
Byzantine Stable Matching
Andrei Constantinescu

ETH Zurich

Zurich, Switzerland

aconstantine@ethz.ch

Marc Dufay

ETH Zurich

Zurich, Switzerland

mdufay@ethz.ch

Diana Ghinea
∗

Lucerne University of Applied Sciences and Arts

Zug, Switzerland

diana.ghinea@hslu.ch

Roger Wattenhofer

ETH Zurich

Zurich, Switzerland

wattenhofer@ethz.ch

Abstract
In stable matching, one must find a matching between two sets

of agents, commonly men and women, or job applicants and job

positions. Each agent has a preference ordering over who they want

to be matched with. Moreover a matching is said to be stable if no

pair of agents prefer each other over their current matching.

We consider solving stable matching in a distributed synchro-

nous setting, where each agent is its own process. Moreover, we

assume up to 𝑡𝐿 agents on one side and 𝑡𝑅 on the other side can be

byzantine. After properly defining the stable matching problem in

this setting, we study its solvability.

When there are as many agents on each side with fully-ordered

preference lists, we give necessary and sufficient conditions for

stable matching to be solvable in the synchronous setting. These

conditions depend on the communication model used, i.e., if parties

on the same side are allowed to communicate directly, and on the

presence of a cryptographic setup, i.e., digital signatures.

CCS Concepts
• Theory of computation→ Distributed computing models;
Cryptographic protocols.

Keywords
Stable matching, Byzantine faults, Distributed protocol

ACM Reference Format:
Andrei Constantinescu, Marc Dufay, Diana Ghinea, and Roger Wattenhofer.

2025. Byzantine Stable Matching. In ACM Symposium on Principles of Dis-
tributed Computing (PODC ’25), June 16–20, 2025, Huatulco, Mexico. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3732772.3733525

Related Version: A full version of this paper is available at [6].

∗
This work was partially carried out while the author was at ETH Zürich.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PODC ’25, Huatulco, Mexico
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1885-4/25/06

https://doi.org/10.1145/3732772.3733525

1 Introduction
The stable matching problem (also known as stable marriage), first
introduced by Gale and Shapley [11], has long been a cornerstone

of combinatorial optimization and market design.

It involves finding a stable pairing between two distinct sets

of agents — such as job seekers and job positions or students and

universities — where each participant ranks the opposite set based

on individual preferences. The stability criterion dictates that there

is no blocking pair, i.e., no two unmatched agents should prefer

each other over their assigned partners. This foundational task

has multiple practical applications in resource assignment and sub-

sequently led to Shapley and Roth winning the Nobel Memorial

Prize in Economics in 2012 for their work on the theory of stable
allocations and the practice of market design [1].

In their seminal work [11], Gale and Shapley proved that when

the 𝑛 agents are divided equally into the two sides, and each in-

dividual provides a complete preference ranking of the opposite

set, a stable matching always exists. Moreover, they provided an

algorithm finding such a matching with complexity 𝑂 (𝑛2). Further
versions of this problem have been considered in [14], including

variants where the individuals only provide partial preferences,
or if ties are allowed within the preference rankings. The work of

[14] has shown that a stable matching always exists even in such

scenarios, although some individuals may not be matched.

The stable matching problem naturally extends to distributed

settings, where each agent operates as an independent process or

party. Through communication, agents determine their matches

while ensuring stability — a local property. Furthermore, the Gale-

Shapley algorithm inherently functions as a distributed algorithm,

as it consists solely of marriage proposals and divorce declaration,

both of which can be processed in parallel.

The distributed variant has been studied in various practical

scenarios. For instance, the work of Maggs and Sitaraman [22]

explores stable matching in content delivery networks, where stable

matching is used for global load balancing bymapping client groups

to server clusters. Moreover, stable matching has been leveraged in

wireless networks: [3] employs this problem to pair primary and

secondary users in a radio network, [8] relies on stable matching to

pair users and uplink carriers when performing channel assignment,

and numerous other studies have explored similar applications

[2, 13, 26].

https://orcid.org/0000-0002-5294-9459
https://doi.org/10.1145/3732772.3733525
https://doi.org/10.1145/3732772.3733525

PODC ’25, June 16–20, 2025, Huatulco, Mexico Andrei Constantinescu, Marc Dufay, Diana Ghinea, and Roger Wattenhofer

We note that, in such scenarios, it is important for the stable-

matching-based mechanisms to be resilient to potential faults. No-

tably, the work of Maggs and Sitaraman [22] regarding stable match-

ing in content delivery networks has pointed out the potential of

(crash) failures. The mitigation strategy proposed by [22] relies on

leader election: although crashes do not necessarily degrade the

matching obtained, this is a point of failure if the leader misbe-

haves. To the best of our knowledge, prior works in distributed

stable matching assume that parties follow the protocol, or that

there is some central trusted unit which can gather all inputs, per-

form the stable matching algorithm and return the result. This

motivates us to investigate scenarios where no such safety exists,

and parties may not only crash, but also become byzantine and

hence exhibit malicious behavior. Concretely, we ask the following

question:

Can we achieve stable matching in a network
even if some of the parties are byzantine?

Our Contribution. We firstly define the byzantine stable match-
ing problem bSM, taking into account that byzantine parties may

choose not to participate in the protocol, and preventing honest

parties from matching with the same byzantine party. We then

investigate the necessary and sufficient conditions for achieving

bSM under various synchronous network topologies, both with

and without cryptographic assumptions (digital signatures), and

we provide tight conditions. We denote the two sets by 𝐿 and 𝑅,

with

��𝐿�� = ��𝑅�� = 𝑘 , and we assume that at most 𝑡𝐿 parties in 𝐿 and at

most 𝑡𝑅 parties in 𝑅 may be byzantine. We consider fully-connected

networks, bipartite networks (where the parties can only communi-

cate to parties on the other side), and a topology in-between, which

we call a one-sided networks: this maintains the communication

channels of a bipartite network, but additionally provides the par-

ties in side 𝑅 with complete communication. We summarize our

findings below:

• When no cryptographic setup is available, bSM can be solved if

and only if:

– 𝑡𝐿 < 𝑘/3 or 𝑡𝑅 < 𝑘/3 in a fully-connected network.

– the following hold in a bipartite network: (i) 𝑡𝐿, 𝑡𝑅 < 𝑘/2; (ii)
𝑡𝐿 < 𝑘/3 or 𝑡𝑅 < 𝑘/3.

– the following hold in a one-sided network: (i) 𝑡𝑅 < 𝑘/2; (ii)
𝑡𝐿 < 𝑘/3 or 𝑡𝑅 < 𝑘/3.

• Assuming digital signatures, bSM can always be solved if the

network is fully connected. Otherwise, bSM can be solved if and

only if:

– any of the following holds in a bipartite network: (i) 𝑡𝐿, 𝑡𝑅 < 𝑘 ;

(ii) 𝑡𝐿 < 𝑘/3 or 𝑡𝑅 < 𝑘/3.
– 𝑡𝑅 < 𝑘 or 𝑡𝐿 < 𝑘/3 in a one-sided network.

Our settings enable us to establish our conditions’ sufficiency

by reducing bSM to Byzantine Broadcast [20], with one notable ex-

ception: this approach falls short in bipartite networks with digital

signatures, where one side may be completely byzantine, leaving

the honest side disconnected. For this setting, we provide a protocol

that simulates a synchronous fully-connected network with omissions
for the disconnected side, allowing us to achieve bSM. We also add

that our impossibility arguments prove, in fact, even stronger re-

sults: even a simplified version of bSM (where parties hold a single

favorite as input as opposed to a complete preference list) cannot

be solved unless the stated conditions hold.

Related Work. While the stable matching problem has not been

previously explored in the context of byzantine behaviour, mali-

cious strategies such as lying were considered. Concretely, Roth

[27] showed that stable matching is not truthful: there are scenarios
where an individual can get a more favorable result by lying about

their preferences. However, Gale and Shapley [11] proved that their

algorithm is truthful for one side: an individual on the side doing

the proposals can never gain by lying. The case where multiple

individuals on the proposing side can collude in the Gale-Shapley

algorithm [17] or where the preference lists can have some mis-

takes [23] have also been studied . We note that such adversarial

models essentially consider manipulations of the preferences lists. In
contrast, byzantine fault tolerance protocols are mainly concerned

with providing reasonable guarantees even when byzantine parties

attempt to prevent honest parties from obtaining a solution.
As theGale-Shapley algorithm [11] naturally adapts to distributed

settings, lower bounds regarding the number of queries between the

two sides have been the topic of interest. Gonczarowski et al [12]

provided a lower bound of Ω(𝑛2) boolean queries. However, this

does not take into account communication between parties on the

same side. In this case, there is still a gap between the best-known

lower bound ofΩ(𝑛2) and upper bound of𝑂 (𝑛2 log𝑛). When prefer-

ence lists are similar, Khanchandani and Wattenhofer [18] describe

an algorithm with better complexity and provide a lower bound

depending on the similarity of the lists. Approximation algorithms

have also been a topic of interest as a strategy to circumvent the

lower bound of [12]. Various definitions for an approximation of

a stable matching have been analyzed, considering the number of

blocking pairs [25], the number of matches which would have to

be broken [12] or how blocking each pair is [19].

