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Abstract. Flooding is a fundamental building block of unstructured
peer-to-peer (P2P) systems. In this paper, we investigate techniques to
improve the performance of flooding. In particular, we present Clus-
tella, a novel semi-structured P2P architecture with bounded peer de-
gree. Clustella decomposes the network into different clusters, allowing
peers to quickly find those neighbors which contribute much to their
routing efficiency. By its link selection strategy, Clustella achieves a good
performance in static and dynamic environments.

1 Introduction

While distributed hash tables (DHT) are well-studied in the research community,
most peer-to-peer (P2P) systems in today’s Internet are still unstructured. Un-
structured architectures are attractive because of their simplicity and their high
robustness.

In unstructured systems, there is neither a centralized directory nor any con-
trol over the network topology or resource placement. When a new peer joins the
P2P network, it forms connections with other peers freely, e.g., it selects arbitrary
peers as neighbors. In order to publish its resources, a peer usually just stores
them locally or places them on randomly chosen peers. Generally, unstructured
overlays have loose guarantees for resource discovery, and it is possible that a
file is not found although it exists in the network.

It is often believed that—due to the absence of topological constraints—such
unstructured systems have a better performance and require less maintenance
overhead in highly dynamic environments where peers join and leave frequently
and concurrently. Usually, these systems also support richer queries than just
search by identifier, for example keyword searches with regular expressions, range
queries, etc.

The main Achilles heel of unstructured P2P systems are the underdeveloped
routing mechanisms. Basically, there are two fundamental routing operations:
flooding and random walks. In flooding, a search packet with a limited time-
to-live (TTL)—maximally 10 hops in Gnutella for example—is repeatedly for-
warded to all neighbors, while in random walks, a packet is only forwarded to
one randomly chosen neighboring peer. While a random walk is usually the less
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costly alternative in terms of the number of messages sent per query, the flooding
approach is more robust and has better response times. This paper focuses on
the flooding mechanism. However, we believe that our techniques are also useful
in systems based on random walks.

The major concern about flooding is the total number of messages caused
per query. More severely, in practice many of these messages are of no use and
unnecessarily increase the load on the system. The main reason are redundant
retransmissions: If a peer’s neighbors are likely to be neighbors as well, the peer
receives the same packet multiple times.

In this paper, we introduce a measure to evaluate the efficiency of flooding on
a given topology. We believe that this criterion captures the essence of flooding
well, and also engenders many interesting theoretical questions. We then identify
means to structure the topology in order to improve the quality of floods with re-
spect to this criterion. In particular, we present Clustella, a novel semi-structured
P2P network.

Clustella is a fully decentralized (local) system with undirected connections
only and a limited peer degree. Beacons are used to decompose the network into
clusters. Peers can orient themselves using the beacon information, and quickly
find other peers which—if a link to them is established—significantly increase
the number of peers covered by floods. If the found peer already has full degree,
local link rotations are applied and—also in this case—the connection request
can be satisfied quickly with a good neighbor. Small cycles in the topology—and
hence redundant messages—are avoided. Moreover, Clustella is self-stabilizing
and maintains its routing performance also in dynamic environments.

The rest of this paper is organized as follows. After reviewing related work
in Section 2, the model in general and the flood coverage criterion in particular
are introduced in Section 3. The Clustella architecture is described in Section
4. Simulation results are presented in Section 5. After briefly discussing possible
extensions in Section 6, the paper is concluded in Section 7.

2 Related Work

Gnutella [17] is probably the most prominent unstructured P2P network. How-
ever, albeit its success, there have been concerns about its scalability from the
beginning [19,20]. Indeed, when Napster was unplugged in 2001, Gnutella broke
down soon afterwards due to the inrush of former Napster users. A lot of inter-
esting solutions have been proposed since then.

In spite of the large literature about structured distributed hash tables
[18,21,23,26] (some authors have even proposed to implement unstructured data
placement schemes on top of structured systems [2, 3]), many researchers have
aimed at improving the performance of unstructured systems, acknowledging
their simplicity and their predominance in today’s Internet. One active thread
of research concerns content movement or replication [5,6,16,27]. In particular,
Cohen and Shenker [5] have shown that search is most efficient if the number of
replicas is proportional to the square root of the object’s popularity.
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Another fruitful field—also for structured networks—is interest-based locality
[11, 12, 22]. The idea is that instead of (or additionally to) random neighbor
connections, peers should establish connections to peers with similar interests.
It has been shown that thereby queries can be satisfied with a much smaller
flooding radius.

