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Abstract. Micropayment channels are the most prominent solution to
the limitation on transaction throughput in current blockchain systems.
However, in practice channels are risky because participants have to be
online constantly to avoid fraud, and inefficient because participants have
to open multiple channels and lock funds in them. To address the se-
curity issue, we propose a novel mechanism that involves watchtowers
incentivized to watch the channels and reveal a fraud. Our protocol does
not require participants to be online constantly watching the blockchain.
The protocol is secure, incentive compatible and lightweight in com-
munication. Furthermore, we present an adaptation of our protocol im-
plementable on the Lightning protocol. Towards efficiency, we examine
specific topological structures in the blockchain transaction graph and
generalize the construction of channels to enable topologies better suited
to specific real-world needs. In these cases, our construction reduces the
required amount of signatures for a transaction and the total amount of
locked funds in the system.

Keywords: Payment Channels · Bitcoin · Lightning · Watchtowers ·
Layer 2 · Channel Factories

1 Introduction

Increasing the transaction throughput of blockchain protocols without sacri-
ficing security is arguably the biggest challenge for cryptocurrencies. So-called
“layer two” protocols provide an elegant solution especially for payment trans-
actions. Early versions [1] supported only unidirectional payments, but allowed
these transactions to be confirmed instantly and off-chain, reducing the load
of on-chain transactions. Duplex channels [7] allow for bidirectional transactions
between two parties. More recent work [6] has improved the efficiency and usabil-
ity of channels. Channels can be used to build a channel network using Hashed
Timelock Contracts (HTLCs), as discussed in [7,14,9,11]. A payment channel
network supports off-chain payments between users that do not share a direct
channel. The Lightning network [14] on Bitcoin [13] and the Raiden network
[4] on Ethereum [2] are implementations of such channel networks. Perun [8]
supposes a new network structure, building around payment hubs in order to
make channel networks more efficient. The authors of [8] also introduce a new
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model of channels that decrease the involvement of intermediaries for payments
between parties that don’t share a direct channel.

The security of channels relies on participants being responsive and running
a full node. The main problem is that one party might try to settle on an old
state of the channel, in which case the other party needs to publish a newer state
during a specific time period. Thus, fraud can be proven and punished, as long
as both parties are constantly online watching the blockchain. However, this is
a major drawback for payment channels; being constantly online is not efficient
and furthermore a risky assumption. One party could always launch a DDOS
attack against the other party to prevent a new update transaction from being
published in the blockchain. To address this problem, the Bitcoin community
has proposed using watchtowers [3] as third parties to watch channels, but to
the best of our knowledge, incentivizing watchtowers remains an open problem.
This is the first problem we examine in this work.

In a simple watchtower solution, miners could act as watchtowers to keep
track of all channels off-chain and publish a proof of fraud to collect fees. Such
an approach faces various problems. Firstly, throughput; having all miners re-
ceive, store and send all off-chain payments leads to network congestion which in
turn leads to lower throughput and recentralization as more powerful hardware
is required to become a miner. Secondly, it is difficult to predict the miners’
behavior in such a system since miners are not incentivized to propagate the
proofs of fraud. On the contrary, it might be in the miner’s best interest to keep
the proofs to himself to increase his probability to collect the fees if he publishes
a block. Our approach builds a network of watchtowers around each participant
of the payment channel network. Watchtowers increase their expected payoff
by faithfully executing the protocol, watching the blockchain and forwarding
channel updates to other watchtowers. We prove that our protocol is secure and
incentive-compatible. Furthermore, we present an adaptation of our protocol
implementable on the Lightning network.

Although the construction of two-party payment channels is a simple and
elegant solution, it fails to capture more complex topological structures in the
blockchain transaction graph. Typical payment channels are funded by two peo-
ple who lock their funds in a transaction in the blockchain to open the channel.
For each update transaction both parties must sign to make it valid, thus two
signatures are required. In an attempt to generalize the construction of chan-
nels and allow funds to be transferred freely between multiple parties, Burchert
et al. [5] proposed the construction of channel factories. A channel factory is a
multi-party channel. Channel factories reduce the number of open channels on
the blockchain and also the total amount of locked funds since they allow money
to be transfered off-chain between the participants of the channel factory. How-
ever, every valid transaction requires the signature of every party of the channel
factory. This is highly non-practical.

