
Distrib. Comput. (2008) 21:271–284
DOI 10.1007/s00446-008-0070-4

Coloring unstructured radio networks

Thomas Moscibroda · Roger Wattenhofer

Received: 15 February 2006 / Accepted: 20 June 2008 / Published online: 30 August 2008
© Springer-Verlag 2008

Abstract During and immediately after their deployment,
ad hoc and sensor networks lack an efficient communication
scheme rendering even the most basic network coordination
problems difficult. Before any reasonable communication
can take place, nodes must come up with an initial structure
that can serve as a foundation for more sophisticated algo-
rithms. In this paper, we consider the problem of obtaining
a vertex coloring as such an initial structure. We propose
an algorithm that works in the unstructured radio network
model. This model captures the characteristics of newly
deployed ad hoc and sensor networks, i.e. asynchronous
wake-up, no collision-detection, and scarce knowledge about
the network topology. When modeling the network as a graph
with bounded independence, our algorithm produces a cor-
rect coloring with O(∆) colors in time O(∆ log n) with high
probability, where n and ∆ are the number of nodes in the
network and the maximum degree, respectively. Also, the
number of locally used colors depends only on the local
node density. Graphs with bounded independence generalize
unit disk graphs as well as many other well-known models for

A preliminary version of this work has been published in [20] as
Coloring Unstructured Radio Networks, In Proceedings of the 17th
Symposium on Parallel Algorithms and Architectures (SPAA),
Las Vegas, Nevada, 2005.

T. Moscibroda (B)
Microsoft Research, One Microsoft Way,
Redmond, WA 98052, USA
e-mail: moscitho@microsoft.com

R. Wattenhofer
Computer Engineering and Networks Laboratory,
ETH Zurich, 8092 Zurich, Switzerland
e-mail: wattenhofer@tik.ee.ethz.ch

wireless multi-hop networks. They allow us to capture aspects
such as obstacles, fading, or irregular signal-propagation.

1 Introduction

Wireless multi-hop radio networks such as ad hoc or sensor
networks are formed of autonomous nodes communicating
via radio. One of the characteristics of such networks is their
lack of available a-priori infrastructure, particularly during
and after the deployment of the network. Before any rea-
sonable communication can be carried out and before the
network can start performing its intended task, the nodes
must establish some kind of structure that allows an efficient
communication scheme. Once this initial structure is achie-
ved, sophisticated and well-studied algorithms and network
organization protocols may be used on top of it. Naturally,
the inherent problem faced when setting up such an initial
structure is that there is no existing infrastructure that could
facilitate the task. In fact, coping with the absence of an ini-
tial structure is one of the quintessential tasks in ad hoc and
sensor networks and finding efficient solutions for that pur-
pose is of great practical importance. In existing systems such
as Bluetooth, for instance, the initialization tends to be slow
even for a small number of devices.

In this paper, we study the construction of such an initial
structure. Technically, we study how the network nodes can
quickly compute a good vertex coloring without relying on
any existing infrastructure. A correct vertex coloring for a
graph G = (V, E) is an assignment of a color, color(v),
to each node v ∈ V , such that any two adjacent nodes
have a different color. Colorings are well-motivated as ini-
tial structures in wireless ad hoc and sensor networks: When
associating different colors with different time slots in a time-
division multiple access (TDMA) scheme, a correct coloring

123

272 T. Moscibroda, R. Wattenhofer

corresponds to a medium access control (MAC) layer without
direct interference, that is, no two neighboring nodes send at
the same time.

It is well known that in order to guarantee an entirely
collision-free TDMA schedule in wireless networks, a cor-
rect vertex coloring is not sufficient. It is typically argued that
the structure needed to ensure collision-freedom is a coloring
of the square of the graph, i.e., a valid distance 2-coloring
[2,12,27]. In general, however, not even a 2-coloring guaran-
tees the absence of collisions in the physical wireless medium
as interference from more distant nodes can accumulate. On
the other hand, it has been shown in [22] that in many scena-
rios even a 1-hop coloring can be too restrictive, especially if
transmission power control is employed. In particular, there
are settings in which two nodes can simultaneously transmit
without causing a collision even if an intended receiver is
located in both senders’ transmission range.

In this paper, our aim is not to establish a full-fledged
TDMA schedule, but to shed light into the more theoretical
question of determining the distributed complexity of vertex
coloring in a communication model that captures the diffi-
culties arising during and after the deployment of networks.
Nonetheless, our algorithm has direct applicability as a cor-
rect one-hop vertex-coloring ensures a schedule in which any
receiver can be disturbed by at most a small constant num-
ber of interfering senders. This allows for simple randomized
MAC protocols guaranteeing every sender a constant proba-
bility of successful transmission in every time slot. As the
available bandwidth (and hence the possible throughput) of
a node v in such a schedule depends on the highest color assi-
gned in its local 2-neighborhood, only low colors should be
assigned in sparse areas of the network, whereas the higher
colors should only be used in dense areas. In particular, a
good coloring should have the property that the highest color
assigned to a node in each neighborhood should depend only
on the local node density of that neighborhood.

Our coloring algorithm operates in the network’s initiali-
zation phase and does not rely on any previously established
MAC layer. Instead, it computes a coloring entirely from
scratch. In particular, it is not based on any sort of mes-
sage passing model in which nodes know their neighbors
a-priori, and in which messages can be sent to neighbors
without fearing collision, e.g. [3,25,28]. Studying a classic
network coordination problems such as coloring in absence
of an established MAC layer highlights the chicken-and-
egg problem of the initialization phase [14]. A MAC layer
(“chicken”) helps achieving a coloring (“egg”), and vice
versa. The problem is that in a newly deployed ad-hoc/sensor
network, there is typically no built-in structure, i.e. there are
neither “chickens” nor “eggs.”

Clearly, one important aspect when studying the initializa-
tion phase of ad hoc/sensor networks is to use an appropriate
model. On the one hand, the model should be sufficiently

realistic to actually capture the particularly harsh characte-
ristics of the deployment phase. But on the other hand, it
ought to be sufficiently concise to allow for stringent rea-
soning and proofs. Recently, the unstructured radio network
model has been proposed as a model that attempts to combine
both of these contradictory aims [14]. It makes the following
assumptions.

– We consider multi-hop networks, that is, there exist nodes
that are not within their mutual transmission range. The-
refore, it may occur that some neighbors of a sending node
receive a message, while others experience interference
from other senders and do not receive the message.

– Nodes can wake up asynchronously. In a wireless, multi-
hop environment, it is realistic to assume that some nodes
wake up (e.g. become deployed, or switched on) later than
others. Thus, nodes do not have access to a global clock.
In this work, we do not make any assumption about the
probability distribution of wake-up times and all results
hold for every, possibly even worst-case, wake-up pattern.
Before it wakes up, a nodes does neither receive nor send
any messages.

– Nodes do not feature a reliable collision detection mecha-
nism. This assumption is often realistic, considering that
nodes may be tiny sensors with equipment restricted to
the minimum due to limitations in energy consumption,
weight, or cost. Moreover, the sending node itself does
not have a collision detection mechanism either. Hence, a
sender does not know how many neighbors have received
its transmission correctly.

– When a node joins the network or wakes up, it does
not know how many neighbors it has. Moreover, it has
no information whether (or how many) neighbors have
already started executing the algorithm and in which
phase of the algorithm they currently are.

Naturally, algorithms for such uninitialized networks have
a different flavor compared to “traditional” algorithms that
operate on a given, static network graph.

In this paper, we show that even in this restricted model,
a good vertex coloring can be computed efficiently. Specifi-
cally, we propose a randomized algorithm that computes a
correct vertex coloring using O(∆) colors in time O(∆ log n)

with high probability in any network graph as long as size of
the maximum independent set in the 2-hop neighborhood of
any node is bounded by some arbitrary constant. This boun-
ded independence model generalizes the frequently studied
models for wireless networks, such as the unit disk graph.
Unlike the unit disk graph or other explicit geometric graph
models, however, the bounded independence graph model
can capture obstacles as well as physical signal-propagation
aspects such as fading, reflection, or shielding. Finally, our

123

Coloring unstructured radio networks 273

algorithm features the property that the highest color assigned
to any node in a certain area of the network depends only on
the local density of that area.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our model of computation including the
bounded independence model studied in this paper. A brief
overview of related work is given in Sect. 3. The coloring
algorithm is subsequently presented and analyzed in Sects. 4
and 5. Finally, Sect. 6 concludes the paper.

2 Model and notation

In the unstructured radio network model [13], we consider
multi-hop radio networks without collision detection. That is,
nodes are unable to distinguish between the situation in which
two or more neighbors are sending and the situation in which
no neighbor is sending. A node receives a message if and only
if exactly one of its neighbors sends a message. Nodes may
wake up asynchronously at any time and we do not make
any assumption about the distribution of the wake-up times
of individual nodes. That is, algorithms in the unstructured
radio network model must be capable of coping with any
possible wake-up distribution.

