Clairvoyant Mechanisms for Online Auctions

Philipp Brandes, Zengfeng Huang, Hsin-Hao Su and Roger Wattenhofer

Online Auctions

Valuation

Preemption Price

What if we knew the future?

$\$ 1$	$\$ 10$	$\$ 5$	$\$ 200$	$\$ 1500$	$\$ 2500$
$\$ 10$	$\$ 2000$	$\$ 200$	$\$ 750$	$\$ 5000$	$\$ 3000$

What if we knew the future?

$\$ 1$	$\$ 10$	$\$ 5$	$\$ 200$	$\$ 1500$	$\$ 2500$
$\$ 10$	$\$ 2000$	$\$ 200$	$\$ 750$	$\$ 5000$	$\$ 3000$

Clairvoyant Model

Calculate in every round $r: \frac{\operatorname{opt}(r)}{\operatorname{gain}(r)}=\frac{1}{1}$
Score for a set S of accepted bidders: $\max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(r)}$

Clairvoyant Model

Calculate in every round $r: \frac{\operatorname{opt}(r)}{\operatorname{gain}(r)}=\frac{10}{1}$
Score for a set S of accepted bidders: $\max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(r)}$

Clairvoyant Model

Calculate in every round $r: \frac{\operatorname{opt}(r)}{\operatorname{gain}(r)}=\frac{10}{-5}$
Score for a set S of accepted bidders: $\max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(r)}$

Clairvoyant Model

Calculate in every round $r: \frac{\operatorname{opt}(r)}{\operatorname{gain}(r)}=\frac{200}{1}$
Score for a set S of accepted bidders: $\max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(r)}$

Clairvoyant Model

Calculate in every round $r: \frac{\operatorname{opt}(r)}{\operatorname{gain}(r)}=\frac{1500}{1500-10}$
Score for a set S of accepted bidders: $\max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(r)}$

Clairvoyant Model

Calculate in every round $r: \frac{\operatorname{opt}(r)}{\operatorname{gain}(r)}=\frac{2500}{1500-10}$
Score for a set S of accepted bidders: $\max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(r)}$

Clairvoyant Model

Score for a set S of accepted bidders: $\max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(r)}$

Clairvoyant Model

$\$ 1$	$\$ 10$	$\$ 5$	$\$ 200$	$\$ 1500$	$\$ 2500$
$\$ 10$	$\$ 2000$	$\$ 200$	$\$ 750$	$\$ 5000$	$\$ 3000$

Difficulty $\Delta=\min _{S} \max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(S, r)}$

Δ Online Mechanisms

Difficulty $\Delta=\min _{S} \max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(S, r)}$

Δ Online Mechanisms

Difficulty $\Delta=\min _{S} \max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(S, r)}$

Δ Online Mechanisms

Difficulty $\Delta=\min _{S} \max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(S, r)}$

Δ Online Mechanisms

Difficulty $\Delta=\min _{S} \max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(S, r)}$

Δ Online Mechanisms

$\$ 1$	$\$ 10$	$\$ 5$	$\$ 200$	$\$ 1500$
$\$ 10$	$\$ 2000$	$\$ 200$	$\$ 750$	$\$ 5000$

Difficulty $\Delta=\min _{S} \max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(S, r)}$

Δ Online Mechanisms

$\$ 1$	$\$ 10$	$\$ 5$	$\$ 200$	$\$ 1500$	$\$ 2500$
$\$ 10$	$\$ 2000$	$\$ 200$	$\$ 750$	$\$ 5000$	$\$ 3000$

Difficulty $\Delta=\min _{S} \max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(S, r)}$

Δ Online Mechanisms

Difficulty $\Delta=\min _{S} \max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(S, r)}$

Theorem

An online mechanism that knows Δ can be Δ^{5} competitive

Lower Bound

1	Δ^{0}	Δ^{1}	Δ^{2}	Δ^{3}	Δ^{4}	Δ^{5}
1	Δ^{0+2}	Δ^{1+2}	Δ^{2+2}	Δ^{3+2}	Δ^{4+2}	Δ^{5+2}

Lower Bound

Lower Bound

v_{j}

Lower Bound

$v_{j} \Delta$
$v_{j} \Delta^{2}$

$v_{j} \Delta^{2}$
$v_{j} \Delta^{2}$
$v_{j} \Delta^{1000}$

$v_{j} \Delta^{1337}$ 1
$\mathrm{v}_{j} \Delta^{1336}$

Δ^{4+2}

Lower Bound

Lower Bound

Theorem
An online mechanism that knows Δ can be Δ^{5} competitive; this is optimal.

$\$ 10$	$\$ 100$	$\$ 5$	$\$ 200$	$\$ 1500$	$\$ 2500$
$\$ 10$	$\$ 2000$	$\$ 200$	$\$ 750$	$\$ 5000$	$\$ 3000$

Difficulty $\Delta=\min _{S} \max _{r} \frac{\operatorname{opt}(r)}{\operatorname{gain}(S, r)}$

Theorem

An online mechanism that knows Δ can be Δ^{5} competitive; this is optimal.