In this work, we examine specific topologies where multi-party channels do
not require multiple signatures. Inspired by real life hierarchical situations, such
as customers paying a supermarket or citizens paying their taxes, we introduce a
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new type of channel construction that can capture such topologies. Our solution
increases the efficiency of channels, when every node of the transaction graph has
only one outgoing edge. Only two signatures are required for each transaction
while the amount of locked funds is minimized.

Our contribution is summarized as follows: In Section 2, we present a novel
protocol to secure channels by incentivizing watchtowers. We prove our proto-
col is secure and incentive compatible in Section 3, and present an alternative
version implementable in Bitcoin’s Lightning network in Section 4. Additionally,
in Section 5 we generalize the construction of channels to enable them to cap-
ture different topological structures of the blockchain transactions graph, thus
improving efficiency. We discuss related work in Section 6 and conclude with
future work in Section 7. The omitted proofs can be found in the appendices.

2 The DCWC (Disclose Cascade Watch Commit)
Protocol

There are many different models and implementations of channels such as [6,7].
While the implementations (e.g., Raiden, Lightning) differ, the concept remains
mostly the same. A channel protocol typically consist of three phases: setup,
negotiation and settlement.

More specifically, two parties create on-chain funding transactions to start a
channel, blocking parts of their stake on the blockchain. After this setup phase,
both parties sign subsequent off-chain update transactions representing the cur-
rent distribution of stake between them. Money can flow in either direction, as
long as the paying party still has funds in the channel. This is the negotiation
phase. Either party can create a settlement transaction to close the channel.
The problem is if party A fraudulently issues an old settlement transaction, and
party B can prove it is old by presenting a transaction signed by A with a higher
sequence number. We have a proof-of-fraud, and party B is awarded all stake in
the channel.

Whenever an update transaction is issued, the party B who receives a pay-
ment wants to be sure that some part of the network knows about this update.
A simple solution is to spread the newest update transaction to as many nodes
as possible and offer a reward for whomever sends a proof of fraud to the miners
in case of misuse. Such a protocol could accidentally or purposefully cause con-
gestion at block miners, providing the possibility to launch cheap DDOS attacks.
Nobody knows how many nodes have seen the update and are willing to send
it to the miners. Also nodes have no real incentive to spread the contract as it
would only increase the competition, and decrease their chances of getting paid.

Our protocol requires participating watchtowers to store only O(1) messages
as the message with the highest sequence number is a proof for all others. In
terms of privacy watchtowers know which channel they are watching but they
don’t need to learn anything about the payments except for the sequence number.
It consist of l rounds. During each round a group of watchtowers gets the chance
to send a proof-of-fraud and collect fees. Once a proof-of-fraud has been included
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on the blockchain or l rounds have passed, the protocol terminates. Each round
consists of some predetermined number of blocks m. If no proof of fraud was
published after l rounds, the settlement transaction will be accepted as the final
state of the channel and the funds will be unlocked. The protocol terminates
after l · b < t, where t is the timelock off settlement transactions in current
solutions [14,7]. We improve the time that funds are locked after a channel is
closed one sided, compared to state-of-the-art solutions. Intuitively, our protocol
can terminate much earlier since many more entities are online and watching the
channel. Note that the channel can be closed instantly if both involved parties
are cooperative and online.

When a new channel is opened, both parties provide a fund on-chain for
paying transaction fees for a proof of fraud and paying the watchtower that
published it. The protocol consist of two phases. The first phase is executed
once for every newly issued update transaction. It is responsible for spreading
the update in the network. The second phase ensures that a proof of fraud
will be published, when an old update transaction is published as a settlement
transaction. The second phase consists of l rounds, where l is specified on the
funding transaction and should depend on the amount of funds locked in the
channel.

2.1 Phase 1: Disclose & Cascade

The first phase is entered after the funding transaction has been included in the
blockchain and terminates when a settlement transaction is included in a block.
This phase ensures that a sufficient amount of watchtowers receive an update
message, and also that these messages are correct. Essentially, participants send
new update messages to their neighbours for a few iterations. These messages
are cryptographically designed to capture the travelled path in order to reward
watchtowers that forwarded messages. Disclose of Phase 1 is invoked by a
party A/B, involved in the channel, anytime he or she receives a new update
transaction tc,i with sequence number i. Cascade of Phase 1 is invoked by any
node receiving a message generated from Disclose or Cascade. The parameter
N limits the number of neighbors to whom a message can be sent. The value
dm determines the number of hops that a message m has traveled. Let {m}K
denote that m is encrypted with private key K.