While some of our necessary conditions enable bSM to be re-

duced to well-established problems such as Byzantine Broadcast

and Byzantine Agreement [20], we also encounter settings where

bSM is strictly weaker than these fundamental problems, requiring

novel insights. We also note that the term matching has occurred

in previous works regarding byzantine faults or self-stabilization
(starting from an arbitrary state, the system needs to reach a legiti-
mate configuration eventually). Most of these works are concerned

with finding a maximal matching [5, 16, 24], or a maximum match-

ing [15] in a bipartite graph as opposed to a stable matching. A

notable exception [21] focuses on self-stabilizing stable matching.

Self-stabilizing protocols assume that all parties will stop being

faulty at some point and that no decision is final: any party can

decide to unmatch at any time. This contrasts with our work which

is resilient to some parties being permanently faulty and guarantees

that a final decision is reached within a bounded time.

2 Preliminaries
The stable matching problem can be informally described as the task

of pairing two sets of parties in such a way that no two unmatched

parties should prefer each other over their assigned partners. Stable

matching problems have been typically framed in contexts such as

matchingmenwithwomen, students with universities, or producers

with consumers.

Byzantine Stable Matching PODC ’25, June 16–20, 2025, Huatulco, Mexico

Standard Stable Matching. We consider a set of 𝑛 = 2𝑘 parties P,

which are divided into two disjoint sets 𝐿 and 𝑅 with |𝐿 | = |𝑅 | = 𝑘 :

𝐿 can represent, for instance, the set of men/students/producers

while 𝑅 can represent the set of women/universities/consumers.

In the stable matching problem, every party 𝑢 in 𝐿 (resp. 𝑅) has

as input a preference list (a permutation) 𝜋𝑢 over the parties in 𝑅

(resp. 𝐿). We say that 𝑢 prefers 𝑣 over𝑤 if 𝑣 appears before𝑤 in 𝜋𝑢 .

In addition, 𝑢 prefers any party in its preference list 𝜋𝑢 over being

alone.

The objective of this problem is to determine a stable matching:
a matching𝑀 between 𝐿 and 𝑅 such that there is no blocking pair.

A (non-matched) pair of parties (𝑢, 𝑣) ∈ 𝐿 × 𝑅 is blocking if 𝑢 and

𝑣 prefer each other compared to who they are currently matched

to. As parties always prefer being matched to being alone, a pair

of two unmatched parties on opposite sides is considered blocking.

This implicitly requires the matching to be maximal (all parties are
matched). It has been proven that a stable matching always exists,

and it can be found using the Gale-Shapley algorithm AG-S [11].

Theorem 1 ([11]). There is a deterministic algorithm AG-S that
takes as input the preference lists 𝜋 of all parties in 𝐿 and 𝑅 and
returns a stable matching𝑀 .

Stable Matching in a Network. We now define the stable matching

problem in a distributed setting. Here, the parties in 𝐿 ∪ 𝑅 are

processors running a protocol over a network, exchangingmessages

via bidirectional authenticated communication channels. We assume

that the network is synchronous: the parties have synchronized

clocks, all parties start at time 0, and every message is delivered

within a publicly known amount of time Δ. This allows protocols
to operate in rounds. As depicted in Fig. 1, we will explore different

network topologies, described below.

Figure 1: The different kinds of communication networks
we consider. From left to right: bipartite, one-sided and fully-
connected networks. Note that even when communication is
possible within 𝐿 or 𝑅, the matching is still between parties
on opposite sides (not within 𝐿 or 𝑅).

• Fully-connected network: Parties are pairwise connected.
This model is relevant in scenarios such as forming partner-

ships within a close-knit social group.

• One-sided network: Parties are pairwise connected, except
parties within 𝐿, which cannot communicate directly. This

structure is applicable in contexts such as kidney donations,

where privacy constraints prevent recipients from directly

interacting with each other.

• Bipartite network: Only pairs of parties in 𝐿 × 𝑅 are con-

nected. This setup is relevant in cases such as matching inter-

national job applicants, where communication is restricted

solely to potential matches across the two sets.

We remark that each model is strictly stronger than the previous.

The parties will be then running a protocol Π where each party

holds a preference list as input, and each party obtains as output its

match (from the opposite side). In this setting,Π achieves distributed
stable matching if the following properties hold:

• Termination: Each party outputs a party on the opposite

side to match with;

• Symmetry: If party 𝑢 decides to match party 𝑣 , then 𝑣 de-

cides to match party 𝑢;

• Stability: There are no blocking pairs.

Faults. So far, we have defined the stable matching problem in a

fault-free setting. From now on, we assume an adversary that may

(permanently) corrupt up to 𝑡𝐿 parties in 𝐿 and up to 𝑡𝑅 parties

in 𝑅. The corrupted parties become byzantine: they may deviate

arbitrarily (even maliciously) from the protocol. A party is honest
if it never became byzantine. Our protocols will assume that the

adversary is adaptive: it may choose to corrupt parties at any point

of the protocol’s execution. Our impossibility results, however, hold

even against a static adversary, which needs to choose which parties
to corrupt at the beginning of the protocol’s execution.

Refining the Problem. Byzantine parties require us to refine the

definition of the stable matching problem. First, we need to take

into account that our properties should only be concerned with the

outputs of honest parties. Second, the byzantine parties may choose

not to participate in the protocol, preventing us from obtaining a

maximal matching. Consequently, we adjust the previous properties

as follows:

• Termination: Every honest party outputs: either a party on

the opposite side or nobody.
• Symmetry: For two honest parties 𝑢 and 𝑣 , if 𝑢 decides to

match 𝑣 , then 𝑣 decides to match 𝑢.

• Stability: There are no blocking pairs made of honest parties.

Note that these properties are not

strong enough to lead to a relevant
matching: multiple honest parties

may be matched to the same byzan-

tine party (in the figure on the right,

if the orange party is byzantine, the

depicted matching satisfies symme-

try and stability).

Therefore, we introduce an addi-

tional intuitive condition that pre-

vents such scenarios:

• Non-competition: If two honest parties output 𝑢, 𝑣 ∈ 𝐿∪𝑅,

then 𝑢 ≠ 𝑣 .

We may now present the formal definition of byzantine stable

matching.

Definition 1 (Byzantine Stable Matching (bSM)). Consider
a protocol Π where every party in 𝐿∪𝑅 holds as input a preference list
over the parties on the other side. Then, Π achieves byzantine stable
matching (bSM) with respect to 𝑡𝐿 and 𝑡𝑅 if it satisfies the following
even when up to 𝑡𝐿 parties in 𝐿 and 𝑡𝑅 parties in 𝑅 are byzantine:
termination, symmetry, stability, non-competition.

PODC ’25, June 16–20, 2025, Huatulco, Mexico Andrei Constantinescu, Marc Dufay, Diana Ghinea, and Roger Wattenhofer

Cryptographic Assumptions. As we will see, the solvability of

bSM in a given setting depends on whether we assume a trusted

setup and cryptographic primitives. We will use the term unau-
thenticated setting to refer to settings where no cryptographic as-

sumptions are made. In contrast, we use the term authenticated
setting to refer to a setting where a public key infrastructure and

a secure digital signature scheme are available. For simplicity of

presentation, we assume that signatures are unforgeable. When

replaced with real-world instantiations, our feasibility results in the

authenticated setting still hold except for negligible probability (in

the scheme’s security parameter) against computationally-bounded

adversaries.

Warm-up Solution. Synchronous networks come with communi-

cation primitives that often allow us to reduce bSM to an offline

problem. One such primitive is Byzantine Broadcast (BB) [20].

Definition 2 (Byzantine Broadcast (BB)). Let Π be a protocol
where a designated party 𝑆 (the sender) holds a value 𝑣𝑆 . We say that
Π achieves Byzantine Broadcast (BB) if the following hold even when
up to some number 𝑡 of the parties are corrupted (alternatively for
our setting, up to 𝑡𝐿 in 𝐿 and up to 𝑡𝑅 in 𝑅):

• Termination: All honest parties output;
• Validity: If 𝑆 is honest, every honest party outputs 𝑣𝑆 ;
• Consistency: Honest parties output the same value.

A BB protocol allows the sender to disseminate its preferences

so that all parties obtain identical views of them. If each party

runs an invocation of BB to distribute its preferences, then by the

end, all parties will have identical views of everyone’s preferences.

This enables them to run AG-S offline and obtain the same stable

matching, thereby solving bSM. This provides us with the lemma

below. The formal proof is available in the full version [6].

Lemma 1. Whenever BB is available, bSM is solvable.

3 Simplified Stable Matching
For most of our impossibility results, we do not require the inputs

to be complete preference lists: we rely only on parties’ favorites.

Therefore, we introduce the simplified stable matching problem

(sSM), which mostly follows the same rules as bSM. The main

difference is that a party’s input is a party on the other side, not

a preference list. If party 𝑢 has as input party 𝑣 , we say that 𝑢’s

favorite is 𝑣 . The stability property is then replaced by simplified

stability:

• Simplified stability: If two honest parties are each other’s

favorites, they output each other.

Our impossibility proofs will describe settings where a proto-

col cannot simultaneously achieve termination, symmetry, non-

competition, and this simplified property. In the full version of this

paper [6], we show that sSM can be reduced to bSM, enabling us

to state the following result:

Lemma 2. Whenever sSM is not solvable, bSM is not solvable.

