Clairvoyant Mechanisms for Online Auctions

Philipp Brandes, Zengfeng Huang, Hsin-Hao Su and Roger Wattenhofer

ETH Zurich - Distributed Computing Group - www.disco.ethz.ch

Online Auctions

Valuation

Preemption Price

What if we knew the future?

What if we knew the future?

Difficulty
$$\Delta = \min_{S} \max_{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(S,r)}$$

\$10

1

Difficulty
$$\Delta = \min_{S} \max_{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(S,r)}$$

Theorem

An online mechanism that knows Δ can be Δ^5 competitive

 Δ^{4+2}

 $v_j \Delta^{2000}$

Theorem

An online mechanism that knows Δ can be

 Δ^5 competitive; this is optimal.

Difficulty
$$\Delta = \min_{S} \max_{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(S,r)}$$

Theorem

An online mechanism that knows Δ can be Δ^5 competitive; this is optimal.