Thus,

tc,i := i-th update transaction of channel c

m := {id,W,m′}K or {id,W, tc,i}K
(1)

2.2 Phase 2: Watch & Commit

The second phase of the protocol ensures that in case of fraud, i.e. A or B
publish an old update transaction, a proof of fraud will be published. Throughout
the lifespan of the channel all watchtowers that are involved in the protocol



Towards Secure and Efficient Payment Channels 5

Algorithm 1 Phase 1: Disclose & Cascade

1: procedure Disclose
2: K← own private key
3: for (i← 1; i ≤ N ; i← i + 1) do
4: W ← find new neighbour
5: m← {i,W, tc,i}K
6: send(m) to W

7: procedure Cascade
8: in← receive message
9: t← din + 1

10: if l ≤ t then return

11: K← own private key
12: for (i← 1; i ≤ N ; i← i + 1) do
13: W ← find new neighbour
14: m← {i,W, in}K
15: send(m) to W

watch the blockchain for such an update message (watch process). After a
settlement transaction tc,i of a channel, signed by one of the parties involved in
the channel, is published in a block the watchtowers start the commit process.
It consists of a fixed number of rounds l, specified in the channel. For simplicity,
we assume a round corresponds to a single block. However, the number of blocks
that determine a round can be adapted without affecting the protocol. We note
that block frequency and propagation time should be considered to estimate the
reaction time of the watchtowers, and thus the number of blocks per round. The
actors in this phase are the watchtowers.

Let tc,j denote the newest update transaction that watchtower W has seen.
Letm denote the message as created in the Disclose & Cascade phase through
which W learned about the newest update transaction tc,j . Watchtower W stores
only this message and can discard any other message concerning channel c thus
reducing his storage costs. After dm blocks trail the settlement transaction tc,i
and j > i and no proof of fraud has been published yet, W signs and sends
m to the blockchain network. With m, W also sends all information that m
contains in plaintext. This information includes the path that the message has
travelled, and the id at each hop of the path. The plaintext information will
not be included on the blockchain, but helps the network to reduce the number
of invalid messages that are send around. If the plaintext of the message does
not match the encrypted information, then the network nodes will discard the
message.

2.3 Payoffs

After l rounds have passed, the channel is closed. At this stage the funds of A
and B are unlocked and the watchtowers are paid.
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Ideally, all watchtowers would get pay their marginal contribution for par-
ticipating in the protocol. However, a protocol that implements such a payment
mechanism would require many on-chain payments to pay all involved watch-
towers. Thus, we propose a payment mechanism that pays only the watchtowers
that participated in forwarding and publishing the update message that has
been included on-chain. When the channel is created, both parties involved in
the channel reserve some value ρc for paying transaction fees and rewards for a
proof-of-fraud. When a proof-of-fraud has been included in the blockchain, all
watchtowers included in forwarding that proof-of-fraud get an equal share of ρc,
reserved by the cheating party, after the transaction fee has been deducted. In
the following section, we show that this payment mechanism ensures sufficient
expected payoff to incentivize the watchtowers.

2.4 Transaction validation

The miner of the next block checks whether the messages were generated ac-
cording to the protocol. Out of the set of valid messages he or she selects one
uniformly at random and publishes it in the new block. The miners perform
the following checks to determine the correctness of a message m containing the
update transaction tc,j :

– No proof of fraud for transaction tc,j has been published.
– The update transaction tc,j was generated according to underlying channel

protocol.
– j > i.
– 1 ≤ id ≤ N .
– No other message in the same level following the same path has the same id.
– The level of the watchtower that propagates the message, determined through

the number of signatures, is equal to the number of rounds passed since the
settlement transaction was included in the blockchain.

– For every message in the same path as m: the pk of the previous message
corresponds to the secret key sk signing the current message.

If any of the points above are violated the network will reject m.

Payoff for Miners. The miner including the settlement transaction is paid
as in any other transaction. The miner including a valid proof of fraud is paid
by the watchtower whose message he included. The reward for the watchtower
should thus be high enough to cover the transaction fees.