We finish with a helpful technical lemma allowing our impos-

sibility arguments to only focus on proving that sSM cannot be

solved in settings with few parties. The lemma then generalizes our

arguments to settings with more parties.

Lemma 3. Let Π be a protocol solving sSM, supporting up 𝑡𝐿 byzan-
tine parties in 𝐿 and 𝑡𝑅 byzantine parties in 𝑅. Then, for any 0 < 𝑑 ≤
𝑘 = 𝑛/2, there exists a protocol Π′ solving sSM on 2𝑑 parties (𝑑 on
each side) that supports up to ⌊ 𝑡𝐿

⌈𝑘/𝑑 ⌉ ⌋ byzantine parties on the left

side and ⌊ 𝑡𝑅
⌈𝑘/𝑑 ⌉ ⌋ byzantine parties on the right side.

Proof. We partition 𝐿 into 𝑑 disjoint sets 𝐿1, . . . , 𝐿𝑑 such that

1 ≤ |𝐿1 |, . . . , |𝐿𝑑 | ≤ ⌈|𝐿 |/𝑑⌉ = ⌈𝑘/𝑑⌉. Similarly, we partition

𝑅 into 𝑑 disjoint sets 𝑅1, . . . , 𝑅𝑑 such that 1 ≤ |𝑅1 |, . . . , |𝑅𝑑 | ≤
⌈|𝑅 |/𝑑⌉ = ⌈𝑘/𝑑⌉. From each of these sets, we pick one represen-

tative: 𝑙1, . . . , 𝑙𝑑 , 𝑟1, . . . , 𝑟𝑑 . We build Π′
solving sSM for 2𝑑 parties:

𝑙 ′
1
, . . . , 𝑙 ′

𝑑
on the left side and 𝑟 ′

1
, . . . , 𝑟 ′

𝑑
on the right side, as follows:

• Each party 𝑙 ′
𝑖
in Π′

simulates all the parties in 𝐿𝑖 running Π.
Similarly, each party 𝑟 ′

𝑗
in Π′

simulates all the parties in 𝑅 𝑗

running Π.
• Input: If the input (favorite) of 𝑙 ′

𝑖
is 𝑟 ′

𝑗
, then we assign 𝑟 𝑗

as the favorite of 𝑙𝑖 . Similarly, if the input of 𝑟 ′
𝑗
is 𝑙 ′

𝑖
, then

we assign 𝑙𝑖 as the favorite of 𝑟 𝑗 . For parties that are not

representatives of their group, we assign arbitrary favorites.

• Output: For a given 𝑙𝑖 , if there is a 𝑟 𝑗 such that 𝑙𝑖 matches

𝑟 𝑗 , then 𝑙
′
𝑖
declares that it matches 𝑟 ′

𝑗
. Otherwise 𝑙 ′

𝑖
declares

that it matches nobody.

We are essentially running the sSM algorithm on the whole

graph, but only looking at the representative of each set and dis-

carding anything unrelated to them. As a consequence, Π′
achieves

termination, symmetry, simplified stability, and non-competition

since Π achieves termination, symmetry, simplified stability, and

non-competition. As each party in Π′
simulates up to ⌈𝑘/𝑑⌉ parties

from Π and Π supports up to 𝑡𝐿 byzantine parties in 𝐿 and 𝑡𝑅 byzan-

tine parties in 𝑅, the bound on the number of byzantine parties

supported by Π′
follows immediately. □

4 Solvability in Unauthenticated Settings
In this section, we describe tight conditions for solving bSM in

unauthenticated settings (no cryptographic assumptions). In the

following, we first present our findings in the fully-connected net-

work case. Afterwards, we focus on the one-sided and bipartite

network cases.

4.1 Fully-Connected Network
The conditions for the fully-connected network case are presented

in Theorem 2, stated below.

Theorem 2. bSM is solvable in a fully-connected unauthenticated
network if and only if 𝑡𝐿 < 𝑘/3 or 𝑡𝑅 < 𝑘/3.

Wefirst focus on the feasibility part, for whichwe recall Lemma 1:

if BB can be achieved in a setting, then bSM also can. As stated in

the lemma below, BB is, in fact, solvable for our conditions. Hence,

the two lemmas together enable us to conclude that bSM is solvable

in a fully-connected unauthenticated network whenever 𝑡𝐿 < 𝑘/3
or 𝑡𝑅 < 𝑘/3, as desired. Lemma 4 is a corollary of [10, Theorem 2].

We note that [10] focuses on general adversaries. Roughly, this is an
adversarial model where the adversary has to choose which parties

to corrupt from a predefined subset-closed list of options.

Byzantine Stable Matching PODC ’25, June 16–20, 2025, Huatulco, Mexico

Lemma 4. BB is solvable in a fully-connected network if 𝑡𝐿 < 𝑘/3
or 𝑡𝑅 < 𝑘/3.

As mentioned above, this is a corollary of [10, Theorem 2]. We

again highlight that [10] assumes a general adversary, which we

briefly introduce next. In this adversarial model, the corruption

power of the adversary is specified by a (subset-closed) adversarial
structure Z ⊆ 2

P
, where P denotes the set of parties. In particular,

the adversary may choose to corrupt any set of parties in Z. For

instance, if P := {𝑃1, 𝑃2, . . . , 𝑃5}, a potential adversarial structure
Z is {∅, {𝑃1}, {𝑃2}, {𝑃1, 𝑃2}, {𝑃4}}, which means that the adversary

may choose between corrupting no parties, corrupting parties 𝑃1, 𝑃2
(or only one of the two), or corrupting only party 𝑃4. In contrast,

one often considers a threshold adversary, which may corrupt up to

𝑡 of the 𝑛 parties (as is the case in most literature): this is a particular

case of the general adversary model whereZ is the set of all subsets

of at most 𝑡 parties. The adversary assumed in our work sits in-

between these two: we assume that the adversary may corrupt up

to 𝑡𝐿 parties in 𝐿 and up to 𝑡𝑅 parties in 𝑅, hence our adversary

structure is Z★
:= {𝑆𝐿 ∪ 𝑆𝑅 | 𝑆𝐿 ⊆ 𝐿, 𝑆𝑅 ⊆ 𝑅,

��𝑆𝐿 �� ≤ 𝑡𝐿,
��𝑆𝑅 �� ≤ 𝑡𝑅}.

This can be thought of as the product of two threshold adversary

structures.

In the general adversaries model, [10, Theorem 2] states the

following:

Theorem 3 ([10, Theorem 2]). Assume a fully-connected unauthen-
ticated network, and an adversary structureZ such that for any three
sets 𝑍1, 𝑍2, 𝑍3 ∈ Z it holds that 𝑍1 ∪ 𝑍2 ∪ 𝑍3 ≠ P. Then, there is a
protocol achieving BB in this setting.

Then, to prove Lemma 4, we only need to show no three sets in

our adversary structureZ★
cover the set of 𝑛 parties:

Proof of Lemma 4. Consider our adversarial structure Z★
:=

{𝑆𝐿 ∪ 𝑆𝑅 | 𝑆𝐿 ⊆ 𝐿, 𝑆𝑅 ⊆ 𝑅,
��𝑆𝐿 �� ≤ 𝑡𝐿,

��𝑆𝑅 �� ≤ 𝑡𝑅}, and let 𝑍1, 𝑍2, 𝑍3 ∈
Z★

be arbitrary. We show that 𝑍1 ∪ 𝑍2 ∪ 𝑍3 ≠ 𝐿 ∪ 𝑅.

Without loss of generality, we may assume that the condition

𝑡𝐿 < 𝑘/3 holds (the case where 𝑡𝑅 < 𝑘/3 and 𝑡𝐿 ≥ 𝑘/3 is analogous).
As every 𝑍 ∈ 𝑍★

contains at most 𝑡𝐿 parties in 𝐿, it follows that

𝑍1 ∪𝑍2 ∪𝑍3 contain at most 3 · 𝑡𝐿 < 3 ·𝑘/3 = 𝑘 parties in 𝐿. Hence,

at least one element of 𝐿 is uncovered by 𝑍1 ∪𝑍2 ∪𝑍3, from which

𝑍1 ∪ 𝑍2 ∪ 𝑍3 ≠ 𝐿 ∪ 𝑅.

Then, we may apply Theorem 3 and conclude that there is a

protocol achieving BB in our setting. □

We now show that at least one of the conditions 𝑡𝐿 < 𝑘/3 and
𝑡𝑅 < 𝑘/3 holding is necessary. To do so, we prove this property

for the special case 𝑛 = 6 for sSM. One of our proof’s ingredients

is the shifting scenarios proof technique from [9], i.e., defining a

larger system to reach a contradiction. Then, Lemma 3 enables us

to conclude that for arbitrary 𝑛, sSM is not solvable if 𝑡𝐿 ≥ 𝑘/3 and
𝑡𝑅 ≥ 𝑘/3. Finally, Lemma 2 lifts this impossibility result to bSM,

completing the proof of Theorem 2.

Lemma 5. Assume a fully-connected unauthenticated network and
𝑛 = 6. Then, no protocol achieves sSM for 𝑡𝐿 = 𝑡𝑅 = 1.

