Increasing the energy efliciency of microcontroller
platforms with low-design margin co-processors

Andres Gomez*, Andrea Bartolini*, Davide Rossif, Baris Can Kara, Hamed Fatemi?, Jose Pineda de Gyvez*, Luca Be

TDEIS, University of Bologna, Italy
Email: {a.bartolini, luca.benini@unibo.it} @unibo.it

*D-ITET, ETH Zurich, Switzerland
Email: {gomeza, andrea.bartolini, lbenini}@ethz.ch

INXP Semiconductors, Netherlands

Email: {baris.can.kara, hamed.fatemi, jose.pineda.de.gyvez@nxp.com }@nxp.com

Abstract—Reducing the energy consumption in low
cost, performance-constrained microcontroller units
(MCU’s) cannot be achieved with complex energy min-
imization techniques (i.e. fine-grained DVFS, Thermal
Management, etc), due to their high overheads. To this
end, we propose an energy-efficient, multi-core architec-
ture combining two homogeneous cores with different
design margins. One is a performance-guaranteed core,
also called Heavy Core (HC), fabricated with a worst-
case design margin. The other is a low-power core,
called Light Core (LC), which has only a typical-corner
design margin. Post-silicon measurements show that
the Light core has a 30% lower power density compared
to the Heavy core, with only a small loss in reliability.
Furthermore, we derive the energy-optimal workload
distribution and propose a runtime environment for
Heavy/Light MCU platforms. The runtime decreases
the overall energy by exploiting available parallelism
to minimize the platform’s active time. Results show
that, depending on the core to peripherals power-ratio
and the Light core’s operating frequency, the expected
energy savings range from 10 to 20%.

I. INTRODUCTION

In the mid-to-high performance range, symmetric multi-
core architectures have typically been used to achieve
a higher throughput with a lower power consumption
than single-core systems. Such systems exploit several
architectural techniques to improve their energy efficiency
proportionally to performance requirements.

More recently, heterogeneous computing has been pro-
posed for the purpose of increasing the energy efficiency
for a wide range of performance targets, such as the
big. LITTLE architectures [1]. A big. LITTLE multi-core is
composed of one (or a set of) high performance cores (e.g.
ARM Cortex A15), and a set of smaller but more power-
efficient cores (e.g. ARM Cortex A7). In this way, if the
low-power cores can satisfy an application’s performance
requirements, it is possible to achieve significant energy
savings. In these systems, the use of advanced hardware
infrastructure such as fine-grained Dynamic Voltage and
Frequency Scaling (DVFS) can further improve the en-

ergy efficiency. These systems, however, require memory
virtualization, multi-threading and full-featured operating
systems, such as Linux or Android. If these requirements are
met, task allocation and voltage/frequency configuration
processes can be easily integrated with the operating
system.

On the other side of the spectrum, the low-end micro
controller unit (MCU) market is dominated by products
based on the ARM Cortex M processor family. These
platforms have very simple cores, mainly optimized for low
power and cost. They are cache-less and do not support
memory virtualization, limiting them to either bare-metal
applications or very basic operating systems. Full-blown
DVEFES is generally not supported for cost reasons: a
DVFS-ready switching-mode power converter (SMPS) is a
complex and expensive component usually optimized for
efficiency at high currents, and featuring a complex SW
interface for voltage control. In the low-complexity, low-
power domains the SMPS’s have limited tuning range for
cost and efficiency reasons. More flexible and inexpensive
LDO’s have significant losses when downconverting, which
negates most of the savings expected by voltage scaling.
Hence, these low-end systems typically rely on frequency
scaling and shutdown as the main power management
knobs. Furthermore, logic synthesis is problematic for low-
power IC’s with ultra-wide voltage and frequency scaling,
since the behavior of synthesis tools for timing optimization
at a high voltage and an ultra-low-voltage are so conflicting
that convergence in one scenario can create violations in
other scenarios [2]. This translates to further inefficiencies
in the final device.

At the same time, multi-core architectures are beginning
to penetrate the microcontroller business segment: recently,
a new class of heterogeneous dual-core MCU products
appeared in the market. These devices have cores with
different instruction set architectures (3] and rely on the
architectural heterogeneity to achieve energy efficiency with
a principle similar to the mid-to-high-end Big-Little multi-
cores described previously, but with some limitations. The

restrictions imposed by the simple nature of the processor
architectures, namely the lack of first level caches and
support for virtualization, impose two big restrictions in
the task allocation policies. First, tasks must be statically
partitioned at design time, since processors execute different
instruction sets. Second, the limited-performance nature of
MCUs does not support the computational load required
to implement complex feedback loop allocation policies,
as well as voltage and frequency tuning. In recent years,
the semiconductor industry has started to reduce model
guardbands as a way to decrease core area and increase
energy efficiency for harvesting-based applications such as
[4], [5]. Though the economic viability of relaxed process
variations is still an open question, researchers have been
studying its impact on efficiency and performance, and have
proposed both architectural and techniques to recover some
of the penalties. For example, [6] have shown up to 13%
standard-cell area reduction from a 40% model guardband
reduction. In [7], the authors pair a better-than-worst-case
design core with recovery-driven techniques and report
power savings in the range of 11.8% to 29.1%. We will focus
on exploiting such heterogeneity in platforms consisting of
two cores featuring the same architecture, but two different
implementation methodologies: one designed reliably using
worst-case (Heavy) design margins, and another designed
using more energy-efficient, typical (Light) design margins.
It should be noted that while a Light core was designed
to be clocked at Fi,q:, because of process variations, the
is a small probability that it will not reach this operating
frequency. There are different ways to handle this scenario,
if it were to happen. One would be to “overclock” the Light
core to run at Fj,.., at which point, error detection and
correction schemes would have to be implemented in order
to guarantee its functionality, introducing non-negligible
overheads. A second, simpler alternative, which we use, is
to reduce its operating frequency. A reduced frequency
will prevent any errors from occurring, meaning that
no additional mechanism will be necessary to guarantee
its functionality, albeit with a clear performance trade-
off. The major advantage of this approach, is that both
processors can execute the same instruction set, as in a
typical symmetric multiprocessing (SMP) system, and,
at the same time, have the increased energy efficiency
from the power heterogeneity. In this work, we propose a
simple, yet efficient allocation policy that can dynamically
select which processor will execute each task, depending
on the application workloads and the operating conditions,
in order to achieve the most energy savings. The main
contributions of this work are:

1) A lightweight, bare-metal task allocation framework
that supports both static and dynamic policies
without relying on an advanced operating system.

2) A simulation infrastructure for the system which can
model the execution of applications, with events and
shared memory typical of this domain, and profile

their energy consumption.

3) Derivation of the task allocation policies that min-
imize the total energy consumption under both
homogeneous and heterogeneous frequencies.

4) A design space exploration that evaluates the per-
formance/energy trade-off, as well as the allocation
policies with respect to parameters typical of this
domain.

5) Analytical and experimental extensions to evaluate
energy savings with a reduced frequency Light core.

6) Calculation of energy-saving Fry p ranges as a func-
tion of the utilization.

7) Reliability model based on silicon measurements of a
Heavy/Light platform fabricated using 40nm CMOS
technology.

8) The analysis of the system and the evaluation of the
energy savings from exploiting heterogeneity with
different allocation policies in real-life applications.

With respect to our previous work [§], we have lifted the
homogeneous frequency conditions, and we have calculated
the boundary conditions for which a reduced frequency
Light core would introduce energy savings compared to
a single core. Our post-silicon measurements show that
this is an unlikely case, most Light core are statistically
able to reach their target frequency. The remainder of
this paper is organized as follows: In the next section,
we review various approaches used in other systems to
increase energy efficiency. In Section [[TI} we present the
proposed architecture of our next-generation dual-core
platform. In Section [V} we describe the power model
for our proposed system in detail. In Section [V] we
derive the energy-optimal task allocation policies under the
condition of a homogeneous frequency. In Section [VI we
relax this condition to allow a reduced frequency Light
core, and we calculate the frequency ranges for which
the dual-core platform will have savings. We present our
experimental results in Section [VII} and conclude our
findings in Section [VIII

II. RELATED WORK

In this section, we position our work in relation to similar
approaches from existing literature. From the market
viewpoint, the ARM big.LITTLE [1] family of products
is the most striking example of heterogeneous multi-
core platforms. ARM’s big.LITTLE is a heterogeneous
computing architecture coupling (relatively) slower, low-
power processor cores with (relatively) more powerful and
power-hungry ones. The intention is to create a multi-core
processor that can adjust to dynamic computing needs and
use less power than frequency scaling alone. It includes
Cortex-A15 cores and Cortex-A7 cores, designed to be ISA-
compatible and fit into the big. LITTLE system. This multi-
core system depends on high-level software infrastructure
to achieve energy efficient allocation/mapping of different
applications. Ideally, the operating system is able to detect
how computationally demanding tasks are, in order allocate

them to the correct core type. A similar approach has been
proposed by the authors of |9]. They realized a single-ISA
heterogeneous multi-core architecture, including a single-
threaded version of the EV8 high performance processor
(Alpha 21464), the MIPS R4700 (a processor targeted at
very low-power applications), the EV4 (Alpha 21064), EV5
(Alpha 21164), and EV6 (Alpha 21264).

