
Brief Announcement: Tree Decomposition for Faster
Concurrent Data Structures

Johannes Schneider
Computer Engineering and Networks Laboratory

ETH Zurich
8092 Zurich, Switzerland

jschneid@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and Networks Laboratory

ETH Zurich
8092 Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

Abstract
We show how to partition data structures representable by
directed acyclic graphs, i.e. rooted trees, to allow for effi-
cient complex operations, which lie beyond inserts, deletes
and finds. The approach potentially improves the perfor-
mance of any operation modifying more than one element
of the data structure. It covers common data structures im-
plementable via linked lists or trees such as sets and maps.
We demonstrate its simplicity and its effectiveness using a
concurrent sorted linked list. We achieve a speedup of up to
250% even for small divisions.
Categories and Subject Descriptors: E.1 Data struc-
tures
General terms: algorithms, performance
Key Words: concurrent data structures, graphs

1. INTRODUCTION
With the rise of multi-core processors efficient and simple

parallel data structures gain more and more importance.
Though there is a rich literature on concurrent data struc-
tures, outside of the database community surprisingly little
work has been carried out to deal with general operations be-
yond inserts, deletes and finds. For instance, any common
operation such as an update query on a subset of all ele-
ments in a list is often not handled well with conventional
techniques, meaning that either the whole data structure
is locked or each modified element is locked. In the first
case, all operations are sequential, and in the second case
the overhead due to acquiring and releasing locks frequently
induces an unwanted time penalty. In databases this issue
has been addressed from the 1970s onwards through various
mechanisms such as hierarchical locking. Our proposal is
less complicated and does not involve hierarchies. We group
elements together, such that only one lock per group must
be acquired.

2. RELATED WORK
For database systems, predicate locks are an approach to

logically lock elements [1]. A predicate, such as “all data
records with field x larger some value”, defines all tuples
that are of interest for a transaction. In theory and practice,
finding intersecting predicates is a difficult undertaking and
has not been used in real systems [2, 4], whereas hierarchi-

Copyright is held by the author/owner(s).
PODC’10, July 25–28, 2010, Zurich, Switzerland.
ACM 978-1-60558-888-9/10/07.

cal locking is standard since the 1970s. In database systems
only whole blocks with several data records can be locked
due to physical constraints such as the addressable size of
a block on a hard drive, whereas for concurrent data struc-
tures any object can be locked. Our approach intentionally
introduces a minimum granularity for locking objects. We
argue that the complexity of hierarchical locking is well jus-
tified for large centralized database systems where hundreds
or thousands of operations are executed in parallel, but it
is not necessary in a typical multi-core system, where the
number of actual concurrent transactions is in the order of
the number of cores.

Many implementations of concurrent data structures
which support only insert, delete and find operations have
been proposed. For example, in [5] a concurrent binary tree
implementation is given such that locks are only acquired
for modified objects (as for the lazy concurrent list in [3]).
Our algorithm and the one in [3] need one lock for such an
operation, but we have another book keeping overhead (i.e.
remembering the leader of the currently traversed group)
and furthermore, in general, we slightly restrict the poten-
tial parallelism. Thus, for the mere standard operations
insert, delete and find, these algorithms are somewhat more
efficient than our approach. However, the proposed strate-
gies [3, 5] are not well suited for operations beyond inserts,
deletes and finds. In particular, if one iterates through a list
or tree modifying many objects, all these objects must be
protected (e.g. locked). Thus there is “no free lunch” in the
general case.

3. DATA STRUCTURE DECOMPOSITION
We distinguish two types of nodes: group leaders and

group members. All group members that are reachable from
a leader by member objects form a group (together with the
leader). See Figure 1.

A traversal of the data structure starts from the root,
which is always a leader. When an object to be modified is
encountered, any thread working on some object in the same
group must also have passed by the group leader. Therefore,
it suffices to lock leaders, i.e. before a group member is mod-
ified its group leader is locked. This holds for lists as well as
for all kinds of tree traversals such as depth or breadth first.
The choice of group leaders can be made on different basis.
For example, when a new node is inserted it is randomly
chosen to be either a group leader or a group member. On
the positive side, if several elements are modified in the same
group, only one lock needs to be acquired. On the negative
side, if several threads operate on different elements in the



Figure 1: Decomposition of a directed rooted
graph, where dark vertices indicate leaders and
pale vertices show group members. A group is
shown by a striped area.