Proof. Assume for a contradiction that Π achieves sSM in this

setting. We start with a high-level outline of the proof. We will con-

struct a larger system (i.e., for 12 parties) by ‘duplicating’ the com-

munication graph and consider running Π in this new system, with

each party following the intended behavior of the corresponding

party in the original system. By choosing specific pairs of byzantine

parties and their strategies in the original system, the adversary

will be able to simulate being in the new system towards the honest

parties. Going even further, we will present three different setups

of the original system where the adversary can achieve this simula-

tion. Each setup will provide different insights into how the parties

should behave in the larger system, leveraging that Π is correct

for any setup of the original system. However, these findings will

ultimately be contradictory, proving that Π cannot exist.

We denote the three parties in 𝐿 by 𝑎, 𝑏, 𝑐 , and the three parties

in 𝑅 by 𝑢, 𝑣,𝑤 . By duplicating each party, we obtain a graph with 12

nodes such that each node is connected to 3 parties on the opposite

side, as depicted in Fig. 2 (i). Consider an execution of Π in the

new system with the following inputs: 𝑐1 and 𝑣1 have each other

as their favorite, 𝑎2 and 𝑣2 have each other as their favorite, and all

other inputs are arbitrary. So far, because Π is running in a non-

standard network, we cannot say anything about the output of the

parties (or even whether they terminate or not). However, using

indistinguishability arguments, we will prove that there exists a

normal-operation scenario for Π where two honest parties match

the same party, giving a contradiction:

• First, we consider the setting where 𝑎2, 𝑏2, 𝑢2 and 𝑣2 are

honest while all the remaining nodes are being simulated

(internally) by 𝑐 and𝑤 , which are byzantine. This matches

Fig. 2 (ii). This setting is valid for Π: there is at most one

byzantine party in 𝐿 and one byzantine party in 𝑅. As such,

𝑎2, 𝑏2, 𝑢2 and 𝑣2 must terminate. Moreover using the simpli-

fied stability property, because 𝑎2 and 𝑣2 prefer each other,

we get that 𝑎2 decides to match party 𝑣2.

• Then, we consider the setting where 𝑏1, 𝑐1, 𝑣1 and 𝑤1 are

honest, while the remaining nodes are being simulated by

two byzantine parties 𝑎 and 𝑢. This matches Fig. 2 (iii). Simi-

larly to before, we get that 𝑐1 must terminate and decide to

match party 𝑣2.

• The last setting is where 𝑐1, 𝑎2, 𝑢2 and𝑤1 are honest, while

the remaining nodes are being simulated by two byzantine

parties 𝑏 and 𝑣 . This matches Fig. 2 (iv). We remark that 𝑎2
(resp. 𝑐1) cannot distinguish between this setting and Fig. 2

(ii) (resp. (iii)). As such, as we proved above, 𝑎2 and 𝑐1 will

both decide to match 𝑣 (previously we had written 𝑣1 and 𝑣2
to distinguish between the two copies, but here there is only

one). Moreover, this setting is valid for Π, which means that

its output should satisfy the properties of stable matching.

However, 𝑎2 and 𝑐1 are both honest and decide to match the

same party 𝑣 , breaking the non-competition rule, hence we

obtain a contradiction. □

4.2 Bipartite and One-Sided Networks
The theorems below give the necessary and sufficient conditions

for the bipartite and one-sided communication cases. Note that, in

contrast to the fully-connected case, each theorem requires one

additional condition (i) to hold on top of the previous condition (ii)

that was already required for the fully-connected case.

PODC ’25, June 16–20, 2025, Huatulco, Mexico Andrei Constantinescu, Marc Dufay, Diana Ghinea, and Roger Wattenhofer

𝑎1

𝑏1𝑐1

𝑎2

𝑏2 𝑐2

𝑢1

𝑣1𝑤1

𝑢2

𝑣2 𝑤2

𝑡

𝑐1

𝑎2

𝑡

𝑤1

𝑢2

𝑏1

𝑐1

𝑎2

𝑣1

𝑤1

𝑢2

𝑏2

𝑐1

𝑎2

𝑣2

𝑤1

𝑢2

Figure 2: (i) Top left: system constructed in the proof of Lemma 5; (ii) Top right: indistinguishable execution where 𝑎2, 𝑏2, 𝑢2 and
𝑣2 are correct while the remaining nodes are simulated by the byzantine parties; (iii) Bottom left: indistinguishable execution
where 𝑏1, 𝑐1, 𝑣1 and𝑤1 are correct; (iv) Bottom right: indistinguishable execution where 𝑐1, 𝑎2, 𝑢2 and𝑤1 are correct.

Theorem 4. bSM is solvable in a bipartite unauthenticated network
if and only if both of these conditions are satisfied: (i) 𝑡𝐿, 𝑡𝑅 < 𝑘/2;
(ii) 𝑡𝐿 < 𝑘/3 or 𝑡𝑅 < 𝑘/3.

Theorem 5. bSM is solvable in a one-sided unauthenticated network
if and only if both of these conditions are satisfied: (i) 𝑡𝑅 < 𝑘/2; (ii)
𝑡𝐿 < 𝑘/3 or 𝑡𝑅 < 𝑘/3.

The main idea we will use to get the feasibility parts of the

previous theorems is that for the stated conditions, we may actually

return to assuming a fully-connected network. In particular, two

parties 𝑢, 𝑣 on the same side that do not share a communication

channel may simulate such a channel between them by using the

parties on the opposite side as a proxy: 𝑢 sends the desired message

to all parties on the other side, who in turn forward it to 𝑣 , which

takes a majority vote to decide on the sent message. This works as

long as there is an honest majority on the other side, giving us the

following lemma:

Lemma 6. Let 𝑆 and 𝑆 ′ denote the two sides. If the parties in 𝑆 are
disconnected and 𝑡𝑆 ′ < 𝑘/2, we may assume the parties in 𝑆 are
fully-connected.

Proof. Let 𝑢, 𝑣 be parties in 𝑆 . We want to simulate an authen-

ticated channel between 𝑢 and 𝑣 , i.e the receiver knows who the

sender is.

If𝑢 wants to send a message𝑀 to 𝑣 , it sends the message (𝑢 → 𝑣 ,

𝑀) to every party in 𝑆 ′. Then if a party in 𝑆 ′ receives a message

(𝑢 → 𝑣 ,𝑀) from 𝑢, it forwards it to 𝑣 . Finally, if 𝑣 receives the same

message (𝑢 → 𝑣 ,𝑀) from a majority (i.e strictly more than 𝑘/2) of
𝑆 ′, it considers it received message𝑀 from 𝑢.

Using this strategy, we can see that sending a message takes a

bounded amount of time (at most 2Δ). Moreover, if 𝑢 is honest and

sends amessage𝑀 , at least𝑘−𝑡𝑆 ′ > 𝑘/2 parties from 𝑆 ′ will forward
it to 𝑣 which will therefore accept it. If 𝑣 accepts a message𝑀 from

𝑢, this means strictly more than 𝑘/2 parties from 𝑆 ′ forwarded it.

Because 𝑡𝑆 ′ < 𝑘/2, at least one honest party forwarded it, meaning

𝑢 intended to send this message (being honest or not). □

This provides us with the corollaries below, enabling us to prove

the stated conditions to be sufficient when combined with Theo-

rem 2, which has assumed a fully-connected network.

Corollary 1. In a one-sided network, wemay assume a fully-connected
network if 𝑡𝐿 < 𝑘/2.

Corollary 2. In a bipartite network, wemay assume a fully-connected
network if 𝑡𝐿, 𝑡𝑅 < 𝑘/2.

To prove that the conditions in Theorems 4 and 5 are also nec-

essary, we make use of the lemma below. Similarly to the proof of

Lemma 5, our argument includes a technique from [9] that enables

us to reach a contradiction by working with a non-standard system.

Lemma 7. Assume a one-sided unauthenticated network and 𝑛 = 4.
Then, no protocol achieves sSM for 𝑡𝐿 = 0 and 𝑡𝑅 = 1.

Byzantine Stable Matching PODC ’25, June 16–20, 2025, Huatulco, Mexico

𝑎1
𝑐1 𝑏1

𝑑1

𝑎2
𝑐2

𝑏2

𝑑2

𝑎1
𝑐1 𝑏1

𝑑1

𝑎2
𝑐2

𝑏2

𝑑2

𝑎1
𝑐1 𝑏1

𝑑1

𝑎2
𝑐2

𝑏2

𝑑2

𝑎1
𝑐1 𝑏1

𝑑1

𝑎2
𝑐2

𝑏2

𝑑2

𝑎1

𝑐1

𝑏1

𝑎2𝑏2

𝑏2

𝑑2

𝑎1

𝑐2

Figure 3: The eight parties in a cycle. In the first case, 𝑎1 and
𝑐1 are both honest and each other’s favorites. Therefore, they
must match each other. In the second case, we similarly get
that 𝑏2 and 𝑐2 must match. Finally, in the last case, we get
that both 𝑎1 and 𝑏2 try to match party 𝑐 which is byzantine,
but the non-competition property does not allow this.