Upon waking up, a node has no information as to whe-
ther it is the first to wake up, or whether other nodes have
already been running the algorithm for a long time. We call a
node sleeping before its wake-up, and awake thereafter. Only
awake nodes can send or receive messages; sleeping nodes
are not woken up by incoming messages. For example, two
extreme cases covered by the asynchronous wake-up model
are the following: All nodes start synchronously at the same
time, or nodes wake-up sequentially with long waiting per-
iods between two node’s wake-up. Recall again that nodes
are unaware which (if any) of the two extreme cases holds.
The time complexity Tv of a node v is defined as the number
of time slots between the node’s waking up and the time it
has made its irrevocable final decision on its color. The algo-
rithm’s time complexity is the maximum Tv over all nodes in
the network.

We model the network as a graph G = (V, E), where two
nodes u and v can communicate with each other if there is an
edge (u, v) ∈ E . In order to capture typical wireless charac-
teristics, ad hoc and sensor networks have often been mode-
led as unit disk graphs (UDG) in which nodes are located in
the Euclidean plane and there is an edge between two nodes
if their Euclidean distance is at most one. In this paper, we
model wireless networks as bounded independence graphs
(BIG) which generalize the unit disk graph as well as other
known graph-models for wireless networks.

Two nodes v1 and v2 are called independent if there exists
no communication link between them. A set of nodes S is
called an independent set, if all nodes in S are mutually

v

Fig. 1 A bounded independence graph with κ1 = 4 and κ2 = 7. No
node u has more than 4 and 7 mutually independent nodes in its one
and two-hop neighborhood, respectively. For instance, node v has 4
independent neighbors (grey) and a maximum independent set of size 7
in its two-hop neighborhood (black). Note that this network can easily
be modeled as a BIG even though it looks different from a UDG

independent. In our setting, a bounded independence graph
is characterized by two measures κ1 and κ2. The values κ1

and κ2 are the size of the largest independent set in the 1-hop
and 2-hop neighborhood of any node, respectively. That is,
in the 1-hop (2-hop) neighborhood of any node, there are at
most there are at most κ1 (κ2) mutually independent nodes.

In every network, κ1 and κ2 are bounded by ∆ and ∆2. As
shown in Fig. 1, however, in typical wireless network topo-
logies, κ1 and κ2 are expected to be small constants, and in
dense networks, κ1 and κ2 are typically much smaller than ∆.
The reason is that if a node in a wireless network has many
neighbors, many of these neighbors will also be connected
among each other. In other words, it is unlikely that there
are large maximum independent sets in any node’s neighbo-
rhood. The advantage of the BIG model compared to the unit
disk graph model is that it does not imply an explicit geome-
try and therefore, obstacles or irregular signal propagation
are easily captured in the BIG model (see Fig. 1). An obs-
tacle (such as a wall) in physical proximity of a sending node
may destroy the disk shape of this node’s transmission range,
and hence, κ1 and κ2 can potentially become as large as ∆.
However, walls and other obstacles typically cause only small
increases in κ1 or κ2. By expressing all our results as a func-
tion of κ1 and κ2, the results directly reflect the “difficulty” of
the underlying network topology. Note that a unit disk graph
is a BIG with κ1 ≤ 5 and κ2 ≤ 18.

Note that due to asynchronous wake-up, some nodes may
still be asleep, while others are already transmitting. Hence,
at any time, there may be sleeping nodes which do not receive
a message in spite of there being a communication link bet-
ween the two nodes. When waking up, nodes have only scarce
knowledge about the network graph’s topology. In particular,
a node has no information on the number of nodes in its neigh-
borhood. However, every node has estimates n and ∆ for the
number of nodes in the network and the maximum degree,

123

274 T. Moscibroda, R. Wattenhofer

respectively. In reality, it may not be possible to foresee these
global parameters precisely by the time of the deployment,
but it is usually possible to pre-estimate rough bounds.

For the analysis, we make the standard simplification to
assume that time is divided into discrete time slots that are
synchronized between all nodes. Our algorithm does not rely
on this assumption in any way as long as the nodes’ inter-
nal clock runs roughly at the same speed. Also, all analyti-
cal results carry over to the practical non-aligned case with
an additional small constant factor, since each time slot can
overlap with at most two time-slots of a neighbor [29].

In each time slot, a node can either transmit or listen,
i.e., if a node transmits in a time slot t , it cannot receive any
messages in time slot t . A node v receives a message in a time
slot only if exactly one node in its neighborhood transmits a
message in this time slot. The message size in our model is
limited to O(log n) bits per message. Further, notice that in
contrast to previous work on the unstructured radio network
model [13,14], we do not make the simplifying assumption
of having several independent communication channels. In
our model, there is only one communication channel.

Every node has a unique identifier, which does not need to
be in the range 1, . . . , n. In particular, the algorithm does not
perform explicit operations on the node’s IDs. Instead, the ID
is merely required to let a receiver recognize whether or not
two different messages were sent by the same sender. In some
papers on wireless sensor networks, it is argued that sensor
nodes do not feature any kind of unique identification (such
as a MAC address, for instance). In such a case, each node can
randomly choose an ID uniformly from the range [1 . . . n3]
upon waking up. The probability that two nodes in the system
end up having the same ID is bounded by PambIDs ≤ (n

2

) 1
n3 ∈

O(1
n).
We denote by Nv the set of neighbors of node v, including

v itself. Further, N 2
v is the two-hop neighborhood of node v,

i.e., the set of all nodes within distance at most 2 from v. The
degree δv = |Nv| of a node is the number of its neighbors.1

The color assigned to node v is denoted by colorv and pv is
v’s sending probability in a given time slot. Finally, we use
the following well-known mathematical fact.

Fact 1 For all values of n and t with n ≥ 1 and |t | ≤ n, it
holds that et

(
1 − t2/n

) ≤ (1 + t/n)n ≤ et .

3 Related work

The distributed complexity of coloring graphs has been the
focus of intensive studies in the distributed computing com-
munity. Cole and Vishkin gave a deterministic distributed
algorithm for computing a correct coloring on a ring using

1 For convenience, the degree of a node also includes the node itself.

three colors in time O(log∗n) [3]. A generalization of the
same technique can be used to color trees and arbitrary
bounded-degree graphs with 3 and (∆ + 1) colors in time
O(log∗n), respectively [7]. It was shown in [15] that if dis-
tance information is given, a running time of O(log∗n) also
suffices to obtain a (∆ + 1)-coloring in unit disk graphs and
its generalization, the unit ball graph with constant doubling
dimension. Most recently, the work of [28] shows that the
same bound can be achieved even without distance informa-
tion. All these upper bounds are asymptotically tight due to
the seminal lower bound by Linial [16], even for the case
of randomized algorithms. For arbitrary graphs, the fastest
distributed (∆ + 1)-coloring algorithm is based on a beau-
tiful reduction from coloring to the maximal independent
set (MIS) problem [16]. The reduction in combination with
the randomized MIS algorithm in [17] computes a (∆ + 1)-
coloring in expected time O(log n). Deterministic distribu-
ted algorithms for (∆ + 1)-coloring have also been studied,
e.g., [6,25].

All the above algorithms are based on a message passing
model [26] that abstracts away problems such as interference,
collisions, asynchronous wake-up, or the hidden-terminal
problem, which are crucial in the context of wireless ad hoc
and sensor networks. Specifically, it is assumed that nodes
know their neighbors at the beginning of the algorithm and
that the transmission of messages is handled flawlessly by
an existing, underlying MAC layer. Furthermore, all nodes
wake up synchronously and start the algorithm at the same
time. As motivated in the introduction, these assumptions
are invalid when studying multi-hop radio networks during
or immediately after their deployment.

In view of its practical importance, it is not surprising
that there has recently been a lot of effort in designing effi-
cient algorithms for setting up initial structures, i.e., [4,8,
13,18,19,30]. The unstructured radio network model was
first proposed in [14] and subsequently improved and gene-
ralized in [13]. It is an adaptation of the classic radio net-
work model (e.g., [1]), combining several of its flavors in
order to model the harsh conditions during and immediately
after the deployment. In [13], an algorithm is proposed that
efficiently computes a minimum dominating set approxima-
tion from scratch. The paper [21] goes one step further by
giving an algorithm for computing a maximal independent set
in the unstructured radio network model in time O(log2n).
Finally, the authors of [4] present an algorithm that, based
on [21], computes a constant degree subgraph with low
stretch.

The work most closely related to this paper is by Busch
et al. [2]. In this work, the authors develop a conflict-free
TDMA-style MAC protocol for arbitrary network graphs,
which essentially corresponds to a coloring of the 2-hop
neighborhood graph. As in our work, the algorithms in [2] are
capable of coping with asynchronous wake-up they assume

123

Coloring unstructured radio networks 275

that nodes are given an upper bound on the number of nodes
and the maximum degree in the network. When appropria-
tely restricting the techniques developed in [2] to the one-hop
coloring scenario, their randomized algorithm achieves an
O(∆)-coloring in time O(∆3 log n), whereas the algorithm
in this paper requires time O(κ4

2 ∆ log n). Notice that κ2 is
typically a small constant; particularly in dense networks, it is
significantly smaller than ∆. While the main algorithm in [2]
is designed for systems with collision detection, a mecha-
nism to deal with the absence of collision detection is also
discussed. Technically, the scheme for addressing collision
detection in [2] introduces an extra log-factor in comparison
to our approach.