The allocation of tasks among cores is integrated as part
of the operating system. Other methods besides hetero-
geneous architectures have been proposed for increasing
energy efficiency [10]. Near Threshold Computing, in which
the supply voltage is only slightly higher than the transis-
tor’s threshold voltage, is a promising approach to reducing
the energy per operation. However, this methodology is
highly sensitive to parameter variations and requires a
combination of architectural adaptations or specific soft-
ware techniques to mitigate the effects variability-induced
heterogeneity [11]. Several works have proposed variability-
aware techniques that improve the predictability and energy
efficiency of parallel multiprocessor arrays. The authors
of [12] propose a workload allocation policy to mitigate
the effects of core-level performance and power variations.
Using an LP+Bin-Packing formulation, their online policy
minimizes the energy consumption and deadline violations
in multi-core platforms with power and performance
variation. In [13], the authors propose a variation-tolerant
tasking technique for processor clusters. By characterizing
dynamic, circuit-level variability in specific, tightly-coupled
data structures, their proposed runtime implements a task-
level errant instruction management technique to reduce
the error-recovery cost and increase cluster throughput.
The authors of [14] propose an architectural scheme to
tolerate ambient temperature-induced variations capable
of statically (off-line) and dynamically (on-line) adapting
the processor-to-L1-memory latency without compromising
execution correctness.

At the software level, determining how to appropriately
allocate tasks to the different available cores is of up-
most importance in heterogeneous systems [15]. Otherwise,
results will lead to reduced performance and possibly an
increase in energy. As a result, much attention devoted to
developing allocation techniques for optimizing different
objectives [16]. Generally speaking, allocation techniques
can be classified as offline or online. Offline algorithms
take all decisions before execution, while online algorithms
take decisions after task activation. Offline algorithms
typically require more knowledge about the workload and
can often leverage more computational power to determine
optimal solutions. The work presented in [17] is one such
example, where the authors propose projecting the core
configurations and the program’s resource demands into a
unified multi-dimensional space, where the program-core
matching is obtained with weighted euclidean distances.
Online algorithms are more flexible because they do not
require any previous knowledge and can dynamically adapt
to changing conditions. The authors of [18] propose a

simulated annealing-based heuristic to maximize energy
efficiency using dynamic power management and dynamic
voltage and frequency scaling in multi-core platforms.
Similarly, the energy-aware scheduling algorithm proposed
in |19] reduces consumption by re-utilizing slack time in
DVS-enabled platforms.

The authors of [20] show a non-clairvoyant, preemptive
online scheduling algorithm and show that it is scalable
for the objective of unweighted flow plus energy on
speed-scalable processors. The work presented in |[21]
studies a hierarchical power management methodology
for asymmetric multi-core architectures. Their control-
theory centric approach uses DVFS and thread migration
to achieve optimal power-performance efficiency while
respecting the thermal design power budget. All of these
works use advanced software infrastructure such as multi-
threading, thread migration and other operating system
facilities making them unsuitable for the ultra low power
applications [22]. MCU-based platforms need lightweight
implementations to reduce their performance overhead and
maximize an application’s energy efficiency.

In the MCU domain, the most relevant example of
heterogeneous multi-core architecture is the LPC54000
platform [3]. The chip includes one (more powerful) ARM
Cortex-M4F processor core assisted by one (more energy
efficient) ARM Cortex-MO0+ coprocessor. It should be noted
that while this is not a single-ISA platform, the Cortex-
M4 is able to execute MO binaries, though not vice-versa.
The platform is designed to allow developers to statically
partition tasks to each core at design time. In this way,
tasks can be strategically positioned to match the appli-
cation’s performance requirements in an energy efficient
way. However, this platform does not allow for dynamic
scheduling of tasks among the two cores, mainly because
of the different ISAs and the asymmetrical nature of the
system. The approach proposed in this work overcomes
this issue by using an SMP architecture with heterogeneous
power consumption. The co-processor could be used for
more energy-efficient task execution, or to exploit any
available parallelism to speed up execution and allow the
system to enter sleep mode earlier. Compared to high-
end systems, there has been very little attention paid to
task allocation/scheduling on low-cost, limited performance
systems. The closest work in this domain would be [23],
which focuses on optimal resource management for control
tasks in MCUs using a minimal real-time kernel. However,
it does not address energy efficiency, and targets single-core
MCUs.

With respect to the presented systems, this work pro-
poses and implements different task allocation policies
targeting low-end MCU-based platforms. These policies
can introduce important energy savings, without a sophis-
ticated software infrastructure, in the low-power, low-cost
and deeply embedded applications context.

“Virtual”
Single Core
' Framework |
[[
N N7 e
Heavy | Light '.E@ﬂpi@[ali_'
! Core Core Peripheral
| INTERCONNECTION =i Bridge |
I I m=mm CODE PATH
[TcoM | [SRAM | oameam

Figure 1: Hardware architecture of the heavy-light plat-
form.

III. PLATFORM ARCHITECTURE

This section describes the reference heterogeneous sys-
tem architecture. The architecture, shown in Figure 1,
is inspired by heterogeneous dual-core MCUs, such as
LPC54XX series [3].

As shown in Figure the platform is composed of
two simple cores (i.e. ARM Cortex M4), equivalent from
the architectural viewpoint. The platform heterogeneity is
therefore given by the physical implementation method-
ology adopted for each core, rather than the ISA like
in current products. One core is implemented using the
worst-case corners for standard cell library characterization,
while the other one is implemented using typical operating
conditions. In this scenario, we can assume that the worst-
case (Heavy) processor is always able to reach the target
implementation frequency, even in the presence of process,
voltage and temperature variations. However, depending
on the actual process quality and operating conditions (i.e.
voltage, temperature) of each die, the typical (Light) core is
not guaranteed to reach the target frequency. Nonetheless,
the Light core will be more energy efficient than the Heavy
(Worst-Case) core because of the larger sizing of cells and
buffering required to achieve the timing closure in the
worst-case corner with respect to the typical corner. This
heterogeneous implementation methodology guarantees
that the proposed Heavy/Light platform will always be
able to deliver the same performance as a single-core MCU
designed in worst-case operating conditions. In addition, it
allows for energy savings whenever tasks can be offloaded
to the more energy-efficient Light core.

The cores share a L1 multi-banked tightly coupled
data memory (TCDM) that can be accessed in one clock
cycle acting as a shared data scratchpad memory. The
communication is based on a high-bandwidth logarithmic
interconnect (INTERCONNECT), implementing a word-
level interleaving scheme aimed at reducing the access

contention to TCDM banks. Moreover, the interconnect
provides test and set capabilities used to implement
synchronization and a message passing mechanism between
the cores. The interconnect communicates to a peripheral
bus through a bridge, that allows the two cores to access
the system peripherals.

As far as the instruction path is concerned, mid- and
high-end multi-core platforms typically feature a private,
per-core instruction cache. When moving to the MCU
domain, this assumption is no longer realistic, as most
processors for deeply embedded applications (e.g. ARM
Cortex M series) do not feature an instruction cache. For
this reason, current dual-core heterogeneous architectures
feature a private, per core instruction memory. Our target
architecture uses the TCDM for both data and memory. At
boot time, the Heavy core copies the contents of the Flash
memory (32k) to the TCDM. Since the Flash memory is
only used once, we do not consider its power consumption.

As was reported in our previous work [8], the area
breakdown was estimated through synthesis on a 40nm
technology low-power standard cell library. The bank of
Flash memory (32K) occupies only 6% of the overall area.
The core implemented using a typical corner for timing
closure occupies 12% of the overall system area. Considering
that an additional overhead of 2% is required at system
level for the introduction of one additional core, the total
area overhead for the introduction of the typical core is
only 13.9%.

IV. PRELIMINARIES

In this section, we begin by describing our power
model, as well as our estimated power consumption for all
components. In addition, we provide a reliability model
for the Light core, characterizing the probability of being
able to reach the target operating frequency for different
environmental conditions (i.e., temperature, voltage sup-
ply). For power simulations, it is first assumed that both
the Heavy and Light cores can be clocked at the maximum
frequency. Later on, in Section [VIZA] the differences for
heterogeneous frequencies will be described in detail.

A. Reliability model

Industrial flows for implementation of digital devices
leverage design margins to deal with process, voltage and
temperature variation. For the 40nm CMOS technology
considered in this work the nominal operating point
is defined as 1.1V of supply voltage, 25°C of ambient
temperature and typical process condition. Contrarily,
the corners used for signoff consider a combination of
parameters that slow-down the chip for setup timing checks,
and a combination of the parameters that speed-up the
chip for hold timing checks. Table [summarizes the signoff
corners of the 40nm technology used in this work (Heavy
core).

If we now only consider process variations, the signoff
margins of the worst-case corner are defined by degrading

Table I: Signoff corners used for timing closure of Worst-Case (Heavy) core and Typical (Light) core.