Proof. Write 𝑎, 𝑏 for the nodes in 𝐿 and 𝑐, 𝑑 for the nodes in

𝑅. All nodes are connected in the communication network except

𝑎 and 𝑏. We will prove that no such protocol exists even in the

no-harder setting where exactly one party in 𝑅 is corrupted, which

we henceforth assume.

It will suffice to prove the impossibility for the bipartite network

case, i.e., without the edge 𝑐-𝑑 . In particular, we claim that messages

sent across this edge cannot be helpful. To see this intuitively, recall

our assumption that exactly one party in 𝑅 is byzantine, say 𝑑 . Party

𝑐 knows that 𝑑 is byzantine, meaning any messages received from

𝑑 could be completely arbitrary. Therefore, 𝑐 may as well simulate

receiving them by replacing them with a default value. Henceforth,

we assume that the communication network is bipartite.

Assume for a contradiction thatΠ is a protocol achieving sSM for

𝑛 = 4 parties 𝐿 = {𝑎, 𝑏} and𝑅 = {𝑐, 𝑑} in a bipartite unauthenticated
network given that no party in 𝐿 is corrupted and exactly one party

in 𝑅 is corrupted.

The key insight in our proof is that the bipartite communication

network actually forms the undirected cycle𝑎-𝑐-𝑏-𝑑-𝑎. We construct

a larger system by duplicating each party and linking them into

a cycle twice as long: 𝑎1-𝑐1-𝑏1-𝑑1-𝑎2-𝑐2-𝑏2-𝑑2-𝑎1. This is depicted

in the first row of Fig. 3. We consider running Π in this setting by

running the protocol used for 𝑎 on 𝑎1 and 𝑎2, the protocol used for

𝑏 on 𝑏1 and 𝑏2, and so on. We will now assign favorites (inputs)

to the vertices: we make 𝑎1 and 𝑐1 each other’s favorites and 𝑏2
and 𝑐2 each other’s favorites. Other vertices are assigned favorites

arbitrarily. We will show that by running protocol Π in this setting,

we get a contradiction.

First (second row in Fig. 3), we consider the case where 𝑎1, 𝑐1
and 𝑏1 are honest while 𝑑 is byzantine and simulating 𝑑1-𝑎2-. . . -𝑑2.

In this case, because 𝑎1 and 𝑐1 are honest and both each other’s

favorites, by simplified stability, they must match each other.

By symmetry (third row in Fig. 3), 𝑏2 and 𝑐2 must match each

other.

Last (forth row in Fig. 3), we consider the case where 𝑏2, 𝑑2 and

𝑎1 are honest while 𝑐 is byzantine and simulating 𝑐1-𝑏1-. . . -𝑐2. In

this case, 𝑎1 and 𝑏2 are both honest and both decide to match the

same party 𝑐 (by the previous two cases), which is prohibited by

non-competition, giving us a contradiction. □

We conclude the section by presenting the proofs of Theorem 4,

giving the conditions for bipartite networks, and Theorem 5, pro-

viding the conditions for one-sided networks.

Proof of Theorem 4. Lemma 6 implies that the bipartite com-

munication model is weaker than the one-sided communication

model, and therefore Theorem 5 enables us to conclude that the

conditions in our Theorem’s statement are necessary. Note that,

for the condition 𝑡𝐿 < 𝑘/2 we need to apply Lemma 6 for 𝑆 = 𝐿

and 𝑆 ′ = 𝑅, while for 𝑡𝑅 < 𝑘/3 we need 𝑆 = 𝑅 and 𝑆 ′ = 𝐿. For suffi-

ciency, the condition 𝑡𝐿, 𝑡𝑅 < 𝑘/2 enables us to apply Corollary 2

and assume a fully-connected network. Afterwards, Theorem 2

ensures that bSM is solvable. □

Proof of Theorem 5. Lemma 7 proves that for 𝑛 = 4 parties,

sSM cannot be achieved in this setting if 𝑡𝑅 ≥ 1. Then, using

Lemma 3, this proves that for an arbitrary𝑛, sSM cannot be achieved

if 𝑡𝑅 ≥ 𝑘/2 in a one-sided network. Therefore, using Lemma 2,

this proves that 𝑡𝑅 < 𝑘/2 is necessary for bSM as well. When

𝑡𝑅 < 𝑘/2 holds, Corollary 2 enables us to assume a fully-connected

network. Then, we may conclude using Theorem 2 that it is both

necessary and sufficient that one of the conditions 𝑡𝐿 < 𝑘/3, 𝑡𝑅 <

𝑘/2 holds. □

5 Solvability in Authenticated Settings
We now consider authenticated settings. Assuming digital signa-

tures will enable us to solve bSM up to much higher corruption

thresholds in contrast to the unauthenticated case. This section is or-

ganized similarly to Section 4: we first analyze the fully-connected

network case, and afterwards focus on one-sided and bipartite net-

works.

5.1 Fully-Connected Network
In the fully-connected network case, bSM is always solvable: we

utilize the Dolev-Strong protocol [7], which achieves BB resilient

against 𝑡 < 𝑛 corruptions assuming PKI. Then, Lemma 1 directly

implies the theorem below.

Theorem 6. bSM is solvable in a fully-connected authenticated
network.

5.2 Bipartite and One-Sided Networks
The one-side and bipartite communication models offer more inter-

esting restrictions, as described by the theorems below. Note that

these results imply that, given PKI, bSM is solvable even when one

side is fully byzantine, i.e. 𝑡𝑅 = 𝑘 . This may seem counter-intuitive,

as the honest parties’ communication graph may be completely

disconnected. However, we need to highlight that, if one side is

completely byzantine, the bSM definition allows the honest parties

to simply match with nobody: any partial matching that satisfies

non-competition suffices.

PODC ’25, June 16–20, 2025, Huatulco, Mexico Andrei Constantinescu, Marc Dufay, Diana Ghinea, and Roger Wattenhofer

Theorem 7. bSM is solvable in a bipartite authenticated network if
at least one of these conditions holds: (i) 𝑡𝐿, 𝑡𝑅 < 𝑘 ; (ii) 𝑡𝐿 < 𝑘/3 or
𝑡𝑅 < 𝑘/3.
Theorem 8. bSM is solvable in a one-sided authenticated network
if 𝑡𝑅 < 𝑘 or 𝑡𝐿 < 𝑘/3.

Sufficient Conditions. In the following, we first focus on showing

that the conditions described by the theorems above are sufficient.

In the unauthenticated setting, our conditions enabled us to pro-

vide the parties in the disconnected side with full communication.

In turn, this allowed us to prove sufficiency by reducing the one-

sided/bipartite network cases to the fully-connected network case.

Assuming signatures enables us to proceed similarly: we may pro-

vide parties in side 𝑆 with complete communication whenever side
𝑆 ′ (which may or may not be connected) contains at least one honest
party. Roughly, the parties in 𝑆 will send signed messages to parties

in 𝑆 ′, and the (honest) parties in 𝑆 ′ will forward these messages.

Parties in 𝑆 will then accept messages signed correctly. We present

the formal proof in the full version [6].

Lemma 8. Denote the two sides 𝐿 and 𝑅 by 𝑆 and 𝑆 ′. If the parties
in side 𝑆 are disconnected, 𝑡𝑆 ′ < 𝑘 , and the network is authenticated,
we may assume the parties in 𝑆 are fully connected.

The next corollaries follow from Lemma 8. Note that Corollary 3

enables us to conclude that 𝑡𝑅 < 𝑘 is a sufficient condition for

bSM in a one-sided network with PKI. Similarly, Corollary 4 im-

plies that 𝑡𝐿, 𝑡𝑅 < 𝑘 is a sufficient condition for bSM in a bipartite

authenticated network.

Corollary 3. In a one-sided authenticated network, we may assume
a fully-connected authenticated network if 𝑡𝑅 < 𝑘 .

Corollary 4. In a bipartite authenticated network, we may assume
a fully-connected authenticated network if 𝑡𝐿, 𝑡𝑅 < 𝑘 .

Note that, for the one-sided network case we may already con-

clude that the conditions presented in Theorem 8 are sufficient.

The condition 𝑡𝑅 < 𝑘 follows from Corollary 3, which enables us

to reduce this case to the fully-connected authenticated setting

described by Theorem 6. Moreover, the condition 𝑡𝐿 < 𝑘/3 is suffi-

cient due to Theorem 5, which states that bSM can be solved even

in an unauthenticated one-sided network when 𝑡𝐿 < 𝑘/3.
For the bipartite network case, the condition 𝑡𝐿 < 𝑘 and 𝑡𝑅 < 𝑘

being sufficient follows directly from Corollary 4. Showing that

having 𝑡𝐿 < 𝑘/3 or 𝑡𝑅 < 𝑘/3 is also sufficient introduces, however,

different challenges. From this point on, we may assume without

loss of generality that 𝑡𝐿 < 𝑘/3, which implies that the side 𝑅 may

be fully byzantine. Note that this may cause the honest parties in 𝐿

to be completely disconnected.

While we cannot assume that the parties in 𝐿 are in a fully-

connected network, we will be able to assume that they are in a
fully-connected network with omissions: a message may either be

received within 2 ·Δ units of time, or it is never delivered. Moreover,

omissions occur only if all parties in side 𝑅 are byzantine. We

achieve this using the following strategy: whenever a party in

𝑃 ∈ 𝐿 needs to send a message m to a party in 𝑃 ′ ∈ 𝑅, it sends

the signed message m
′
:= (𝑃 → 𝑃 ′, 𝜏, id,m) to all parties in 𝑅,

where id is a message identifier and 𝜏 is the time when m
′
is sent.

