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ABSTRACT

This study addresses the integration of diversity-based and uncertainty-based
sampling strategies in active learning, particularly within the context of self-
supervised pre-trained models. We introduce a straightforward heuristic called
TCM that mitigates the cold start problem while maintaining strong performance
across various data levels. By initially applying TypiClust for diversity sampling
and subsequently transitioning to uncertainty sampling with Margin, our approach
effectively combines the strengths of both strategies. Our experiments demon-
strate that TCM consistently outperforms existing methods across various datasets

in both low and high data regimes.

1 INTRODUCTION

Training machine learning models are known to depend on a lot of labeled data. However, in many
settings labeled data is not easy to acquire, but has to be created through expensive manual labeling.
The goal of active learning is to address this challenge by providing a way to select the most infor-
mative samples for labeling. These are the samples for which training a classifier on them increases

performance the fastest.

Depending on how many labeled samples the model has
already been trained on, the properties of these samples
have to change. In a low-budget setting, diverse and typ-
ical samples that cover the complete data distribution are
most important. As the budget increases, the model does
not profit from such samples as much anymore. Instead,
once a model has learned the general rules of the data
distribution, the most informative samples are now the
ones that show where exactly the decision boundaries
are. The issue is that different active learning methods
work best in different data budgets and it is not clear
when to switch between the methods.

In this work, we provide a new heuristic called TCM on
how to combine two such methods, namely TypiClust
(Hacohen et al.,2022) and Margin. TypiClust shows ex-
cellent performance in low data regimes, while Margin
excels afterwards. We specifically analyze the setting
where a self-supervised pre-trained backbone model is
available. Such a backbone not only massively increases
performance compared to training from scratch, but also
the transition dynamics from low to high data regimes
simplify.

v
S —_

P70 i e
oo -~

. Sy vl
. -

A Accuracy (%)
(3]

0| gre- -

T T T T T T T T
0 2 4 6 8 10 12 14
Number of Steps
—-—TCM —— Margin TypiClust
- -Least conf. ¢ Random-s- BADGE
e ProbCover « DBAL Coreset
Entropy

Figure 1: Accuracy improvement com-
pared to random for all baselines and
our (TCM) strategy. The accuracy im-
provement mean and standard deviation
is computed over all budget sizes for CI-
FAR10, CIFAR100 and ISIC2019.

We show that TCM achieves consistently strong performance, regardless of the labeling budget and
the dataset (see Figure[I). It outperforms its underlying methods TypiClust and Margin during the
complete training process. Thanks to the simplicity and effectiveness of our TCM , we provide clear
guidelines for practitioners on how to easily use active learning in their own setting.
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2 RELATED WORK

In active learning, two primary sampling strategies emerge as critical: diversity-based and
uncertainty-based sampling. Diversity-based sampling aims to select a representative set of samples
that span the entire feature space, thus ensuring broad coverage of the input domain. In contrast,
uncertainty-based sampling focuses on querying instances for which the model exhibits the highest
prediction uncertainty. In this way, uncertainty-based sampling aims to refine the model’s perfor-
mance in challenging cases. Early on in the training, diversity-based methods tend to perform better
as with limited samples it is harder to cover the complete data distribution. Further, in that stage, the
classifier uncertainty is a weak predictor of hard samples. This is also called the “cold start problem”
(Mittal et al., | 2019) of uncertainty-based methods.

2.1 SELF-SUPERVISED PRE-TRAINING

Before we introduce any specific active learning methods, we address self-supervised learning. In
self-supervised learning, a model is trained using a pretext task, allowing it to learn useful repre-
sentations without explicit external labels. Self-supervised learning complements active learning by
learning embeddings before any data is labeled, simplifying both the sample quivering and classi-
fier training. Popular and commonly used models include SimCLR (Chen et al.l |2020) and DINO
(Caron et al.,|2021). SimCLR uses a contrastive loss, where different views of an image are pushed
to have a close representation and views of different images a distant representation. The DINO pre-
text task involves learning data transformation invariant representations, by distilling different views
of the same image from a teacher to a student network, where the teacher network is an exponential
moving average of the student network.

2.2 UNCERTAINTY-BASED ACTIVE LEARNING

We first briefly introduce relevant uncertainty-based active learning methods. Some methods try to
quantify model uncertainty based on the output logits of a classifier. Least confidence (Lewis &
Galel [1994) selects samples where the highest class probability is the lowest. Entropy (Joshi et al.}
2009) measures model prediction uncertainty by the classifier probability distribution and selects
samples with the highest entropy. Margin selects samples for which the difference between the
class probabilities of the most likely two classes is the lowest. There also exist methods based on
a Bayesian approach. DBAL (Gal et al.,[2017) uses Bayesian convolutional neural networks as the
classifier and queries samples based on their highest entropy. BALD (Gal et al., 2017) also uses
Bayesian convolutional neural networks, but in contrast to DBAL, it selects samples that maximize
information gained about the model parameters. Our TCM strategy builds on top of Margin for
uncertainty sampling due to its strong performance and simple design.

