
z∈O

U(z) − k∗
UNI(O) − avg

x∗∈X∗
U(x∗), and

mlev∗UNI(O) = avg
x∗∈X∗

U(x∗) − min
V ∈V∗(O)

{ avg
z∈X∗(V)

{U(z) + 2V (z)}}

= avg
x∗∈X∗

U(x∗) − avg
z∈O

U(z) − 2 min
V ∈V∗(O)

{avg
z∈O

V (z)}
= avg

x∗∈X∗
U(x∗) − avg

z∈O
U(z) − 2k∗

UNI(O).

Observe that avgx∗∈X∗ U(x∗) and avgz∈O U(z) can be computed easily. More-
over, as illustrated in the proof of Theorem 10, we can efficiently construct a
problem instance (G′, O) from any (G, O) with the same cost, such that for G′:
(m)lev(UNI) = (M)LEV(UNI).

Non-Exact Case. The claim can be proved by reducing the NP-hard problem of
computing kUNI(O) to the problem of computing (M)LEVUNI(O). This reduction
uses a slight modification of player 3’s utility in the respective game in the proof
of Theorem 3 ensuring ∀z ∈ O U(z) = γ := −4(m + l)2 − 2m2 + m(l + m). Set
U3(si, ej , a) = γ − U1(si, ej , a) − U2(si, ej , a), U3(si, ej , b) = γ + 2 − U1(si, ej , a) −

28 Eidenbenz, Pignolet, Schmid, Wattenhofer

U2(si, ej , a) for all i ∈ {1, . . . , m}, j ∈ {1, . . . , l}, U3(si, sj , a) = γ − U1(si, sj , a) −
U2(si, sj , a), U3(si, sj , b) = γ + 2 − U1(si, sj , a) − U2(si, sj , a) for all i �= j,
U3(si, si, a) = γ − U1(si, si, a) − U2(si, si, a), U3(si, si, b) = γ + (m + l + 2) −
U1(si, si, a) − U2(si, si, a) for all i. Since in this 3-player game, mlevUNI(O) > 0,
we can give a formula for kUNI(O) depending only on O’s (malicious) leverage and
the average social gain, namely kUNI(O) = (avgx∗∈X∗ U(x∗) − MLEVUNI(O))/2.
Thus, once MLEVUNI(O) is known, kUNI(O) can be computed immediately, and
therefore finding the uniform malicious leverage is NP-hard as well. We can adapt
this procedure for LEVUNI(O) as well.

Lower Bound Approximation: Exact Case. The game constructed from the SET
COVER problem in Theorem 3 for the exact case is modified as follows: The util-
ities of player 1 remain the same. The utilities of player 2 are all zero except for
U2(e1, r) = (l + m)(

∑m
i=1 |Si|(m + 1)/(ml + m)− kLB − ε), where k is the minimal

number of sets needed to solve the corresponding SET COVER instance, ε > 0, and
LB denotes a lower bound for the approximation quality of the SET COVER prob-
lem. Observe that X∗ consists of all strategy profiles of column r. The target set
we want to implement exactly is given by O1 = {s1, ..., sm} and O2 = {e1, ..., el, d}.
We compute levopt

UNI = avgo∈O U(o)− avgx∈X∗ U(x)− k =
∑m

i=1 |Si|(m + 1)/(ml +
m)−∑m

i=1 |Si|(m + 1)/(ml + m)− (−kLB− ε)− k = k(LB− 1) + ε. As no polyno-
mial time algorithm can approximate k within a factor LB, LEV approx

UNI ≤ ε. Since
limε→0 LEV opt

UNI/LEV approx
UNI = ∞ the claim follows for a benevolent mechanism

designer.
For malicious mechanism designers, we modify the utilities of the game from

the proof of Theorem 5 for player 2 as follows: U2(e1, r) = (l + m)(2kLB + ε +∑m
i=1 |Si|(m + 1)/(ml + m)), and U2(,) = 0 for all other profiles. It is easy to see

that by a similar analysis as performed above, the theorem also follows in this case.
Non-Exact Case. We modify the game construction of Theorem 3’s proof for

the non-exact case by setting U2(e1, r, b) := ((
∑m

i=1 |Si|(m + l)2 + m2(m + l)2 +
3m(m + l))/(m2 + ml + m) − kLB − ε)(m + l), where k is the minimal number
of sets needed to solve the corresponding SET COVER instance, ε > 0, and LB
denotes a lower bound for the approximation quality of the SET COVER problem
and zero otherwise. Observe that X∗ = {x|x ∈ X, x = (, r, b)}, O has not changed,
and payments outside O do not contribute to the implementation cost; therefore,
implementing O exactly is still the cheapest solution. By a similar analysis as in
the proof of Theorem 3 the desired result is attained. For malicious mechanism
designers we set U2(e1, r, b) = ((

∑m
i=1 |Si|(m+ l)2 +m2(m+ l)2 +3m(m+ l))/(m2 +

ml + m) + 2kLB + ε)(m + l) and proceed as above.