3 Incentive & Security Analysis

In this section we show that watchtowers maximize their profit if they follow
the DCWC protocol. Hence, executing the protocol is a dominant strategy and
thus the protocol is incentive compatible.
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3.1 Expected Payoff

In order to show incentive compatibility we need to calculate the expected payoff
and analyze changes in the expected payoff when a node decides to deviate from
the protocol. The expected payoff of watchtower W watching channel c is

E[payW,c] =
∑l
i=1 P [SW,i] · ρci

=
∑l
i=1

∑
m∈SW,i

P [m] · ρci

=
∑l
i=1 |SW,i| · P [m] · ρci

(2)

where SW,i is the set of messages signed by W such that dm = i, including
those messages forwarded by W . Then P [SW,i] denotes the probability that one
of those messages will be included in the blockchain. The equally shared payoff
ρc is split between all watchtowers that forwarded m, paid if m gets included on
the blockchain. P [m] is the probability that update message m will eventually
be included in the blockchain. To calculate this probability for a message sent in
the Disclose step of Phase 1, we sum the probabilities of m being chosen for
all possible subsets of non-failing watchtowers. For messages generated in during
Cascade to be included in the blockchain, all watchtowers holding messages
that travelled fewer hops must have failed. If we assume all nodes follow the
protocol and nodes fail independently with probability α, then the probability
that message m will be included in the blockchain is:

P [m] =



∑N
i=1

1
N (1− α)i(α)N−i

(
N
i

)
, for dm = 1

∑|Si|
i=1( 1

|Si| (1− α)i(α)|Si|−i
(|Si|
i

)
) · α

∑i−1
j=1 |Sj |, for 1 < dm ≤ l

0, for dm > l


(3)

Where |Si| is the total number of valid send messages with depth i. If the
protocol is executed faithfully by all parties, then |Si| = N i.

Lemma 1. A watchtower cannot increase his expected payoff E[payW,c] by de-
viating from the protocol unless he can decrease dm for any of his messages,
increase the probability P [m] that one of his messages will be included by de-
creasing the number |Si/SW,i| of valid messages not signed by him or increase
the number |SW,i| of messages signed by him for any i.

Proof. Lemma 1 follows directly from equations 2 and 3.

Lemmas 2, 3, 4 complete our argument by showing that no watchtower can
decrease dm or increase P [mW ] or P [SW \mW ]. We prove this for Phase 1 and
Phase 2 of the protocol independently.
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3.2 Analysis of Phase 1: Generating Messages

The first phase of DCWC handles the creation of update messages and how
they are forwarded to the watchtowers. We show that during the first phase of
DCWC, watchtower W can not influence the execution of the protocol in a way
that decreases the number of messages that do not pay him nor in a way that
increases the number of valid messages that do pay him.

Lemma 2. A watchtower W can not decrease |Si/SW,i| nor increase |SW,i| by
deviating from executing Phase 1 of DCWC.

Furthermore we show that he can not manipulate the number of signatures
on any of his messages.

Lemma 3. A watchtower W can not Decrease dm|m ∈ SW,i ∀i by deviating
from executing Phase 1 of DCWC.

3.3 Analysis of Phase 2: Committing Messages

The second phase of the protocol handles the spreading of a valid proof-of-fraud
through a update message m. Watchtowers might want to withhold proof of
frauds, publish them early or deviate in other ways to increase their expected
payoff.

Note that there is no need to show that W is not able to decrease dm in
this phase, as we assume that Phase 1 has been completed and all update mes-
sages have been created accordingly. It is also easy to see that W can’t decrease
|Si/SW,i| as we assume that Phase 1 has already completed and W has no control
over the choices that the owners of |Si/SW,i| take.

Lemma 4. A watchtower W can not increase |SW,i| by deviating from executing
Phase 2 of DCWC.

Theorem 1. DCWC is incentive compatible.

Proof. Theorem 1 follows directly from Lemmas 1, 2, 3, 4.

Mining Nodes Mining nodes might also deviate from the protocol to improve
their payoffs. Their set of actions is a bit more limited as any block containing
invalid update messages would be rejected by other nodes. The analysis thus far
has assumed that the set of watchtowers is disjoint from the set of mining nodes.
A node W which is mining a new block and is holding a valid update message,
can give himself an advantage of receiving the payoff by not randomly including
a proof-of-fraud but rather including his own. This behavior does not influence
the outcome of the protocol as it leads to a proof-of-fraud being published ei-
ther way. The mining node can only include a valid proof-of-fraud in his block
without invalidating the block. Thus mining nodes have an additional incentive
to participate as watchtowers in our protocol.
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4 Adaption for Compatibility with Lightning: The
DCWC* Protocol

So far, we described the protocol to incentivize watchtowers to watch the chan-
nels in high level. An implementation of the protocol depends on the underlying
channel protocol and the underlying blockchain protocol. An implementation in
Turing complete blockchains can be done as is. An implementation for blockchain
protocols that support more limited scripting languages, such as Bitcoins’ Script,
would require changes to the protocol. Most prominently limiting the number of
forwarded messages at each step is, to the best of our knowledge, not possible
to be implemented for Lightning due to the limitations of Script. Furthermore,
determining how to pay the watchtowers without explicitly naming them in the
funding or update messages is not trivial. The protocol depends not only on
the scripting language, but also on the channel implementation. We propose a
simplified version of our protocol that leaves unspent transaction outputs to be
claimed by watchtowers, designed for the current Lightning implementation [14].
DCWC* can be implemented without requiring changes to the channel protocol.