Other work on using network colorings for the purpose of
obtaining a channel assignments or TDMA scheme has been
studied in [12,27], among others. Initialization and coloring
problems in single-hop networks have been extensively
studied for a long time [23,24]. However, the techniques typi-
cally used in these papers cannot be used in the multi-hop sce-
nario. In the single-hop case, if there is a collision, no node in
the network receives a message, whereas in a multi-hop sce-
nario, some neighbors of the sender may receive the message,
while others experience a collision. This difference renders
it impossible for nodes to keep a coherent picture of the local
situation. Secondly, most initialization papers assume strong
communication [10], that is, a sending node can distinguish
whether its message was successfully received by other nodes
or whether it collided with another packet. In a multi-hop sce-
nario, this assumption makes little sense because of the hid-
den terminal problem. Finally, unlike [23,24], we consider
asynchronous wake-up where nodes can wake up at arbitrary
times.

There has also been work on models containing asyn-
chronous wake-up. In the so-called wake-up problem [5,11],
the goal is to wake up all nodes in the graph as quickly as
possible by sending them messages. The assumption made
in these papers is that a node is woken up by an incoming
message. While the algorithmic problems resulting from this
assumption are very interesting, current sensor nodes do not
have such an external wake-up capability.

In the preliminary version of this paper [20], we presented
a randomized O(∆ log n) time coloring algorithm for unit
disk graphs using at most O(∆) colors. In comparison to
[20], we have generalized our result from unit disk graphs
to bounded independence graphs and the algorithm and its
analysis have been significantly revised.

4 Algorithm

During the algorithm, each node can be in various states. At
any point in time, a node is in exactly one state, i.e., the sets
of nodes induced by the different states form a partition of V .

Fig. 2 Sequence of states in the algorithm. Each color i is represented
by a state Ci , which a node enters at the moment it (irrevocably) selects
color i . Before deciding on i , a node first has to verify (or compete for) i
in state Ai . If the node does not prevail in this verification, it moves from
Ai to a new state Asuc, which corresponds to either the intermediate
requesting state R or the verification state of the next higher color Ai+1
(cf Lines 3 and 15 of Algorithm 1). The figure also indicates the relevant
message types and transition conditions that are explained in detail in
Sect. 4

Z: Nodes before their waking up. Sleeping nodes do
not take part in the algorithm.

Ai : Nodes that are verifying (i.e., trying to decide on)
color i .

R: Nodes that are requesting an intra-cluster color
from their leader.

Ci : Nodes that have already irrevocably decided on
color i .

The state C0 plays a special role and nodes in state C0

are called leaders. The algorithm itself is divided into three
subroutines: Algorithm 1 for nodes in states Ai , Algorithm 2
for nodes in state R, and Algorithm 3 for nodes in state Ci .
The sequence of states in which a node can be during the
course of the algorithm is shown in Fig. 2. A solid arrow
represents a state transition a node makes when the event
denoted by the arrow’s label occurs. A dashed arrow bet-
ween two states indicates the message type which is signi-
ficant for the communication between nodes in these two
states. In our model, however, every neighbor of a sending
node—regardless of their current state—may actually receive
the message or experience a collision. Upon waking up,
each node starts in state A0, without having any knowledge

123

276 T. Moscibroda, R. Wattenhofer

whether some of its neighbors have already started the
algorithm beforehand.

From a global point of view, the algorithm’s main idea
can be described easily: In a first stage, the nodes elect a
maximal set of mutually independent leaders (nodes in state
C0) among themselves and each non-leader associates itself
with a leader within its neighborhood. Since leaders are inde-
pendent, they can safely assign themselves color 0. The set
of leaders naturally induces clusters consisting of all nodes
associated with the same leader. The task of each leader is
to assign a unique intra-cluster color tcv to every node v

within its cluster. The coloring induced by these intra-cluster
colors may not form a valid coloring since two nodes u and
v that are neighbors may be associated with different leaders
and hence, u and v could be assigned the same intra-cluster
color.

On the other hand, if the set of leaders is indeed inde-
pendent, there can only be a small number of neighboring
nodes with the same intra-cluster color. The coloring indu-
ced by these intra-cluster colors thus represents a first coarse
structuring of the network that facilitates the subsequent task
of actually assigning colors to nodes. Technically, upon recei-
ving an intra-cluster color tcv from its leader, a node goes
on to verify a specific color tcv(κ2 + 1) against neighboring
nodes from different clusters that may have received the same
intra-cluster color. This verification procedure must ensure
that no two neighboring nodes end up selecting this specific
color.

The algorithmic difficulty of the above process stems from
the fact that nodes wake up asynchronously and do not have
access to a global clock. Therefore, the different phases (veri-
fication, requesting intra-cluster color, etc) of different nodes
may be arbitrarily intertwined or shifted in time. While some
nodes may still compete for becoming leader in state A0,
their neighbors may already be much more advanced in their
coloring process. Moreover, messages may be lost due to
collisions at any time. In view of this harsh environment,
the primary challenge is that the algorithm must achieve two
contradictory aims: symmetries between nodes must be bro-
ken both correctly and rapidly. That is, no two neighboring
nodes ever select the same color and yet, every node can
take its decision shortly after its wake-up (i.e., there is no
starvation).

A crucial part of reconciling these contradictory aims
takes place in the verification procedure. In order to ensure
both correctness and fast progress in all parts of the network
with high probability, our algorithm uses a technique of coun-
ters, critical ranges, and local competitor lists. Roughly, the
idea is that every node v uses a local counter cv which it
increments in every time slot. Intuitively, this counter repre-
sents v’s progress towards deciding on color i and v selects
i as soon as cv reaches a certain threshold.

In order to prevent two neighboring nodes from selecting
the same color, the algorithm must make sure that as soon as
a node v selects its color, all neighbors of v can be notified
before their counter also reaches the threshold. In view of col-
lisions and message losses being always possible, there must
be a sufficiently large time interval between two neighboring
counters reaching the threshold. A simple idea to achieve this
correctness condition is to have every node transmit its cur-
rent counter with a certain sending probability. Whenever a
node receives a message with higher counter, it resets its own
counter. Unfortunately, this technique may lead to chains of
cascading resets, i.e., a node’s counter is reset by a more
advanced node, which in turn is reset by another node and so
forth. While, eventually, one node will end up selecting the
color, this method does not prevent nodes from starving in
certain (local) parts of the network graph.

Our algorithm therefore employs a more subtle handling
of the counters. The general idea is that upon receiving a
message from a neighbor, a node only resets its counter if
it is within a critical range of the received counter. On the
one hand, this critical range is sufficiently large to ensure
correctness with high probability. On the other hand, this
technique allows for more parallelism in the network because
many nodes can simultaneously make progress towards deci-
ding on their color. In order to truly avoid cascading resets
and achieve the claimed running time, however, using only
counters and critical ranges is insufficient. Specifically, nodes
should also be prevented from resetting their counter to a
value within the critical range of neighboring nodes and fur-
thermore, all counters must remain relatively close to the
verification threshold even after a reset. For this purpose,
each node stores a local competitor list containing the cur-
rent counter values of neighboring nodes.

Unfortunately, in the unstructured radio network model,
it is impossible to constantly keep this competitor list and
the corresponding locally stored counters complete and cor-
rectly updated. Interestingly, we can prove in Sect. 5 that
in spite of this inevitable inconsistency, our technique of
using counters and critical ranges in combination with sto-
ring local competitor lists avoids cascading resets and at the
same time ensures the correctness condition. That is, whene-
ver a node v selects a color, the counters of all neighboring
competing nodes are sufficiently far from the threshold so
that v has sufficient time to inform its neighbors with high
probability.