The (honest) parties in 𝑅 forward the signed message m
′
to 𝑃 ′. 𝑃 ′

accepts this message only if the signature is valid and at most 2 · Δ
time has passed since time 𝜏 . We add that, as byzantine parties

cannot forge signatures on the honest parties’ behalf, this ensures

reliable communication (up to omissions).

We may then design a protocol in the bipartite network case as

follows: we (attempt) to provide the parties in 𝐿 with all parties’

preferences lists. The parties in 𝐿 will run AG-S locally, which

enables them to obtain their own matches and inform the parties

in 𝑅 about their matches. Due to the forwarding mechanism, we

may assume that the parties in 𝐿 are in a fully-connected network

where omissions only occur if all parties in 𝑅 are byzantine.

To provide the honest parties in 𝐿 with identical views over the

preferences’ list, we rely on two building blocks: a synchronous

BB protocol ΠBB, and a synchronous Byzantine Agreement (BA)
protocol ΠBA. We recall the definition of BA below.

Definition 3 (Byzantine Agreement). Let Π be a protocol
where every party holds a value as input. We say that Π achieves BA
if the following hold even when up to 𝑡 parties are corrupted:

• Termination: All honest parties output;
• Validity: If all honest parties hold the same input value 𝑣 , they
output 𝑣 ;

• Agreement: All honest parties output the same value.

The potential for omissions will require us to enhance these

protocols by adding a few properties when omissions occur: termi-

nation, and weak agreement, described below. Note that we do not

require any validity condition.

• Weak agreement: If 𝑃 and 𝑃 ′ are honest and output 𝑣 ≠ ⊥
and 𝑣 ′ ≠ ⊥ respectively, 𝑣 = 𝑣 ′.

The theorems below describe our building blocks. ΠBA is ob-

tained by making adjustments to the protocol of [4], and ΠBB is a

simple reduction to ΠBA. For constructions, see the full version [6].

Theorem 9. Assume the 𝑘 parties in 𝐿 are in a fully-connected syn-
chronous network with delay Δ. If 𝑡𝐿 < 𝑘/3, there is a 𝑘-party protocol
ΠBA achieving BA within ΔBA (Δ) time. Moreover, if omissions occur,
ΠBA still achieves weak agreement and termination within ΔBA (Δ)
time.

Theorem 10. Assume the 𝑘 parties in 𝐿 are in a fully-connected
synchronous network with delay Δ. If 𝑡𝐿 < 𝑘/3, there is a 𝑘-party pro-
tocol ΠBB achieving BB within ΔBB (Δ) time. Moreover, if omissions
occur, ΠBB still achieves weak agreement and termination within
ΔBB (Δ) time.

We present the code of our protocol below.

Protocol Π
bSM

Code for party 𝑃 ∈ 𝑅 with input 𝜋
1: Whenever you receive a properly signed message m

′ = (𝑃 ′′ →
𝑃 ′, 𝜏, id,m) from 𝑃 ′′ ∈ 𝐿, forward the signed message to 𝑃 ′ ∈ 𝐿.

2: Send your preference list 𝜎 to every party in 𝐿.

3: At time max(ΔBA (2Δ) + Δ,ΔBB (2Δ)) + Δ:
4: 𝑀𝑝 := matching suggestions received from parties in 𝐿.

5: Decide to match according to the most common suggestion

in𝑀𝑝 (breaking ties arbitrarily).

Code for party 𝑃 ∈ 𝐿 with input 𝜋

Byzantine Stable Matching PODC ’25, June 16–20, 2025, Huatulco, Mexico

1: id := 0. Whenever you need to send a message m to 𝑃 ′ ∈ 𝐿, let

𝜏 := the current time. Send the signedmessage (𝑃 → 𝑃 ′, 𝜏, id,m)
to all parties in 𝑅 and increment id.

2: In parallel:

3: Send 𝜋 to all parties via ΠBB. Let 𝜎ℓ denote the list received

via ΠBB from party 𝑃ℓ ∈ 𝐿.

4: Wait Δ time to receive preference lists from parties in 𝑅.

Join an invocation of ΠBA for every party 𝑃𝑟 in 𝑅: with

input 𝜋𝑟 if you have received 𝜋𝑟 from 𝑃𝑟 , and with a default

preference list otherwise. Obtain outputs 𝜎𝑟 .

5: At time max(ΔBA (2Δ) + Δ,ΔBB (2Δ)) :
6: If any value in (𝜎𝑣)𝑣∈𝐿∪𝑅 is ⊥:
7: Decide to match with nobody and terminate.

8: Run AG-S locally with input ((𝜎𝑙)𝑙 ∈𝐿, (𝜎𝑟)𝑟 ∈𝑅) , and
obtain output𝑀 .

9: Send to each party 𝑃𝑟 ∈ 𝑅 whom they should match to

according to𝑀 .

10: Decide who to match to according to𝑀 .

The next lemma states the guarantees of Π
bSM

.

Lemma 9. ΠbSM achieves bSM in a bipartite authenticated network
if 𝑡𝐿 < 𝑘/3.

We split the proof of Lemma 9 into three lemmas. First, Lemma 10

describes the communication among the parties in 𝐿 in Π
bSM

, al-

lowing us to assume that the parties in 𝐿 are in a fully-connected

network where omissions may only occur if all parties in 𝑅 are

byzantine. Under this assumption, Lemma 11 shows that bSM is

achieved when no party in 𝑅 is honest, and Lemma 12 shows that

bSM is achieved when 𝑅 contains at least one honest party.

Lemma 10. We may assume the parties in 𝐿 are in a fully-connected
network with maximum delay 2 · Δ where omissions occur only if all
parties in 𝑅 are byzantine.

Proof. Let (𝑢, 𝑣) be two parties in 𝐿 and assume that 𝑢 wants to

send a message m to 𝑣 . 𝑢 sends a signed message (𝑢 → 𝑣, 𝜏, id,m)
to all parties in 𝑅, 𝜏 being the current timestamp and id being a

message identifier. Parties in 𝑅 then forward this signed message

to 𝑣 . If 𝑣 receives a message (𝑢,→, 𝑣, 𝜏, id,m) properly signed by 𝑢

such that 𝜏 is at most 2Δ units of time in the past and 𝑢 has not

seen id has not been seen before, it accepts message id from 𝑢.

With this approach, if at least one party in 𝑅 is honest, messages

always get forwarded and received within 2Δ units of time. Oth-

erwise, note that byzantine parties cannot forge signatures on the

honest parties’ behalf: the byzantine parties may choose whether

to forward the message or not, then causing an omission. □

Lemma 11. If every party in 𝑅 is byzantine and 𝑡𝐿 < 𝑘/3, ΠbSM
achieves bSM.

Proof. According to Lemma 10, the parties in 𝐿 run ΠBA and

ΠBB run in a fully-connected network with omissions. As a con-

sequence, the weak agreement and termination properties hold

according to Theorem 9 and Theorem 10: if the parties receive

non-⊥ outputs, then these outputs are consistent.

Since ΠBA and ΠBB achieve termination, Π
bSM

achieves termi-

nation as well.

Because all parties in 𝑅 are byzantine, symmetry and stability

are immediate: these properties concern two honest parties on

opposite sides, which never happens here because one side is fully

byzantine. We note that some honest parties in 𝐿 may have received

⊥ and decided to match with nobody but this still results in a stable

matching for this specific setting.

As for non-competition, weak agreement guarantees that the

honest parties who have obtained preference lists in each of theΠBA

and ΠBB invocations run AG-S with the same input. Theorem 1

ensures that these parties obtain the same matching𝑀 . Therefore,

we conclude that Π
bSM

achieves bSM whenever all parties in 𝑅 are

byzantine.

□

Lemma 12. If 𝑅 contains an honest party and 𝑡𝐿 < 𝑘/3, ΠbSM
achieves bSM.

Proof. Parties in 𝐿 are in a fully-connected network with no

omissions according to Lemma 10, hence ΠBA and ΠBB achieve

respectively BA according to Theorem 9 and BB according to The-

orem 10. Consequently, all honest parties run AG-S locally on the

same input due to agreement and termination. Moreover, the valid-

ity properties of ΠBA and ΠBB ensure that honest parties’ prefer-

ence lists are received correctly and used as input in the local run

of AG-S. We therefore obtain that the honest parties in 𝐿 run the

same instance of AG-S locally, and every honest party’s preference

list in AG-S is the same as its original input. Therefore, the stable

matching𝑀 computed by AG-S also satisfies our bSM definition.

The last step is to prove that every honest party decides according

to𝑀 . This is immediate for honest parties in 𝐿. As for honest parties

in 𝑅, they decide according to the most common option sent by

parties in 𝐿. Since 𝑘 − 𝑡𝐿 > 𝑡𝐿 of the parties in 𝐿 are honest, each

party in𝑅 receives itsmatch in𝑀 as themajority option, and decides

on this match. Therefore, all honest parties decide according to𝑀 .