Many recent solutions for unstructured systems use alternatives for the flood-
ing operations, for example random walks (e.g. [4]). But there have also been
proposals to improve flooding itself. In [15, 25], the flooding is executed in sev-
eral successive rounds with increasing TTL, until enough responses are received.
While this solution can effectively reduce the message complexity for finding
popular files, the response times are worse.

The work which is the closest related to ours is by Jiang et al. [9]. Their
scheme aims at minimizing the number of redundant messages by constructing a
tree-like sub-overlay on which the packets are propagated. However, in contrast
to our work, many connections have to be maintained which are of no use for
flooding. This also implies that—compared to the total number of connections
in the system—the amount of peers covered by a flooding is low. More severely,
the tree-like sub-overlay may result in disconnected components, especially in
dynamic environments, reducing the efficiency further. In contrast, in our system,
all links can be used for flooding, since they have actively been selected in
consideration of their quality. Hence, while redundant messages are also rare,
the flood coverage is much larger.

Note that our paper is related to literature on virtual coordinate systems [7,8].
These systems typically assign coordinates to the different peers in order to
estimate distances (in terms of latency, rather than number of hops) between a
node and its (potential) neighbors. However, in this paper, we do not make use
of these techniques.

Finally, the idea of structuring unstructured systems is also used by re-
searchers in order to avoid a mismatch of the overlay with the underlying, real
network [13].

3 Model

We model the P2P network as an undirected graph G = (V, E), where V is the
set of peers and E the set of connections between the peers. That is, for u, v ∈ V ,
{u, v} ∈ E denotes that peers u and v know the IP addresses of each other. The
r-neighborhood Γ r(v) of a peer v ∈ V is defined as the set of peers which are at
most r hops away from peer v ∈ V , excluding v itself. For v’s direct neighbors,
we use the short form Γ (v) instead of Γ 1(v). Moreover, let R be the TTL or
flooding radius of the system (e.g., R ≤ 10 in Gnutella). As will be discussed in
Section 4, and unlike some other unstructured systems, in Clustella, every peer
has at least δ but no more than Δ neighbors, i.e., for all v ∈ V , δ ≤ |Γ (v)| ≤ Δ.

In this paper, a pure flooding algorithm is considered where each peer forwards
a packet to all its neighbors as long as the packet has a non-zero TTL. In order
to maximize the probability of finding a data item or file, a flooding operation
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should reach—for a given radius or TTL—as many peers as possible. Therefore,
|Γ R(v)|—the size of the R-neighborhood of a peer v—is a natural criterion to
quantify the efficiency of a flooding operation. In the following, we will refer to
|Γ R(v)| as v’s flood coverage. The flood coverage of a network network G = (V, E)
is defined as the minimal flood coverage of all peers in the network (cf. Definition
3.1).

Definition 3.1. The flood coverage Ξ(G) of a topology G for a given flooding
radius R is defined as

Ξ(G) = min
v∈V

|Γ R(v)|.

Of course, not every network topology is equally suited for flooding. If a peer has
neighbors which are also neighboring, many redundant messages are sent which
do not increase the propagation scope. In an optimal topology G, the number
of peers reached grows exponentially per hop, and if all peers have degree Δ, it
holds that Ξ(G) = min

{∑i=R
i=1 Δ(Δ − 1)i−1, |V |

}
.

Observe that our definition of a network’s flood coverage is somehow related
to the important criterion of graph expansion [24]. However, there are two crucial
differences: First, we are not concerned with the expansion of all subsets of peers,
but of single peers only (subsets of size one). And second, for these peers the
entire R-neighborhood is considered (instead of just their immediate neighbors).

An ideal topology achieving maximal flood coverage must have a large girth,
i.e., large minimal cycles. While finding such graphs is an interesting research
area on its own (cf. [10] for an explicit construction), we do not follow these
theoretical considerations further but go on and describe our semi-structured
P2P system Clustella which strives—in a decentralized manner—for creating
topologies with large flood coverage.

4 Clustella

In this section, we introduce the basic techniques used in Clustella for creating
topologies with large flood coverage. As described in Section 3, a peer should
connect to peers of different areas of the network, such that the shortest path
between two neighbors π′, π′′ ∈ Γ (π) of a peer π—except for the one via π
itself—is long.

However, in unstructured P2P systems, if a peer π learns about another peer
π′, π has a priori no information about π′’s location in the network, and thus
also not about the hop distance between π and π′. Therefore, π can not decide
whether it is useful to connect to π′, or whether its flood coverage using the
existing neighbors is better.