Figure 2: Speedup of a concurrent linked list when
using groups of expected sizes 2, 5 and 17. The x-axis
gives the length of the modified interval in per cent
of the total list length.

same group, they face a conflict and cannot run concurrently.
Thus, if the size of the group is large, e.g. the whole tree in
the most extreme case, the restriction of possible parallelism
might have a bigger impact than the savings due to using
less locks. However, since our technique is simple and comes
with little overhead, it results in a performance gain already
for small groups. The overhead is low, since membership
relations of the groups are implicit, i.e. group members do
not need to know their own group (i.e. their leader) and a
leader object does not need to know the nodes in its group.
If this was not the case then any deletion of a leader caused
an overhead proportional to the size of the group, since all
members must be updated. In our case leader deletions also
cause complications, i.e. if a leader L is deleted then the
group led by L is implicitly merged with the prior group.
Though, an operation can notice that L got deleted when it
attempts to lock L (e.g. by having a deleted flag), it might
be unaware of its new group leader, but it could retraverse
the list/tree to find it. When a new leader L gets inserted,
a group might be split. To find out, if the leader is still
current, versions can be used, i.e. whenever a group is split
by inserting a new leader, the version of the original group
leader is incremented. Thus, by checking the version of a
leader L, an operation can be sure that the group has not
been changed. However, there are also other ways to deal
with these issues, i.e. a simple way to deal with deletions is
to use ”dummy“ nodes as leaders that cannot be deleted. In
future work, we will evaluate several strategies. A series of
deletions and inserts might degenerate the decomposition,
i.e. create a few very large groups and many small groups.
In future work, we intend to develop and test rebalancing
strategies for groups.

For evaluation we used Java with 16 threads on a 16 core
system, i.e. four quad-core Opteron 8350 processor. We im-
plemented a sorted concurrent linked list running Algorithm
StdModifyRangeValues(int x,int y). The algorithm traverses
the list and changes all objects, which have a key larger than
x and smaller than y. If we have found the first object O
with key larger than x (and smaller y), then we cannot just
lock object O but must lock the last accessed leader.

We added all numbers in the range [0,10000]. Then Al-
gorithm StdModifyRangeQuery was executed on an interval
[x, y] of varying width y−x, start element x and with varying
group sizes (see Figure 2). If no elements are modified our

Algorithm StdModifyRangeValues(int x,int y)

1: Node curr = list.getFirst(); Node lastLeader = null; {1st

object is always a leader, e.g. dummy with key −∞}
2: while curr.getValue()<y do
3: if curr.isLeader() then lastLeader = curr; end if
4: if (curr.getValue() > x) or (curr.getValue() < y)

then
5: if lastLeader!=null then lastLeader.lock() endif
6: Change some field of curr
7: if curr.getNext().isLeader() then

lastLeader.unlock(); lastLeader = null; endif
8: end if
9: curr = curr.getNext();

10: end while
11: if lastLeader!=null and lastLeader.isLocked() then

lastLeader.unlock() endif

algorithm is about 5% slower due to the overhead of remem-
bering the leader. It holds that the larger the groups and
the modified interval, the larger the speedup (up to some
point). If an interval containing one percent of all elements
is modified, the performance improvement is about 25% for
groups of average size 5. If 10% of all elements are altered
the gain is about 65% for group sizes still below 20. For
much larger group sizes (e.g. 200) the throughput does not
increase compared to group sizes of around 20 – possibly,
since the running time for groups beyond 20 is mainly dom-
inated by the list traversal and locking operations account
only for a small amount of the overall running time.

4. REFERENCES
[1] K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger. The

notions of consistency and predicate locks in a database
system. Commun. ACM, 19(11), 1976.

[2] G. Graefe. Hierarchical locking in b-tree indexes. In BTW,
2007.

[3] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. S. III, and
N. Shavit. A lazy concurrent list-based set algorithm. Parallel
Processing Letters, 17(4), 2007.

[4] H. B. H. III and D. J. Rosenkrantz. The complexity of testing
predicate locks. In SIGMOD Conference, 1979.

[5] D. Shasha and N. Goodman. Concurrent search structure
algorithms. ACM Trans. Database Syst., 13(1), 1988.


