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Abstract—In this paper, we show how motion data collected
with a smartwatch can be used to infer text written on a
whiteboard. All data is gathered by a commercial, off the shelf
smartwatch, without any additional hardware. We obtain single
letters recognition rates of 94% in the first guess. Using three
guesses, we recognize 99% of the letters. This result is achieved by
transforming raw sensor measurements into a coordinate system
reflecting the orientation of the whiteboard. Therefore, training
data recorded on one whiteboard can be used on another even
if the user is writing at different heights or body postures. We
show that the built in microphone picks up the sounds caused
by the pen which can help to segment the input into individual
letters.

I. INTRODUCTION

Smartwatch development has been rapidly accelerating in
the past few years. Nowadays, these devices are full of
sensors that allow to track the movement of a user’s wrist
in great detail. However, most interaction methods still rely
on touch or voice input. While touch input on small screens
can be inefficient, voice input might be unsuitable for quiet
environments, e.g., libraries or because of privacy concerns.

We present a system that can recognize letters by analyzing
motion data recorded with a state of the art commercial smart-
watch.1 Generally speaking, we build a gesture recognition
system and evaluate its performance on a set of 26 distinct
gestures (the Roman alphabet). Letters are interesting since
people do not have to artificially learn the gestures. However,
also arbitrary gestures could be trained and tested. Rejecting-
or accepting a phone call, muting an alarm, skipping or
pausing a song are just a few of the commands that could
be mapped to gestures. The similarity measure we use for
this is based on Dynamic Time Warping (DTW). We focus on
creating a classification method which performs well with few
training samples, which is why the system was tested using 3
training samples for each of the 26 letters. The classification
method does not only provide the most likely gesture but
creates a ranking of gestures depending on the similarity to
the input. Therefore, we could also predict the second likeliest
gesture and so on. We also apply our method to written words.
However, naively segmenting the data has proven infeasible.
We show how the pen’s sound can be used to extract isolated
strokes, which greatly simplifies the segmentation problem.

1We used a LG Watch R for our experiments, but any modern smartwatch
can easily be used.

II. RELATED WORK

Gesture driven interaction is an extensively studied problem.
The methods employed vary from pattern recognition in cam-
era images [1], using special gloves to record the data [2],
to more similar technologies to the smartwatches used in
this paper, e.g., a Wiimote [3]. Consequently, smartwatches
themselves have also been used for gesture recognition, e.g.,
in [4], [5], [6]. In contrast to these works, our system can cope
with gentle gestures that only cause minor movements of the
smartwatch.

A more specialized version of gesture recognition is hand-
writing recognition. The most prominent solution is optical
character recognition (OCR). Instead of trying to analyze
the movement, the resulting image is being looked at. This
process does not use any time information and is similar to
how humans do it. It has a long and successful history [7];
using various techniques like hidden markov models [8] or
SVMs [9].

We want to focus on approaches that use the movement
of the hand. There is software to recognize written text on
touchscreens [10], [11]. But since the screen is two dimen-
sional and provides very accurate information about the x and
y coordinate, techniques used in this line of work are hard
to translate into our setting. Text recognition on whiteboards
has been explored using infrared [12]. This approach is less
easily applied than our method in everyday situations because
it requires infrared transmitters and receivers attached to the
whiteboard.

Closer to our system is research from Choi et al. [13]. They
use an accelerometer directly attached to a pen to recognize
written numbers. This system needs a special pen; it is evalu-
ated using the 10 Arabic numerals, and achieves a recognition
rate of more than 90%. Even though the smartwatch in our
work may be seen as special hardware, it could be used for
much more tasks than just recording handwriting and might
become, like smartphones, an ubiquitous companion in the
future.

In a recently published work Xu et. al. have also used a
smartwatch-like device carried on the wrist, to realize gesture
recognition [14]. They also implemented a letter recognition
system which recognized up to 94.6% of the letters on average.
They restricted the letters to be within a window of fixed size,
while the arm has to lay on the armrest of a chair. The letters
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(b) Linear acceleration in device coordinates
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(c) Linear acceleration in whiteboard coordinates
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(d) clock face up
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(e) Linear acceleration in device coordinates
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(f) Linear acceleration in whiteboard coordinates

Fig. 1: Drawing a straight line parallel to the xb axis leads to different measurements depending on the watch orientation. The
upper row represents the linear acceleration measurements when the clock face points to the right. The lower row corresponds
to the measurements where the clock face points upwards.

were drawn using the index finger. With our system the arm
position does not have to be fixed, and the letters can be written
with a normal pen.