[Signoff corners

rocess - upply voltage | Temperature
P PMOS-NMOS S I 1

Setup (Heavy core) Slow-slow (-3 o) 0.99 125°C
Setup (Light core) Typical-typical 0.99 125°C
Hold Fast-fast (43 o) 1.21 -40°C

1200

—Light Core @ 0.99V, 125°C
——Heavy Core @ 0.99V, 125°C
Light Core @ 1.10V, 25°C

Vi —"

1000

enviromental margin

/ (Temperature, Voltage Supply)
|
1

800

Target freq
100 MHz

600 Light Cores failing

@ 100 MHz, 1.1V, 25°C

(<1%)
400 process
Light Cores failing margin (30)
@ 100 MHz,
0.99V, 125°C

70 80

920

100 110 120
Frequency [MHz]

130 140 150

Figure 2: Frequency distribution of Heavy core operating at
worst case environmental conditions (0.9V, 125°C), Light
core operating at worst case environmental conditions
(0.9V, 125°C), and Light core operating in typical operating
conditions.

all the spice parameters of the transistors by 3-sigma of
their Gaussian distribution. This guarantees that in the
extremely unlikely case where the chips are fabricated with
slow process conditions, and they operate in worst-case
environmental conditions (i.e. VDD = 0.99V, temperature
= 125°C), 99.7% of those are still able to achieve the target
frequency. On the other hand, when chips are fabricated
with a proper process centering and they operate in a
typical environment the failing probability is orders of
magnitude smaller. This scenario is depicted in Figure
where we consider a target frequency of 100 MHz for the
Heavy core. Considering the implementation methodology
we propose for the Light core, where the worst process cor-
ner is replaced by the typical one, the Gaussian distribution
of the Heavy core frequencies is shifted to the left by 3-sigma,
being centered on 100 MHz. In other words, implementing
a core with a target frequency of 100 MHz using typical
process parameters, leads to a signoff frequency of 120
MHz, if we consider worst-case process parameters for
signoff. These results are obtained by fabricating a silicon
prototype implementing a Cortex-M4 core using a typical
corner implementation methodology, and measuring the
operating frequency of the samples produced in wafers
doped to emulate typical and slow process conditions. As
a consequence, the failing probability of a Light core (i.e.
not be able to reach the target frequency) operating in
worst-case environmental conditions (i.e. VDD = 0.99V,
temperature = 125°C) is 50%, while it is less than 1%

when it operates with typical environmental conditions (i.e.
VDD = 1.1V, temperature = 25°C). This demonstrates
that in most common cases the Light core is able to operate
at the same frequency as the Heavy core, while providing
significant energy boost thanks to less buffering required
to fix setup time.

B. Power estimates

The power consumption and operating frequency of
the cores that implement the proposed system architec-
ture, as described in Fig. 1, are based on measurements
performed on silicon prototypes that integrate a Cortex-
M4 processor architecture. The Heavy core prototype was
designed with a state-of-the-art methodology (worst-case
process corner for setup checks), while the Light core
prototype was designed with the methodology described
in section IV.A (typical process corner for setup checks).
Our measurements show that the dynamic power density
(W /MHz) of the Light core is 30% smaller than the
power density of the Heavy core, thanks to the smaller
sizing of buffers and logic cells required to fix setup timing
during implementation. In the CMOS 40nm low-power
technology chosen for implementation of the processor,
which is a typical technology for the MCU domain, the
impact of leakage power is negligible, hence it is neglected
in the rest of our exploration. The power consumption of
the other system components is estimated by performing
simulations on a post place and route netlist of the system
implemented with the same 40nm technology for the digital
blocks (e.g., timers, SPI, UART), and by measuring the
power consumption on real silicon prototypes for the analog
blocks (e.g. PLL, IO PADs). In these simulations and
measurements, the system components accounted for up
to 50% of the energy consumed in a single-core platform
implemented with a worst-case methodology. Since the
activity of the system components heavily depends on the
number of active peripherals and analog blocks, which is
heavily application dependent, in the rest of the paper we
will conduct a parametric exploration of the system power
for values ranging from 0% (ideal case) to 100% of the
power consumption of the Heavy core. The power numbers

Table II: Estimated power values with Fj.tine =100MHz

and Fyjeep = Fuctive/17 =5.8MHz.
Device Active Sleep Time for
type power (mW) | power (mW) | synthesis closure
Heavy core 5.841 0.343 31 min.
Light core 4.088 0.240 26 min.
Sys. peripherals 5.841 0.343 —

used in the rest of the paper are shown in Table [[T} For
experiments with a reduced Fp¢ , the 17:1 active to sleep
power ratio will be kept constant.

C. Power model

We divide our platform’s total energy consumption
into three different categories: core, memory, and system
energies; the last of which corresponds to all peripherals
besides cores and memories. In our model, the core and
system components have two different states: active and
sleep. The system component is active only if there is an
active core, otherwise we assume that peripherals can enter
a low-power sleep mode.

Figure [3] shows an example of two periodic, independent
tasks (T1 and T2), executing on a single-core (scy and dual-
core (pc) platform. Let these tasks be executed in parallel
on the dual-core platform. The task running on the Heavy
core will have an active (execution) time Ay, and the
other, Arc. The system component must remain active
while there are active cores, meaning its active time is
Asys = max(Apc, Arc). By multiplying the active time
with the active power for each component, we can obtain
their active energies. Similarly, we can calculate the sleep
energy from the sleep time (obtained by subtracting the
active time from period D) and sleep power. The energies
per component for the dual-core platform, which are the
sum of the active and sleep energies, are defined in equation

m

Euc = Anc * Pauc + (D — Anc) x Ps,ac
Erc =Arc * Parc+ (D — ALc) * Ps,Lc
Esys,pc = Asys * Pa,sys + (D — Asys) * Ps,sys

(1a)
(1b)
(1c)
Where P4 x is the active power for the component X.
Similarly, Ps x is the sleep power for component X. The
total platform energy in the dual-core case, Eror,pc can
be approximated as the sum of the three previous energies,
which are the power-dominant components in a typical
MCU-based platform. Correspondingly, in the single-core
case, Eror,sc is the sum of the single Heavy core and
its respective system energy. Note that Fg¢ is similar to
, the only difference being that Agc accounts for the
single-core execution of T1 and T2; equivalently, Esy s, sc
has ASYS = Asc.

(2a)
(2b)

Eror.pc = Euc + Evc + Esys,pc
Eror,sc = Esc + Esys,sc

There are two main factors that determine the total
energy consumption at a given voltage/frequency operating
point: 1) the inherent power consumption of the different
components, and 2) the distribution of instructions to be
executed by the processing elements. Since we do not take
into account any thermal variations, the first factor is a
constant, whose estimates will be addressed in the next
subsection. The second factor is our input variable, which
will be controlled online by our software infrastructure.

Q) Q)

sleep
Single Core: § T1 T2 |<'_ >l

> t
>
_____ Bee .
i ti |
System active J sleep > ¢
D
(a) Single-core Platform
Q))
sleep
Heavy Core: ‘%, &
<> >
Agc
sleep
Light Core: ’Tk———)
> s > t
A
System: 1 active sleep !
D

(b) Dual-core Platform

Figure 3: Sample execution of two tasks on a single- and
dual-core platforms.

D. Task model

Our basic unit of work is a set of instructions. We first
use a fluid model to derive the optimal distribution of
cycles between the Heavy /Light cores. This model will then
be extended to atomic tasks, which will restrict the way
instructions can be partitioned among cores. We directly
calculate the execution time by factoring the number
of instructions with the core’s ¢pi and frequency. While
the actual cpi value depends on the application, we are
comparing a single-core to a dual-core execution. If, for
a given application, the cpi value is the same in both,
then the comparison is valid for any value. Since the Light
and Heavy cores have exactly the same microarchitecture,
we assume this to be true. When both cores run at the
same frequency, a task’s execution time will be the same
in either core, otherwise the execution scales linearly.
Task-sets group more than one task together and can
establish a precedence constraint between tasks. If tasks
have precedence constraints, they are called dependent,
otherwise they are independent. As is typically the case
in embedded system applications, we assume a periodic
task-set activation. At the beginning of each iteration, one
or more tasks can be activated, depending on the task-set.

V. ENERGY OPTIMAL ALLOCATION UNDER
HOMOGENEOUS FREQUENCIES

In this section, we derive the ideal, energy-optimal
policies for our proposed dual-core platform. Starting from
the power model introduced in the Section[[V] we calculate

the conditions for each policy. Afterwards, we discuss more
realistic, generic task-level allocation techniques which
reduce energy through the use of our proposed shadow co-
processor. Moreover, we discuss how these task allocation
policies can be refined for further energy savings by using
knowledge regarding the task-set.

To derive the optimal allocation policy, we begin with the
total energy for the dual-core platform as defined in .
Then, by substituting the terms in and re-arranging the
active and sleep terms, the total energy can be expressed
as follows:

Eror,pc =Auc * Pa He
+Arc * Pa 1o
+ Asys * Pa,sys

+Dx* (Psrc+ Psuc+ Pssys) (3)
Where Pa_x represents the difference between the active
and sleep powers of component X: Pa x — Ps x. We now
introduce two auxiliary variables: As = Arc + Agc and
Ap = Apc — Agc, which are the sum and difference of the
active times in the Heavy and Light cores. By substituting
these values in , the total energy can be re-written in
the following manner:

Eror,pc =D % (Ps,r.c + Ps,ac + Ps,sys) (4a)
A
+ TS(PA,LC + Pa.c + Pa,sys) (4b)
A A
+ TD(PA,LC — Pa,ue) + %PA,SYS (4c)

Where the term |Ap| in can simply be rewritten as
Ap since Ap € [0, Ag]. ThisTs intuitive, since the extreme
cases of energy minimization are: 1) off-loading all work
to the more energy-efficient Light core when system power
is negligible, where Ap = Ag, or 2) fully parallelizing the
load in order to minimize the system energy when its power
is dominant, where Ap = 0. Since the right-hand terms in
(4a) are constants, and terms in (4b)) are independent of
task allocation, the minimization of the total energy can
be expressed as follows:

min Eror,pc = min Ap (Pa,Lc — Pa,uc + Pa,sys) (5)

var const

Thus, the energy minimization problem reduces to choosing

the appropriate A7}, for a given Pa gc,Pa,rc and Pa gy s.
Minimizing the product of these terms can be split into
two cases, since Ap > 0. If the sign of the constant term is
negative, then minimizing translates to selecting the largest
value, or Ap = Ag, as was mentioned earlier. On the other
hand, if the constant term is positive, minimizing turns to
selecting the smallest value, or Ap = 0.