In more detail, the algorithm is defined by means of four
constant parameters, α, β, γ , and σ that can freely selected
so as to trade-off the running time and the probability of
correctness. The higher the parameters, the less likely the
algorithm fails in producing a correct coloring, but the higher
the running time. The following message types are being used
in the algorithm:

123

Coloring unstructured radio networks 277

Algorithm 1 Coloring algorithm—node v in state Ai

upon entering state Ai :
(when waking up, a node is initially in state A0)
1: Pv := ∅; {* v is passive *}

2: ζi :=
{

1, i = 0
∆, i > 0

3: Asuc :=
{ R , i = 0

Ai+1, i > 0
4: for �α∆ log n� time slots do
5: for each w ∈ Pv do dv(w) := dv(w) + 1;
6: if Mi

A(w, cw) received then
7: Pv := Pv ∪ {w};
8: dv(w) := cw;
9: end if
10: if Mi

C(w) received then
11: state := Asuc;
12: L(v) := w;
13: end if
14: end for
15: cv := χ(Pv), where χ(Pv) is the maximum value s.t.,

χ(Pv) /∈ [dv(w) − �γ ζi log n�, . . . , dv(w) + �γ ζi log n�] for each
w ∈ Pv , and χ(Pv) ≤ 0;

16: while state = Ai do {* v is active *}
17: cv := cv + 1;
18: for each w ∈ Pv do dv(w) := dv(w) + 1;
19: if cv ≥ �σ∆ log n� then
20: state := Ci ; start Algorithm 3;
21: end if
22: transmit Mi

A(v, cv) with probability 1/(κ2∆);
23: if Mi

C(w) received then
24: state := Asuc;
25: L(v) := w;
26: end if
27: if Mi

A(w, cw) received then
28: Pv := Pv ∪ {w}; dv(w) := cw;
29: if |cv − cw| ≤ �γ ζi log n� then cv := χ(Pv);
30: end if
31: end while

Algorithm 2 Coloring algorithm—node v in state R
upon entering state R:
1: while state = R do {* v is active *}
2: transmit MR(v, L(v)) with probability 1/(κ2∆);
3: if M0

C(L(v), v, tcv) received then
4: state := Atcv ·(κ2+1); start Algorithm 1;
5: end if
6: end while

Mi
A(v, cv): Sent by node v ∈ Ai , reporting its

counter value cv .
Mi

C(v): Sent by node v ∈ Ci .
M0

C(v,w, tc): Sent by leader v ∈ C0, assigning intra-
cluster color tc to w.

MR(v, L(v)): Sent by node v ∈ R, requesting an
intra-cluster color from leader L(v).

We sometimes omit some or all of the variables when
discussing messages if the exact value of the variables is
either clear from the context or irrelevant.

Algorithm 3 Coloring algorithm—node v in state Ci

upon entering state Ci :
1: colorv := i ; {* v is active *}
2: if i > 0 then
3: repeat until protocol stopped
4: transmit Mi

C(v) with probability 1/(κ2∆);
5: end repeat
6: else if i = 0 then
7: tc := 0;
8: Q := ∅; {FIFO request queue }
9: repeat until protocol stopped
10: if MR(w, v) received and w /∈ Q then
11: add w to Q;
12: end if
13: if Q is empty then
14: transmit M0

C(v) with probability 1/κ2;
15: else
16: tc := tc + 1;
17: Let w be first element in Q;
18: for �β log n� time slots do
19: transmit M0

C(v,w, tc) with
probability 1/κ2;

20: end for
21: Remove w from Q;
22: end if
23: end repeat
24: end if

Upon waking up, a node enters stateA0 and tries to become
a leader. Generally, whenever a node v enters a state Ai ,
for i ≥ 0, it first waits for �α∆ log n� time slots. As soon
as it receives a message Mi

C from a neighboring node that
has already joined Ci (Line 10 of Algorithm 1), v joins the
succeeding state Asuc, which corresponds to R in the case
i = 0, and Ai+1, otherwise. If no such message is received,
v becomes active and starts competing for color i (Line 16).

In order to ensure with high probability that no two neigh-
bors enter the same state Ci , the following process is
employed: An active node v ∈ Ai increments its counter cv

at every time step and transmits a message Mi
A(v, cv) with

probability 1/(κ2∆) (Lines 11 and 14, respectively). Whe-
never v receives a message Mi

C from a neighbor w ∈ Ci , v

knows that it cannot verify color i anymore and consequently
moves on to state Asuc.

When receiving a message Mi
A(w, cw) from a neighboring

competing node w ∈ Ai , v adds neighbor w to its competitor
list Pv and stores a local copy of w’s counter cw denoted by
dv(w) (Line 28). In each subsequent time slot, these local
copies dv(w) are incremented in order to keep track with the
real current counter of w as much as possible. Moreover, in
Line 29, v compares cw to its own counter cv . If the two coun-
ters are within the critical range �γ ζi log n� of each other,
v resets its own counter to χ(Pv). The value χ(Pv) ≤ 0
(defined in Line 15) is defined such that the new counter is
not within the critical range �γ ζi log n� of any locally stored
copyof neighboring counters. Notice, however, that because

123

278 T. Moscibroda, R. Wattenhofer

counters may be reset in any time slot, a locally stored copy
dv(w) of cw may be outdated without v knowing it. For ins-
tance, if w has to reset its counter due to receipt of a message
Mi

A(x, cx) from a neighbor x , and if v does not receive this
message (possibly due to a collision or because x and v are
not neighbors), it subsequently holds dv(w) 	= cw. Hence,
in spite of the definition of χ(Pv), a node’s counter may
be within the critical range of a neighboring counter after a
reset.

If in the above process, a node succeeds in incrementing
its counter up to the threshold of �σ∆ log n� (Line 19), it
decides on color i and joins state Ci . As mentioned before,
the technique of using counters and critical ranges guaran-
tees that quick progress is made simultaneously in all parts
of the network. Specifically, this method ensures that after
a limited (constant) number of trials, at least one competing
node in Ai can select Ci in every region of the graph.
At the same time, the method also guarantees with high pro-
bability that no two neighboring nodes join Ci , i.e., the set of
nodes induced by Ci is independent. While in state Ci , a node
continues transmitting Mi

C messages with constant probabi-
lity until the protocol is terminated (e.g., when all nodes are
properly initialized)

The state C0, the set of leaders, plays a special role in the
algorithm. A leader’s duty is to assign unique intra-cluster
colors to each node in its cluster. This process works as fol-
lows: Each non-leader v in R assigned to leader w attempts to
send a request message MR(v,w) for an intra-cluster color
to w. When w receives the first such request message from
v, it transmits for �β log n� time slots with probability 1/κ2

a message M0
C(w, v, tc), where tc denotes the intra-cluster

color assigned to v and is incremented for each subsequent
requesting node. If necessary, requests are buffered in an
internal queue Q, which helps in keeping all messages within
the size of O(log n) bits.

In state R, a non-leader node v requests an intra-cluster
color from its leader. As soon as node v receives a mes-
sage M0

C(w, v, tcv) from leader w containing its intra-cluster
color tcv , v moves on to state Atcv(κ2+1), i.e., it attempts to
verify color c = tcv(κ2+1)next. If verifying color c is unsuc-
cessful (i.e., if a neighbor selects color c earlier), a node joins
the next higher state Asuc = Atcv(κ2+1)+1, and so forth, until
it manages to verify and decide on a color. In Corollary 1 of
Sect. 5, we show that every node is capable of deciding on a
color from tcv(κ2 +1), tcv(κ2 +1)+1, . . . , tcv(κ2 +1)+κ2

with high probability. Hence, the reason for a node to verify
Atcv(κ2+1) upon receiving tcv is that by doing so, two nodes
with different intra-cluster colors do never compete for the
same color. This turns out to be an important ingredient when
upper bounding the amount of time each node must wait
before deciding on its color.

To obtain high probability results even in all possible
topologies and wake-up distributions, the algorithm’s

parameters are set to the values α ≥ 2γ κ2 + σ + 1, β ≥ γ ,
and

γ = 5κ2
[

1
e

(
1 − 1

κ2

)] κ1
κ2

[
1
e

(
1 − 1

κ2∆

)] 1
κ2

σ = 10e2κ2(
1 − 1

κ2

) (
1 − 1

κ2∆

) ,

for ∆ ≥ 2 in the subsequent analysis section. Simulation
results show that in networks whose nodes are uniformly
distributed at random significantly smaller values suffice. In
fact, the constants are sufficiently small to yield a practically
efficient coloring algorithm for wireless ad hoc and sensor
networks that can be employed for the purpose of initializing
the network.

5 Analysis

In this section, we prove that the algorithm of Sect. 4 is
both correct and complete with high probability. Correctness
means that no two adjacent nodes end up having the same
color, completeness leaves no node without a color. Further-
more, we show that every node decides on a color after at
most O(∆ log n) time slots for constant κ2. For clarity of
exposition, we will omit ceiling signs in our analysis, i.e, we
consider all non-integer values to be implicitly rounded to the
next higher integer value. Further, let cv(t) be the value of
the counter of node v at time t . We call a node in Ai covered
if either itself or one of its neighbors is in Ci .

For future reference, we begin with a simple lemma that
bounds the maximum number of nodes in the 2-hop neigh-
borhood of any node.

Lemma 1 Let G = (V, E) be a graph with at most κ2 inde-
pendent nodes in the 2-hop neighborhood of any node. It
follows that every node has at most κ2∆ 2-hop neighbors.

Proof Every node has at mostκ2 mutually independent nodes
in its 2-hop neighborhood, and each such node has at most
∆ neighbors.

We now state two lemmas that give us probabilistic bounds
on the amount of time required until a message is correctly
transmitted from a sender v to an intended receiver u in the
algorithm. Notice that both lemmas holds only under the
assumption that the set C0 of leaders forms a correct inde-
pendent set.