Smartwatches also have been used in an unexpected way
to predict words that are typed on a keyboard [15]. The
smartwatch is attached to the left wrist and depending on
the movement of the wrist, a list of words that is likely to
contain the written word is generated. A median of 24 words
is sufficient to correctly guess the typed word. This number
decreases for words that are longer than 6 letters to 10.

III. PREPROCESSING

The raw sensor data is influenced by changing hand postures
as shown in Figure 1. Furthermore, writing at the top or bottom
of the whiteboard affects these measurements. Training our
system to work in all these environments is cumbersome.
This would artificially increase the number of gestures we
have to recognize which in general reduces the recognition
performance.

To alleviate this problem, we transform raw measurements
in sensor coordinates to a coordinate system relative to the
whiteboard. This allows us to track user motion with respect to
the whiteboard. The whiteboard coordinate system is invariant
to changes in watch orientation relative to the user’s wrist.
Hence, we can reuse training data even if the watch is not
worn exactly the same when performing the gesture. First we
transform the measurements into the world coordinate system

to remove the acceleration caused by the gravity of the earth.
The world coordinate system consists of the zw axis pointing
to the sky, and the xw and yw axes lying perpendicular in the
horizontal plane. No magnetometer measurements are used to
relate xw or yw to the cardinal directions. Instead, we rely on
a Kalman filter [16] to determine the zw axis.

The zw axis already directly relates to the whiteboard z
coordinate zb. To find xb and yb we assume that writing on a
whiteboard mostly causes acceleration within the whiteboard
plane. As a result, the xw and yw coordinates of the linear ac-
celeration measurements (gravity compensated) are correlated.
We use large accelerations to find the dependency caused by
the whiteboard through linear regression. Figure 2 shows this
correlation along with the determined whiteboard orientation.
As a result we can find and track the base vectors of the
whiteboard coordinate system. Since this is ambiguous, we
use both possible rotations in the recognition process (the yb
axis pointing into the whiteboard and pointing out of it).

Android provides functions to transform measurements in
device coordinates into world coordinates. As our results show,
this transformation does not work reliably. We want to avoid to
use the magnetic field sensors since errors can be introduced
by magnetic fields caused by currents, magnets or magnetized
material.

The recorded training gestures also contain irrelevant data
before the gesture starts and after it ends. Since during training,
the users are required to keep their hand still before and after



writing, we use the amplitude to segment our data. An example
of this can be seen in Figure 3.
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Fig. 2: The variance of the linear acceleration is large with
respect to both axes. The red line shows the X-axis. The
blue line represents the orientation of the whiteboard. Only
the green points where considered to fit the blue line

The data is recorded during a short time interval. The time
from the beginning of this window up to the moment when
the user starts to write is called left-margin. Similarly, the time
interval between the point where the user finishes writing and
the end of the recording period is called right-margin (see
Figure 3). These margins should contain no movement of the
pen. The measurements which correspond to the gesture we
are interested in, lay between these two margins. To eliminate
these margins and extract only the relevant part of the gesture,
a segmentation algorithm is used. The algorithm relies on
changes in amplitude of the acceleration signal to find the start
and the end point of the gesture. The amplitude corresponds
to the euclidean norm of each sample of the sequence. If
the amplitude is larger than a given threshold, we assume
that there was pen movement. The first time the amplitude
is higher than the threshold will be interpreted as the starting
point ps. If there is a longer period of time, after detecting
such a ps, in which the amplitude is continuously lower than
the threshold, this will be interpreted as the end of the gesture
and an endpoint pe will be set. Extracting the sequence of
measurements between ps and pe eliminates the margins. In
addition, we want to eliminate noise, which is induced by
the user before writing a letter, e.g., if he moved his hand
before the application told him to do so. To achieve this, the
algorithm does not stop after finding the first ps, pe pair, but it
also considers the rest of the sequence. If there is a new value
larger than the threshold, the algorithm rejects the already
collected start-/endpoints and chooses the new interval. This
removes noise in the beginning, but may still produce wrong
segmentation values if there is noise in the end. Note that the
collected data seems to indicate that noise appears mainly in
the beginning.
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Fig. 3: Linear acceleration before the segmentation. The mar-
gins of the unsegmented data are highlighted in green. There
is also a lot of noise in the left margin which is not considered
by the segmentation algorithm.