4.1 Clustering Topology and Beacons

A natural way to get rough topological location information is to decompose the
network into clusters or zones. The idea is that if the neighbors are chosen from
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different clusters, then they are likely to be distant from each other. In order to
be applicable in realistic and dynamic environments, our system must fulfill three
properties: (1) The clustering mechanism should not require the peers to perform
global operations or gather large amounts of additional topological information.
(2) The clustering should be established quickly and in a decentralized manner.
(3) The solution should be fair in the sense that all peers incur more or less the
same amount of work.

Such a clustering can be achieved by having some peers assuming the role of
beacons. Concretely, in Clustella, if a peer has no beacon in its Rd-neighborhood,
it considers itself a beacon. Furthermore, a protocol ensures that each peer knows
the beacons in its Rb-neighborhood. Both Rd and Rb are system parameters
which are explained later in more detail. For now, assume that Rd < Rb and
Rb ≈ R. In order to find out whether it is worth establishing a connection to
each other, two peers π and π′ exchange the information about their beacons. If
their neighborhoods look very different, the distance between the peers must be
large and thus the connection {π, π′} of good quality.

In Clustella, a beacon peer appends its identifier (IP address) to the packets
passing through it, together with a TTL initialized to Rb. The other peers then
forward this packet as usual, decrementing the TTL in every step. Since the
packet may have travelled several hops before a beacon appends its identifier, and
since the beacon parameter Rb can be larger than the packet flooding radius, the
packet’s TTL can expire before the beacon information is propagated Rb hops
far. Therefore, if a peer receives a packet with TTL=0, it buffers the beacon
identifiers with non-zero hop count, and piggybacks them on future packets.
The propagation of the beacon information becomes independent of the packets’
TTLs, and beacons are indeed known in their Rb-neighborhoods. Moreover, note
that due to the piggybacking, Clustella itself does not require the transmission
of any messages at all.1 This solution also fulfills the fairness property (Property
(3)), as the work is equally divided between both beacon and non-beacon peers.
The basic ideas of the clustering topology are illustrated in Figure 1.

4.2 Neighbor Selection

In this section, we first present Clustella’s neighbor selection strategy. After-
wards, the issue of replacing existing connections by better ones is addressed.

New Neighbors. Consider a peer π which—for example during the joining
process—is given a set of candidate peers from which it has to choose the best
neighbor. For each such candidate π′, π knows—due to a preceding information
exchange—the identifer of π′’s closest beacon, and which beacons it has in com-
mon with π′. If π itself does not see the closest beacon of π′, the hop distance
between π and π′ must be larger than Rb −Rd. In addition to this deterministic
guarantee, the amount of beacons which are in both π’s and π′’s Rb-neighborhood

1 Of course, however, the size of the messages becomes larger as they include beacon
information.
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Fig. 1. When the query flooded by peer π arrives at the beacon π′, π′ appends its
identifier. The packet is forwarded until its TTL becomes zero at peer π′′. Peer π′′ ex-
tracts the beacon’s identifier and piggybacks it to other packets. Hence, the information
about π′ is propagated in the entire Rb-neighborhood of π′.

correlates roughly with the length of the shortest path between the two peers. In
Clustella, the following algorithm is applied to select the best candidate: From
all candidates of which π does not see the closest beacon (if possible), π chooses
the one with which it has the least beacons in common.2

In our system, connections are undirected, and there is an upper bound Δ on
the amount of links a peer can have. This poses an interesting problem: What
happens if a peer wants to connect to another peer which already has Δ neigh-
bors? To find alternative candidates can be time-consuming, or even impossible if
all existing peers have full degree. In the following, we describe Clustella’s joining
procedure which—in spite of this problem—quickly establishes new connections
of good quality (i.e., between formerly distant peers).

First recall that a peer is allowed to have between δ and Δ neighbors. When
a peer joins the Clustella network (or if some of its neighbors have crashed), it
only looks for new neighbors as long as its degree is smaller than δ. However,
a peer π always accepts a connection request from another peer π′ if it has less
than Δ neighbors. If π already has Δ neighbors when it receives the connection
request from π′, it checks whether there exists a neighbor π′′ ∈ Γ (π) with degree
smaller than Δ. If this is the case, the connection {π′, π′′} is built. Since π′′ is
adjacent to π, the quality of the link {π′, π′′} is similar to the one of {π′, π}. If
on the other hand the degrees of all neighbors are also Δ, π drops a connection
with an arbitrary existing neighbor π′′ and accepts π′’s joining request. While
this would already be a good solution, Clustella exploits the situation further
and additionally establishes a connection between π′ and π′′. Note that since
π′ had a degree of at most δ − 1 < Δ − 2 before issuing the join request, this
operation is legal. More importantly, the link {π′, π′′} must be of good quality
(similar to the one of {π, π′′} before it was broken). Finally, this trick also speeds
up the joining process. We have the following result.