2.3 DIVERSITY-BASED ACTIVE LEARNING

In the realm of diversity-based active learning, Coreset (Sener & Savaresel [2018) queries diverse
samples by selecting points that form a minimum radius cover of the remaining samples in the
unlabeled pool. The minimum radius cover ensures that all remaining unlabeled sample has a nearby
sample that gets labeled. ProbCover (Yehuda et al., [2022)) improves on Coreset by building on
top of self-supervised embeddings and selecting samples of high-density regions of the embedding
space. While Coreset ensures that it queries samples from the whole distribution, it is likely to
select outliers that do not benefit the training. In contrast, ProbCover (Yehuda et al., [2022) samples
from uncovered high-density regions, selecting more representative samples. TypiClust (Hacohen
et al., [2022) queries diverse samples by first clustering, and then selecting the most typical sample
from each cluster. The number of clusters increases by the sampling size at each step, ensuring that
there are enough clusters to sample new points from unexplored regions of the embedding space.
Typicality is measured by the inverse average distance to other points in the cluster. The typical
points queried by TypiClust enable strong performance, especially at the beginning of the training
process. For this reason, our TCM strategy utilizes TypiClust as the initial sampling strategy, thereby
avoiding the cold-start problem.
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2.4 HYBRID METHODS

Some works in active learning have previously combined diversity and uncertainty-based sampling.
BADGE (Ash et al.l [2020) and BatchBALD (Kirsch et al., 2019) developed methods to ensure
diversity within a batch of uncertain samples. SelectAL (Hacohen & Weinshall, [2023) on the other
hand developed a complex algorithm that automatically detects the current data regime and selects
a corresponding diversity or uncertainty-based active learning algorithm. However, these methods
mostly focused on the case where the classifier is trained from scratch. As we show later in this
work, when using a pre-trained backbone, there is no need for a complex switching strategy, as
the transition point between diversity and uncertainty-based sampling always occurs early on in the
training.

3 METHODOLOGY

The best querying strategy depends on the already labeled dataset size. As can be seen in Figure [T}
a strong diversity-based method such as TypiClust (Blue) performs strongly in the first few steps of
sampling. On the other hand, an uncertainty-based method such as Margin (Yellow) shows stronger
performance the larger the cumulative budget grows. The best and most consistent performance can
be achieved when utilizing both methods when they perform the strongest. We therefore propose a
hybrid sampling strategy combining TypiClust and Margin and call this strategy TCM.

3.1 TRANSITION POINT

To get greater insights into the dynamics of when to transition from TypiClust to Margin, we perform
an ablation starting with TypiClust and switching to Margin after N sampling steps. The results of
this ablation, displayed in Figure [2] show that the optimal transition point depends on the initial
budget and corresponding step size. The larger the initial budget, the better it is to quickly switch
from TypiClust to Margin to achieve consistently strong performance.
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Figure 2: Transition point ablation on the CIFAR10 dataset. Switching to Margin in the last step
is equal to N = 10, while only using TypiClust for the initial sampling, and switching to Margin
imminently is N = 1.

3.2 STEP SIZE

We further analyze the effect of the step size for the Margin part of TCM. Thanks to the design
of TypiClust, its performance is mostly independent of step size. For this reason, we only perform
detailed analysis on Margin, after having selected the initial budget with TypiClust. By just selecting
a batch of samples depending on the class probabilities, Margin might select a lot of similar samples
if the step size is too big. At the same time, too small of a step size is not practical, as the model
would need to be retrained too often. For this reason, we perform an ablation on the effect of the
step size on the performance of TCM, shown in Figure[3] Surprisingly, the results show that overall,
there is no clear difference in performance for different step sizes. A large step size for the Mid
and High budget might have a slightly negative impact, however towards the end of the cumulative
budget, the difference disappears. The implications of these results are strongly positive, as they
indicate that the step size of TCM can be adapted to other needs such as the availability of experts
for labeling data and computational resources.
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Figure 3: Step size ablation for TCM on the CIFAR10 dataset. For each regime, we evaluate three
different step sizes S. Overall, there is no clear performance difference between the step sizes.

Based on our ablations, we devise the following simple heuristic for TCM. We use a step size equal
to the size of the initial budget of each setting. In the Tiny and Low settings, we perform 3 steps of
TypiClust before switching to Margin. In the Medium setting, we perform 2 steps of Typiclust and
in the High setting, we perform a single step.

However, based on our ablations we can also provide a broader rule of thumb for an active learning
practitioner. In a new setting, we suggest using a total budget of roughly 20 times the number of
categories for TypiClust and then switching to Margin, with no strict constraint on step size.