3.2.2. Algorithms

To find algorithms that compute the uniform leverage we can adapt the algorithms
for the worst-case leverage from Section 3.1. Recall Algorithm 2 that computes
the leverage of singletons of a desired strategy profile set. We can adapt Line 3

Harnessing Games with Payments 29

Implementation Cost Complexity Properties

Uniform
NP-complete

NE 0-implementablesingleton O(n · ∑i |Xi|)
zero O

(
n|X|2)

Worst-case
conjecture: NP-complete

NE 0-implementablesingleton O(n · ∑i |Xi|)
zero O

(
n|X|2)

Fig. 7. Complexity results for the computation of the implementation cost. Unless stated other-
wise, complexities refer to the problem of computing any strategy profile’s implementation cost.
singleton indicates the complexity of computing a singleton’s implementation cost. zero indi-
cates the complexity of deciding for a strategy profile region whether it is 0-implementable. The
complexities of zero are results from our earlier work (see the COCOA conference version).

Leverage Complexity Properties

Uniform
NP-complete

MLEVUNI ≥ MLEV
singleton O(n · ∑i |Xi|)

Worst-case as hard as implementation cost
O ∩ X∗ �= ∅ ⇒ (M)LEV = 0

social opt/worst ∈ X∗

⇒ (M)LEV = 0
singleton O(n · ∑i |Xi|) Equal-sum games

⇒ (M)LEV = 0

Fig. 8. Complexity results for the computation of the leverage. singleton indicates the complexity
of computing a singleton’s leverage.

and 4 to accommodate the definition of the uniform leverage, i.e., set mlev[x] :=
avgx∗∈X∗ U(x∗) and mlev[x] := −mlev[x]. The resulting algorithm helps finding an
optimal singleton.

A benevolent mechanism designer can adapt Algorithm 3 in order to com-
pute LEV ∗

UNI(O): She only has to change Line 4 to max{0, ExactLev(V, n) −
avgx∗∈X∗ U(x∗)} and ‘min’ in Line 13 to ‘avg’. Invoking this algorithm for any
O′ ⊆ O yields the subset O with maximal leverage LEVUNI(O).

Due to Theorem 13 there is no polynomial time algorithm giving a non-trivial
approximation of a uniform leverage. The simplest method to find a lower bound
for LEVUNI(O) is to search the singleton in O with the largest uniform leverage.
Unfortunately, there are games (cf. Figure 2) where this lower bound is arbitrarily
bad, analogously to lower bound for the worst case leverage.

4. Conclusions and Outlook

This article has addressed the problem of how to influence the behavior of players
(e.g., to improve cooperation) in contexts where it is, e.g., not possible to specify
interaction rules, for example, in computer networks. We studied a mechanism de-

30 Eidenbenz, Pignolet, Schmid, Wattenhofer

signer that manipulates outcomes by creditability, i.e., by promising payments, and
studied the natural questions: Which outcomes can be implemented by promising
players money? What is the corresponding cost? By introducing the concept of
leverage, we analyzed which outcomes are worth implementing and computed the
corresponding gains formally. We have presented algorithms for various objectives
yielding implementations of low cost, as well as computational complexity results
for worst-case games and games with imperfect knowledge and mixed strategies.
We have also initiated the study of benevolent and malicious mechanism design-
ers intending to change the game’s outcome if the improvement or deterioration
in social welfare exceeds the implementation cost. Our results are summarized in
Figures 7–8.

There exist several interesting directions for future research, including the quest
for implementation cost approximation algorithms or for game classes which allow
a leverage approximation. Furthermore, the mixed leverage and the leverage of
dynamic games with an interested third party offering payments in each round are
still unexplored.

References

Aiyer, A. S., L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth [2005]. BAR
Fault Tolerance for Cooperative Services. In Proceedings of the 20th ACM Sympo-
sium on Operating Systems Principles (SOSP), New York, NY, USA, 45–58. ACM.

Alon, N., D. Moshkovitz, and M. Safra [2006]. Algorithmic Construction of Sets for k-
Restrictions. ACM Transactions on Algorithms (TALG), 153–177.

Aspnes, J., K. Chang, and A. Yampolskiy [2005]. Inoculation Strategies for Victims of
Viruses and the Sum-Of-Squares Partition Problem. In Proceedings of the 16th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), 43–52.

Babaioff, M., M. Feldman, and N. Nisan [2006a]. Combinatorial Agency. In Proceedings of
the 7th ACM Conference on Electronic Commerce (EC), 18–28.

Babaioff, M., M. Feldman, and N. Nisan [2006b]. Mixed strategies in combinatorial agency.
In Proceedings of the Internet and Network Economics, Second International Work-
shop (WINE), 353–364.