Lemma 2 Assume C0 forms an independent set. Consider
two neighboring nodes u and v and let I be a time interval
of length γ∆ log n. If v is active throughout the interval I , u
receives at least one message from v during I with probability
at least 1 − n−5.

123

Coloring unstructured radio networks 279

Proof Let pv denote the transmission probability of v. Recall
that nodes in C0 transmit with a probability of 1/κ2, whereas
the sending probability of all other nodes is 1/(κ2∆). The
probability Ps that v succeeds in sending a message to u in
a time slot t ∈ I is

Ps = pv

∏

i∈Nu\{v}
(1 − pi) = pv

∏

i∈Nu∩C0

(1 − pi)
∏

j∈Nu\C0

(1 − p j)

≥ pv

(
1 − 1

κ2

)κ1
(

1 − 1

κ2∆

)∆

> pv

[
1

e

(
1 − 1

κ2

)] κ1
κ2

[
1

e

(
1 − 1

κ2∆

)] 1
κ2

, (1)

where the last inequality follows from Fact 1. Because v is
assumed to be active throughout the interval I and for every
active node pv ≥ 1/(κ2∆), the probability Pno that u does
not receive a message from v during I is

Pno = (1 − Ps)
|I |

<

(

1− 1

κ2∆

[
1

e

(
1− 1

κ2

)]κ1
κ2

[
1

e

(
1− 1

κ2∆

)] 1
κ2

)γ∆ log n

≤
Fact 1

n
− γ

κ2

[
1
e

(
1− 1

κ2

)]κ1/κ2
[

1
e

(
1− 1

κ2∆

)]1/κ2

< n−5,

where the last inequality follows from the definition of γ .

Lemma 3 Assume C0 forms an independent set. Consider
two neighboring nodes u and v ∈ C0 and let I ′ be a time
interval of length γ log n. If v ∈ C0 throughout the interval
I ′, u receives at least one message from v during I ′ with
probability at least 1 − n−5.

Proof The proof is virtually identical to the previous one. In
the case v ∈ C0, it holds that pv = 1/κ2 and plugging this
value into Inequality (1) and applying Fact 1 yields

Pno = (1 − Ps)
|I ′|

<

(

1− 1

κ2

[
1

e

(
1− 1

κ2

)]κ1
κ2

[
1

e

(
1− 1

κ2∆

)] 1
κ2

)γ log n

<
Fact 1

n−5.

For the next lemma, we first define the notion of a suc-
cessful transmission. A node v transmits successfully in a
time slot t if all nodes u ∈ Nv \ {v} within the transmis-
sion range of v (i.e., in v’s 1-hop neighborhood) receive the
message without collision. In the following lemma, we show
that with high probability, at least one node in v’s neighbo-
rhood can transmit successfully during any interval of length
O(κ2∆ log n).

Lemma 4 Assume C0 forms an independent set. Consider
a node v ∈ Ai for an arbitrary i . Further, let I be a time
interval of length |I | = σ

2 ∆ log n during which v ∈ Ai is
active. With probability at least 1 − n−5, there is a time slot
t ∈ I such that a node u ∈ Nv ∩ Ai transmits successfully.

Proof By Lemma 1, there are at most κ2∆ nodes in the
2-neighborhood of any node. If in a time slot, a node w

is the only transmitting node in N 2
w, it is guaranteed that

w transmits successfully because no node outside N 2
w can

cause a collision at a neighbor of w. Define Ps(w) to be
the probability that a node w ∈ Nv ∩ Ai transmits suc-
cessfully in a given time slot t ∈ I . It holds that Ps(w) ≥
pw ·∏u∈N 2

w,u 	=w (1 − pu). The probability Ps that some node
in Nv ∩ Ai transmits successfully can be lower bounded by

Ps ≥ max
w∈Nv∩Ai

Ps(w) = max
w∈Nv∩Ai

⎛

⎝pw ·
∏

u∈N 2
w,u 	=w

(1 − pu)

⎞

⎠

= max
w∈Nv∩Ai

⎛

⎝pw

∏

u∈N 2
w\C0

(
1− 1

κ2∆

) ∏

u∈N 2
w∩C0

(
1− 1

κ2

)⎞

⎠

≥ 1

κ2∆
·
(

1 − 1

κ2∆

)κ2∆
(

1 − 1

κ2

)κ2

≥
Fact 1

1

e2κ2∆

(
1 − 1

κ2∆

) (
1 − 1

κ2

)

because maxw∈Nv∩Ai pw is at least 1/(κ2∆) for as long as
v is active in Ai . Finally, the probability Pno that no node in
Nv ∩Ai manages to transmit successfully within the interval
I during which v is active in Ai is

Pno = (1 − Ps)
|I |

≤
(

1 − 1

e2κ2∆

(
1 − 1

κ2∆

) (
1 − 1

κ2

)) σ
2 ∆ log n

≤
Fact 1

e
− σ

2e2κ2

κ2−1
κ2

κ2∆−1
κ2∆

log n
< n−5.

The last step follows from the definition of σ .

Lemmas 2–4 are based on the assumption that the set of
leaders C0 forms an independent set. Therefore, in order to
make full use of these lemmas, we need to prove that this
assumption holds for the entire duration of the algorithm.
Intuitively, the reason for our claim is the following. By the
definition of the algorithm, only nodes in state A0 can enter
state C0. If such a candidate node v ∈ A0 transmits success-
fully, all neighboring nodes w ∈ Nv ∩ A0 having a counter
value within the critical range γ ζ0 log n = γ log n of v’s
counter will reset their counter to χ(Pw), which is by defi-
nition outside the critical range of v. Hence, once node v

was able to transmit successfully, no neighboring candidate
node w ∈ Nv ∩ A0 can block v from incessantly incremen-
ting its counter until it reaches the threshold σ∆ log n which
enables v to join C0. The only way v can still be prevented
from becoming a leader is if v receives a message M0

C from
a neighbor that has entered C0 before v’s counter reaches the
threshold. Moreover, since neighboring nodes are outside the
critical range, it can be shown that once v becomes a leader,
v has sufficient time to inform all neighbors of its having
joined C0.

123

280 T. Moscibroda, R. Wattenhofer

We formalize this intuition in Theorem 2 and its sub-
sequent proof. More precisely, the following theorem proves
the more general statement that every color class Ci (i.e., not
merely C0) forms an independent set at all times during the
algorithm’s execution with high probability. Notice that the
theorem establishes the algorithm’s correctness, because if
all color classes form independent sets, the resulting coloring
is necessarily correct.

Theorem 2 For all i , the color class Ci forms an independent
set throughout the execution of the algorithm with probability
at least 1 − 2n−3.

Proof At the beginning, when the first node wakes up, the
claim certainly holds, because Ci = ∅ for all i . We will
now show that with high probability the claim continues to
hold throughout the algorithm’s execution. For this purpose,
consider an arbitrary node v ∈ Ai and assume for contradic-
tion that v is the first node to violate the independence of Ci

for an arbitrary i ≥ 0. That is, we assume that v is the first
node to enter Ci even though a neighboring node w has ente-
red Ci in the same or a previous time slot. Note that if two or
more nodes violate the independence of Ci simultaneously,
we consider each of them to be the first node. We now prove
that the probability of v being such a first node for a specific Ci

is at most 2n−5. Applying the union bound, we conclude that
the probability that there exists a node v ∈ V that violates the
independence of some Ci is bounded by n2 × 2n−5 = 2n−3.

Let t∗v be the time slot in which v enters state Ci , i ≥ 0.
Since v is among the first nodes to violate the independence
of any Ci , and hence also C0, we know that for all time slots
t < t∗v , C0 is a correct independent set. That is, if v is among
the first nodes to create a violation, Lemmas 2–4 can be
applied until time slot t∗v − 1.

Let w be a neighbor of v that has joined Ci before v (or
in the same time slot as v), say at time t∗w ≤ t∗v . We consider
two cases, t∗w < t∗v − γ ζi log n and t∗w ≥ t∗v − γ ζi log n, and
start with the former.

If t∗w < t∗v − γ ζi log n, then w entered state Ci at least
γ ζi log n time slots before v. By Lemma 2 (i>0) or Lemma 3
(i = 0), the probability that w manages to successfully send
a message Mi

C to v during these γ ζi log n time slots (during
which v must be in Ai if it joins Ci at time t∗v) is at least
1 − n−5. By Line 24 of Algorithm 1, however, v leaves state
Ai and moves on to state Asuc upon receiving Mi

C , i.e., it
does not enter Ci .