4 As if (Pac — Pa,pc + Pasys) <0 (6)
P 0 if (Pa,rc — Pa,gc + Pasys) >0

In the end, the optimal distribution of tasks among cores

depends only on the differences between the cores’ powers

and the system power. If the shadow co-processor’s power

savings are greater than the system energy, then all tasks

should be offloaded to the co-processor. Conversely, if the
system power is greater, then the optimal policy is to
exploit all available parallelism in order to maximize the
sleep time and thus minimize system energy. Our next-
generation MCU-based platform will be able to determine
in which of these cases it finds itself, and the task allocation
framework will enforce the optimal policy, depending on
the operating point.

Task serialization: In deriving @, we have shown
that in cases were the system power is low enough, all
instructions should be allocated to the Light core. For
reliability purposes, the software infrastructure remains
on the Heavy core and performs very light-weight tasks
such as setting timers and increasing some counters. As
a result, the Heavy core will have very low utilization and
contribute very little to the total energy consumption. In
this case, the maximum energy savings would occur at high
utilizations, near Agc = 1, where the energy savings will
be directly proportional to the ratio of active powers, or
24%. Table shows the energy savings from off-loading
all tasks to the Light core. In this example, we have a
fully utilized single-core (D = Agc = Apc = 100ms)
and no system power is considered. In the dual-core, the
Heavy accumulates sleep power, but because of the energy
efficiency of the Light core, the total energy is 24% less
than in the single-core.

Table III: Dual-core energy savings (without system pe-
ripherals)

Platform | Agyc | ALc Energy(uJ)
type (ms) | (ms) | Heavy | Light | Total

Single-core 100 - 584.1 — 584.1

Dual-core 0 100 34.3 408.8 443.1

Task parallelization: As was shown in @, in cases
where the system power is considerable, instructions should
be equally distributed among the two cores. Ideally, the
HW/SW infrastructure would allow fine-grained control
mechanisms for any load to be precisely distributed among
both cores. Since low-cost, performance-constrained MCU’s
do not have such infrastructure available, they can only
exploit the task-level parallelism provided by the applica-
tion.

A. Measuring Energy Savings

In order to have a global view of the total energy savings
derived from introducing a low design margin co-processor,
we define the following function:

Eror,sc — Eror,pc %] (7)

Esavings(ASC7 PSYS) = 100 *
Eror,sc

This function compares the total energy spent executing
a given number of instructions on a single-core and our
next-generation dual-core platform. For a given single-
core utilization, defined as Usc = Agc/D, there are
infinite ways to split instructions among two cores. We
thus introduce an auxiliary variable, Util Ratio, defined as

Apc/Arc. This variable illustrates how the instructions
are distributed among the Heavy and Light cores. For
example, Util Ratio =0 means all instructions are executed
on the Light core. On the other hand, Util Ratio = 1, means
a given number of instructions was evenly divided among
both cores. As was mentioned earlier, our proposed low
design margin co-processor will not be used to increase the
platform’s throughput, but rather to increase the energy
efficiency for a given single-core utilization. This is achieved
by reducing the system’s active time, while still maintaining
the same number of instructions being executed. Figure [4]
shows the energy savings as a function of the system
power, and the Util Ratio, after setting Usc = 1 and
Asc = Agc + Apc. The power numbers used for the
different components can be seen in Table [[I] It has been

[0.33,0.66]
[0.5,0.5]
Load Distribution [LC, HC]

System Power
(%ol Pc) 50

[1.0]

Figure 4: Energy savings for homogeneous frequencies as a
Usc = 100%. (For interpretation of the references to color
in the text, the reader is referred to the web version of this
article.)

shown already that for low system power values, the highest
energy savings are achieved by executing all instructions on
the Light core (Util Ratio =0). This can be seen by the red
points on the left hand side, which represent the maximum
savings when Util Ratio is 0. Similarly, is has been shown
that, when Pa sys > Pa,nc — Pa,Lc, dividing the load
equally among both cores yields the greatest savings. This
can be seen by the red points on the right hand side of
the figure, which represent the highest energy savings with
Util Ratio equal to 1.

B. Effects of task variance

Task-level parallelism varies heavily with the type of
application. Some applications can be very easily divided
into more or less equal sub-tasks, in terms of instructions.
In others, this is not the case. Table [[V] shows the changes
in total energy consumption when two tasks have high
variance, and when they are equal. For this example, we
are splitting a task with full utilization and a single-core
execution time (D = Age = 100ms). Depending on the
type of task it might be split-up differently, but the equation

Table IV: Effect of task variance on total active energy for
dual-core platforms.

Task Agc | ALc Total energy(uJ)
variance | (ms) | (ms) [Heavy | Light | System | Total
High 90 10 525.6 40.88 525.6 1092
High 10 90 58.41 367.92 525.6 952.0
None 50 50 292.0 204.4 292.0 788.5

Asc = Agc + Apc will always hold, since Heavy-Light
platforms increase the energy efficiency while maintaining
the same throughput.

The two rows in Table [[V] with high variance show the
impact smart allocation can have on the total energy. In
the top row, the larger task was allocated to the Heavy core,
while in the bottom row, the larger task was allocated to the
Light core. It should be noted how the total energy drops
around 11% when the large task is allocated to the more
energy-efficient Light core, even though the system energy
is exactly the same. Lastly, when there is no task variance,
the task is evenly split and it minimizes the system energy
component; consequently, the total energy is minimized.

Without execution time knowledge: As was seen in
Table [[V] having tasks with very different execution times
can prevent practical savings from reaching their ideal
limit. Our framework, built for general purposes, is able to
dynamically allocate tasks without any previous knowledge
of task execution times. This facilitates the developer’s work
when porting an application to our framework. For these
cases, a least recently used LRU policy has been developed.
After tasks are activated and placed in a queue, they will
be allocated in a first-in-first-out (FIFO) fashion to an
available core. If both cores are idle, the policy chooses the
core that has been idle the longest. This policy alternates
the allocated core for each task in the queue, and leads to
a more balanced load distribution, on average. However, if,
for example, the are only two tasks: one long, one short,
then allocating the longer task to the Light core will lead
to more savings. These additional energy savings can only
be achieved with knowledge of the task-set’s bounds.

With execution time knowledge: As previously discussed,
exploiting information about the task set can bring practi-
cal savings closer to their ideal maximum. For cases where
the execution time distribution is known, or tight bounds
can be calculated offline, this information can be used to
sort tasks by their length, and distribute their load in such
a way that both the system sleep time is maximized and
the Light core’s utilization is simultaneously maximized.
We approximate this bin-packing problem with a First Fit
strategy. It should be noted that the programmer does not
necessarily need to manually specify this information. Our
proposed framework is able to gather profiling information
and build statistics from the tasks. In cases were there
execution time does not fluctuate significantly, this would
be enough to obtain additional savings.

Heavy Core:
Allocator
~ [time |

allocate

Application |
Task Set

Job Queue |—{ Aigorithm

Statistics Y, power time

I I I
-

Light Core:

1]

Figure 5: The software allocator

C. Task dependencies

So far, we have discussed a fluid task model to derive
the energy-optimal distribution of instructions among
Heavy-Light core. We have also shown how an atomic
task model with discrete sizes can prevent an application
from reaching the theoretical energy minimum. While we
have treaded these atomic tasks to be independent, our
proposed algorithms can be used to run generic task sets
with dependencies. Though we cannot prove our heuristics
can minimize energy in the general case, since it is a well-
known NP-Hard problem, we will show with real-world
case studies that they can still be used to achieve results
close to the ideal scenario.

D. Software infrastructure

We describe here the implementation of the static and
dynamic software allocation policies implemented in our
framework, whose overview can be seen in Figure [5l For
dynamic allocation, we include both the case with task-set
knowledge (First Fit) and without (LRU).

Legacy code: When designing our framework, special
care was taken to facilitate the developer’s effort in
porting legacy code to our proposed platform. Listing
shows an example application with three independent
tasks: taskA, taskB, and taskC. The infinite loop in lines
6-11 performs the periodic activation of these tasks. To
port this code to our platform, only the function calls
have to be modified, as shown in Listing [2 The master
core creates a reference table for each task, and with
the schedule() function, automatically activates the tasks
at the given period. This same function automatically
determines the optimal allocation policy, according to the
platform’s characteristics, and offloads tasks to the Light
core.

Listing 1: Legacy Listing 2: Framework’s API
Code
13 #include
01 #include 14
02 15 int main(void) {
03 int main() { 16 #ifdef MASTER
04 . 17 addTask(&taskA, period);
05 18 addTask(&taskB, period);
06 while (1) { 19 addTask(&taskC, period);
07 taskA(Q); 20 #endif
08 taskB(); 21 while (1) {
09 taskC(); 22 schedule()
10 sleep(); 20 sleep();
11 ¥ 24 }
12 } 25 }

Dual-core task activation: The allocation of tasks to
cores is handled using a mechanism based on counters.
We associate an arrival and completion counter to each of
the tasks, which are used respectively to notify cores for
the arrival of a task and, after the execution, to signal its
completion. At the beginning of each period, the software
allocator assigns tasks according to the predefined schedule
and notifies the respective cores of the task arrivals. When
the execution of the task-set is finished, the Light core
goes into sleep mode, waiting for the next iteration of task
arrivals. The Heavy core, in charge of task registration, will
go to sleep until it is automatically awakened at the next
period.

In the case of dynamic allocation without task-set
knowledge, tasks are allocated using the LRU policy. Since
both cores can potentially access the arrays at the same
time, we associate a lock (mutex) to each element pair
(to each task). Locks are implemented using the T&S
functionality provided by the interconnect. This hardware
mechanism can be used to enable both single and two-
phase synchronization barriers accessible though software
primitives [24].