Just as in DCWC, DCWC* creates layers of watchtowers. The i-th layer of
watchtowers is allowed to issue a proof of fraud after i rounds trail the occurrence
of a fraudulent settlement transaction, also similar to the DCWC protocol. The
protocol terminates after a predetermined number of blocks trail the settlement
transaction, making funds and rewards spendable. Rewards are granted for the
watchtower that submitted the published proof of fraud to the miners and the
watchtowers that forwarded that proof of fraud.

The first phase, disclose & cascade*, is executed once for every off-chain
update of the channel. This phase is responsible for spreading the update in the
network of watchtowers.

4.1 Phase 1: Disclose & Cascade*

This phase initiates after the channel is opened and ends when a settlement
transaction has been published in the blockchain. Spread ensures that a cer-
tain amount of watchtowers receive update messages, and that the messages are
constructed such that watchtowers receive a payoff for storing and forwarding
the messages.

Whenever B receives an update transaction from A, he also receives a trans-
action that invalidates the previous transaction, rewarding B with all of the
channels funds, if the previous state is published on-chain by A. We refer to this
transaction, invalidating update transaction tc,i as invalidation transaction t̃c,i,
which corresponds to a proof-of-fraud in DCWC. B wants to be certain that
some watchtowers are aware of this invalidation transaction. Thus, B sendst̃c,i
to watchtowers, claiming most of the funds for himself but leaving some unspent.
When a watchtower W receives such a message, he claims some of the unspent
transaction outputs (UTXOs) for himself but leaves some unspent and forwards
the message. W timelocks the transaction which he added to the message. This
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way, he will always get a chance to publish a proof of fraud before whomever he
sends it to and thus has no incentive not to forward the update. Note that if W
later gets the chance to publish a proof of fraud he can still claim all UTXOs
for himself. Only if the recipient of his message publishes the proof, W receives
the part he claimed before forwarding the message. If the unclaimed UTXO is
too small, the receiver will possible discard the message; thus a market of self
regulation evolves to determine the appropriate amount for the watchtowers’ fee.

The construction of these update messages is depicted in Figure 1. If A
and B agree on a new update tc,i of the channel they provide each other with
the invalidation transaction t̃c,i−1 of the previous transaction. Then each party
can create one transaction, giving himself all of the funds in the channel and
another transaction with a transaction-level relative timelock (nSequence) to
all his neighbours, leaving them in control of parts of the output. This can
be repeated recursively by his neighbours until the sum of relative timelocks
exceeds the timelock of the channel, or until it is reasonable to assume that
adding another level makes the participation of more watchtowers unprofitable.

Fig. 1. Participant B in the channel disclosing the newest invalidation message t̃c,1 to
Watchtowers W after A and B agreed on a new update tc,2. W cascades the message
to W ′ with a transaction level relative timelock b.

4.2 Phase 2: Watch & Commit*

The second phase of the protocol ensures that the fraud will be detected and
proven, if it occurs. This phase initiates after the a settlement transaction tc,i
is published on the blockchain by one of the involved parties. Since all tc,i are
timelocked, the commit phase consists of a fixed number of rounds. Any watch-
tower holding t̃c,i can now send it to the blockchain network. Then they can,
round after round, append the transactions leading to their payoff.
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4.3 Implementation

Our protocol has only one type of no-trivial transaction. Namely, the transaction
that is forwarded to a watchtower (depicted as a circle in fig. 1).It consists of two
outputs, one going to the sender of the message B and one that is locked by the
script shown in figure 2. The forwarded transaction has the purpose of paying
the sender of the transaction and the watchtower receiving it, if the sender is
offline when the message is included on-chain. The output script is constructed
as follows:

OP IF
b OP CHECKSEQUENCEVERIFY
<W’s public key>
OP CHECKSIG

OP ELSE
<B’s public key>
OP CHECKSIG

Fig. 2. Caption

Recall that the funding transaction, tc,i and t̃c,i are part of the channel
protocol and not further discussed here.