For the second case, we compute the probability that v

joins Ci within γ ζi log n time slots after t∗w. Recall that by
the definition of the algorithm, it holds that cw = σ∆ log n
at time t∗w. Consider the time interval Iw of length γ∆ log n
before t∗w. Because in each time slot, counters of nodes in
Ai are either incremented by one or set to χ(Pv) ≤ 0 and
because σ∆ log n > 2γ∆ log n, it follows that cw was not
reset during Iw. If it was, cw would not have reached σ∆ log n

by time t∗w. Similarly, if cv was reset during Iw, t∗v could not
be within γ ζi log n of t∗w. Hence, neither cw nor cv were
reset during the interval Iw and it holds that at time t∗w, cv ≥
σ∆ log n − γ ζi log n. More generally, it holds that

|cw(t∗w − h) − cv(t
∗
w − h)| ≤ γ ζi log n

for each h = 0, . . . , γ∆ log n − 1. By Lemma 2, the proba-
bility that v receives at least one message Mi

A from w during
these γ∆ log n time slots in Iw is at least 1 − n−5. If it does
receive such a Mi

A, v resets its counter (Line 29) and does
not enter Ci within γ ζi log n time slots of t∗w.

Combining both cases, we know that with probability at
least 1 − n−5, v does not enter Ci until γ ζi log n time slots
after its first neighbor has joined Ci . And with probability at
least 1 − n−5, v does not enter Ci thereafter. Consequently,
the probability of v being a first node to violate the inde-
pendence of a specific Ci is at most 2n−5. Each state Ci thus
remains independent throughout the algorithm’s execution
with probability at least 1 − 2n−4. Finally, we can crudely
upper bound the number of non-empty states Ci used in the
algorithm by n, because in Lines 7 and 15, a node changes
its state only if it has received a message Mi

C from a node
that has already decided on Ci . The probability that all color
classes form independent sets at all times is at least 1−2n−3.

Theorem 2 proves that with high probability, all color
classes are independent and hence, the algorithm eventually
produces a correct coloring. Notice that the theorem implies
that the set of leaders C0 forms an independent set with high
probability and hence, we can use Lemmas 2–4 without res-
triction. What remains to be shown are the bounds on the
running time as well as on the number of colors required.
For this purpose, we first prove a lemma that bounds the
number of nodes v that can simultaneously be in the same
active state Ai .

Lemma 5 If the set of nodes in C0 is independent, then for
any i > 0, the number of nodes in any 1-hop neighborhood
that ever enter state Ai is at most κ2.

Proof A node v enters a state Ai , i > 0, for the first time
when being in state R and receiving a message M0

C(w, v, tcv)

from its leader w = L(v). Consider a leader w ∈ C0 and let
Sw denote the set of nodes having w as their leader, i.e.,
Sw = {v | L(v) = w}. Since the value tc is incremented for
every new node v in the queue Q, w assigns to each v ∈ Sw

a unique intra-cluster color tcv . While being unique within
each cluster, these intra-cluster colors do not constitute a legal
coloring, because neighboring nodes belonging to different
clusters may be assigned the same intra-cluster color tcv by
their respective leaders. If the set of leaders w ∈ C0 forms
an independent set, the maximum number of leaders w ∈ C0

in any 2-hop neighborhood is κ2. Therefore, every node can
have at most κ2 1-hop neighbors (including itself!) with the
same intra-cluster color tcv .

123

Coloring unstructured radio networks 281

In Line 4 of Algorithm 2, a node v with tcv enters state
Atcv(κ2+1). That is, two nodes with subsequent intra-cluster
colors tcv and tcv +1 enter states Ai and A j , where |i − j | =
κ2 + 1. By the definition of Algorithm 1, the only way a
node can move from state Ai to state Ai+1 is by receiving
a message Mi

C from a neighboring node that has already
entered Ci . Without receiving Mi

C a node will eventually join
state Ci itself. Hence, whenever a node v in Ai moves on to
state Ai+1, at least one of its neighbors must have joined Ci .
From this, it follows that each of the at most κ2 neighbors
of a node v that are assigned the same intra-cluster color tcv

will decide on a color in the range tcv(κ2 + 1), . . . , tcv(κ2 +
1) + κ2. Notice that this range does not overlap with the
corresponding range of the next higher intra-cluster color
which starts with color (tcv +1)(κ2 +1) > tcv(κ2 +1)+κ2.
Consequently, nodes assigned to different intra-cluster colors
are never in the same state Ai for any i > 0. And because
at most κ2 nodes are assigned the same tcv in the 1-hop
neighborhood of any node v, the lemma follows.

The proof of Lemma 5 implicitly gives raise to the following
corollary.

Corollary 1 While executing the algorithm, every node v is
in at most κ2 + 1 different states Ai . Specifically, the states
are A0,Atcv(κ2+1), . . . ,Atcv(κ2+1)+κ2 . This holds under the
condition that the nodes in C0 are independent.

The next lemma gives a lower bound on the counters cv

of any node v ∈ Ai .

Lemma 6 Let cv be the counter of node v ∈ Ai . It holds
throughout the entire execution of the algorithm that cv ≥
−2γ∆ log n − 1, if i = 0, and cv ≥ −2κ2γ∆ log n − 1,
otherwise. This holds under the condition that the nodes in
C0 are independent.

Proof Consider a node v ∈ Ai . The only time v’s counter
cv is set to a negative value is when (re)setting cv to χ(Pv)

in Lines 9 or 18 of Algorithm 1. χ(Pv) is defined as the
largest value such that it holds χ(Pv) < 0 and χ(Pv) /∈
[cu −γ ζi log n, . . . , cu +γ ζi log n] for each u ∈ Pv . Because
the set Pv contains only nodes that are also in state Ai , it
follows from Lemma 5 that |Pv| ≤ κ2 for any i > 0, if the
nodes in C0 form an independent set. In the case i = 0, it
trivially holds that |Pv| ≤ ∆.

The number of values that are prohibited for χ(Pv) is
therefore at most κ2 · 2γ ζi log n in the case i > 0 and ∆ ·
2γ ζ0 log n if i = 0. Plugging in the values for ζi , we can
write

χ(Pv) ≥
{−2γ∆ log n − 1, i = 0

−2κ2γ∆ log n − 1, i > 0
,

which concludes the proof.

Having the last two lemmas, we are now ready to analyze
the algorithm’s running time, that is, to bound the maximum
amount of time between a node’s waking up and its entering
a color class Ci . We first obtain a bound on the amount of
progress achieved by nodes in a state Ai in every part of the
graph.

Lemma 7 Let T i
v denote the number of time slots a node v

spends in state Ai . With probability at least 1−3n−3, it holds
for all v and i that T i

v ∈ O(κ3
2∆ log n).

Proof By Lemma 2, we know that with probability at least
1 − 2n−3, the set of nodes in state C0 form an independent
set. In the remainder of the proof, we focus on this case and
assume that all nodes in C0 are mutually independent.

Let tv denote the time slot in which node v ∈ Ai executes
Line 15 of Algorithm 1. Until tv , v spends exactly α∆ log n
time slots in Ai . By Lemma 4, we know that at least one
node w ∈ Nv ∩ Ai is able to transmit successfully during
the interval I = [tv, tv + σ

2 ∆ log n] with probability at least
1 − n−5 (unless v leaves state Ai during that interval in
which case Lemma 7 clearly holds). Say this happens at time
t s
w. According to Lines 6 and 17 of Algorithm 1, all nodes

u ∈ Nw ∩Ai store a local copy du(w) of w’s current counter
cw upon receiving w’s message Mi

A in time slot t s
w. In Lines

5 and 12, this local copy is incremented by one in each sub-
sequent time slot. That is, as long as w’s real counter is not
reset to χ(Pw), every node u ∈ Nw ∩ Ai has a correct local
copy du(w) of w’s current counter cw.

We now show that w’s counter cw cannot be reset by any
node u ∈ Nw ∩ Ai after t s

w anymore. First, in Line 29, every
node u ∈ Nw ∩ Ai whose counter cu(t s

w) at time t s
w is in the

range

[cw(t s
w) − γ ζi log n, . . . , cw(t s

w) + γ ζi log n]
resets its own counter to χ(Pu) in time slot t s

w. Recall that
χ(Pu) is defined as the maximum value such that χ(Pu) ≤ 0
and χ(Pu) /∈ [cx − γ ζi log n, . . . , cx + γ ζi log n] for each
x ∈ Pu . Specifically, because w transmited successfully, this
means that χ(Pu) /∈ [cw − γ ζi log n, . . . , cw + γ ζi log n],
and hence |cu(t s

w + 1) − cw(t s
w + 1)| > γζi log n. Clearly,

the same inequality also holds for all nodes u ∈ Nw ∩
Ai whose counter was not in the critical range [cw(t s

w) −
γ ζi log n, . . . , cw(t s

w) + γ ζi log n] in the first place.
In summary, we have that in time slot t s

w + 1, every node
u ∈ Nw ∩ Ai has a correct local copy du(w) of cw, and

|cu(t s
w + 1) − cw(t s

w + 1)| > γζi log n. (2)

Because the counter of every active neighbor in Ai thus
differs by at least γ ζi log n from cw, none of these nodes
can cause w to reset its counter in Line 29 of the algorithm.
Node w can thus increment its counter in each time slot and
hence, all nodes u ∈ Nw ∩ Ai continue to have a correct
local copy of cw after t s

w. Consequently, even if a neighboring

123

282 T. Moscibroda, R. Wattenhofer

x

w
v

Fig. 3 Node v is active in some state Ai . By Lemma 4, some neighbor
w ∈ Ai (possibly v itself) can transmit successfully within σ