Finally, our framework supports task-sets with task
dependencies. When a certain precedence between tasks is
to be ensured, a core able to execute a specific task has to
wait until the lock of the preceding task is free. In this way,
we can enforce that the previous task must be completed
before the next task begins execution.

VI. ENERGY OPTIMAL ALLOCATION UNDER
HETEROGENEOUS FREQUENCIES

In this section, we derive the energy-optimal policies
for the proposed dual-core platform. As opposed to the
previous section, the frequencies for the Heavy and Light
will no longer be required to be equal. This would allow
the use of a Light core even at a reduced frequency, without
limiting the maximum frequency of operation for the Heavy
core. To this end, the power model presented in Section [[V]
for homogeneous frequencies will be extended. Afterwards,
we discuss the ideal load distribution to minimize the total
energy. Finally, we will derive the Light core’s frequency
boundaries as a function of the system’s utilization, for
which the dual-core saves energy.

A. Updated power model

In the homogeneous frequency case, there was an equiv-
alence in the total activity of the single-core and dual-
core: Asc = Arc + Agc. This meant that, regardless
of how the load was distributed among the Light and
Heavy cores, the sum of their execution times was equal
to the execution time of the single-core - due to the
equal frequencies. In the heterogeneous frequency case,
however, this time equivalence is no longer valid due to the
reduced Light frequency, yielding the following inequality:
Asc < Arc + Agc. Nonetheless, the total number of
instructions executed does remain constant. From this, the
minimal execution time can be calculated by multiplying
the cpi, which, for a given application, is constant for both
cores, and the Heavy’s maximum frequency Fis4x, another
constant. This expression is similar to the one derived in
the homogeneous case:

Iscxepi 1 xcepi Ipo xepi
scC p:Hc p+LCP (8)

Fyax Fyax

Frrax
By applying the definition of activity, and taking into
account that the single-core and Heavy core run at Fisax,
the previous equation is equivalent to:

Asc = Arc + Are,mIn

9)
Where Apcmin = %, represents the minimum

activity the Light core as if it were running at Fajax.
Similarly, the activity of the Light core running at a reduced

frequency is Apc = %, which can be expressed as:
Fyax
Arc = * Ao, MIN (10)
LC

Figure [6] shows the expanded activity in the Light core
as a result of the frequency scaling. Figure [6a] shows the
homogeneous case, where both the Heavy and Light cores
can be clocked at the maximum frequency, resulting in
the minimum activity. Figure [6b] shows the heterogeneous
case, where the Light core executes at a reduced frequency
resulting in an expansion of its active time. While the
energy spent executing a task remains constant, an in-
creased execution time can lead to a higher accumulation
of system energy. As a result, the criteria for the energy
optimal allocation will depend not only on the power ratios,
as in the homogeneous case, but on the frequency ratios
as well.

B. Minimizing dual-core energy

We now set the foundation for the optimal allocation of
tasks for dual-core platforms with heterogeneous frequen-
cies by minimizing the dual-core’s energy. As with the ho-
mogeneous case, we begin with the expression for the total
energy, . Since Agyg is defined as maz(Arc, Agc), the
two possible cases, Asys = Arc and Agys = Agc, will
be analyzed separately to determine the load distribution
that will minimize the total energy.

D
sleep
Heavy Core: § T1
Y 3 v > t
<>
Anc
sleep
Light Core: |T|<———)
8 >t
<>
Arcmin
(a) Homogeneous Frequencies
D
sleep
Heavy Core: "?k—)‘r > t
<—>
Anc
P —— , sleep
Light Core: ! T2 >
8 - >t
>
F

MAX
Apc = T (Aremin)
Lc

(b) Hetegeneous Frequencies

Figure 6: Sample execution of two tasks on a dual-core
platform with homogeneous and heterogeneous frequencies.

Case 1. Agys = Apc: If the activity of the Light core
is dominant, this implies Apc >= Apc. The expression
for the total energy can be reduced by substituting Apyc
from @D, as well as Ap¢ from Eq. to obtain:

Fyax

Eror,pc =ArLc,MIN * (* (Pa,Lct+sYs) — PA,HC)

LC
+ Asc * Pa,uc
+ D« (Ps,.c + Ps,nc + Ps,sys) (11)

Where Pa rc4sys is shorthand for Pa rc + Pa,sys. In

order to minimize this energy, only the first term needs
to be considered, since the only variable is Apc 1w, all
other are constants. The decision variable indicates how
much load will be allocated to the Light core, which could
be in the range [0, Asc]. The total energy minimization
problem can then be stated as:

. F
mm{ALc,MIN * (%sz (Pa,Lc + Pa,sys) — PA,HC’) }

const.

(12)

In this expression, the constant term, which depends on
the platform’s characteristics and the Light core’s frequency,
can be either positive or negative. These cases should
be analyzed separately, in order to determine when to
minimize or maximize the decision variable: A7 \/7n-

o F
) Asc if X (Pa,Letsys) < Panc
A = A e F
LC,MIN " o i S (PaLcysys) > Panc
Fro

(13)
The first case is calculated with the constant less than
zero. In this case, the decision variable A’LC’ MmN has to

be maximized. In other words, the entire single-core load
should be sent to the Light core, meaning A’LC’ MIN = Asc.
The second case occurs when the constant is greater than
zero. Here, the decision variable has to be minimized. Since
this is Case 1, A}c an cannot be set to zero, otherwise
max(Arc, AHC) Agc, which contradicts our case. So
the minimum value occurs when both cores have the same
activity, or Apc = Agc. Using Egs. 0] and [I0] one obtains
ALy * (1 + FM"‘SX) = ASC Rearranging the terms
ylelds the second solutlon in

The solutions of already mark a clear distinc-
tion between two policies: serialization to the Light and
parallelization. Depending on the Frc and Pa sys, one
policy can lead to greater savings than the other. If, for
example, Pa sys = 0, the allocation test would reduce to
FII;ILACX (Pa.Lc) < Pa pc. While the left hand side seems
to depend on Fi¢, it is in fact a constant, because the
Pa 1c is proportional Fic as well. As a result, for non-zero
frequencies, the inequality always holds. This means that
for low system power, the energy is always minimized by
serializing the load to the Light core.

If, on the other hand, Pa sys = Pa mc, the allocation
test becomes %(PA)LC) = Papc*(1— %) Using
the usual Pyc values, we obtain a critical frequency of
Frc = 456.5 MHz. This means that for frequencies below
456.5MHz, the energy will be minimized by parallelizing.
Since our maximum operating frequency is 100MHz, paral-
lelization is, in effect, the only possible solution to minimize
the energy.

Case 2. Agsys = Agc: If the activity of the Heavy core
is dominant, this implies Ayc >= Arc. The expression
for the total energy can be reduced by substituting Agyc
from Eq. [0} as well as Ap¢ from Eq. [I0] to obtain:

Frrax

Eror.pc =Anc * [Pagc + Pa sys — * Pa,1c]

Fyax

+ Agc * * (Pa,Lc)
LC

+ D« (Ps rc + Ps,uc + Ps sys) (14)

In order to minimize this energy, only the first term needs
to be considered, since Agc is a constant (the single-core
load), and the power terms are also constants. The variable
Apc will indicate how much load will be allocated to the
Heavy core, which could be in the [0, Agc] range. As a
result, the total energy minimization problem can then be
stated as:

. F
mm{AHc * (PA,HC + Pa,sys — ?,L'LXCX * PA,LC) } (15)

const.

Where the constant term, depending on the platform’s
characteristics, can be either positive or negative. These two
cases will, once again, be analyzed separately to determine
when to minimize or maximize our decision variable (A%).

. F
, Asc if PA,HC+sYs < A% % Pa Lo
= A - F
HC e i Pancisys > A+ Pa Lo
+FMAX
(16)

The first solution is calculated with the constant less than
zero. Here, the value of the Ayc variable should be as
large as possible to minimize the energy. In other words,
the entire single-core load should be sent to the Heavy core,
meaning A%~ = Asc. The second case occurs when the
constant is greater than zero. Here, the decision variable
should be as small as possible to minimize the energy.
Since we are in Case 2 (Asys = Auc), Ay cannot be set
to zero, otherwise max(Apc, Agc) = Arc, contradicting
our case. So the minimum value occurs when both cores
have the same activity (execution time), or, Arc = Agc.
Using Egs. |§| and one obtains Agc(1l + I;fo) = Agc.
Rearranging the terms yields the second solution in .

Just as in Case 1, the solutions of mark a clear
distinction between two policies: serialization to the Heavy
and parallelization. Depending on the Frc and Pa sys,
one policy can lead to greater savings than the other. If, for
example, Pa gy s = 0, the allocation test would reduce to
Fé}fL"‘CX (Pa,Lc) > Pa,nc- Both sides of the inequality are
constants, and with the usual power values from Table [[T}
the inequality does not hold. This means that with low
system power, serializing to the Heavy core will never
minimize the energy. Notice that for Pa sys = 0, the
solution was Apc,minv = Asc. Using , it follows that
Apc = 0. If, on the other hand, Pa.sys = Pa uc, the
allocation test becomes FIJ;ILACX (Pa,nc) > 2% Pa pe. Once
again, both sides of the inequality are constant, and using
usual power values, the inequality always holds. This means
that for high system power, parallelization is the only
possible solution to minimize the energy. It should be noted
that this solution is equal to the second one in Case 1; it
can be seen that A} 7y and Al add up to Asc, just

as in @

C. Optimal allocation

Once a platform’s power values and operating frequencies
have been either calculated or estimated E|, it is fairly easy
to apply these numerical tests to determine the optimal
allocation policy: either serialization or parallelization.
Afterwards, the software infrastructure is in charge of
allocating the task in accordance to the optimal policy.