4.4 Discussion of DCWC*

– Abolishing rounds. In a practical setting it would make sense to abolish
rounds, and with that the cascade process all together. This would lead
to a higher workload for the participants of the channel as they have to
create more messages, but reduces the number of transactions that have to
be included on-chain.

– eltoo.It remains to be seen how a version of DCWC* would work with eltoo [6]
channels. While the DCWC protocol requires watchtowers to store only O(1)
messages, DCWC* requires watchtowers to store O(n) messages, where n is
the number of channel updates. Possibly the proposed SIGHASH NOINPUT
could be used to improve the implementation of DCWC* to require storing
only O(1) messages.

– privacy. In DCWC* watchtowers receive a transaction tx, which does not
leak more information than the id of the input transaction of tx. Thus,
the watchtowers do not learn the distribution of funds until the settlement
transaction is included on-chain.

5 Generalizing Payment Channels

In this section we study extended domain channels, or xD-channels for short,
a protocol permitting new types of payment channels. The xD-channels can
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be custom-designed, depending on intended use, to optimize their functionality,
such as the amount of locked funds or the number of signatures required to
authorize a transaction.

The premise of traditional two-party channels is that payments can be exe-
cuted off-chain in a restricted form to avoid double-spending; funds are locked to
the channel in the funding transaction, and thus channel participants can only
pay each other. We recognize that bi-directional, two-party functionality is rarely
optimal, and relax the protocol by allowing each party to freely choose whom
to pay within the channel. Note that double spending is not possible as long as
each channel participant specifies upfront only one party eligible to be paid by
the participant. Therefore, guarantees similar to those of traditional two-party
channels are preserved.

5.1 xD-channels

Definition 1 (xD-channel graph). An xD-channel is described by a directed
graph G = (V,E), where V is a user (a set of public keys), and E is a directed
edge such that each vertex has at most one outgoing edge.

Definition 2 (xD-channel state). The xD-channel state is a tuple (G, I, k,S,P),
where:

– G is the xD-channel graph.

– I = {(v0, f0), . . . , (vn, fn)} is the initial assignment of funds fi to public keys
vi in each constituent xD-channel.

– k is a natural number.

– S are signatures of all public keys specified in I, signing (G, I, k).

– P is a set that for every vertex v of G contains the amount of funds f that
v has paid along its’ outgoing edge, together with a signature s authorizing
that payment, (v, f, s).

An xD-channel is established by a funding transaction of the amount
∑

(vi,fi)∈I fi
to the channel (∅, I, 0,S, ∅).

Similarly to traditional payment channels, an xD-channel is closed by pub-
lishing its state. Given some xD-channel states published during the settle-
ment period, only states with the maximal sequence number k have effect. For
i = 1, . . . ,m, let (G, I, k,S,Pi) be such states. Then, the effect of publishing
those states is equivalent to publishing only (G, I, k,S,P ′), where P ′ contains
for each vertex v the maximal amount v has signed as paid: (v, f, s) : f =
maxi=1,...,m{f ′ : (v, f ′, s′) ∈ Pi}.

Suppose only one channel state ((V,E), I, k,S,P) is published during the
settlement period. Then, for each vertex v in G, the number fv of funds paid
along v’s outgoing edge in the resulting state is determined by the solution to



Towards Secure and Efficient Payment Channels 13

the following linear program:

Maximize
∑
v∈V

fv subject to: ∀(v,f,s)∈Pfv ≤ f

∀(v,i0)∈I
∑

(u,v)∈E

fu + i0 ≥ fv

Note that the linear program determines the highest amount fv that v has
agreed to pay that does not result with a negative balance for v.

Participants ensure security of transactions in a similar, but generalized way
to traditional two-party channels. Whenever a participant u wants to transact
funds to another participant along an edge (u, v), they send v an updated el-
ement (u, f, s) of P, where f is increased by the funds paid, together with an
authorizing signature s. u proves to v that the current state of the channel as-
signs enough funds to them to execute the transaction, by presenting v with
commitments by other participants to pay u: {(w, fw, sw) : (w, u) ∈ E}, such
that i0 +

∑
{(w,fw,sw):(w,u)∈E} fw ≥ f (where (u, i0) ∈ I), along with commit-

ments funding those payments and so on. In turn, v can pass over these elements
of P to prove its’ ability to pay, and so on. Crucially, because each vertex has
at most one outgoing edge, there can be no attempt to double spend within the
channel. Moreover, changes that are not merely commitments to pay more along
participant’s outgoing edge, such as changing the channel’s topology G, require
the signature of everybody involved.