Consequently Π
bSM

achieves bSM whenever 𝑅 contains at least

one honest party. □

Necessary Conditions. We still need to show that the conditions

presented in Theorem 7 and Theorem 8 are necessary. We write

our proof for one-sided communication, and the bipartite network

case will be a corollary.

Lemma 13. If 𝑡𝑅 = 𝑘 and 𝑡𝐿 ≥ 𝑘/3, then achieving bSM is a one-
sided network is impossible.

Proof. We assume by contradiction that there is a protocol

achieving bSM in this setting. Using Corollary 2 and Lemma 3,

this means that there exists a protocol Π which solves sSM on

𝑛 := 6 nodes with 𝑡𝑅 = 3 and 𝑡𝐿 = 1. We denote the six parties by

𝐿 = {𝑎, 𝑏, 𝑐} and 𝑅 = {𝑢, 𝑣,𝑤}, and assume that 𝑏 and all parties in

𝑅 are byzantine. In the following, we fix an input configuration,

and we describe an adversarial strategy that breaks the guarantees

of Π in this setting: honest parties 𝑎 and 𝑐 will match with the same

byzantine party 𝑣 in 𝑅, hence breaking non-competition.

To do so, we define 𝑎 and 𝑐’s favorite as 𝑣 . Moreover, each byzan-

tine party will internally simulate two instances of themselves

running protocol Π. For example, 𝑣 will internally simulate two

instances of itself 𝑣1 and 𝑣2 such that 𝑣1’s favorite is 𝑎 and 𝑣2’s

favorite is 𝑏. Each of the remaining byzantine parties 𝑥 ∈ {𝑏,𝑢,𝑤}
simulates two instances of itself 𝑥1 and 𝑥2 with any arbitrary inputs.

PODC ’25, June 16–20, 2025, Huatulco, Mexico Andrei Constantinescu, Marc Dufay, Diana Ghinea, and Roger Wattenhofer

𝑣1𝑏1

𝑢1

𝑤1

𝑏2

𝑢2

𝑣2

𝑤2

𝑏

𝑢

𝑣

𝑤

𝑎

𝑐

𝑎

𝑐

Figure 4: a) From the point of view of 𝑎, all parties are honest
except 𝑐 (which crashed), simplified stability guarantees that
𝑎 matches with 𝑣 . b) From the point of view of 𝑐, all parties
are honest except 𝑎 (which crashed), simplified stability guar-
antees that 𝑐 matches with 𝑣 . c) What is actually happening
is that all byzantine parties are simulating two versions of
themselves except 𝑎 and 𝑐, but both 𝑎 and 𝑐 are honest and
try to match 𝑣 , which is not allowed by the non-competition
property.

Each communication edge has at least one of its two endpoints

being a byzantine party in our setting: since the parties in 𝐿 are

only connected to parties in 𝑅 in a one-sided network, byzantine

parties have full control over the communication network. They

may therefore divide the communication network in two groups:

{𝑎, 𝑏1, 𝑢1, 𝑣1,𝑤1} and {𝑏2, 𝑐,𝑢2, 𝑣2,𝑤2}. Messages only get sent and

received within a group, meaning that if party 𝑎 running Π wants

to send a message to𝑤 ,𝑤1 will receive it. Any message sent from

𝑢1, 𝑣1 and𝑤1 to 𝑐 is never received.

We consider the output of 𝑎 and 𝑐 after running protocol Π in this

setting. We have 𝑡𝐿 = 1 and 𝑡𝑅 = 3, which satisfies Π’s requirements.

Consequently, termination holds: 𝑎 and 𝑐 must decide to either

match with some party or no one.

We then consider a new scenario for party 𝑎: parties 𝑎, 𝑏,𝑢, 𝑣,𝑤

are all honest with the same favorites as the previous scenario’s

first group. Party 𝑐 is byzantine and crashes at the beginning, i.e.,

it does not send any message. In this scenario, 𝑡𝐿 = 1 and 𝑡𝑅 = 0,

which satisfies the requirements of Π. Therefore, termination holds

and 𝑎 obtains an output. Since both 𝑎 and 𝑣 are honest and each

other’s favorite, they must match with each other according to

simplified stability. However, we remark that 𝑎 cannot distinguish

between this scenario and the previous one: it receives the exact

same messages in both cases. Therefore, in the first scenario, 𝑎 also

decides to match with 𝑣 .

We may construct a symmetric scenario for party 𝑐: this time,

parties 𝑏, 𝑐,𝑢, 𝑣,𝑤 are honest with the same inputs as in the first

scenario’s second group. Party 𝑎 is byzantine and crashes at the

beginning of the protocol’s execution. As 𝑡𝐿 = 1 and 𝑡𝑅 = 0, the

requirements of Π are satisfied: termination and simplified stability

hold. Therefore, 𝑐 outputs 𝑣 . Moreover, this scenario is indistin-

guishable to 𝑐 from the first scenario, hence 𝑐 matches with 𝑣 in the

first scenario as well.

We consequently obtain a contradiction: in the first scenario,

both 𝑎 and 𝑐 are honest and match with the same party, which

breaks non-competition. □

As the bipartite communication model is weaker than the one-

sided model, Lemma 13 provides the following corollary.

Corollary 5. If 𝑡𝑅 = 𝑘 (resp. 𝑡𝐿 = 𝑘) and 𝑡𝐿 ≥ 𝑘/3 (resp. 𝑡𝑅 ≥ 𝑘/3),
then achieving bSM in a bipartite network is impossible.

Putting It All Together. We conclude the section by providing the

formal proofs of Theorem 7 and Theorem 8. We first present the

proof of Theorem 7, focusing on a bipartite network.

Proof of Theorem 7. We first discuss sufficiency. If 𝑡𝐿 < 𝑘 and

𝑡𝑅 < 𝑘 , Corollary 4 enables us to assume a fully-connected network.

Therefore, using Theorem 6, we obtain that bSM is solvable. If

𝑡𝐿 < 𝑘/3 and 𝑡𝑅 ≤ 𝑘 , Lemma 9 describes a protocol achieving bSM.

The case 𝑡𝑅 < 𝑘/3 and 𝑡𝐿 ≤ 𝑘 is symmetrical.

Otherwise, if 𝑡𝐿 ≥ 𝑘/3 and 𝑡𝑅 = 𝑘 or the opposite, we may apply

Corollary 5 and conclude that bSM is impossible. □

We now prove Theorem 8, discussing the one-sided network

case.

Proof of Theorem 8. For sufficiency, when 𝑡𝑅 < 𝑘 , we may

apply Lemma 8 and hence assume a fully-connected network. Then,

Theorem 6 enables us to conclude that bSM is solvable. If 𝑡𝑅 = 𝑘

and 𝑡𝐿 < 𝑘/3, Theorem 5 guarantees that bSM is solvable.

When none of these conditions holds, i.e., if 𝑡𝑅 = 𝑘 and if 𝑡𝐿 ≥
𝑘/3, Lemma 13 enables us to conclude that bSM is impossible. □

6 Conclusion
We investigated whether stable matching can be achieved in a

synchronous network where some of the parties involved may

be byzantine. We analyzed this problem under various network

topologies, both with and without cryptographic assumptions. For

each setting, we gave necessary and sufficient conditions, assuming

that each party holds as input a complete ranking of the parties on

the other side.

Our work highlights multiple promising directions for further

research. A first direction could be generalizing our results to the

stable roommate problem. Instead of assuming that the parties to

be matched are in two disjoint sets, the stable roommate problem

seeks a stable matching within the same set. Note that our nec-

essary conditions also apply to a byzantine variant of the stable

roommate problem, even though there is no longer a distinction

between byzantine parties on the two sides. However, the stable

matching problem comes with the guarantee that a stable matching

always exists, while the stable roommate problem does not. Hence,

definitions and properties need to be refined to account for this.

Another interesting direction would be to extend our question

to the asynchronous model. Using our current definitions, one

can prove that even if only one party known in advance can be

byzantine, stable matching is not solvable. Therefore, the properties

required for the stable matching would have to be relaxed for this

problem to be of interest.

Finally, while our work has provided a complete characteriza-

tion in terms of solvability, there are multiple aspects in which our

feasibility results could be improved. This includes improvements

in terms of efficiency (i.e., communication complexity), but also im-

provements in terms of guarantees, such as providing some degree

of privacy.

Byzantine Stable Matching PODC ’25, June 16–20, 2025, Huatulco, Mexico

References
[1] 2013. Stable Allocations and the Practice of Market Design: The Royal Swedish

Academy of Sciences. The Indian Economic Journal 60, 4 (2013), 3–34. https:

//doi.org/10.1177/0019466220130402

[2] Siavash Bayat, Raymond H. Y. Louie, Zhu Han, Yonghui Li, and Branka Vucetic.

2012. Distributed stable matching algorithm for physical layer security with

multiple source-destination pairs and jammer nodes. 2688–2693. https://doi.org/

10.1109/WCNC.2012.6214256

[3] Siavash Bayat, Raymond H. Y. Louie, Yonghui Li, and Branka Vucetic. 2011.

Cognitive Radio Relay Networks with Multiple Primary and Secondary Users:

Distributed Stable Matching Algorithms for Spectrum Access. In 2011 IEEE Inter-
national Conference on Communications (ICC). 1–6. https://doi.org/10.1109/icc.