In the previous subsection, we have derived the policies
that minimize the total energy consumed by the proposed
dual-core platform. Depending on the core frequencies and
platform’s power values (see first solution to (13])), the
energy optimal policy can be either serialization (to offload
the entire load to the Light core) or parallelization (to

INote that these conditions might be modified during runtime, e.g.,
in response to temperature variations.

40 -

L

% 20

(9]

£

& 04

»

&

5 -20

=

11}

40 .
1
0.5 100
0 6 %

sc F o (MHz)

(a) Serialization (Psy s = 0)

30

20

Energy Savings(%})

(LRSS
7SS
LR
% o 60 %
F o (MH2)

(b) Parallelization (Psys = Pgc)

Figure 7: Energy savings for both serialization and parallelization policies as a function of the utilization and Frc.
Green and red points indicate the minimum and maximum values of Fr¢o for which the proposed dual-core is more
energy-efficient than the single-core. (For interpretation of the references to color in the text, the reader is referred to

the web version of this article.)

split the load between to Heavy and Light cores). Whether
the minimal energy consumption of the Heavy-Light is
less than the single-core is another matter. Just as in the
homogeneous frequency case, the total energy savings of
each policy will depend on the utilization as well as the
Light core’s operating frequency. We will now derive the
frequency range for which the dual-core platform will have
energy savings, as a function of the utilization.

1) Task serialization: Tt is easy to see why the utilization
has a big impact on the savings. At very low utilizations,
the devices are mostly in sleep mode. Since the dual-core
consumes more power during sleep than the single core,
there will be energy losses. At the opposite end, with very
high utilizations, the dual-core is able to exploit the lower
power density in the Light core to lower the total energy
spent. We are interested the following problem: given a
utilization, what frequency ranges will result in energy
savings for the dual-core platform?

To find these frequency values, we begin once again with
the total energy equation . Since there are no restrictions
on the frequency scaling, there will come a point for low
frequencies where the execution time will exceed the period.
To simplify the analysis, we will split this into two cases,
since the energy reduces to different terms. The first case,
when the period is exceeded, or Arc > D, occurs when
Fre < FM# * ArLcmin. In this case, the total energy
equation can be expressed as follows:

Epc = Arc * (Pa,rc + Ps uc) (17)

Note that since task serialization is being discussed, the
system power is assumed to be zero, so its terms can be
ignored. Since the device will always be computing, it means
the Light core is always on and the Heavy core is always in

sleep mode. Nonetheless, its minimum activity is equal to
the single core activity, or Arc min = Asc. The dual-core
energy spent in one period is simply the computation time
multiplied by the Light core’s active power and the Heavy
core’s sleep power. When this is equated to the single-core
energy, and is used to reduce terms, the following
relation is obtained:

Ps e

Fyax

* (Pa,rc + Ps,uc) = Panc +

18
Fre Usc (18)

Where Ugc is the single core utilization, defined as A%. By
calculating the Fc values which, for a given utilization,
satisfy this relation, the lower frequency range can be
determined. To determine the upper frequency range, we
now analyze the second case where the period is not
exceeded, or Arc < D. Here, the dual-core energy reduces
to the following expression:

EDC :ALc*PA7LC+D*(PS,HC+PS,LC) (19)

In this case, the computation does not overrun the period,
and the device will be able to enter sleep mode. Once
again, by equating these values to the single core energy,
the following relation is found:

Given a utilization, the F o values that satisfy this relation
can be calculated. Figure [7Ta] shows the energy savings of
serialization as a function of the Frc and Ugc. The red and
green points show the maximum and minimum Fc values,
respectively, for which the single and dual-core energies
are equal. Note the Us¢c = 0.1 plane, which includes the
only visible red point. Starting from the maximum value
(100MHz), as Frc starts decreasing, the computation will

take longer. An extended execution time means a smaller
amount of sleep time, which is more expensive in the dual-
core case, hence the increasing savings. At the red dot,
Frc = 68.97TMHz, the single and dual-core energy are equal,
below that, the dual-core saves energy. There is, however,
an inflection point and then a minimum frequency, the
green point at F,c = 6.94MHz, after which, there will only
be energy losses. This happens because very low frequencies
will extend the computation time beyond the period. In
a single-core platform, this would normally be irrelevant
from the energy-only perspective. The problem with the
dual-core is that this extended execution time leads to an
even greater accumulation of sleep energy from the Heavy
core. So even when ignoring performance constraints, there
is a minimum frequency of operation for energy savings.
These limits are fairly low, in the [6 — —17]MHz range for
Usc € [0.1,1], when compared to the frequencies needed
to avoid a deadline miss: [10-100]MHz for Ugc € [0.1,1].
It should be noted that the other red dots are not visible
for higher utilizations because they go to the GHz range,
so the limiting factor is the maximum operating frequency.

2) Task parallelization: From the previous subsection
it can be seen that in cases of sufficiently high F7c and
Pa sy s, the optimal solution is to parallelize the load such
that the activities of the Light and Heavy cores are equal.
In the homogeneous frequency scenario, this was achieved
by splitting the single-core load equally among both cores.
In the heterogeneous case, however, the load given to the
Light core must be scaled down such that its execution time
will be equal to that of the Heavy core. In order to find
this proportionality, one begins with the activity equality:
Apc = Agce. By substituting @D, and the definition of
activity, one obtains:

(FMAX> . (ILC * cpi) B (IHC * cpi)
Fro Fuyax Frax

On the left-hand side, it can be seen that the activity
of the Light core is scaled by the frequency ratio to equal
the activity in the Heavy core. This, however, does not
indicate how a load should be distributed in order to achieve
this. To this end, we use the load equivalence, Isc =
Igc+11c, and combine it with to obtain the following
two expressions:

(21)

Ige = 7 (22)
L+ FMLACX
Fre) Isc
Ic = * 23
Le <F]\/IAX 1+ FZLTCX 23)

These expressions indicate how the load should be dis-
tributed among both cores to have the maximum, or ideal,
parallelism under heterogeneous frequencies. It can be seen
that, as Fc decreases, its load I;c decreases, and Iyc
increases, thus maintaining the activity between cores equal.
This result is similar to the homogeneous case, except

that the load will be more skewed towards the Heavy core,
depending on the frequency ratio.

In general, the previously proposed task allocation
policies, LRU and First Fit, are valid for the heterogeneous
case. The LRU will be used when there is no task-set
knowledge, and for large numbers of tasks, the average
utilization in both cores will be even. If, however, there
are few and uneven tasks, there is a risk of allocating a
larger task to the Light core. As the Light frequency is
reduced, this results in an extended execution time, which
leads to more accumulation of system energy and lastly,
energy losses. The First Fit policy can exploit task-set
knowledge and attempt to allocate the tasks closer to the
ideal partitions of instructions. The only difference between
the homogeneous and the heterogeneous case is that in the
latter, First Fit maximizes the system sleep time and the
Heavy core’s utilization. Skewing the load to the Light core
would have meant longer execution times, so the minimum
execution time of Heavy core consumes less energy.

Just as with task serialization, we now turn our attention
to determining the ranges of frequencies for which the dual-
core platform will have energy savings, as a function of the
single-core utility. Once again, we begin from the dual-core
energy equation, . Since this is the task parallelization
case, we assume high system power. Similarly, it has been
shown that the optimal policy is to parallelize such that
the Light and Heavy cores’ activities are equal. As a result,
the dual-core energy can be expressed as:

A
Eror,pc = 1-1-% * Z Ppi+ D Z Psi (24)

Fyax

Where the summations account for the power of all
three components: the Heavy, Light cores and the system
peripherals. To find the critical Fo values, this energy is
equated to the single-core energy, resulting in the following
relation:

>iPai | Psic
il L Py e + P 25
o Usc AHC + Pasys (25)
MAX

For any given utilization, this relation only holds with
Frc = 0. This means that for any non-zero frequency and
utilization, using the Light core will result in energy savings.
These results can be seen in Figure [7b] where the green
points form a line at Frc = 0. For all other values, the
ideal parallelization saves energy. For a given Fpc, the
savings increase with the utilization because the ratio of
more energy-efficient computation increases.

D. Summary

In this section, we have derived the optimal allocation
policies that minimize the energy consumption of our
proposed dual-core platform. The criteria for selecting
the optimal policy includes the ratios of the cores’ active
and sleep powers, and the system’s peripheral power. As
explained in Sec. [V] for platforms with low system power,
the optimal policy is to serialize to the Light core. Offloading

a single-core’s sequential load to the dual-core’s Light
core requires no special software considerations. On the
other hand, if the system power goes beyond a certain
threshold (Psy s rmr), the energy-optimal policy becomes
parallelization. This requires special considerations, par-
ticularly because our low-cost, performance constrained
target platforms are usually limited to task level parallelism.
Depending on the load, whether it can be profiled or
not, we have proposed different task allocation algorithms.
While the ideal load balancing derived in this section
maximizes the savings, the total energy savings in a real-
world application will vary, depending on the application
type, and the available degree of parallelism, as will be
shown in Section [VIIl

The flowchart in Figure [§] summarizes the process to
determine the most appropriate policy for our dual-core
platform. After the chip has been manufactured, the values
for Pgy s and Fc can be either measured or estimated. If
the application can be analyzed and its utilization bounded,
it can be used later to find the optimal frequency of opera-
tion. Using these values, our runtime can then determine if
serialization or parallelization will offer the greatest savings.
When Psys > Psyy,rer the optimal policy will be
parallelization. But if the degree of parallelism it too low, or
the reduced Fp¢ is below the frequency threshold (Frygr)
necessary to guarantee minimum application requirements,
then the only solution is to serialize to the Heavy core,
at the expense of energy savings. Note that our focus is
only energy-efficiency, and not performance guarantees.
If there are no performance requirements, parallelization
will introduce savings, although with a higher latency.
When Pgsy g is low, the minimal energy is obtained through
serialization to the Light core. Frc must first be checked if
it is within the energy saving range, and whether it meets
any performance requirements. If F,c meets the criteria,
our runtime performs serialization.