Note that when the channel participants decide to close the channel, they
might issue a final channel state (∅, I, kmax,S, ∅) where the resulting fund divi-
sion is concisely described by I, to minimize the blockchain space required to
publish it.

Corollary 1. A traditional, bi-directional two-party channel is equivalent to an
xD-channel with G = ({A,B}, {(A,B), (B,A)}).

Example 1. Consider a scenario in which many parties c0, . . . , cm, the clients, are
interested in periodically paying a party s, the supermarket. The supermarket
expects to never need to transfer funds to the clients, but there is another party
t, the tax office, to which the supermarket wants to periodically make payments.
The tax office expects to pay cm often.

One solution involving traditional two-party channels might be to establish a
channel between each client and the supermarket and channels between the su-
permarket, tax office and the client. Note, that funds in each channel are locked
to either party in the channel, e.g. the funds paid by the clients to the super-
market cannot be passed on to the tax office. Note, that each client-supermarket
channel allows payments from the supermarket to the client, but this function-
ality is superfluous.

Consider a single xD-channel, where G is illustrated in Figure 3. Note that
clients can make payments to the supermarket identically as before. However,
the supermarket can pass the funds on to the tax office providing the proofs of
clients’ payments along with its signature.
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c0 c1 . . . cm

s t

Fig. 3. xD-channel from Example 1. Vertices represent actors, and edges represent the
ability to pay.

5.2 Discussion

Similarly to traditional two-party channels, xD-channels allow payments to be
executed off-chain while preserving the security guarantees of the blockchain,
i.e. the parties cannot double spend. To that end, multi-party channels typically
require the signature of every party involved. Towards this direction, we can
extend the functionality of xD-channels even further. So far, we require each
xD-channel participant i to choose only one other participant j as the recipient
of payments, so that the set of parties S reachable from i in the xD-channel
graph is protected against potential double spending from i. We note that i can
be allowed to make a payment to a party k 6= j as long as each party in S confirm,
by providing a signature, they are not being cheated by such payment. In the
presence of channel topology, this approach can be more efficient, i.e. provide a
better ratio of functionality to the number of required signatures, than typical
multi-party channel approaches.

6 Related Work

Off-chain payment channels have been extensively studied by the research com-
munity as they are the most prominent solution to the blockchain’s scalability
problem. Multiple versions of channels can be found in literature . Duplex mi-
cropayment channels [7] use timelocks, while lightning channels [14] depend on
punishing the party that misbehaves.

Payment networks can be build using any version of payment channels. Most
payment networks use Hashed Timelock Contracts (HTLC) to execute trans-
actions over multiple hops, such as the Lightning network [14] which relies on
Bitcoin [13], and the Raiden network [4] which relies on Ethereum [2]. However,
there are different approaches on constructing payment channels and building
payment networks. In a recent work, Miller et al. present Sprites [12] to re-
duce the time for which the funds are locked in a multi-hop transaction. Sprites
also supports partial withdraws and deposits without interrupting the channels’
functionality. On the other hand, Perun [8] introduces “virtual payment chan-
nels”, which are payment channels on top of the payment channels, to abolish
intermediaries in multi-hop transactions in the payment network. Our work is
complementary to all these channel construction and payment networks, since
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we address a problem they all share: all parties involved in channels must be
constantly online to ensure security.

A concurrent work, addresses the same problem. McCorry et al. propose
Pisa [10], a protocol that introduces third parties, called custodians, to watch the
channels. Their approach focuses on state channels; they set up service contracts
between channel parties and custodians. They also address the incentives for
participation and propose custodians depositing security funds when setting up
the service contract. Although our protocol does not examine this issue, it is
very simple and easily implementable, even on Bictoin, in contrast with the Pisa
protocol.

7 Conclusion & Future Work

In this work, we presented a mechanism to secure channels by incentivizing
third parties, called watchtowers, to actively monitor channels and report fraud
to the blockchain. The mechanism is incentive compatible, i.e. following the
protocol is a dominant strategy for every watchtower, and allows the parties
involved in the channel to go offline. The proposed protocol is lightweight in
communication and watchtowers do not learn the distribution of funds in the
channel. In addition, we suggested an adaptation of the protocol implementable
on the Bitcoin’s Lightning network.