Theorem 4.1 In Clustella, by choosing δ < Δ, a connection request at a peer
π can always be satisfied by π itself or by a neighboring peer π′ ∈ Γ (π).

2 Note that the distances to the beacons are not considered.
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Also observe that since the links established by Clustella are between distant
peers only, a new link does not degrade the quality of existing links.

Our system only requires that δ < Δ, and hence choosing δ = Δ − 1 is fine.
However, it may be beneficial to have a larger range of allowed degrees. With
this increased flexibility, small local link rotations could be performed in order to
increase the flood coverage further during joins. Such mechanisms are planned
for future versions of Clustella.

Neighbor Replacement. A peer can always try to replace its current neigh-
bors by better ones. However, the evaluation of existing neighbors of a peer π
poses a problem: Since they are already adjacent to π, they must as well have
almost the same set of beacons in their neighborhood.

One simple solution would be to ignore this issue and just change the neighbors
once in a while. As a slight improvement, the neighbors could be assigned a score
depending on the beacons they had before the link has been established; then,
depending on these scores, sporadically the worst neighbor is replaced.

In Clustella, a more sophisticated approach is used: Each beacon information
record also contains its flooding path, i.e., a peer adds its identifier (at most Rb

entries) before forwarding the packet. Thereby, the peers are able to compute
via which neighbors they know about a given beacon. In order to evaluate an
existing neighbor π′, a peer π asks for π′’s beacons without the ones known
through the link {π, π′}. If π′ and π still have one or more beacons in common,
then the connection has to be replaced.

4.3 Dynamic Failures

Most P2P systems currently in use are very transient and have a high peer
turnover rate. Therefore, it is important that Clustella can efficiently handle
peers which leave or crash. The creation of beacons—and the propagation of the
corresponding information—is a fully decentralized process and therefore our
system adapts quickly to changing environments on its own.

However, it is beneficial to employ additional mechanisms to cope with churn.
If a neighbor of a peer crashes, a good substitute has to be found—a costly
operation if done from scratch. Therefore, in Clustella, a peer stores for each
neighbor π some of π’s neighbors. When π crashes, a connection to one of π’s
former neighbors can be established immediately. The quality of this alternative
connection is similar to the one of the old connection.

5 Simulation

We have analyzed the flood coverage of the topologies created by Clustella by
simulation for up to 1 million peers. Our tests mainly focused on the parameter
space Δ ∈ {4, ..., 7} (each with δ = Δ − 1) and R ∈ {5, ..., 10}.

Although choosing Rd smaller than Rb gives a deterministic guarantee for the
minimal girth, this feature can not be exploited fully since it is very expensive:
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The amount of beacon information per peer grows quickly as longer shortest
paths are enforced this way. However, such a hard guarantee seems not to be
necessary, as already Rd = Rb − 2 yields very good results: Since Rd < Rb, a
peer has enough beacons in its neighborhood for orientation, but also not too
many even in case of a large beacon radius Rb. Generally, Rb should roughly
equal—or be slightly larger than—R, i.e., Rb ≈ R.

In our simulations, the following neighbor discovery algorithm has been used:
In order to find an additional neighbor, a peer π in the Clustella network sends
an exploration packet of only a small constant TTL (e.g. 10 hops). This packet
contains information about the beacons in the neighborhood of π, plus a section
where already visited peers on the path can be stored. A peer π′ which re-
ceives this packet forwards it to its neighbor π′′ which—without the connection
{π′, π′′}—shares the least beacons with π. Neighbors which are already con-
tained in the path are avoided, and if several neighbors are equally well-suited,
a random one is chosen.

We have compared Clustella to two other strategies: a Gnutella-like strategy
and a random walk strategy. In the Gnutella-like strategy, in order to find new
peers it can connect to, a peer asks its neighbors for their neighbors. This pro-
cedure is repeated recursively, until the peer reaches its desired degree. In the
random walk strategy, a peer sends a discovery packet with the same TTL as
Clustella. However, unlike in Clustella, this packet is always forwarded to a ran-
dom neighbor, and does not benefit from the beacon information for orientation.