4 EXPERIMENTAL EVALUATION

4.1 SETUP

Today’s active learning research has an inconsistent landscape with many contradicting results. For
this reason, we follow the evaluation framework proposed by [Liith et al.| (2023) to have a fair and
rigorous comparison to all active learning baselines. In particular, we tune the hyperparameters on
the CIFAR10 (Krizhevsky, [2009) dataset and use all other datasets as rollout datasets. We evaluate
the datasets CIFAR10 and CIFAR100 (Krizhevsky, |2009) and ISIC2019 (Codella et al.l 2017)), but
also consider the long-tail versions of the two datasets, denoted with LT (Cao et al., 2019). These
long-tail versions feature class imbalance, where the number after LT indicates the ratio between the
most common and the least common class, combined with an exponential decay in sample sizes for
the other classes. We perform all our experiments on 4 different data budget sizes. These include
small, medium, and large as defined by |Liith et al., as well as the tiny budget size with the initial
sample size equal to the number of classes. Further, we consistently use a step size equal to the
number of initial samples for all budgets. Some sampling methods such as ProbCover, Typiclust and
our proposed TCM rely on self-supervised pre-trained representations. For all these methods, we use
the same representations. Specifically, for CIFAR10, CIFAR10-LT5, CIFAR10-LT10, CIFAR100,
CIFARI100-LTS, CIFAR100-LT10 we use the SimCLR features provided by Hacohen et al.. For
ISIC2019, we train a DINO model from scratch and use the features of the model.

To underpin the efficacy of our proposed active learning framework, we leverage the same pre-
trained representations for training our classifier. For all experiments conducted within this work,
we utilize the selected backbone as a foundational feature extractor. On top, we train a linear pre-
diction head, fine-tuning the model to the labels gained during the active learning process. This
approach allows us to harness the rich representational capacity of the pre-trained models, leading
to a much stronger performance of the classifier especially in a low-data regime. Furthermore, by us-
ing publicly available pre-trained model embeddings, the classifier training following each sampling
step demands significantly fewer computational resources. Due to the above mentioned advantages
of using a pre-trained backbone and considering that TypiClust relies on such a backbone, we do
not perform any experiments where we train a classifier from scratch. We fix all training hyperpa-
rameters for classifier training for all datasets, budgets, and querying strategies. For all experiments,
we plot the mean and standard deviation of runs with 3 seeds. While we have already presented
an aggregation over all datasets and budget sizes in Figure [T} we present specific results for each
evaluated dataset in Figure
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Figure 4: Accuracy improvement compared to random for all baselines and our (TCM) strategy.
The accuracy improvement mean is computed over all 4 budget sizes tiny, small, medium, and large.
Standard deviation is aggregated with respect to the random seed. The top row shows the main
evaluated datasets, while the bottom row shows an ablation on the imbalanced versions of CIFAR10
and CIFAR100. For all imbalanced datasets, reported accuracy is balanced by computing the average
of recall obtained for each class. TCM shows consistently strong performance for all datasets, even
for datasets for which TypiClust or Margin on their own show suboptimal performance. Coreset
shows strong performance on the LT datasets. Unfortunately, this performance does not transfer to
the real-life imbalanced dataset ISIC2019.

4.2 RESULTS

Our results showcase the consistent and strong performance of TCM compared to other baselines.
This performance gain transfers to the imbalanced long-tail versions of CIFAR10 and CIFAR100. It
can be seen that TCM performs well even if either TypiClust or Margin do not perform well on their
own. In CIFAR10-LTS as well as in CIFAR100-LT10, TCM performs better than both its underlying
methods, showcasing the potential of the combination. On the main datasets CIFAR10, CIFAR100
and ISIC2019, Coreset shows performance that is worse than selecting samples at random, but
shows strong performance in the LT ablation. We hypothesize that this could be because, for the
LT datasets, the backbone was pre-trained on the balanced version of the dataset. This is not the
case for ISIC2019, where the DINO backbone was trained entirely on ISIC2019. Other methods
such as ProbCover, DBAL, or Least confidence seem to struggle a lot with providing consistent
performance in all data regimes and datasets. Furthermore, our results show that when using a pre-
trained backbone, more complex methods such as SelectAL do not seem necessary, because the
transition point occurs much earlier compared to training from scratch. This fact is exploited by
TCM and allows for its strong and consistent performance for all budget sizes. Switching between
diversity and uncertainty-based strategies after the few first iterations consistently outperforms other
methods.

5 CONCLUSION

In this work, we have shown that when training a classifier using a pre-trained backbone, the transi-
tion point from diversity to uncertainty-based active learning methods occurs early. Based on these
results, we present TCM, a simple, yet effective hybrid strategy that outperforms all other methods
when compared on a wide range of data regimes and datasets. By using TypiClust for the first few
steps and then switching to Margin, TCM selects informative instances in both low and high data
regimes. Using the simple heuristics laid out by TCM, practitioners can apply active learning easily
and effectively to their use case.
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