Furthermore, we explored channels efficiency. We generalized the construc-
tion of channels to allow specific topological structures of the blockchain trans-
action graph to influence the multi-channel construction. This way, we improve
the efficiency of channels in some specific cases, which are often met in practice
in monetary systems. In particular, when each party has only one outgoing edge,
each transaction in the multi-party channel requires only one signature. More-
over, the proposed construction enables transfering the money from one channel
to the next, similarly to how IOUs work, thus reducing the amount of locked
funds in the channel.

For future work, an interesting open topic is to study participation incentives
for the watchtowers. Although our protocol is incentive compatible in the sense
that if watchtowers decide to participate they cannot gain more by deviating
from the protocol, we do not guarantee that they actually profit by participating
in the protocol, particularly when no fraud occurs. Another line of future work
would be to examine the new channels construction. The first open question
would be whether parties can be added or removed efficiently without going
to the blockchain. Another direction would be to study different topologies for
which the construction greatly improves channels’ efficiency, either regarding the
amount of locked funds or the number of required signatures.
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A Proof of Lemma 2

Lemma 2. A watchtower W can not decrease |Si/SW,i| nor increase |SW,i| by
deviating from executing Phase 1 of DCWC.

Proof. Picture the Disclose & Cascade algorithm as a tree. W can increase
E[payW,c] by increasing the number of valid messages with his signature. This
is true because, whenever a message m from a node in his subtree is published
payW,c > 0 and in all other cases payW,c = 0. Note that maximizing the number
of messages |SW,i| in any layer bears no effect on the probability of messages
of earlier levels to be included; thus W doesn’t decrease his chances of a larger
payoff by maximizing the number of valid messages in any level of his subtree.
Therefor we can analyze each level individually.

It still remains to be shown that W can neither decrease |Si/SW,i| nor in-
crease |SW,i|. Let M denote the set of all update messages. The protocol could
only be exploited in one of two ways:

1. Decrease |Si/SW,i|: Decreasing the number of update messages that are
not in his subtree would increase the chance that one of W s messages gets
included.

W has no knowledge of the identities of watchtowers that are not in his
subtree. Additionally their success does not depend on any action of W . Thus,
decreasing |Si/SW,i| is not feasible for W .

2. Increase |SW,i|: We show that W can’t increase the number of nodes in
his subtree.

For each depth the number of messages that can be send is restricted by N .
If W tries to forge more messages, then according to the pigeonhole principle
either two ids must be the same, or at least one id must be larger than N . In
the second case, all descendant messages will be rejected. The first case is a
bit trickier. Sending two different messages with the same sequence number to
disjoint set of miners is clearly not more beneficial than just sending one message
to all. However if the failure probability of nodes is high, creating two messages
with the same id increases the chances of one of them to get through. This is
true when:

2 · α · (1− α) > (1− α)2

=⇒ α > 1
3

(4)

However this behavior doesn’t scale arbitrarily and whenever α > 1
3 this behav-

ior increases the security of the protocol.
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B Proof of Lemma 3

Lemma 3. A watchtower W can not Decrease dm|m ∈ SW,i ∀i by deviating
from executing Phase 1 of DCWC.

Proof. In Phase 1, W is only required to store the message m that is last signed
by him at this point. The only way to deviate from the protocol would be to forge
a message m̃ s.t. dm > dm̃. We show that W won’t be able to construct such a
message. If W doesn’t control any nodes in the tree which have a shorter path
to the root, then he can not create a valid m̃, due to the layered construction of
update messages. If W does control a watchtower in the tree which is closer to
the root, receiving messages after i hops. Then m is in SW,i which means that
we can apply lemma 2, as creating m̃ would be equivalent to creating more than
N messages at level i.

C Proof of Lemma 4

Lemma 4. A watchtower W can not increase |SW,i| by deviating from executing
Phase 2 of DCWC.

Proof. W can take three different actions to try increasing the probability that
his message will be included in the next block. We show that none of them in
fact increase that probability. Firstly, W could send m ∈ SW,i too early, e.g. in
round j < i. In this case the transaction is invalid, the network will reject the
message and might disconnect from W . Secondly, W could send m in a later
round. It is easy to see that there is no advantage in doing so. Lastly, W could
send m̃ which belongs to an older update transaction than mW but a newer
one than settlement transaction. If m̃ is in fact included in the blockchain, then
the protocol terminates successfully nevertheless. However, there is no incentive
for W to store m̃ as storing m instead is a dominant strategy, since the set of
potential settlement transactions for which m is a valid proof-of-fraud is a subset
of the set of settlement transactions for which m̃ is a valid proof-of-fraud.
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