In all our simulations, the performance of the Gnutella-like strategy was of
course poor: The flood coverage was up to one hundred times worse than the
coverage of the other two strategies. The resulting topologies were highly clus-
tered, and the neighbors’ neighbors were often adjacent. While the random walk
strategy had a much better flood coverage than the Gnutella-like strategy, it
was outperformed by Clustella where peers quickly reached much more distant
neighbors.

Finally, since existing P2P systems often use longer random walks in order
to find new neighbors, we have also studied a different scenario. Thereby, both
Clustella and the random walk strategy chose neighbor candidates uniformly and
at random from the entire network. Such a uniform sampling can be achieved
by sufficiently long random walks. Clustella outperformed this random graph,
albeit only by up to slightly more than 10%. (Of course, for very large graphs
where only a small fraction of peers can be reached by a flooding, the difference
of the coverage of the two graphs diminishes. Similarly, for very small graphs
where all peers can be reached, the flood coverage is the same.) However, we
believe that this uniform sampling scenario is not realistic in practice, as the
mixing times [14]—and thus the length—of the random walks are large and also
difficult—or even impossible in dynamic environments!—to compute. (Note that
this computation requires a good estimation of the total number of peers in the
system.) Furthermore, the probability that an exploration packet is lost is high
for long walks, and it is necessary to send several redundant packets in parallel.
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Therefore, Clustella does not apply this neighbor discovery strategy but only
sends packets with small TTLs, as described above.

In conclusion, our first in vitro evaluation results are promising both with
respect to the search efficiency and with respect to the messages’ sizes. Of course,
we are aware that many issues such as the dynamics of the system remain to
be analyzed in detail in future work. Moreover, there is a wide variety of other
alternative approaches to which have not compared Clustella. Although we plan
to perform such comparisons, our focus here is rather on the introduction of
novel ideas to improve flooding than on proposing a complete and ready-to-use
system; in fact, Clustella can be enhanced by adding many existing heuristics, for
example by introducing some form of replication, or by the extensions discussed
in the next section.

6 Extensions

The basic system as described in Section 4 can be extended in several ways. In
this section, we briefly discuss two possible enhancements.

The first enhancement concerns the clustering. So far, there is only one level of
beacons. It might be beneficial to organize the beacons in a hierarchy of several
levels with increasing radius of responsibility. If a peer looks for a distant peer to
connect to, it can choose the candidate with which it has only high-level beacons
in common. A small beacon hierarchy (three or four levels) might already do the
job: Since floods have a small constant radius, the optimal flood coverage can
also be achieved with peers which are not very far away.

There are several challenges. In particular, the hierarchy must be easily main-
tainable when peers (and thus also beacon peers) join and leave. Moreover, it
should be no disadvantage to be a high-level beacon (fairness property), and
information about all beacons must be propagated efficiently.

The second enhancement concerns the size of the transmitted messages. Be-
sides general compression mechanisms, the use of Bloom filters [1] is appealing:
Sending only the Bloom array instead of the entire beacon identifiers can re-
duce the burden on the system’s resources (memory and bandwidth) while still
yielding acceptable probabilistic guarantees.

7 Conclusion

This paper has embarked on identifying techniques to make flooding on un-
structured P2P topologies much more efficient. Unlike other systems which only
combat the symptoms, we strive for avoiding bad connections from the begin-
ning. Moreover, in contrast to many structured P2P systems, Clustella can be
started from arbitrary network topologies, i.e., from any connected graph, and
develops towards better network structures in a self-stabilizing manner. Our first
evaluations are promising. Moreover, many heuristics such as smart data replica-
tion are orthogonal to our approach and could be integrated to further improve
search performance.
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An interesting feature of our techniques is that they can co-exist in networks
with normal clients (e.g., Gnutella clients); it is not necessary for the existing
clients to know about our new clients. What is more, the entire network will
benefit from our neighbor selection of—possibly a small number of—new clients,
as many existing clients will experience a larger fan-out as well.

We plan to investigate efficient flooding topologies further, addressing for in-
stance Clustella’s dynamics: Does the system require measures in order to stabi-
lize quickly, and if yes, which mechanisms are best? The ultimate goal is to have
a running Clustella client which collaborates seamlessly with other unstructured
P2P clients. Finally, we believe that our clustering approach may be interesting
in other areas of distributed computing as well.
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