Babaioff, M., R. Kleinberg, and C. H. Papadimitriou [2007]. Congestion Games with Ma-
licious Players. In Proceedings of the 8th ACM Conference on Electronic Commerce
(EC), New York, NY, USA, 103–112. ACM.

Bradonjic, M., G. Ercal-Ozkaya, A. Meyerson, and A. Roytman [2009]. On the Price of
Mediation. In Proceeding of the ACM Conference on Electronic Commerce (EC),
315–324.

Christodoulou, G. and E. Koutsoupias [2005]. The Price of Anarchy of Finite Congestion
Games. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing
(STOC), 67–73.

Cole, R., Y. Dodis, and T. Roughgarden [2003a]. How Much Can Taxes Help Selfish
Routing? In Proceedings of the 4th ACM conference on Electronic commerce (EC),
New York, NY, USA, 98–107. ACM Press.

Cole, R., Y. Dodis, and T. Roughgarden [2003b]. Pricing Network Edges for Heterogeneous
Selfish Users. In Proceedings of the 35th Annual ACM Symposium on Theory of
Computing (STOC), New York, NY, USA, 521–530. ACM Press.

Harnessing Games with Payments 31

Dash, R. K., N. R. Jennings, and D. C. Parkes [2003, November]. Computational-
Mechanism Design: A Call to Arms. IEEE Intelligent Systems , 40–47. Special Issue
on Agents and Markets.

Dybvig, P. and C. Spatt [1983]. Adoption Externalities as Public Goods. J. of Public
Economics 20, 231–247.

Eidenbenz, R., Y. A. Oswald, S. Schmid, and R. Wattenhofer [2007a]. Manipulation in
Games. In Proc. 18th International Symposium on Algorithms and Computation
(ISAAC).

Eidenbenz, R., Y. A. Oswald, S. Schmid, and R. Wattenhofer [2007b]. Mechanism Design
by Creditability. In Proceedings of the 1st International Conference on Combinatorial
Optimization and Applications (COCOA), Springer LNCS 4616.

Eidenbenz, R. and S. Schmid [2009]. Combinatorial Agency with Audits. In Proceedings
of the IEEE International Conference on Game Theory for Networks (GameNets).

Feige, U. [1998]. A Threshold of log n for Approximating Set Cover. Journal of the ACM ,
634–652.

Feigenbaum, J. and S. Shenker [2002]. Distributed Algorithmic Mechanism Design: Recent
Results and Future Directions. 1–13.

Maskin, E. [1999]. Review of Economic Studies. Nash Equilibrium and Welfare Optimality,
23–38.

Maskin, E. and T. Sjöström [2002]. Handbook of Social Choice Theory and Welfare (Im-
plementation Theory). North-Holland, Amsterdam.

Monderer, D. and M. Tennenholtz [2003]. k-Implementation. In Proceedings of the 4th
ACM Conference on Electronic Commerce (EC) , New York, NY, USA, 19–28. ACM.

Monderer, D. and M. Tennenholtz [2009]. Strong Mediated Equilibrium. Artif. In-
tell. 173 (1).

Moscibroda, T. and S. Schmid [2009]. On Mechanism Design Without Payments for
Throughput Maximization. In Proceedings of the 18th IEEE Conference on Com-
puter Communication (INFOCOM).

Moscibroda, T., S. Schmid, and R. Wattenhofer [2006]. When Selfish meets Evil: Byzan-
tine Players in a Virus Inoculation Game. In Proceedings of the 25th annual ACM
symposium on Principles of distributed computing (PODC), New York, NY, USA,
35–44. ACM.

Nisan, N., T. Roughgarden, E. Tardos, and V. Vazirani [2007]. Algorithmic Game Theory.
Cambridge.

Osborne, M. J. and A. Rubinstein [1994]. A Course in Game Theory. MIT Press.
Porter, R., A. Ronen, Y. Shoham, and M. Tennenholtz [2008]. Fault Tolerant Mechanism

Design. Artif. Intell. 172 (15), 1783–1799.
Resnick, E., Y. Bachrach, R. Meir, and J. S. Rosenschein [2009]. The Cost of Stability in

Network Flow Games. In Proceedings of the Mathematical Foundations of Computer
Science (MFCS), 636–650.

Rosenschein, J. S. and G. Zlotkin [1994]. Rules of Encounter. MIT Press.
Roughgarden, T. [2001]. Stackelberg Scheduling Strategies. In Proceedings of the ACM

Symposium on Theory of Computing (STOC), 104–113.
Segal, I. [1999]. Contracting with Externalities. The Quarterly Journal of Economics 2,

337–388.
Spiegler, R. [2000]. Extracting Intercation-Created Surplus. Games and Economic Behav-

ior 30, 142–162.
Zhou, X., S. Gandhi, S. Suri, and H. Zheng [2008]. eBay in the Sky: Strategy-Proof Wireless

Spectrum Auctions. In Proceedings of the 14th ACM international conference on
Mobile computing and networking (MOBICOM), New York, NY, USA, 2–13. ACM.