Fabricate Determine
lleli
dual-core Psys, Use, Fic
Serialize Serialiaze
to Light Core to Heavy Core

Figure 8: Flowchart summarizing methodology for deter-
mining optimal task allocation scheme.

VII. EVALUATION METHODOLOGY

In this section, we evaluate the energy savings our
allocation policies using two different simulators. We
validate our initial results from the previous section, by
using synthetic benchmarks to sweep the entire utilization
range. Furthermore, we have ported common MCU-based
applications to our platform, and show the energy savings
from real-world applications.

A. Simulation infrastructure

Our simulator, a modified version of [24], leverages an
instruction accurate ARMv6 instruction set simulator (ISS)
to model each of the two cores, and a SystemC interface
model to interconnect multiple cores and memory banks.
This instruction-accurate simulator allows us to test our
framework, written in C, with variable parameters on our
specified hardware architecture, shown in Figure [Il This
simulator’s power model includes not only the cores, but
the TCDM and Flash memories as well. As was described in
Section [V-D] precedence constraints are supported through
semaphores.

B. Homogeneous frequency simulation results

For our initial experiments, we will focus on the homoge-
neous frequency case, in which both the Heavy and the Light
core can be clocked at the maximum frequency. We begin
with synthetic tasks in order to linearly sweep the entire
utilization range for a given period. For each utilization
value, we instantiated a queue of I = 100 iterations, each
iteration activating N = 2 independent tasks of specific
lengths such that the desired utilization is kept. Each of
these queues was then executed in both a single-core and
a dual-core platform under two different scenarios: task
serialization and task parallelization. We present the results
as the energy savings with respect to the single-core, as
defined in @

Due to the effects of task variance discussed in Section [V]
we tested different levels of parallelism by introducing
task length variation A = {0,50}%, while maintaining
the utilization constant. When A = 0%, it means both
tasks are of the same length. This will be used a reference
of maximum theoretical parallelism, since the load can be
perfectly split among the two cores. When A = 50%, it
means tasks are +50% from the mean. For example, if
T1 = T2 = 10ms with A = 0, then with A = 50% the
tasks become T'1 = 5ms, T2 = 15ms.

Task parallelization: As was seen in Section [V} whenever
the system power is over the threshold value Pa syg >
(Pa,uc — Pa,rc), the most energy-efficient allocation
policy is to parallelize such that both cores have the
same activity, or computation time. In the homogeneous
case, this is achieved by distributing the load as evenly
as possible among both cores. For this experiment, we
used the core and system power numbers as described in
Table [[l Figure [9] shows the energy savings as a function
of the single-core utilization. This utilization is calculated
from a task-set running in the single-core. The energy
consumed by the single-core is then compared to the energy
consumed by the dual-core executing the same task-set.
The single-core utilization was chosen as an independent
variable to reference the effect the load has on total energy
consumption, and compare the efficiency of the proposed
dual-core platform. We have implemented two different
task allocation policies: LRU and First Fit, as discussed
in Section [V] The blue lines show the energy savings for

g 7
0
o
£ 7
z , -
& = @ = Max. Parallelism (PSYS_PHC)
; wfden Earliest (&=20%‘PSYS=F‘HC) .
3 oo FirstFit (A=20%,P =P,)
L Serialization (P, =0) m

20 | | | | | | | |

10 20 30 40 50 60 70 80 90 100

Single Core Util (%)

Figure 9: Simulation results under homogeneous frequencies (Fc = Frc = 100M)show the energy savings for several
allocation policies. Three parallel policies are shown, as well as the serialization policy. Note that serialization is
for Psygs = 0, which leads to higher savings compared to parallelization for Psys = Py at low utilizations. (For
interpretation of the references to color in the text, the reader is referred to the web version of this article.)

the LRU policy. When A = 50%, one task is substantially
longer than the other, meaning that the load will not be
evenly distributed. As expected, the energy savings are
substantially lower than ideal, maximum parallelization (in
black). The red lines show the energy savings for the First
Fit policy. As mentioned in the previous section, this policy
uses task-set knowledge to both minimize the active system
energy and maximize the Light core’s utilization. When
there is high variance, it can lead to additional savings of
7% with respect to LRU.

Task serialization: As was seen in Section [V] if the
system power is under the threshold value Pa sys <
(Pa,mc—Pa,rc), the most energy-efficient allocation policy
is to allocate all tasks to the Light core. For this experiment,
system power set to zero, the other power values were kept
the same. The green line in Figure [9] shows the energy
savings of serialization as a function of the single-core
utilization. It can be seen that for Usc > 15%, the dual-
core platform has energy savings, reaching up to 15% for
Usc = 1.

C. Heterogeneous frequency simulation results

In this section, we evaluate the allocation algorithms
proposed in Section [VI under the assumption that the
Light core cannot be clocked to the maximum frequency.
The result is a heterogeneous system with a performance
penalty when compared to our previous homogeneous case.
Depending on the granularity of the frequency scaling, the
maximum safe operating frequency might not be reached.
As a result, we use pessimistic values of Fyo = 100MHz,
Frc = 50MHz to quantify our savings, noting that in more
realistic scenarios, the actual savings will be somewhere
between our optimistic homogeneous frequency case, and
our pessimistic heterogeneous frequency case. For our
experiments, we once again begin with synthetic tasks to
sweep the entire utilization range. For a given period, we

instantiate a queue of I = 100 iterations, each activating
N = 2 independent tasks. Their execution times were
chosen to reach the desired utilization under different A
values, using the same methodology as in the previous
subsection. Each of these queues was then executed in both
a single-core and a dual-core platform under two different
scenarios: task serialization and task parallelization. We
present the results as the energy savings with respect to
the single-core, as defined in .

Task parallelization: As was seen in Section [VI-C2]
whenever Psys and Fre hold the inequality
%(PA,LC+SYS) > Pa mc, the most energy-efficient
allocation policy is to parallelize the load in proportion to
the frequency ratio. Figure [I0] shows the energy savings
as a function of the single-core utilization. Just as in the
homogeneous case, this allows us to compare and evaluate
the efficiency of the dual-core vs single-core platform. We
have implemented two different task allocation policies:
LRU and First Fit, as discussed in Section [VI-C2] The
blue lines show the energy savings for the LRU policy.
As expected, when A = 50%, one task is substantially
longer than the other, leading to lower savings. The red
and blue lines show the energy savings for the First Fit
and LRU policies, respectively. Because the reduced Light
frequency has a very significant performance penalty,
these results are meant to show the bounds on the energy
consumption. In the case of First Fit, task-set knowledge
guarantees that for the maximum system sleep time, the
Light core’s activity is also minimized. With LRU, there
is no guarantee, and in the worst-case scenario, the Light
core’s activity will be maximized. As these results show,
the possible energy savings with First Fit, up to 10% with
Usc = 1, can turn into energy losses with LRU, which
loses at least 8% in the best-case scenario.

20

S =S —— AR SRR L a
---------- B8
& 10 - S - - - .
& @ > > B o &
g - B
% 0r - iy |
2 B".’/ ---------- =-8-= Max.Parallelism ((2=0%.,P_, =P,)
% e Serialization (P, .=0)
; - p=-="- y=- FirstFit (A=20%,P.._ =P .) -
UCJ-“)_ A b *Tsys™ He —
T - 9 -LRU (A=20% Py, =P)
> -
20 I I ' ‘ | ! ! !
10 20 30 40 50 60 70 80 90 100

Single Core Util (%)

Figure 10: Simulation results under heterogeneous frequencies (Fyc = 100M, Frc = 50M) show the energy savings for
several allocation policies. The two proposed parallel policies are shown, as well as the serialization policy. Note that
serialization is for Pgyg = 0, which leads to higher savings compared to parallelism for Psygs = Pgy¢ in a medium
utilization range. (For interpretation of the references to color in the text, the reader is referred to the web version of

this article.)

Task serialization: As was seen in Section [VI-CT]

whenever Psys and Frec hold the inequality
FlﬁfL“CX (PA,LCJFSYS) < Pa,mc, the most energy-efficient

allocation policy is to allocate all tasks to the Light core.
For this experiment, the system power was set to zero.
The green line in Figure [I0] shows the energy savings of
serialization as a function of the single-core utilization.
It can be seen that for Uge >~ 15%, there are energy
savings. However, after Usc = 50, the energy savings
start to decrease. This happens because of the reduced
frequency, which extends computation time beyond the
period. This accumulates extra sleep energy from the Heavy
core, and decreases the savings. It should also be noted
that even though serialization can achieve energy savings
for most of the utilization range, the dual-core latency
will always be larger than the single core. This does not
necessarily mean a deadline miss. If the application has a
utilization less than 50%, this additional latency can be
tolerated and serialization can still provide energy savings.
Since the main focus of our work is energy efficiency, when
the reduced frequency is below a critical performance
value chosen by the developer, Frc < Forr, our policy
is to serialize to the Heavy core. While this would sacrifice
the energy efficiency, the performance will be guaranteed
to be equal to the single-core case in all circumstances.