A. Classification

The classification algorithm for letters consists of three
stages. The first stage extracts features from the collected
data. We evaluated various features of which the following
performed best:

• WhiteboardCoords Gyro & linear acceleration data
transformed into the whiteboard system as described
above.

• SensorCoords Linear acceleration & gyro data in sensor
coordinates.

• SensorCoordsAndroid Linear acceleration & gyro data
provided by Android in sensor coordinates.

In the second stage, the sequences of feature vectors are
compared using the DTW algorithm [17]. To compare two
feature vectors, we use the euclidean distance.

In the third stage we create a ranking out of the similarity
scores between test- and training-letters. This ranking captures
the similarity between the input and all the training samples
of all letters.

IV. EVALUATION

Recall that the recorded data depends on the orientation
of the watch because the device may change its orientation
depending on the height the user writes on the board. There-
fore, we implemented the transformation into the whiteboard
coordinate system as described earlier in order to obtain
orientation independent acceleration measurements.

Figure 5 shows the difference between non-transformed and
transformed data. In this case the whole alphabet was written
by one of our users above the lower edge of the whiteboard
and at the upper edge twice. The gestures written at the top
are compared to the gestures written at the bottom and vice
versa. We used the features WhiteboardCoords, SensorCoords,
and SensorCoordsAndroid. We test two gestures of each letter
against two training gestures for each letter. As we can see,
we get the lowest performance using the linear acceleration
provided by Android. In the remainder, both the test and the
training set were written on approximately the same height.

Twelve people were asked to write each letter of the
alphabet four times. The test subjects were asked to write at
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(a) WhiteboardCoords
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(b) SensorCoords
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(c) SensorCoordsAndroid

Fig. 4: The recognition performance for each feature. The plots show how many letters were correctly recognized depending
on the number of guesses available. After 3 guesses WhiteboardCoords correctly recognizes 99% of the letters. Even though
this is slightly worse than SensorCoords, this feature is superior since it can also handle letters written on a different height
(see Figure 5).
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Fig. 5: The effect of transforming the data into whiteboard
coordinates. The test gestures were written at the upper edge
while the train gestures were written at the lower edge of the
board. The transformation improves the result.

a comfortable height without further restrictions. We test the
algorithm offline by using three samples of each gesture as
training set and one for testing with cross validation.

A. Letter Recognition

In Figure 4 the performance for all users is shown. Using
our rotation into whiteboard coordinates slightly reduces the
performance to about 94%, but it allows us to use the training
data on different whiteboards. Within three guesses, we can
predict the correct letter in 99% of the cases. The percentage
of letters that was predicted correctly after a specific number
of guesses is shown for each user. This shows that the rotation
into whiteboard coordinates clearly outperforms the linear
acceleration provided by Android.

B. Letter Confusion

Figure 6 shows the average similarity rank for each test
letter (Y -Axis). The diagonal values have the best (lowest)

entries. This means that our system predicts low ranks for
the correct letters on average. The entries for the four letter
pairs (“I”,“J”), (“M”,“N”), (“E”,“F”) and (“U”,“V”) shows that
these pairs are easily confused. This makes sense, since these
letters look somewhat similar. Generally, the letter “E” can
be distinguished well. This can be explained by the relatively
long time and the number of strokes it takes to write an “E”.
Note that this matrix does not need to be symmetric. We take
the column of the letter “E” as an example. “E” appears late in
the ranking for many other letters but this does not mean that
all letters appear late in the ranking of an “E”. Many of these
letters will produce high costs comparing them to an “E”.
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Fig. 6: This matrix represents the average ranking for each
letter and all users if we use the WhiteboardCoords feature.
The test letters are shown on the Y -Axis, the values on the
X-Axis represent the ranking.

C. From Letters to Words

In order to extract letters from unsegmented sensor record-
ings, we need to find starting points of gestures. This problem



is illustrated in Figure 7. If the user writes quickly, then
segmenting the individual letters is non-trivial.
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(b) The word ”FOX” written quickly

Fig. 7: Finding the start and the endpoint of a letter is difficult
if the word is written quickly.

First, we naively assume that each sample in the recordings
is a starting point and generate a ranking of letters for it.
However, finding the starting points of gestures from this
sequence of rankings has proven to be difficult. Figure 8 shows
that the DTW distances do not reliably drop significantly when
a gesture starts. Hence, this method does not work directly.
Furthermore, for most (random) time segments, there is a
trained letter that matches the sensor measurements in said
segment. This means that in order to find as many correct
gestures as possible, we have to accept a massive number of
false positives caused by the difficulty to segment the input
correctly.
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Fig. 8: Distance for each feature of the first guess of every
evaluated point in time when using a naive approach on the
word “JUMPS”. The red and green marks show the start and
end points of the letter according to the ground truth.