2 ∆ log n
time slots. After this successful transmission, w can only be prevented
from entering Ci if one of its neighbors x ∈ Nw joins Ci earlier

node u has to reset its counter to χ(Pu), this cannot cause cu

to come within γ ζi log n of cw by the definition of χ(Pu).
Thus, it follows by induction over the subsequent time slots
that no node u ∈ Ai is able to reset w’s counter after its
successful transmission at time t s

w. By Lemma 6, we know
that for all i , cw ≥ −2γ κ2∆ log n − 1 at time t s

w. Hence,
if w stays in Ai , it requires at most (2γ κ2 + σ)∆ log n + 1
time slots in order to reach the threshold σ∆ log n, which
enables to enter state Ci . Also, nodes that join Ai after ts

w do
not transmit for at least α∆ log n time slots, and because α >

2γ κ2 +σ +1, it follows that such nodes cannot interfere with
w’s incrementing its counter either. Hence, after a successful
transmission, there remains only one way to prevent w from
incessantly incrementing its counter and entering Ci : if w

receives a message Mi
C before its counter reaches σ∆ log n.

In summary, we have that after a successful transmission,
either w enters Ci itself within (2γ κ2 + σ)∆ log n + 1 time
slots or there must exist a neighboring node x of w that joins
Ci earlier (see Fig. 3). In the first case, v receives a message
Mi

C from w within γ ζi log n after w’s entering Ci with proba-
bility at least 1−n−5 (by Lemma 2 if i > 0 and by Lemma 3
if i = 0). In the other case, the node x (which, in this case,
is not a direct neighbor of v) must be a 2-hop neighbor of v.
If v is not covered by x and remains in Ai , at least one node
w2 ∈ Nv ∩ Ai can transmit successfully within σ

2 ∆ log n
time slots thereafter with high probability (Lemma 4), and
the argument repeats itself. That is, as long as v is active in
Ai , at least one node in v’s 2-hop neighborhood enters Ci per
σ
2 ∆ log n+(2γ κ2+σ)∆ log n+1 time slots with probability
at least 1 − n−5.

As shown in Fig. 3, the number of times a node x ∈ N 2
v can

join Ci without covering v (and thus forcing v to leave state
Ai) is by definition at most κ2. Finally, once v becomes cove-
red, an additional γ ζi log n time slots in Ai may be required
before, with probability at least 1 − n−5, its first neighbor in
Ci sends a message Mi

C to v. As stated at the beginning of

the proof, our argument holds under the condition that the
set of leaders C0 forms an independent set which is true with
probability at least 1 − 2n−3 by Theorem 2. Therefore, with
probability Pv , node v spends at most

T i
v ≤ α∆ log n + κ2

(σ

2
∆ log n + (2γ κ2 + σ)∆ log n + 1

)

+ γ ζi log n ∈ O(κ3
2∆ log n)

time slots in state Ai , where Pv is at least

Pv ≥ 1 − (κ2 · n−5 + n−5 + 2n−3) > 1 − 3n−3,

for large enough n because κ2 ≤ n and γ ∈ O(κ2). This
concludes the proof.

Next, we bound the time until a node v in the request state
R receives its intra-cluster color (when receiving a message
M0

C(w, v, tcv)) from its leader w upon which it leaves state R
(cf Line 4 of Algorithm 2). Specifically, the following lemma
shows that each node v spends at most time O(κ2∆ log n) in
state R.

Lemma 8 Let T R
v denote the number of time slots a node v

spends in state R. With probability at least 1 − 4n−3 it holds
for each v ∈ V that T R

v ≤ (γ + β)∆ log n.

Proof The time T R
v denotes the time between v starting to

request an intra-cluster color from its leader L(v) ∈ C0 to
the time this leader succeeds in assigning the intra-cluster
color tcv to v without collision. Let w be the leader of v, i.e.,
w = L(v). We divide T R

v into two parts. First, by Lemma 2,
v is able to send its request MR(v, L(v)) to w within time
γ∆ log n with probability 1 − n−5. Upon receipt, w queues
v’s request until it has served all its other, previously received
requests. In Line 19 of Algorithm 3, w transmits a message
M0

C with probability 1/κ2 to the currently considered reques-
ting node for β log n time slots, before moving on to the next
request, if available. Because β ≥ γ , Lemma 3 holds for w’s
response to v with probability 1 − n−5. Because w can have
at most ∆ requesting nodes in its queue, T R

v is at most

T R
v ≤ γ∆ log n + ∆ · β log n = (γ + β)∆ log n

for each node v ∈ V with probability at least 1−2n−5. As the
set C0 forms an independent set with probability 1 − 2n−3,
for large enough n the claim holds with probability at least
1 − 2n−5 − 2n−3 ≥ 1 − 4n−3.

Lemmas 7 and 8 are the ingredients required to prove the
following theorem that bounds the algorithm’s running time,
i.e., the amount of time every node requires after its wake-up
before deciding on a color.

Theorem 3 Every node v decides on its color within time
O(κ4

2 ∆ log n) after its wake-up with probability at least
1 − 4n−1.

Proof Let T Y
v be the number of time slots a node v spends

in state Y . For each node v, we have

123

Coloring unstructured radio networks 283

Tv =
∑

i≥0

T Ai
v + T R

v .

Lemma 8 bounds T R
v by (γ + β)∆ log n with probability

at least 1 − 4n−3 for each v, and thus with probability at
least 1 − 4n−2 for all nodes in V . Moreover, when applying
the union bound to the result of Lemma 7, it follows that
T Ai

v ∈ O(κ3
2∆ log n) for all v and i with probability at least

1 − 4n−1. Finally, because every node is in at most κ2 + 1
different states (due to Corollary 1) Ai , it follows that for
some constant λ,

Tv=(κ2 + 1) · λκ3
2∆ log n+(γ+β)∆ log n ∈ O(κ4

2 ∆ log n)

with probability at least 1 − 4n−1, for sufficiently large n.

The only thing remaining is a bound on the number of
different colors assigned by the algorithm. For practical pur-
poses, the locality of the assignment of colors to nodes plays
a crucial role. Generally, the colors assigned to each node
should be as “low” as possible. If the vertex coloring in the
graph is used for setting up a time-division scheduling in
a wireless network, for instance, the bandwidth assigned to
a node v is often inversely proportional to the value of the
highest color in its neighborhood. The highest color assi-
gned to a neighbor of a node v by the algorithm in Sect. 4 is
dependent only on local graph properties. This allows nodes
located in low density areas of the network to send more
frequently than nodes in dense and congested parts.

Theorem 4 Let θv := maxw∈N 2
v

δw be the maximum node

degree in N 2
v and let φv be the highest color assigned to a

node in Nv . With probability at least 1 − 2n−3 the algorithm
produces a coloring such that, for all v ∈ V , φv ≤ κ2 · θv .

Proof Let w ∈ C0 be a leader and let sw be the number of
nodes v ∈ Nw having w as their leader. Leader w assigns
unique intra-cluster colors 1, 2, . . . , sw to these nodes. As
shown in Corollary 1, if the set of leaders forms a correct
independent set, a non-leader node v assigned intra-cluster
color tcv ends up selecting a color from the range tcv(κ2 +
1), . . . , tcv(κ2 + 1) + κ2. Since sw ≤ δw and every node
u ∈ Nv is assigned to a leader w ∈ N 2

v , the theorem follows.

The following theorem combines the results obtained in
Theorems 2–4.

Theorem 5 The algorithm produces a correct coloring with
at most κ2∆ colors with probability at least 1 − 2n−3. Fur-
thermore, with probability at least 1 − 4n−1 every node irre-
vocably decides on its color O(κ4

2 ∆ log n) time slots after its
wake-up.

Theorem 5 gives raise to a number of specific results for
graphs that have been frequently studied in the literature on ad
hoc and sensor networks. The most frequently adopted model

has been the unit disk graph in which nodes are assumed to be
located in the Euclidean plane and there is a communication
link between two nodes if and only if their mutual distance
is at most 1. In unit disk graphs as well as any other family
of graphs in which κ2 ∈ O(1), we have the following result.

Corollary 2 (Unit disk graph) Let G = (V, E) be a unit
disk graph. With high probability, the algorithm produces a
correct coloring with O(∆) colors and every node decides
on its color within O(∆ log n) time slots after its wake up.

Notice that O(∆) colors is asymptotically optimal since a
unit disk graph with maximum degree ∆ has a clique of size
Ω(∆).

In [15], the unit disk graph model has been extended to
general metric spaces resulting in so-called unit ball graphs
(UBG). The nodes of a UBG are the points of a (possibly
non-Euclidean) metric space; two nodes are connected if and
only if their distance is at most 1. Using this definition, we
can formulate a result on coloring in general network graphs
that depends on the doubling dimension of the underlying
metric. A metric’s doubling dimension is the smallest ρ such
that every ball of radius d can be covered by at most 2ρ balls
of radius d/2.