D. Real-world case studies

The results shown so far have used synthetic tasks. While
these results give important insight to the energy saving
trends, it is important to demonstrate energy savings in
real-world applications. To this end, we have evaluated
the energy savings of different microcontroller applications
running on a Heavy-Light platform under both optimistic
and pessimistic conditions. Our first application is an open-
source Inertial Navigation System (INS) project |25]. This

application implements zero-velocity-update INS which
determines the position of an object in a space from the
input of inertial sensors (i.e. accelerometers). There is a
small degree of task-level parallelism present in the filtering,
detecting, and correcting stages of the position and velocity
calculations. This application serves as a reference for low
parallelism. Our second application is an MP3 decoder
which, as detailed in [26], can have a substantial degree of
parallelism in certain sub-tasks. Finally, our second case
study is the Pix4Flow camera module [27], which is part
of the broader PixHawk project [28]. This module has a
Cortex M4, which executes a lightweight computer-vision
algorithm called optical flow, used to approximate the speed
of a quadcopter from changes in subsequent pictures. This
application serves as a reference for maximum parallelism.

These applications were ported to our instruction-
accurate simulation framework, and were then executed
under single-core and dual-core platforms. For these ex-
periments, we used the core and system power numbers
as described in Table [lI] where parallelization is optimal.
Furthermore, we tested these applications under both
homogeneous and heterogeneous frequency configurations.
In the former, Fyc = Fyc = 100 MHz, while in the latter
Fryeo = 100MHz and Fro = 50 MHz. The results of these
experiments can be seen in Figure [I1] It is important to
notice that as the degree of parallelism increases, so do the
energy savings. As expected, the homogeneous frequency
case produces the best results, since there is no performance
penalty during parallelization. The energy savings range
from around 5% in the INS application to almost 20% in
the Pix4Flow application in the homogeneous case. For the
heterogeneous frequency case, even with a pessimistic Fr,¢
value, the savings are in the [2,11]% range.

Framework overhead: As with any task allocation
framework, there are overheads associated to an actual
implementation. We define overhead to be the amount
of active time spent doing anything other than executing
tasks. More specifically, the time spent registering task
arrivals, checking for task dependencies, determining the
optimal policy, and communication mechanisms between
the master core and the energy booster. In our simulation
platform, we can calculate this by subtracting the task
execution times from the measured active time. From all
our experiments, these are in the tens of microseconds
per iteration, depending on the number of tasks. In the
INS benchmark, for example, 3 dependent tasks had an
overhead of around 50 ps.

VIII. CONCLUSIONS

In this work, we have analyzed the energy efficiency of
next generation microcontroller platforms composed of one
Heavy core fabricated with worst-case design margins, and
a more energy-efficient Light co-processor with reduced
design margin. We have presented a lightweight task
allocation framework that exploits the available power
heterogeneity to minimize the platform’s total energy
consumption according to the power ratios of a platform’s
components, namely the system peripherals and the Light
core’s operating frequency. We have derived in detail the
optimal load balancing policies, which depend on the
Light core’s operating frequency, and validated our task
allocation policies with an instruction-accurate simulation
platform. Real-world case studies show that compared to a
single-core platform, our policies can save up to 20% of total
energy with a maximum Light core operating frequency,
and almost 11% with a reduced frequency. Post-silicon
measurements confirm the robustness of the proposed
approach, since the probability of a Light core operating
at a maximum frequency is over 99% for most common

environmental conditions.

Opt. Flow

100

8
6
4
2
0
INS MP3

m Single-Core m Dual-Core (Het. Freq)

(=]

[=]

=

=]

Dual-Core (Hom.Freq)

Figure 11: Total energy savings with shadow co-processor
in homogeneous and heterogeneous configurations.

IX. ACKNOWLEDGMENTS

This work has been funded by NXP Semiconductors, FP7
project PHIDIAS (g.a.318013), SNF project "Transient
Computing Systems” (200021 _157048), and ETH Ziirich
Grant funding.

REFERENCES

(1] P. Greenhalgh, “big.LITTLE Processing with ARM Cortex-A15
& Cortex-A7,” ARM Ltd., Tech. Rep., 2011.

[2] Y. Pu, J. Echeverri, M. Meijer, and J. de Gyvez, “Logic synthesis
of low-power ics with ultra-wide voltage and frequency scaling,”
in Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2014, March 2014, pp. 1-2.

[3] LPC5410X Product Data Sheet, NXP Semiconductors, 2015, rev
2.2.

[4] A. Gomez et al., “Dynamic energy burst scaling for transiently
powered systems,” in Proc. DATE Conf. EDA Consortium,
2016, pp. 349-354.

[5] M. Thielen et al., “Human body heat for powering wearable
devices: From thermal energy to application,” Energy Conversion
and Management, vol. 131, pp. 44-54, 2017.

6] K. Jeong, A. B. Kahng, and K. Samadi, “Quantified Impacts
of Guardband Reduction on Design Process Outcomes,” in 9th
International Symposium on Quality Electronic Design (isqed
2008). IEEE, 2008, pp. 790-797.

[7] A. B. Kahng, R. Kumar, and J. Sartori, “Recovery-Driven
Design: Exploiting Error Resilience in Design of Energy-Efficient
Processors,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 31, no. 3, pp. 404-417, 2012.

[8] A. Gomez, C. Pinto, A. Bartolini et al., “Reducing energy
consumption in microcontroller-based platforms with low design
margin co-processors,” in Design, Automation Test in Europe
Conference Ezhibition (DATE), 2015, March 2015.

9] R. Kumar et al., “Processor power reduction via single-ISA

heterogeneous multi-core architectures,” Computer Architecture

Letters, vol. 2, no. 1, pp. 2 — 2, 2003.

A. a. Eltawil, M. Engel, B. Geuskens et al., “A survey of cross-

layer power-reliability tradeoffs in multi and many core systems-

on-chip,” Microprocess. Microsyst., 2013.

U. R. Karpuzcu, A. Sinkar et al., “EnergySmart: Toward

Energy-efficient Manycores for Near-Threshold Computing,” in

Proceedings of the 2013 IEEE 19th International Symposium on

High Performance Computer Architecture (HPCA), ser. HPCA

’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.

542-553.

F. Paterna, A. Acquaviva, A. Caprara et al., “Variability-aware

task allocation for energy-efficient quality of service provisioning

in embedded streaming multimedia applications,” Computers,

IEEE Transactions on, vol. 61, no. 7, pp. 939-953, July 2012.

A. Rahimi, A. Marongiu, P. Burgio et al., “Variation-tolerant

openmp tasking on tightly-coupled processor clusters,” in Design,

Automation Test in Europe Conference Exhibition (DATE), 2013,

March 2013, pp. 541-546.

D. Bortolotti, A. Bartolini, and L. Benini, “An ultra-low power

resilient multi-core architecture with static and dynamic toler-

ance to ambient temperature-induced variability,” Microprocess.

Microsyst., vol. 38, no. 8, Part A, pp. 776 — 787, 2014.

F. Chaix et al., “Variability-aware Task Mapping Strategies for

Many-Cores Processor Chips,” in 2011 IEEE 17th International

On-Line Testing Symposium. IEEE, 2011, pp. 55-60.

A. Gomez et al., “Sf3p: A framework to explore and prototype

hierarchical compositions of real-time schedulers,” in Proc. RSP

Symp. IEEE, 2014, pp. 2-8.

J. Chen and L. John, “Efficient program scheduling for heteroge-

neous multi-core processors,” in Design Automation Conference,

2009. DAC ’09. 46th ACM/IEEE, July 20009.

D. He and W. Mueller, “A heuristic energy-aware approach for

hard real-time systems on multi-core platforms,” Microprocess.

Microsyst., 2013.

J. Mei et al., “Energy-aware preemptive scheduling algorithm

for sporadic tasks on dvs platform,” Microprocess. Microsyst.,

vol. 37, no. 1, pp. 99-112, Feb. 2013.

(10]

(11]

(12]

(13]

14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

[24]

[25]

[26]

27]

(28]

A. Gupta, S. Im et al., “Scheduling Heterogeneous Processors
Isn’T As Easy As You Think,” in Proceedings of the Twenty-
third Annual ACM-SIAM Symposium on Discrete Algorithms,
ser. SODA ’12. SIAM, 2012, pp. 1242-1253.

T. S. Muthukaruppan et al., “Hierarchical power management
for asymmetric multi-core in dark silicon era,” Proceedings of
the 50th Annual Design Automation Conference on - DAC 13,
2013.

A. Gomez et al., “Wearable, energy-opportunistic vision sensing
for walking speed estimation,” in Proc. SAS Symp. IEEE, 2017,
pp. 1-6.

R. Marau et al., “Performing flexible control on low-cost mi-
crocontrollers using a minimal real-time kernel,” Industrial
Informatics, IEEE Transactions on, vol. 4, no. 2, pp. 125-133,
2008.

D. Bortolotti, C. Pinto, A. Marongiu et al., “VirtualSoC: A
Full-System Simulation Environment for Massively Parallel
Heterogeneous System-on-Chip,” in Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2013
IEEE 27th International. TEEE, 2013.

J.-O. Nilsson, I. Skog, P. Handel, and K. Hari, “Foot-mounted
INS for everybody - an open-source embedded implementation,”
in Proceedings of the 2012 IEEE/ION Position, Location and
Navigation Symposium. leee, 2012, pp. 140-145.

W. Thies, V. Chandrasekhar, and S. Amarasinghe, “A Practical
Approach to Exploiting Coarse-Grained Pipeline Parallelism
in C Programs,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007). 1EEE, 2007.

Pix4FLow. (2016) Pix4flow smart camera module website.
[Online]. Available: http://pixhawk.org/modules/px4flow

L. Meier et al., “Pixhawk: A system for autonomous flight using
onboard computer vision,” in Robotics and Automation (ICRA),
2011 IEEE International Conference on, May 2011, pp. 2992—
2997.

http://pixhawk.org/modules/px4flow