To reduce the number of false positives, we segment the
sensor measurements using audio recorded with the smart-
watch while writing. When a pen is dragged on the whiteboard
surface, it emits a distinct sound that can be used to track
isolated strokes on the whiteboard.

Figure 9 shows the spectrogram of an audio track recorded
when writing “OVER”. The strokes of each letter are easily
visible. Our audio assisted recognition algorithm uses this in-
formation and only applies our DTW distance metric whenever
a stroke starts. We call the starting points of strokes Points of
Interest abbreviated as POI.

The detection algorithm sums up the absolute amplitude
value of all frequencies between 5 kHz to 10 kHz for each
point in time. This gives us a vector p where pi contains the
sum for the ith point in time. We then search for values in p
which are greater than a threshold value τ . Multiple successive
values greater than τ will be combined.
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Fig. 9: Spectrogram of the word “OVER” with highlighted
stroke start- and endpoints.

Note that the recording of the audio and the recording of
the acceleration do not start exactly at the same time. Because
of that, we align the two signals using the cross correlation
between p and the evolution of the magnitude of the linear
acceleration. An example is shown in Figure 10. Now, we are
able to extract the starting and ending of a stroke with respect
to the linear acceleration signal.

We run our DTW distance metric for every POI. Because
letters may consist of multiple strokes, we cannot use the next
stroke endpoint to extract the test sequence. Instead, we use
a time window of length 2.5 seconds to select possible end-
points. As a result, every starting point leads to multiple test
sequences, which are individually passed to the recognition
stage.

In total, eight users wrote 428 words. Half of these words
were written with a small break between the letters; the
other half without any restrictions. The ground truth was
manually annotated. We evaluated the performance using the
WhiteboardCoords feature, which performed very well in the
letter recognition task and also works for arbitrary writing
heights.

The naive approach, considering each sensor sample as a
possible starting point for a letter, correctly recognized 64.5%
of the letters within 3 guesses. However, the method produces
nearly 250000 erroneous predictions. Most of them in places
no letter started.

Using the audio signal to reduce the number of possible
starting points of gestures increased the recognition rate to
71.2% within three guesses. It also allowed us to reduce



the number of erroneous predictions by nearly two orders of
magnitude.
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V. DISCUSSION

Our experiments show that recognizing single letter works
reliably. This holds even if the training set is very small
as it is in our case. Hence, our system could be used for
simple commands, e.g., cycle through slides while writing on
a whiteboard. Since a real world system could continue to
learn by adding correctly classified gestures to the training set,
its performance would be even better. One can also imagine a
user writing words if she takes a small pause between every
letter; even though we admit that using OCR software will
most likely yield better results at the moment.

Recognizing letters within words is possible to some extent
if we know when the letters appear, i.e., the start and end
time. However, without solving the segmentation problem, our
approaches lead to prohibitively large numbers of erroneous
recognitions. Using the audio data helps reducing the number
of false positives dramatically and is a first stepping stone.
Furthermore, since we know when a gesture ends, it even
increases the recognition rate. Hence, using audio is superior
to the naive approach. We imagine that with significantly
more training data, error rates should be lower. Once the false
positive rates go down far enough, one can apply a dictionary
matching algorithm. Similar to software keyboards or T9, such
an algorithm can estimate the most likely word even based on
ambiguous letter input.

VI. FUTURE WORK

There are still open problems and performance issues that
could be addressed in the future. Having significantly more
training and test data available, might allow to fine tune
parameters used for the DTW metric.

Using the audio data reduced the amount of false positives
dramatically while simultaneously increasing the number of
true positives but our method is only reliable in a silent
environment. Perhaps one could enhance this method by
making it more robust against noisy environments.

If there is a way to choose the most probable letter, other
possible predictions may drop out which would reduce the
amount of false positives. This may happen because if we
decide a letter ` has been written at a point in time, then
another letter could not be written within the duration of the
letter `. Therefore, all predictions within this time interval may

be ignored. Another open problem is how to detect spaces
between words or how to segment different words from each
other. One could introduce a special gesture which stands
for a space. There may be an extension of this work solely
focusing letters written on different heights. In addition to fine
tuning our approach, we also envision a system that uses the
barometer and the sensors used in this paper, to estimate the
relative height in which words were written
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