2011.5962935

[4] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. 1989. Towards Optimal

Distributed Consensus. In Proceedings of the 30th Annual Symposium on Foun-
dations of Computer Science (SFCS ’89). IEEE Computer Society, USA, 410–415.

https://doi.org/10.1109/SFCS.1989.63511

[5] Subhendu Chattopadhyay, Lisa Higham, and Karen Seyffarth. 2002. Dynamic and

self-stabilizing distributed matching. In Proceedings of the Twenty-First Annual
Symposium on Principles of Distributed Computing (Monterey, California) (PODC
’02). Association for Computing Machinery, New York, NY, USA, 290–297. https:

//doi.org/10.1145/571825.571877

[6] Andrei Constantinescu, Marc Dufay, Diana Ghinea, and Roger Wattenhofer. 2025.

Byzantine Stable Matching. https://doi.org/10.48550/arXiv.2502.05889 Full

version of this paper.

[7] Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for

Byzantine agreement. SIAM J. Comput. 12, 4 (1983), 656–666. https://doi.org/10.

1137/0212045

[8] Ahmad M. El-Hajj, Zaher Dawy, and Walid Saad. 2012. A stable matching game

for joint uplink/downlink resource allocation in OFDMA wireless networks. In

2012 IEEE International Conference on Communications (ICC). 5354–5359. https:

//doi.org/10.1109/ICC.2012.6364329

[9] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. 1985. Easy Impossibil-

ity Proofs for Distributed Consensus Problems. In 4th ACM PODC, Michael A.

Malcolm and H. Raymond Strong (Eds.). ACM, New York, NY, USA, 59–70.

https://doi.org/10.1145/323596.323602

[10] Matthias Fitzi and Ueli M. Maurer. 1998. Efficient Byzantine Agreement Secure

Against General Adversaries. In Proceedings of the 12th International Sympo-
sium on Distributed Computing (DISC ’98). Springer-Verlag, Berlin, Heidelberg,
134–148.

[11] D. Gale and L. S. Shapley. 1962. College Admissions and the Stability of Marriage.

The American Mathematical Monthly 69, 1 (1962), 9–15. http://www.jstor.org/

stable/2312726

[12] Yannai A. Gonczarowski, Noam Nisan, Rafail Ostrovsky, and Will Rosenbaum.

2019. A stable marriage requires communication. Games and Economic Behavior
118 (2019), 626–647. https://doi.org/10.1016/j.geb.2018.10.013

[13] Yunan Gu, Yanru Zhang, Miao Pan, and Zhu Han. 2015. Matching and Cheating in

Device to Device Communications Underlying Cellular Networks. IEEE Journal
on Selected Areas in Communications 33, 10 (2015), 2156–2166. https://doi.org/10.

1109/JSAC.2015.2435361

[14] Dan Gusfield and Robert W. Irving. 1989. The stable marriage problem: structure
and algorithms. MIT Press, Cambridge, MA, USA.

[15] Rachid Hadid and Mehmet Karaata. 2009. Stabilizing maximum matching in

bipartite networks. Computing 84 (04 2009), 121–138. https://doi.org/10.1007/

s00607-009-0025-z

[16] Su-Chu Hsu and Shing-Tsaan Huang. 1992. A self-stabilizing algorithm for

maximal matching. Inform. Process. Lett. 43, 2 (1992), 77–81. https://doi.org/10.

1016/0020-0190(92)90015-N

[17] Chien-Chung Huang. 2006. Cheating by men in the gale-shapley stable matching

algorithm. In Proceedings of the 14th Conference on Annual European Symposium -
Volume 14 (Zurich, Switzerland) (ESA’06). Springer-Verlag, Berlin, Heidelberg,
418–431. https://doi.org/10.1007/11841036_39

[18] Pankaj Khanchandani and Roger Wattenhofer. 2017. Distributed Stable Matching

with Similar Preference Lists. In 20th International Conference on Principles of
Distributed Systems (OPODIS 2016) (Leibniz International Proceedings in Informat-
ics (LIPIcs), Vol. 70), Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone

(Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

12:1–12:16. https://doi.org/10.4230/LIPIcs.OPODIS.2016.12

[19] Alex Kipnis and Boaz Patt-Shamir. 2009. Brief announcement: a note on dis-

tributed stable matching. In Proceedings of the 28th ACM Symposium on Principles
of Distributed Computing (Calgary, AB, Canada) (PODC ’09). Association for

Computing Machinery, New York, NY, USA, 282–283. https://doi.org/10.1145/

1582716.1582766

[20] Leslie Lamport, Robert Shostak, andMarshall Pease. 1982. The byzantine generals

problem. ACM Transactions on Programming Languages and Systems 4, 3 (1982),
382–401. https://doi.org/10.1145/357172.357176

[21] Marie Laveau, George Manoussakis, Joffroy Beauquier, Thibault Bernard, Janna

Burman, Johanne Cohen, and Laurence Pilard. 2017. Self-stabilizing Distributed

Stable Marriage. In Stabilization, Safety, and Security of Distributed Systems, Paul
Spirakis and Philippas Tsigas (Eds.). Springer International Publishing, Cham,

46–61.

[22] Bruce M. Maggs and Ramesh K. Sitaraman. 2015. Algorithmic Nuggets in Content

Delivery. SIGCOMM Comput. Commun. Rev. 45, 3 (July 2015), 52–66. https:

//doi.org/10.1145/2805789.2805800

[23] Tung Mai and Vijay V. Vazirani. 2018. Finding Stable Matchings That Are Robust

to Errors in the Input. In 26th Annual European Symposium on Algorithms (ESA
2018) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 112). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 60:1–60:11.

https://doi.org/10.4230/LIPIcs.ESA.2018.60

[24] Fredrik Manne, Morten Mjelde, Laurence Pilard, and Sébastien Tixeuil. 2007. A

New Self-stabilizing Maximal Matching Algorithm. In Structural Information
and Communication Complexity. Springer Berlin Heidelberg, Berlin, Heidelberg,

96–108. https://doi.org/10.1016/j.tcs.2008.12.022

[25] Rafail Ostrovsky and Will Rosenbaum. 2015. Fast Distributed Almost Stable

Matchings. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing (Donostia-San Sebastián, Spain) (PODC ’15). Association for Comput-

ing Machinery, New York, NY, USA, 101–108. https://doi.org/10.1145/2767386.

2767424

[26] Francesco Pantisano, Mehdi Bennis, Walid Saad, Stefan Valentin, and Mérouane

Debbah. 2013. Matching with externalities for context-aware user-cell associ-

ation in small cell networks. In 2013 IEEE Global Communications Conference
(GLOBECOM). 4483–4488. https://doi.org/10.1109/GLOCOMW.2013.6855657

[27] Alvin E. Roth. 1982. The Economics of Matching: Stability and Incentives. Math.
Oper. Res. 7 (1982), 617–628. https://doi.org/10.1287/moor.7.4.617

https://doi.org/10.1177/0019466220130402
https://doi.org/10.1177/0019466220130402
https://doi.org/10.1109/WCNC.2012.6214256
https://doi.org/10.1109/WCNC.2012.6214256
https://doi.org/10.1109/icc.2011.5962935
https://doi.org/10.1109/icc.2011.5962935
https://doi.org/10.1109/SFCS.1989.63511
https://doi.org/10.1145/571825.571877
https://doi.org/10.1145/571825.571877
https://doi.org/10.48550/arXiv.2502.05889
https://doi.org/10.1137/0212045
https://doi.org/10.1137/0212045
https://doi.org/10.1109/ICC.2012.6364329
https://doi.org/10.1109/ICC.2012.6364329
https://doi.org/10.1145/323596.323602
http://www.jstor.org/stable/2312726
http://www.jstor.org/stable/2312726
https://doi.org/10.1016/j.geb.2018.10.013
https://doi.org/10.1109/JSAC.2015.2435361
https://doi.org/10.1109/JSAC.2015.2435361
https://doi.org/10.1007/s00607-009-0025-z
https://doi.org/10.1007/s00607-009-0025-z
https://doi.org/10.1016/0020-0190(92)90015-N
https://doi.org/10.1016/0020-0190(92)90015-N
https://doi.org/10.1007/11841036_39
https://doi.org/10.4230/LIPIcs.OPODIS.2016.12
https://doi.org/10.1145/1582716.1582766
https://doi.org/10.1145/1582716.1582766
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/2805789.2805800
https://doi.org/10.1145/2805789.2805800
https://doi.org/10.4230/LIPIcs.ESA.2018.60
https://doi.org/10.1016/j.tcs.2008.12.022
https://doi.org/10.1145/2767386.2767424
https://doi.org/10.1145/2767386.2767424
https://doi.org/10.1109/GLOCOMW.2013.6855657
https://doi.org/10.1287/moor.7.4.617

	Abstract
	1 Introduction
	2 Preliminaries
	3 Simplified Stable Matching
	4 Solvability in Unauthenticated Settings
	4.1 Fully-Connected Network
	4.2 Bipartite and One-Sided Networks

	5 Solvability in Authenticated Settings
	5.1 Fully-Connected Network
	5.2 Bipartite and One-Sided Networks

	6 Conclusion
	References