Lemma 9 Let G be a unit ball graph and let ρ be the dou-
bling dimension of the underlying metric space. Every 2-hop
neighborhood in G contains at most 4ρ mutually independent
nodes, i.e., κ2 ≤ 4ρ .

Proof By the definition of a UBG, the 2-hop neighborhood
of node v in G is completely covered by the ball B2(v)

with radius 2 around v. By the definition of the doubling
dimension ρ, B2(v) can be covered by at most 22ρ balls of
radius 1/2. By the triangle inequality, two nodes inside a
ball of radius 1/2 have distance at most 1, that is, the nodes
inside a ball of radius 1/2 form a clique in G. The number of
independent nodes in v’s 2-hop neighborhood is therefore at
most 4ρ .

Plugging in the result of Lemma 9, we obtain the following
result for coloring in the unstructured radio network model
of general graphs.

Corollary 3 (Unit ball graphs) Let G = (V, E)be a unit ball
graph and let ρ be the doubling dimension of the underlying
metric space. With high probability, the algorithm produces a
correct coloring with O(4ρ∆) colors and every node decides
on its color within O(44ρ∆ log n) time slots after its wake-
up. For metrics with constant doubling dimension, the same
asymptotic bounds as in the unit disk graph are achieved.

6 Conclusions

Setting up an initial structure in newly deployed ad hoc and
sensor networks is a challenging task that is of great practical

123

284 T. Moscibroda, R. Wattenhofer

importance. In this paper, we have given a randomized
algorithm that computes an initial coloring from scratch. This
is a first step towards the goal of establishing an efficient
collision-free TDMA schedule from scratch.

A direction for future research is to address the issue that
our algorithm is based on the assumption that nodes know
an estimate of n and ∆. In single-hop radio networks with
synchronous wake-up, there are efficient methods enabling
nodes to approximately count the number of their neighbors,
e.g. [9]. If such techniques could be adapted to an asynchro-
nous multi-hop scenario, nodes might be able to estimate the
local maximum degree, which could then be used instead of
∆ throughout the algorithm.

Acknowledgments We are indebted to Maurice Herlihy, Lucia
Draque Penso, and Dieter Rautenbach for valuable comments on the
initial version of this paper.

References

1. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of
broadcast in radio networks: an exponential gap between determi-
nism and randomization. In: Proceedings 6th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 98–108 (1987)

2. Busch, C., Magdon-Ismail, M., Sivrikaya, F., Yener, B.:
Contention-free MAC protocols for wireless sensor networks. In:
Proceedings of the 18th Annual Conference on Distributed Com-
puting (DISC) (2004)

3. Cole, R., Vishkin, U.: Deterministic coin tossing with applications
to optimal parallel list ranking. Inf. Control 70(1), 32–53 (1986)

4. Farach-Colton, M., Fernandes, R., Mosteiro, M.: Bootstrapping
a hop-optimal network in the weak sensor model. In: Procee-
dings of 13th Annual European Symposium on Algorithms (ESA),
pp. 827–838 (2005)

5. Gasieniec, L., Pelc, A., Peleg, D.: The wakeup problem in syn-
chronous broadcast systems (Extended Abstract). In: Proceedings
of the 19th ACM Symposium on Principles of Distributed Com-
puting (PODC), pp. 113–121 (2000)

6. Goldberg, A., Plotkin, S., Shannon, G.: Parallel symmetry-
breaking in sparse graphs. In: Proceedings of the 19th Annual ACM
Conference on Theory of Computing (STOC), pp. 315–324 (1987)

7. Goldberg, A.V., Plotkin, S.A.: Parallel (∆+1)-coloring of constant-
degree graphs. Inf. Process. Lett. 25, 241–245 (1987)

8. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-
efficient communication protocol for wireless microsensor net-
works. In: Proceedings of the 33rd Hawaii International
Conference on System Sciences (HICSS), p. 8020. IEEE Com-
puter Society (2000)

9. Jurdzinski, T., Kutylowski, M., Zatopianski, J.: Energy-efficient
size approximation of radio networks with no collision detec-
tion. In: Proceedings of the 8th Annual International Confe-
rence on Computing and Combinatorics (COCOON), pp. 279–289
(2002)

10. Jurdzinski, T., Kutylowski, M., Zatopianski, J.: Weak communica-
tion in radio networks. In: Proceedings of Euro-Par, pp. 397–408
(2002)

11. Jurdzinski, T., Stachowiak, G.: Probabilistic algorithms for the
wakeup problem in single-hop radio networks. In: Proceedings of
13th Annual International Symposium on Algorithms and Com-
putation (ISAAC). Lecture Notes in Computer Science, vol. 2518,
pp. 535–549 (2002)

12. Krumke, S.O., Marathe, M.V., Ravi, S.S.: Models and approxima-
tion algorithms for channel assignment in radio networks. Wirel.
Netw. 7(6), 575–584 (2001). doi:10.1023/A:1012311216333

13. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Initializing newly
deployed Ad Hoc and sensor networks. In: Proceedings of 10th
Annual International Conference on Mobile Computing and Net-
working (MOBICOM), pp. 260–274 (2004)

14. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Radio network cluste-
ring from scratch. In: Proceedings of 12th Annual European Sym-
posium on Algorithms (ESA), pp. 460–472 (2004)

15. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of boun-
ded growth. In: Proceedings of the 23rd ACM Symposium on Prin-
ciples of Distributed Computing (PODC) (2005)

16. Linial, N.: Locality in distributed graph algorithms. SIAM J. Com-
put. 21(1), 193–201 (1992)

17. Luby M.: A simple parallel algorithm for the maximal independent
set problem. SIAM J. Comput. 15, 1036–1053 (1986)

18. McGlynn, M.J., Borbash, S.A.: Birthday protocols for low energy
deployment and flexible neighbor discovery in Ad Hoc wireless
networks. In: Proceedings of the 2nd ACM International Sympo-
sium on Mobile Ad Hoc Networking & Computing (MOBIHOC),
pp. 137–145. ACM Press (2001)

19. Moscibroda, T., von Rickenbach, P., Wattenhofer, R.: Analyzing
the energy-latency trade-off during the deployment of sensor net-
works. In: Proceedings of the 25th Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM) (2006)

20. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio net-
works. In: Proceedings of the 17th ACM Symposium on Parallel
Algorithms and Architectures (SPAA) (2005)

21. Moscibroda, T., Wattenhofer, R.: Maximal independent sets in
radio networks. In: Proceedings of the 23rd ACM Symposium on
Principles of Distributed Computing (PODC) (2005)

22. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol design
beyond graph-based models. In: Proceedings of the 5th Workshop
on Hot Topics in Networks (HotNets) (2006)

23. Nakano, K., Olariu, S.: Energy-efficient initialization protocols
for single-hop radio networks with no collision detection. IEEE
Trans. Parall. Distrib. Syst. 11(8), 851–863 (2000). doi:10.1109/
71.877942

24. Nakano, K., Olariu, S.: Randomized initialization protocols for
radio networks. Chapter in Handbook of Wireless Networks and
Mobile Computing, pp. 195–218 (2002)

25. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for
sparse networks. Distrib. Comput. 14(2), 97–100 (2001)

26. Peleg, D.: Distributed computing: a locality-sensitive approach.
Monographs on Discrete Mathematics and Applications. SIAM,
Philadelphia (2000)

27. Ramanathan, S., Lloyd, E.L.: Scheduling algorithms for multi-
hhop radio networks. In: Conference Proceedings on Communica-
tions Architectures & Protocols (SIGCOMM), pp. 211–222. ACM
Press (1992). doi:10.1145/144179.144283

28. Schneider, J., Wattenhofer, R.: A log-star distributed maximal inde-
pendent set algorithm for growth-bounded graphs. In: 27th ACM
Symposium on Principles of Distributed Computing (PODC),
Toronto (2008)

29. Tobagi, F.A., Kleinrock, L.: Packet switching in radio channels:
part II. The Hidden Terminal Problem in Carrier Sense Multiple
Access and the Busy Tone Solution. COM-23(12), pp. 1417–1433
(1975)

30. Woo, A., Culler, D.E.: A transmission control scheme for media
access in sensor networks. In: Proceedings of the 7th International
Conference on Mobile Computing and Networking (MOBICOM),
pp. 221–235. ACM Press (2001). doi:10.1145/381677.381699

123

http://dx.doi.org/10.1023/A:1012311216333
http://dx.doi.org/10.1109/71.877942
http://dx.doi.org/10.1109/71.877942
http://dx.doi.org/10.1145/144179.144283
http://dx.doi.org/10.1145/381677.381699

	Coloring unstructured radio networks
	Abstract
	1 Introduction
	2 Model and notation
	3 Related work
	4 Algorithm
	5 Analysis
	6 Conclusions
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

